Characterization of sufficient
channels by a Renyi relative entropy

1. Quantum versions of the Renyi relative entropy |

n [10], it was suggested that the quantum generalization of
the Reényi relative entropy should be

[ D (p,0), a€(0,1)

Dafpllo) = 4

DY (pllo), a>1

for pairs of states p, o on a finite dimensional Hilbert space.
The "old” entropies

ld 1 _
DY (pllo) = —— log Tr o~

for a € (0,1) have a direct operational interpretation as er-
ror exponents and cutoff rates in binary state discrimination
[1, 9]. The "new”, or "sandwiched” version [14, 11]
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has similar applications in the strong converse domain,

[10, 14]. These quantities have some important properties

([4,12, 2, 3]):

(i) positivity: D,(p,o) > 0 and equality holds if and only if
p=0.

(i) data processing inequality (DPI): If ® is a channel (i.e.
a completely positive trace preserving map), then

Da(pllo) = Da(®(p)||®())

2. Sufficient channels |

_et & be a channel and let S be a set of states. We say that
d is sufficient with respect to S if there is some channel ,
called a recovery map, such that

Vod(p)=yp p€S.

Sufficient channels can be characterized by equality in the
data processing inequality for a large class of information
theoretic quantities, see e.g. [4, 5]. In particular, if S con-
tains an invertible element o, then & is sufficient with re-
spect to S if and only if

Da(pllo) = Da(®(p)[|®(0)), peES (1)

for some o € (0,1), [4, 7]. We show that this is true also
for « > 1 and in infinite dimensions. Similarly to [2], we use
an interpolating family of non-commutative L,-spaces with
respect to a state.

3. Noncommutative L,-spaces and interpolation |

_et H be a separable Hilbert space. For p <1, let

Lo(H) = {X € B(H), Tr|X|P < o0}

be the Schatten class, with the norm || X||, = (Tr |X|P)V/P.
Let
£OO(H) — B(H),

with || - |lco = || - ||, the operator norm. Let also
S(H)={pe Li(H)", Trp=1}

be the set of normal states. Fix a faithful o € G(H) and
p € |1,00], 1/p+1/q = 1. The noncommutative L,-space
with respect to ¢ is defined as

Ly(H,0) = {o"/?1Xc'/%1 X € £,(H)}.
with the norm
o200t 2 g o= |1 X
Then Ly(H,o0) C L1(H) = L1(H, o) and
Ly(H,0) = Cyp(Loo(H, 0), L1(H)),

where Cjy is given by complex interpolation [8, 15].
This has some consequences:

«
ﬁlog Tr (JW,OOW) , supp(p) C supp(o)
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eForl1<p<yp <oo, Ly(H,o) C Ly(H,0) and

| Xlp.o < I1X]

VX € Lp/(H, O‘).

p,oo

efForl < p < oo, Ly(H, o) is the dual space of L,(H, o),
with duality (-,-) : Ly(H, o) x Lp(H, o) — C given by

(2P X2 51120y 6120y = Tr XY,

forany X € L,(H), Y € Ly(H).
e [.o(H, o) is a Hilbert space, with inner product

(S, T) — (S*,T).

Let & : £L1(H) — L£1(K) be a channel. Then
efor 1 < p < oo, O restricts to a contraction L,(H,o) —
Ly(supp(®(0)), ®(0)).
e The equality
(Po(X),0' PV 0! ?) = (X, @(c'PY!/?)),

for all X € £(K) and Y € B(H), defines a channel
Py L1(K) — L1(H) - the Petz recovery map.

4. Quantum Reényi entropies and L,-spaces |

et p,o € G(H), a € (0,1). Assume that 7 € G(H) is faith-
ful. Then

0w 702 0 (1=a)/2

defines a homeomorpism of the positive cone £1(H)* onto
l;l/cy(}i,Tj_F. F)Ut

1

Dalpllo) = ——=log(La(p): f1-al0) )

If supp(p) C supp(o), then we may put » = o and

1
a— 1

Fora>1,letl/a+1/8 =1. Put
Lo(o) == La(supp(o), o).

Then p € Ly(o) if supp(p) C supp(o) and there is some
w € L1(H)" such that

Da(pllo) = log [[£a(p)]|1-

o= o128 10 g1/28,

We have ||p]la.c = (Trw)"/®. Define
{ aot1log([lpllae), if p € La(o)

00, otherwise

Da(,OHU) =

If dim(H) < oo, Da(p|lo) coincides with the original defini-
tion. The following properties extend to infinite dimensional
case:

(1) positivity

(ii) DPI

(iii) « — Dq(p||o) is non-decreasing.

(iv) (p, o) — Dy(pl|o) is jointly lower semicontinuous.

5. Characterization of sufficient channels by
factorization

We may assume that o € G(H) is faithful.

Theorem 1.[13] Letd : L1(H) — L1(K) be a channel. Then
$ js sufficient with respect to {p, o} if and only if p is an in-
variant state of the channel ) .= &, o .

Since () possesses a faithful normal invariant state o, the
structure of its invariant states is known.

Theorem 2. There is a unitary U and factorizations

- DHL e, o1 (@Agmff) v
n n

where AL € £i(H)F and off € &(HE), such that for any
p € 6(H), ¢ is sufficient with respect to {o, p} if and only if
p can be factorized as

p=U" (@&%@a{f) U
n

for some BL e £1(HE)T.
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‘ 6. Characterization of sufficient channels by D, |

Theorem 3. Assume that D,(p|lc) < oo for some a €
(0,1) U (1,00). Then the channel ¢ is sufficient with respect
to {p,c} if and only if

Da(®(p)||®(0)) = Dalpllo).

e For a € (0, 1), this was proved in [7].
e For a = 2, it Is easy: equality in DPI implies:

2 2 2
Ioll2.6 = 1P(5 015 = (£, P o Plp)) < lpll2,6

so that p = &, o ®(p) by equality condition for Schwarz
inequality.

e Assume the equality holds for some 1 < a < oo and let

5 — o 1/28,1/a 1128

forsomew € L1(H)". Let S={2€ C,0 < R(z2) <1} and

() = |l 10T 1= 22 102 s e

Then z — p(z) is bounded and continuous on S, holo-
morphic in the interior, p = p(1/a) and we have

1o /6.0(0) = 1POl1/65. VO €(0,1)
Let 6 = 1/2 and put
£ :=cp(1/2) = 0101/4w1/201/4 c G(H),

¢, c1 > 0 are normalization constants. Then

12(¢)

2,d(0) — HSHQ,J

It follows that @ is sufficient with respect to {&, o}, which
implies that £ has a factorization as in Theorem 2. But
then also w, and, consequently, p has such a factoriza-
tion. Hence & is sufficient with respect to {p, o }.

e The converse is clear from the data processing inequality.

Remark 1. For dim(H) < oo, see [6]. Similar results can
be obtained for pairs of normal states on arbitrary von Neu-
mann algebras and normal unital completely positive maps.
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