Characterization of sufficient channels by a Rényi relative entropy

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences

Bratislava, Slovakia

jencova@mat.savba.sk

1. Quantum versions of the Rényi relative entropy

In [10], it was suggested that the quantum generalization of the Rényi relative entropy should be

 $D_{\alpha}(\rho \| \sigma) = \begin{cases} D_{\alpha}^{(old)}(\rho, \sigma), & \alpha \in (0, 1) \\ \\ D_{\alpha}^{(new)}(\rho \| \sigma), & \alpha > 1 \end{cases}$

• For $1 \le p \le p' \le \infty$, $L_{p'}(\mathcal{H}, \sigma) \subseteq L_p(\mathcal{H}, \sigma)$ and

 $||X||_{p,\sigma} \le ||X||_{p',\sigma}, \quad \forall X \in L_{p'}(\mathcal{H},\sigma).$

• For $1 \leq p < \infty$, $L_q(\mathcal{H}, \sigma)$ is the dual space of $L_p(\mathcal{H}, \sigma)$, with duality $\langle \cdot, \cdot \rangle : L_q(\mathcal{H}, \sigma) \times L_p(\mathcal{H}, \sigma) \to \mathbb{C}$ given by

 $\langle \sigma^{1/2p} X \sigma^{1/2p}, \sigma^{1/2q} Y \sigma^{1/2q} \rangle := \operatorname{Tr} XY,$

for any $X \in \mathcal{L}_q(\mathcal{H}), Y \in \mathcal{L}_p(\mathcal{H})$. • $L_2(\mathcal{H}, \sigma)$ is a Hilbert space, with inner product 6. Characterization of sufficient channels by D_{α}

Theorem 3. Assume that $D_{\alpha}(\rho \| \sigma) < \infty$ for some $\alpha \in (0,1) \cup (1,\infty)$. Then the channel Φ is sufficient with respect to $\{\rho,\sigma\}$ if and only if

 $D_{\alpha}(\Phi(\rho) \| \Phi(\sigma)) = D_{\alpha}(\rho \| \sigma).$

• For $\alpha \in (0, 1)$, this was proved in [7].

for pairs of states ρ , σ on a finite dimensional Hilbert space. The "old" entropies

 $D_{\alpha}^{(old)}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \rho^{\alpha} \sigma^{1 - \alpha}$

for $\alpha \in (0,1)$ have a direct operational interpretation as error exponents and cutoff rates in binary state discrimination [1, 9]. The "new", or "sandwiched" version [14, 11]

has similar applications in the strong converse domain, [10, 14]. These quantities have some important properties ([4, 12, 2, 3]):

(i) **positivity**: $D_{\alpha}(\rho, \sigma) \ge 0$ and equality holds if and only if $\rho = \sigma$.

(ii) data processing inequality (DPI): If Φ is a channel (i.e. a completely positive trace preserving map), then

 $D_{\alpha}(\rho \| \sigma) \ge D_{\alpha}(\Phi(\rho) \| \Phi(\sigma))$

2. Sufficient channels

Let Φ be a channel and let S be a set of states. We say that Φ is **sufficient** with respect to S if there is some channel Ψ , called a **recovery map**, such that

 $(S,T) \mapsto \langle S^*,T \rangle.$

Let $\Phi:\mathcal{L}_1(\mathcal{H})\to\mathcal{L}_1(\mathcal{K})$ be a channel. Then

• for $1 \leq p \leq \infty$, Φ restricts to a contraction $L_p(\mathcal{H}, \sigma) \rightarrow L_p(\operatorname{supp}(\Phi(\sigma)), \Phi(\sigma))$.

• The equality

 $\langle \Phi_{\sigma}(X), \sigma^{1/2} Y \sigma^{1/2} \rangle = \langle X, \Phi(\sigma^{1/2} Y \sigma^{1/2}) \rangle,$

for all $X \in \mathcal{L}_1(\mathcal{K})$ and $Y \in B(\mathcal{H})$, defines a channel $\Phi_{\sigma} : \mathcal{L}_1(\mathcal{K}) \to \mathcal{L}_1(\mathcal{H})$ - the **Petz recovery map**.

4. Quantum Rényi entropies and L_p -spaces

Let $\rho, \sigma \in \mathfrak{S}(\mathcal{H})$, $\alpha \in (0, 1)$. Assume that $\tau \in \mathfrak{S}(\mathcal{H})$ is faithful. Then $\ell_{\alpha} : \omega \mapsto \tau^{(1-\alpha)/2} \omega^{\alpha} \tau^{(1-\alpha)/2}$

defines a homeomorpism of the positive cone $\mathcal{L}_1(\mathcal{H})^+$ onto $L_{1/\alpha}(\mathcal{H},\tau)^+$. Put

$$D_{\alpha}(\rho \| \sigma) := \frac{1}{\alpha - 1} \log \langle \ell_{\alpha}(\rho), \ell_{1 - \alpha}(\sigma) \rangle$$

If $\operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma)$, then we may put $\tau = \sigma$ and

$$D_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \| \ell_{\alpha}(\rho) \|_{1}.$$

For $\alpha > 1$, let $1/\alpha + 1/\beta = 1$. Put

• For $\alpha = 2$, it is easy: equality in DPI implies:

 $\|\rho\|_{2,\sigma}^2 = \|\Phi(\rho)\|_{2,\Phi(\sigma)}^2 = \langle \rho, \Phi_{\sigma} \circ \Phi(\rho) \rangle \le \|\rho\|_{2,\sigma}^2$

so that $\rho = \Phi_\sigma \circ \Phi(\rho)$ by equality condition for Schwarz inequality.

 \bullet Assume the equality holds for some $1 < \alpha < \infty$ and let

 $\rho = \sigma^{1/2\beta} \omega^{1/\alpha} \sigma^{1/2\beta}$

for some $\omega \in \mathcal{L}_1(\mathcal{H})^+$. Let $S = \{z \in \mathbb{C}, 0 \leq \Re(z) \leq 1\}$ and

 $\rho(z) = \|\omega\|_1^{(1/\alpha - z)} \sigma^{(1-z)/2} \omega^z \sigma^{(1-z)/2}, \qquad z \in S$

Then $z\mapsto\rho(z)$ is bounded and continuous on S, holomorphic in the interior, $\rho=\rho(1/\alpha)$ and we have

 $\|\Phi(\rho(\theta))\|_{1/\theta,\Phi(\sigma)} = \|\rho(\theta)\|_{1/\theta,\sigma}, \qquad \forall \theta \in (0,1)$

Let $\theta = 1/2$ and put

 $\xi := c\rho(1/2) = c_1 \sigma^{1/4} \omega^{1/2} \sigma^{1/4} \in \mathfrak{S}(\mathcal{H}),$

 $c, c_1 > 0$ are normalization constants. Then

 $\|\Phi(\xi)\|_{2,\Phi(\sigma)} = \|\xi\|_{2,\sigma}$

It follows that Φ is sufficient with respect to $\{\xi, \sigma\}$, which implies that ξ has a factorization as in Theorem 2. But then also ω , and, consequently, ρ has such a factorization. Hence Φ is sufficient with respect to $\{\rho, \sigma\}$.

 $\Psi \circ \Phi(\rho) = \rho \qquad \rho \in \mathcal{S}.$

Sufficient channels can be characterized by equality in the data processing inequality for a large class of information theoretic quantities, see e.g. [4, 5]. In particular, if S contains an invertible element σ , then Φ is sufficient with respect to S if and only if

 $D_{\alpha}(\rho \| \sigma) = D_{\alpha}(\Phi(\rho) \| \Phi(\sigma)), \qquad \rho \in \mathcal{S}$ (1)

for some $\alpha \in (0,1)$, [4, 7]. We show that this is true also for $\alpha > 1$ and in infinite dimensions. Similarly to [2], we use an interpolating family of non-commutative L_p -spaces with respect to a state.

3. Noncommutative L_p -spaces and interpolation

Let \mathcal{H} be a separable Hilbert space. For $p \leq 1$, let

 $\mathcal{L}_p(\mathcal{H}) = \{ X \in B(\mathcal{H}), \operatorname{Tr} |X|^p < \infty \}$

be the Schatten class, with the norm $||X||_p = (\text{Tr} |X|^p)^{1/p}$. Let

 $\mathcal{L}_{\infty}(\mathcal{H}) = B(\mathcal{H}),$

with $\|\cdot\|_{\infty} = \|\cdot\|$, the operator norm. Let also

 $\mathfrak{S}(\mathcal{H}) = \{ \rho \in \mathcal{L}_1(\mathcal{H})^+, \operatorname{Tr} \rho = 1 \}$

be the set of normal states. Fix a faithful $\sigma \in \mathfrak{S}(\mathcal{H})$ and

 $L_{\alpha}(\sigma) := L_{\alpha}(\operatorname{supp}(\sigma), \sigma).$

Then $\rho \in L_{\alpha}(\sigma)$ if $\operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma)$ and there is some $\omega \in \mathcal{L}_1(\mathcal{H})^+$ such that

 $\rho = \sigma^{1/2\beta} \omega^{1/\alpha} \sigma^{1/2\beta}.$

We have $\|\rho\|_{\alpha,\sigma} = (\operatorname{Tr} \omega)^{1/\alpha}$. Define

 $D_{\alpha}(\rho \| \sigma) := \begin{cases} \frac{\alpha}{\alpha - 1} \log(\|\rho\|_{\alpha, \sigma}), \text{ if } \rho \in L_{\alpha}(\sigma) \\ \\ \infty, & \text{otherwise} \end{cases}$

If $\dim(\mathcal{H}) < \infty$, $D_{\alpha}(\rho \| \sigma)$ coincides with the original definition. The following properties extend to infinite dimensional case:

(i) positivity

(ii) DPI

(iii) $\alpha \mapsto D_{\alpha}(\rho \| \sigma)$ is non-decreasing.

(iv) $(\rho, \sigma) \mapsto D_{\alpha}(\rho \| \sigma)$ is jointly lower semicontinuous.

5. Characterization of sufficient channels by factorization

We may assume that $\sigma \in \mathfrak{S}(\mathcal{H})$ is faithful.

Theorem 1. [13] Let $\Phi : \mathcal{L}_1(\mathcal{H}) \to \mathcal{L}_1(\mathcal{K})$ be a channel. Then Φ is sufficient with respect to $\{\rho, \sigma\}$ if and only if ρ is an invariant state of the channel $\Omega := \Phi_{\sigma} \circ \Phi$.

Since Ω possesses a faithful normal invariant state σ , the

• The converse is clear from the data processing inequality.

Remark 1. For $dim(H) < \infty$, see [6]. Similar results can be obtained for pairs of normal states on arbitrary von Neumann algebras and normal unital completely positive maps.

References

- [1] K. M. R. Audenaert, M. Nussbaum, A. Szkola, and F. Verstraete. *Commun. Math. Phys.*, 279:251–283, 2008, arXiv:0708.4282.
- [2] S. Beigi. *J. Math. Phys.*, 54:122202, 2013, arXiv:1306.5920
- [3] R. L. Frank and E. H. Lieb, *J. Math. Phys.*, 54:122201, 2013, arXiv:1306.5358.
- [4] F. Hiai, M. Mosonyi, D. Petz, and C. Beny. *Rev. Math. Phys.*, 23:691–747, 2011, arXiv:1008.2529.
- [5] A. Jenčová. *Rev. Math. Phys.*, 24, 2012, arXiv:1107.0453.

[6] A. Jenčová. arXiv:1604.02831, 2016.

[7] A. Jenčová and D. Petz. *Inf. Dim. Anal. Quant. Prob. Rel. Top.*, 9:331–351, 2006, arXiv:quant-ph/0604091.

[8] H. Kosaki. J. Funct. Anal., 56:26–78, 1984.

[9] M. Mosonyi and F. Hiai. *IEEE Transactions on Information Theory*, 57:2474–2487, 2011, arXiv:0912.1286.

 $p \in [1, \infty]$, 1/p + 1/q = 1. The noncommutative L_p -space with respect to σ is defined as

 $L_p(\mathcal{H},\sigma) := \{\sigma^{1/2q} X \sigma^{1/2q}, \ X \in \mathcal{L}_p(\mathcal{H})\},\$

with the norm

 $\|\sigma^{1/2q} X \sigma^{1/2q}\|_{p,\sigma} := \|X\|_p.$

Then $L_p(\mathcal{H}, \sigma) \subseteq \mathcal{L}_1(\mathcal{H}) = L_1(\mathcal{H}, \sigma)$ and

 $L_p(\mathcal{H}, \sigma) = C_{1/p}(L_{\infty}(\mathcal{H}, \sigma), \mathcal{L}_1(\mathcal{H})),$

where C_{θ} is given by complex interpolation [8, 15]. This has some consequences:

structure of its invariant states is known.

Theorem 2. There is a unitary U and factorizations

$$U\mathcal{H} = \bigoplus_{n} \mathcal{H}_{n}^{L} \otimes \mathcal{H}_{n}^{R}, \qquad \sigma = U^{*} \left(\bigoplus_{n} A_{n}^{L} \otimes \sigma_{n}^{R} \right) U,$$

where $A_n^L \in \mathcal{L}_1(\mathcal{H}_n^L)^+$ and $\sigma_n^R \in \mathfrak{S}(\mathcal{H}_n^R)$, such that for any $\rho \in \mathfrak{S}(\mathcal{H})$, Φ is sufficient with respect to $\{\sigma, \rho\}$ if and only if ρ can be factorized as

for some $B_n^L \in \mathcal{L}_1(\mathcal{H}_n^L)^+$.

[10] M. Mosonyi and T. Ogawa. *Commun. Math. Phys.*, 334:1617–1648, 2015, arXiv:1309.3228.

 [11] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel. *J. Math. Phys.*, 54:122203, 2013, arXiv:1306.3142.

[12] D. Petz. Rep. Math. Phys., 23:57-65, 1984.

[13] D. Petz. Quart. J. Math. Oxford, 39:97–108, 1988.

[14] M. M. Wilde, A. Winter, and D. Yang. *Commun. Math. Phys.*, 331:593–622, 2014, arXiv:1306.1586.

[15] A. A. Zolotarev. *Izvestiya VUZ Matematika*, 26:36–43, 1982.