Sufficiency of quantum channels by Rényi divergences

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

Łódź, December 2018

Quantum divergences

A (quantum) divergence is a dissimilarity measure for pairs of (quantum) states:

$$D:(
ho,\sigma)\mapsto D(
ho\|\sigma)\in\mathbb{R}^+$$

- strict positivity: $D(\rho \| \sigma) = 0$ iff $\rho = \sigma$;
- monotonicity (data processing inequality):

$$D(\Phi(\rho) \| \Phi(\sigma)) \le D(\rho \| \sigma)$$

for any quantum channel Φ ;

 operational significance: relation to performance of some procedures in information - theoretic tasks

Examples

relative entropy:

$$S(\rho \| \sigma) = \operatorname{Tr} \rho(\log(\rho) - \log(\sigma));$$

- more general *f*-divergences;
- distinguishability measures from hypothesis testing:

$$P_t(\rho \| \sigma) = \| \rho - t\sigma \|_1, \qquad t > 0;$$

distinguishability measures for n copies:

$$P_{t,n}(
ho\|\sigma) = \|
ho^{\otimes n} - t\sigma^{\otimes n}\|_1, \qquad t > 0, \ n \in \mathbb{N}.$$

Information loss and sufficient channels

Suppose Φ is a quantum channel.

Data processing inequality \equiv information loss:

application of the channel Φ cannot increase the ability do distinguish ρ and $\sigma.$

 Φ is sufficient with respect to a set of states S: information is preserved for states in S.

Sufficient quantum channels

How can we formulate this?

- equality in data processing inequality for some of the divergences and all states in S;
- ▶ strongest definition all states in S can be recovered:

Definition

We say that Φ is sufficient with respect to S if there is a channel Ψ (recovery map) such that

$$\Psi \circ \Phi(\rho) = \rho \qquad \forall \rho \in \mathcal{S}.$$

D. Petz, Commun. Math. Phys., 1986

Sufficiency by divergences

Theorem

Let $\sigma\in\mathcal{S}$ be faithful. Φ is sufficient with respect to \mathcal{S} if and only if

$$S(\Phi(
ho)\|\Phi(\sigma)) = S(
ho\|\sigma), \qquad
ho \in \mathcal{S}$$

(relative entropy determines sufficiency).

D. Petz, Commun. Math. Phys., 1986

Theorem

The same holds for a large class of f-divergences, e.g. the standard Rényi divergences.

D. Petz, M. Mosonyi, F. Hiai

Classical Rényi divergences

For p, q probability measures over a finite set X, $0 < \alpha \neq 1$:

$$D_{lpha}(p\|q) := rac{1}{lpha-1}\log\sum_{x}p(x)^{lpha}q(x)^{1-lpha}$$

- unique family of divergences satisfying a set of postulates
- fundamental quantities appearing in many information theoretic tasks
- relative entropy as a limit $\alpha \to 1$

A. Rényi, Proc. Symp. on Math., Stat. and Probability, 1961.

Quantum extensions of Rényi divergences

$$D_{lpha}(
ho\|\sigma) = rac{1}{lpha-1}\log\left(\operatorname{Tr}
ho^{lpha}\sigma^{1-lpha}
ight)$$

D. Petz, Rep. Math. Phys., 1984

Sandwiched:

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right)^{\alpha} \right]$$

M. Müller-Lennert et al., J. Math. Phys., 2013 M. M. Wilde et al., Commun. Math. Phys., 2014 Quantum Rényi divergences: properties

Standard version D_{α} ,

- strict positivity, monotonicity: $\alpha \in (0, 2]$;
- ► Operational significance known for α ∈ (0,1): error exponents in quantum hypothesis testing.^{1,2}

Sandwiched version \tilde{D}_{α} :

- strict positivity, monotonicity: $\alpha \in [1/2, 1) \cup (1, \infty];$
- ► Operational significance known for α > 1: strong converse exponents in quantum hypothesis testing.³

Both versions: relative entropy as a limit for $\alpha \rightarrow 1$.

¹K. M. R. Audenaert et al., *Commun. Math. Phys.*, 2008 ²F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008 ³M. Mosonyi, and T. Ogawa, *Commun. Math. Phys.*, 2017

Sufficiency of channels by Rényi divergences

The standard Rényi divergence D_{α} determines sufficiency for all $\alpha \in (0, 2)$.

This talk

The same holds for the sandwiched Rényi divergence \tilde{D}_{α} with $\alpha \in (1/2, 1)$ and $\alpha > 1$.

AJ, Ann. H. Poincaré, 2018 AJ, arXiv:1707.00047

Sandwiched Rényi divergences and weighted L_p -spaces

 \mathcal{M} a von Neumann algebra, $L_p(\mathcal{M})$ - Haagerup L_p -space, σ a faithful state, identified with an element in $L_1(\mathcal{M})$.

Kosaki L_p-spaces: complex interpolation

continuous embedding

$$\mathcal{M} \to L_1(\mathcal{M}), \quad x \mapsto \sigma^{1/2} x \sigma^{1/2}$$

interpolation spaces

$$L_p(\mathcal{M},\sigma) := C_{1/p}(\mathcal{M}, L_1(\mathcal{M}))$$
 with norm $\|\cdot\|_{p,\sigma}, \quad 1 \le p \le \infty$

• for 1/p + 1/q = 1, the map

$$i_p: L_p(\mathcal{M}) \to L_1(\mathcal{M}), \qquad k \mapsto \sigma^{1/2q} k \sigma^{1/2q}$$

is an isometric isomorphism of $L_p(\mathcal{M})$ onto $L_p(\mathcal{M}, \sigma)$.

Sandwiched Rényi divergences and weighted L_p -spaces

Extension to non-faithful σ : by restriction to support $s(\sigma) = e$

$$L_p(\mathcal{M},\sigma) = \{h \in L_1(\mathcal{M}), \ h = ehe \in L_p(e\mathcal{M}e,\sigma|_{e\mathcal{M}e})\}.$$

For normal states ρ , σ and $1 < \alpha < \infty$:

Extends the sandwiched Rényi divergence to von Neumann algebras.

Properties of $ilde{D}_{lpha}$ on von Neumann algebras

For $\alpha > 1$:

- strict positivity;
- (Araki) relative entropy as limit value:

(

$$\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$$

• monotonicity with respect to positive trace preserving maps: $\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ restricts to a contraction

$$L_{\alpha}(\mathcal{M},\sigma) \rightarrow L_{\alpha}(\mathcal{N},\Phi(\sigma)), \qquad \alpha > 1$$

Corollary

S is monotone under positive trace preserving maps.

Sufficiency of channels by \tilde{D}_{α} , $\alpha > 1$

 ${\mathcal S}$ a set of normal states on ${\mathcal M}$, $\sigma \in {\mathcal S}$ faithful, Φ a channel, $\alpha > 1$.

Theorem

Assume that $S \subseteq L_{\alpha}(\mathcal{M}, \sigma)$. Then Φ is sufficient with respect to S if and only if

$$\|\Phi(\rho)\|_{\alpha,\Phi(\sigma)} = \|\rho\|_{\alpha,\sigma}, \qquad \rho \in \mathcal{S}.$$

Easy proof for $\alpha = 2$:

- L₂(M, σ) is a Hilbert space, Φ a contraction, let Φ_σ := Φ^{*};
- norm is preserved iff $\Phi_{\sigma} \circ \Phi(\rho) = \rho$;
- Φ_{σ} is a channel such that $\Phi_{\sigma} \circ \Phi(\sigma) = \sigma$.

 Φ_{σ} - Petz dual, universal recovery map.

Universal recovery map

Theorem

 Φ is sufficient with respect to S if and only if all $\rho \in S$ are invariant states for the channel $\Phi_{\sigma} \circ \Phi$.

D. Petz, Quart. J. Math. Oxford, 1988

Mean ergodic theorem: there is a faithful normal conditional expectation E such that

$$\Phi_{\sigma} \circ \Phi(\rho) = \rho \iff \rho \circ E = \rho.$$

Sufficiency of channels by \tilde{D}_{α} , $\alpha > 1$

Let $ho \in \mathcal{S} \subset L_{lpha}(\mathcal{M}, \sigma)$, then

$$\rho = t\sigma^{1/2\beta}\tau^{1/\alpha}\sigma^{1/2\beta}$$

for a normal state τ , t > 0, $\alpha^{-1} + \beta^{-1} = 1$. Introduce the family:

$$\rho_{\alpha'} := t_{\alpha'} \sigma^{1/2\beta'} \tau^{1/\alpha'} \sigma^{1/2\beta'} \in L_{\alpha'}(\mathcal{M}, \sigma), \qquad \alpha' > 1$$

By interpolation:

If $\|\Phi(\rho_{\alpha'})\|_{\alpha',\Phi(\sigma)} = \|\rho_{\alpha'}\|_{\alpha',\sigma}$ for some $\alpha' > 1$, then for all.

By properties of conditional expectations:

If $\Phi_{\sigma} \circ \Phi(\rho_{\alpha'}) = \rho_{\alpha'}$ for some $\alpha' > 1$, then for all.

The case $\alpha \in (1/2, 1)$

For $\alpha \in (1/2, 1)$, we have $\sigma^{\frac{1-\alpha}{2\alpha}} \rho^{1/2} \in L_{2\alpha}(\mathcal{M})$. Put

$$ilde{D}_lpha(
ho\|\sigma) = rac{2lpha}{lpha-1}\log\|\sigma^{rac{1-lpha}{2lpha}}
ho^{1/2}\|_{2lpha}$$

- can be obtained using Araki-Masuda L_p-norms;
- strict positivity;
- relative entropy as a limit $\alpha \rightarrow 1$;
- monotonicity with respect to channels;
- ▶ a duality between \tilde{D}_{α} and \tilde{D}_{α^*} , $\alpha^* := \frac{\alpha}{2\alpha 1}$.

M. Berta, V. B. Scholz, and M. Tomamichel, Ann. H. Poincaré, 2018

Sufficiency of channels by $ilde{D}_{lpha}$, $lpha \in (1/2, 1)$

Let $\alpha \in (1/2, 1)$, then by polar decomposition:

$$\sigma^{\frac{1-\alpha}{2\alpha}}\rho^{1/2} = \tau^{1/2\alpha} u \in L_{2\alpha}(\mathcal{M})$$

for some $\tau \in L_1(\mathcal{M})^+$ and $u \in \mathcal{M}$ partial isometry. By duality, we can show that

$$ilde{D}_lpha(
ho\|\sigma) \geq ilde{D}_lpha(\Phi(
ho)\|\Phi(\sigma)) + ilde{D}_{lpha^*}(\omega\|\sigma) - ilde{D}_{lpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

with

$$\omega = t\sigma^{1/2\beta^*}\tau^{1/\alpha^*}\sigma^{1/2\beta^*} \in L_{\alpha^*}(\mathcal{M},\sigma).$$

Sufficiency of channels by $ilde{D}_{lpha}$, $lpha \in (1/2, 1)$

From

$$ilde{D}_lpha(
ho\|\sigma) \geq ilde{D}_lpha(\Phi(
ho)\|\Phi(\sigma)) + ilde{D}_{lpha^*}(\omega\|\sigma) - ilde{D}_{lpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

we see that

$$ilde{D}_{lpha}(
ho\|\sigma) = ilde{D}_{lpha}(\Phi(
ho)\|\Phi(\sigma)) \implies ilde{D}_{lpha^*}(\omega\|\sigma) = ilde{D}_{lpha^*}(\Phi(\omega)\|\Phi(\sigma))$$

- Since α^{*} > 1, this implies that Φ_σ Φ(ω) = ω;
- the same is true for τ;
- using properties of conditional expectations, we get that also $\Phi_{\sigma} \circ \Phi(\rho) = \rho$.