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1. Quantum versions of the Rényi relative entropy

In [10], it was suggested that the quantum generalization of
the Rényi relative entropy should be

Dα(ρ‖σ) =


D

(old)
α (ρ, σ), α ∈ (0, 1)

D
(new)
α (ρ‖σ), α > 1

for pairs of states ρ, σ on a finite dimensional Hilbert space.
The ”old” entropies

D
(old)
α (ρ‖σ) =

1

α− 1
log Tr ρασ1−α

for α ∈ (0, 1) have a direct operational interpretation as er-
ror exponents and cutoff rates in binary state discrimination
[1, 9]. The ”new”, or ”sandwiched” version [14, 11]
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)α
, supp(ρ) ⊆ supp(σ)

∞, otherwise

has similar applications in the strong converse domain,
[10, 14]. These quantities have some important properties
([4, 12, 2, 3]):

(i) positivity: Dα(ρ, σ) ≥ 0 and equality holds if and only if
ρ = σ.

(ii) data processing inequality (DPI): If Φ is a channel (i.e.
a completely positive trace preserving map), then

Dα(ρ‖σ) ≥ Dα(Φ(ρ)‖Φ(σ))

2. Sufficient channels

Let Φ be a channel and let S be a set of states. We say that
Φ is sufficient with respect to S if there is some channel Ψ,
called a recovery map, such that

Ψ ◦ Φ(ρ) = ρ ρ ∈ S.

Sufficient channels can be characterized by equality in the
data processing inequality for a large class of information
theoretic quantities, see e.g. [4, 5]. In particular, if S con-
tains an invertible element σ, then Φ is sufficient with re-
spect to S if and only if

Dα(ρ‖σ) = Dα(Φ(ρ)‖Φ(σ)), ρ ∈ S (1)

for some α ∈ (0, 1), [4, 7]. We show that this is true also
for α > 1 and in infinite dimensions. Similarly to [2], we use
an interpolating family of non-commutative Lp-spaces with
respect to a state.

3. Noncommutative Lp-spaces and interpolation

Let H be a separable Hilbert space. For p ≤ 1, let

Lp(H) = {X ∈ B(H),Tr |X|p <∞}

be the Schatten class, with the norm ‖X‖p = (Tr |X|p)1/p.
Let

L∞(H) = B(H),

with ‖ · ‖∞ = ‖ · ‖, the operator norm. Let also

S(H) = {ρ ∈ L1(H)+,Tr ρ = 1}

be the set of normal states. Fix a faithful σ ∈ S(H) and
p ∈ [1,∞], 1/p + 1/q = 1. The noncommutative Lp-space
with respect to σ is defined as

Lp(H, σ) := {σ1/2qXσ1/2q, X ∈ Lp(H)},

with the norm

‖σ1/2qXσ1/2q‖p,σ := ‖X‖p.

Then Lp(H, σ) ⊆ L1(H) = L1(H, σ) and

Lp(H, σ) = C1/p(L∞(H, σ),L1(H)),

where Cθ is given by complex interpolation [8, 15].
This has some consequences:

• For 1 ≤ p ≤ p′ ≤ ∞, Lp′(H, σ) ⊆ Lp(H, σ) and

‖X‖p,σ ≤ ‖X‖p′,σ, ∀X ∈ Lp′(H, σ).

• For 1 ≤ p < ∞, Lq(H, σ) is the dual space of Lp(H, σ),
with duality 〈 ·, · 〉 : Lq(H, σ)× Lp(H, σ)→ C given by

〈σ1/2pXσ1/2p, σ1/2qY σ1/2q 〉 := TrXY,

for any X ∈ Lq(H), Y ∈ Lp(H).
• L2(H, σ) is a Hilbert space, with inner product

(S, T ) 7→ 〈S∗, T 〉.

Let Φ : L1(H)→ L1(K) be a channel. Then

• for 1 ≤ p ≤ ∞, Φ restricts to a contraction Lp(H, σ) →
Lp(supp(Φ(σ)),Φ(σ)).
• The equality

〈Φσ(X), σ1/2Y σ1/2 〉 = 〈X,Φ(σ1/2Y σ1/2) 〉,

for all X ∈ L1(K) and Y ∈ B(H), defines a channel
Φσ : L1(K)→ L1(H) - the Petz recovery map.

4. Quantum Rényi entropies and Lp-spaces

Let ρ, σ ∈ S(H), α ∈ (0, 1). Assume that τ ∈ S(H) is faith-
ful. Then

`α : ω 7→ τ (1−α)/2ωατ (1−α)/2

defines a homeomorpism of the positive cone L1(H)+ onto
L1/α(H, τ )+. Put

Dα(ρ‖σ) :=
1

α− 1
log〈 `α(ρ), `1−α(σ) 〉

If supp(ρ) ⊆ supp(σ), then we may put τ = σ and

Dα(ρ‖σ) =
1

α− 1
log ‖`α(ρ)‖1.

For α > 1, let 1/α + 1/β = 1. Put

Lα(σ) := Lα(supp(σ), σ).

Then ρ ∈ Lα(σ) if supp(ρ) ⊆ supp(σ) and there is some
ω ∈ L1(H)+ such that

ρ = σ1/2βω1/ασ1/2β.

We have ‖ρ‖α,σ = (Trω)1/α. Define

Dα(ρ‖σ) :=


α
α−1 log(‖ρ‖α,σ), if ρ ∈ Lα(σ)

∞, otherwise

If dim(H) < ∞, Dα(ρ‖σ) coincides with the original defini-
tion. The following properties extend to infinite dimensional
case:

(i) positivity
(ii) DPI
(iii) α 7→ Dα(ρ‖σ) is non-decreasing.
(iv) (ρ, σ) 7→ Dα(ρ‖σ) is jointly lower semicontinuous.

5. Characterization of sufficient channels by
factorization

We may assume that σ ∈ S(H) is faithful.
Theorem 1. [13] Let Φ : L1(H)→ L1(K) be a channel. Then
Φ is sufficient with respect to {ρ, σ} if and only if ρ is an in-
variant state of the channel Ω := Φσ ◦ Φ.
Since Ω possesses a faithful normal invariant state σ, the
structure of its invariant states is known.
Theorem 2. There is a unitary U and factorizations

UH =
⊕
n

HLn ⊗HRn , σ = U∗
(⊕

n

ALn ⊗ σRn

)
U,

where ALn ∈ L1(HLn)+ and σRn ∈ S(HRn ), such that for any
ρ ∈ S(H), Φ is sufficient with respect to {σ, ρ} if and only if
ρ can be factorized as

ρ = U∗
(⊕

n

BLn ⊗ σRn

)
U

for some BLn ∈ L1(HLn)+.

6. Characterization of sufficient channels by Dα

Theorem 3. Assume that Dα(ρ‖σ) < ∞ for some α ∈
(0, 1) ∪ (1,∞). Then the channel Φ is sufficient with respect
to {ρ, σ} if and only if

Dα(Φ(ρ)‖Φ(σ)) = Dα(ρ‖σ).

• For α ∈ (0, 1), this was proved in [7].

• For α = 2, it is easy: equality in DPI implies:

‖ρ‖22,σ = ‖Φ(ρ)‖22,Φ(σ) = 〈 ρ,Φσ ◦ Φ(ρ) 〉 ≤ ‖ρ‖22,σ

so that ρ = Φσ ◦ Φ(ρ) by equality condition for Schwarz
inequality.

• Assume the equality holds for some 1 < α <∞ and let

ρ = σ1/2βω1/ασ1/2β

for some ω ∈ L1(H)+. Let S = {z ∈ C, 0 ≤ <(z) ≤ 1} and

ρ(z) = ‖ω‖(1/α−z)
1 σ(1−z)/2ωzσ(1−z)/2, z ∈ S

Then z 7→ ρ(z) is bounded and continuous on S, holo-
morphic in the interior, ρ = ρ(1/α) and we have

‖Φ(ρ(θ))‖1/θ,Φ(σ) = ‖ρ(θ)‖1/θ,σ, ∀θ ∈ (0, 1)

Let θ = 1/2 and put

ξ := cρ(1/2) = c1σ
1/4ω1/2σ1/4 ∈ S(H),

c, c1 > 0 are normalization constants. Then

‖Φ(ξ)‖2,Φ(σ) = ‖ξ‖2,σ

It follows that Φ is sufficient with respect to {ξ, σ}, which
implies that ξ has a factorization as in Theorem 2. But
then also ω, and, consequently, ρ has such a factoriza-
tion. Hence Φ is sufficient with respect to {ρ, σ}.
• The converse is clear from the data processing inequality.

Remark 1. For dim(H) < ∞, see [6]. Similar results can
be obtained for pairs of normal states on arbitrary von Neu-
mann algebras and normal unital completely positive maps.
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