Characterization of sufficient channels by a Rényi relative entropy

Anna Jenčová
Mathematical Institute, Slovak Academy of Sciences
Bratislava, Slovakia
jencova@mat.savba.sk

1. Quantum versions of the Rényi relative entropy

In [10], it was suggested that the quantum generalization of the Rényi relative entropy should be

$$
D_{\alpha}(\rho \| \sigma)= \begin{cases}D_{\alpha}^{(o l d)}(\rho, \sigma), & \alpha \in(0,1) \\ D_{\alpha}^{(n e w)}(\rho \| \sigma), & \alpha>1\end{cases}
$$

for pairs of states ρ, σ on a finite dimensional Hilbert space. The "old" entropies

$$
D_{\alpha}^{(o l d)}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \operatorname{Tr} \rho^{\alpha} \sigma^{1-\alpha}
$$

for $\alpha \in(0,1)$ have a direct operational interpretation as error exponents and cutoff rates in binary state discrimination $[1,9]$. The "new", or "sandwiched" version [14, 11]
$D_{\alpha}^{(\text {new })}(\rho \| \sigma)=\left\{\begin{array}{cc}\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\sigma^{\left.\frac{1-\alpha}{2 \alpha} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha},}, \operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma)\right. \\ \infty, & \text { otherwise }\end{array}\right.$
has similar applications in the strong converse domain, $[10,14]$. These quantities have some important properties ([4, 12, 2, 3]):
(i) positivity: $D_{\alpha}(\rho, \sigma) \geq 0$ and equality holds if and only if
(ii) data processing inequality (DPI): If Φ is a channel (i.e a completely positive trace preserving map), then

$$
D_{\alpha}(\rho \| \sigma) \geq D_{\alpha}(\Phi(\rho) \| \Phi(\sigma))
$$

2. Sufficient channels

Let Φ be a channel and let \mathcal{S} be a set of states. We say that Φ is sufficient with respect to \mathcal{S} if there is some channel Ψ, called a recovery map, such that

$$
\Psi \circ \Phi(\rho)=\rho \quad \rho \in \mathcal{S} .
$$

Sufficient channels can be characterized by equality in the data processing inequality for a large class of information theoretic quantities, see e.g. [4, 5]. In particular, if \mathcal{S} contains an invertible element σ, then Φ is sufficient with respect to \mathcal{S} if and only if

$$
\begin{equation*}
D_{\alpha}(\rho \| \sigma)=D_{\alpha}(\Phi(\rho) \| \Phi(\sigma)), \quad \rho \in \mathcal{S} \tag{1}
\end{equation*}
$$

for some $\alpha \in(0,1),[4,7]$. We show that this is true also for $\alpha>1$ and in infinite dimensions. Similarly to [2], we use an interpolating family of non-commutative L_{p}-spaces with respect to a state

3. Noncommutative L_{p}-spaces and interpolation

Let \mathcal{H} be a separable Hilbert space. For $p \leq 1$, let

$$
\mathcal{L}_{p}(\mathcal{H})=\left\{X \in B(\mathcal{H}), \operatorname{Tr}|X|^{p}<\infty\right\}
$$

be the Schatten class, with the norm $\|X\|_{p}=\left(\operatorname{Tr}|X|^{p}\right)^{1 / p}$. Let

$$
\mathcal{L}_{\infty}(\mathcal{H})=B(\mathcal{H}),
$$

with $\|\cdot\|_{\infty}=\|\cdot\|$, the operator norm. Let also

$$
\mathfrak{S}(\mathcal{H})=\left\{\rho \in \mathcal{L}_{1}(\mathcal{H})^{+}, \operatorname{Tr} \rho=1\right\}
$$

be the set of normal states. Fix a faithful $\sigma \in \mathfrak{S}(\mathcal{H})$ and $p \in[1, \infty], 1 / p+1 / q=1$. The noncommutative L_{p}-space with respect to σ is defined as

$$
L_{p}(\mathcal{H}, \sigma):=\left\{\sigma^{1 / 2 q} X \sigma^{1 / 2 q}, X \in \mathcal{L}_{p}(\mathcal{H})\right\}
$$

with the norm

$$
\left\|\sigma^{1 / 2 q} X \sigma^{1 / 2 q}\right\|_{p, \sigma}:=\|X\|_{p} .
$$

Then $L_{p}(\mathcal{H}, \sigma) \subseteq \mathcal{L}_{1}(\mathcal{H})=L_{1}(\mathcal{H}, \sigma)$ and

$$
L_{p}(\mathcal{H}, \sigma)=C_{1 / p}\left(L_{\infty}(\mathcal{H}, \sigma), \mathcal{L}_{1}(\mathcal{H})\right)
$$

where C_{θ} is given by complex interpolation $[8,15]$. This has some consequences:

- For $1 \leq p \leq p^{\prime} \leq \infty, L_{p^{\prime}}(\mathcal{H}, \sigma) \subseteq L_{p}(\mathcal{H}, \sigma)$ and

$\|X\|_{p, \sigma} \leq\|X\|_{p^{\prime}, \sigma}, \quad \forall X \in L_{p^{\prime}}(\mathcal{H}, \sigma)$.

- For $1 \leq p<\infty, L_{q}(\mathcal{H}, \sigma)$ is the dual space of $L_{p}(\mathcal{H}, \sigma)$, with duality $\langle\cdot, \cdot\rangle: L_{q}(\mathcal{H}, \sigma) \times L_{p}(\mathcal{H}, \sigma) \rightarrow \mathbb{C}$ given by

$$
\left\langle\sigma^{1 / 2 p} X \sigma^{1 / 2 p}, \sigma^{1 / 2 q} Y \sigma^{1 / 2 q}\right\rangle:=\operatorname{Tr} X Y
$$

for any $X \in \mathcal{L}_{q}(\mathcal{H}), Y \in \mathcal{L}_{p}(\mathcal{H})$.

- $L_{2}(\mathcal{H}, \sigma)$ is a Hilbert space, with inner product

$$
(S, T) \mapsto\left\langle S^{*}, T\right\rangle
$$

Let $\Phi: \mathcal{L}_{1}(\mathcal{H}) \rightarrow \mathcal{L}_{1}(\mathcal{K})$ be a channel. Then

- for $1 \leq p \leq \infty, \Phi$ restricts to a contraction $L_{p}(\mathcal{H}, \sigma) \rightarrow$ $L_{p}(\operatorname{supp}(\Phi(\sigma)), \Phi(\sigma))$.
- The equality

$$
\left\langle\Phi_{\sigma}(X), \sigma^{1 / 2} Y \sigma^{1 / 2}\right\rangle=\left\langle X, \Phi\left(\sigma^{1 / 2} Y \sigma^{1 / 2}\right)\right\rangle
$$

for all $X \in \mathcal{L}_{1}(\mathcal{K})$ and $Y \in B(\mathcal{H})$, defines a channel $\Phi_{\sigma}: \mathcal{L}_{1}(\mathcal{K}) \rightarrow \mathcal{L}_{1}(\mathcal{H})$ - the Petz recovery map.

4. Quantum Rényi entropies and L_{p}-spaces

Let $\rho, \sigma \in \mathfrak{S}(\mathcal{H}), \alpha \in(0,1)$. Assume that $\tau \in \mathfrak{S}(\mathcal{H})$ is faithful. Then

$$
\ell_{\alpha}: \omega \mapsto \tau^{(1-\alpha) / 2} \omega^{\alpha} \tau^{(1-\alpha) / 2}
$$

defines a homeomorpism of the positive cone $\mathcal{L}_{1}(\mathcal{H})^{+}$onto $L_{1 / \alpha}(\mathcal{H}, \tau)^{+}$. Put

$$
D_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \left\langle\ell_{\alpha}(\rho), \ell_{1-\alpha}(\sigma)\right\rangle
$$

If $\operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma)$, then we may put $\tau=\sigma$ and

$$
D_{\alpha}(\rho \| \sigma)=\frac{1}{\alpha-1} \log \left\|\ell_{\alpha}(\rho)\right\|_{1} .
$$

For $\alpha>1$, let $1 / \alpha+1 / \beta=1$. Put

$$
L_{\alpha}(\sigma):=L_{\alpha}(\operatorname{supp}(\sigma), \sigma)
$$

Then $\rho \in L_{\alpha}(\sigma)$ if $\operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma)$ and there is some $\omega \in \mathcal{L}_{1}(\mathcal{H})^{+}$such that

$$
\rho=\sigma^{1 / 2 \beta} \omega^{1 / \alpha} \sigma^{1 / 2 \beta}
$$

We have $\|\rho\|_{\alpha, \sigma}=(\operatorname{Tr} \omega)^{1 / \alpha}$. Define

$$
D_{\alpha}(\rho \| \sigma):=\left\{\begin{array}{cc}
\frac{\alpha}{\alpha-1} \log \left(\|\rho\|_{\alpha, \sigma}\right), & \text { if } \rho \in L_{\alpha}(\sigma) \\
\infty, & \text { otherwise }
\end{array}\right.
$$

If $\operatorname{dim}(\mathcal{H})<\infty, D_{\alpha}(\rho \| \sigma)$ coincides with the original definition. The following properties extend to infinite dimensional case:
(i) positivity
(ii) DPI
(iii) $\alpha \mapsto D_{\alpha}(\rho \| \sigma)$ is non-decreasing.
(iv) $(\rho, \sigma) \mapsto D_{\alpha}(\rho \| \sigma)$ is jointly lower semicontinuous.

5. Characterization of sufficient channels by factorization

We may assume that $\sigma \in \mathfrak{S}(\mathcal{H})$ is faithful.
Theorem 1. [13] Let $\Phi: \mathcal{L}_{1}(\mathcal{H}) \rightarrow \mathcal{L}_{1}(\mathcal{K})$ be a channel. Then Φ is sufficient with respect to $\{\rho, \sigma\}$ if and only if ρ is an invariant state of the channel $\Omega:=\Phi_{\sigma} \circ \Phi$.
Since Ω possesses a faithful normal invariant state σ, the structure of its invariant states is known.
Theorem 2. There is a unitary U and factorizations

$$
U \mathcal{H}=\bigoplus_{n} \mathcal{H}_{n}^{L} \otimes \mathcal{H}_{n}^{R}, \quad \sigma=U^{*}\left(\bigoplus_{n} A_{n}^{L} \otimes \sigma_{n}^{R}\right) U
$$

where $A_{n}^{L} \in \mathcal{L}_{1}\left(\mathcal{H}_{n}^{L}\right)^{+}$and $\sigma_{n}^{R} \in \mathfrak{S}\left(\mathcal{H}_{n}^{R}\right)$, such that for any $\rho \in \mathfrak{S}(\mathcal{H}), \Phi$ is sufficient with respect to $\{\sigma, \rho\}$ if and only if ρ can be factorized as

$$
\rho=U^{*}\left(\bigoplus_{n} B_{n}^{L} \otimes \sigma_{n}^{R}\right) U
$$

for some $B_{n}^{L} \in \mathcal{L}_{1}\left(\mathcal{H}_{n}^{L}\right)^{+}$.

6. Characterization of sufficient channels by D_{α}

Theorem 3. Assume that $D_{\alpha}(\rho \| \sigma)<\infty$ for some $\alpha \in$ $(0,1) \cup(1, \infty)$. Then the channel Φ is sufficient with respect to $\{\rho, \sigma\}$ if and only if

$$
D_{\alpha}(\Phi(\rho) \| \Phi(\sigma))=D_{\alpha}(\rho \| \sigma)
$$

- For $\alpha \in(0,1)$, this was proved in [7].
- For $\alpha=2$, it is easy: equality in DPI implies:

$$
\|\rho\|_{2, \sigma}^{2}=\|\Phi(\rho)\|_{2, \Phi(\sigma)}^{2}=\left\langle\rho, \Phi_{\sigma} \circ \Phi(\rho)\right\rangle \leq\|\rho\|_{2, \sigma}^{2}
$$

so that $\rho=\Phi_{\sigma} \circ \Phi(\rho)$ by equality condition for Schwarz inequality.

- Assume the equality holds for some $1<\alpha<\infty$ and let

$$
\rho=\sigma^{1 / 2 \beta} \omega^{1 / \alpha} \sigma^{1 / 2 \beta}
$$

for some $\omega \in \mathcal{L}_{1}(\mathcal{H})^{+}$. Let $S=\{z \in \mathbb{C}, 0 \leq \Re(z) \leq 1\}$ and

$$
\rho(z)=\|\omega\|_{1}^{(1 / \alpha-z)} \sigma^{(1-z) / 2} \omega^{z} \sigma^{(1-z) / 2}, \quad z \in S
$$

Then $z \mapsto \rho(z)$ is bounded and continuous on S, holomorphic in the interior, $\rho=\rho(1 / \alpha)$ and we have

$$
\|\Phi(\rho(\theta))\|_{1 / \theta, \Phi(\sigma)}=\|\rho(\theta)\|_{1 / \theta, \sigma}, \quad \forall \theta \in(0,1)
$$

Let $\theta=1 / 2$ and put

$$
\xi:=c \rho(1 / 2)=c_{1} \sigma^{1 / 4} \omega^{1 / 2} \sigma^{1 / 4} \in \mathfrak{S}(\mathcal{H})
$$

$c, c_{1}>0$ are normalization constants. Then

$$
\|\Phi(\xi)\|_{2, \Phi(\sigma)}=\|\xi\|_{2, \sigma}
$$

It follows that Φ is sufficient with respect to $\{\xi, \sigma\}$, which implies that ξ has a factorization as in Theorem 2. But then also ω, and, consequently, ρ has such a factorization. Hence Φ is sufficient with respect to $\{\rho, \sigma\}$.

- The converse is clear from the data processing inequality.

Remark 1. For $\operatorname{dim}(\mathcal{H})<\infty$, see [6]. Similar results can be obtained for pairs of normal states on arbitrary von Neumann algebras and normal unital completely positive maps

References

[1] K. M. R. Audenaert, M. Nussbaum, A. Szkola, and F. Verstraete. Commun. Math. Phys., 279:251-283, 2008, arXiv:0708.4282.
[2] S. Beigi. J. Math. Phys., 54:122202, 2013 , arXiv:1306.5920
[3] R. L. Frank and E. H. Lieb, J. Math. Phys., 54:122201, 2013, arXiv:1306.5358.
[4] F. Hiai, M. Mosonyi, D. Petz, and C. Beny. Rev. Math. Phys., 23:691-747, 2011, arXiv:1008.2529.
[5] A. Jenčová. Rev. Math. Phys., 24, 2012, arXiv:1107.0453.
[6] A. Jenčová. arXiv:1604.02831, 2016.
[7] A. Jenčová and D. Petz. Inf. Dim. Anal. Quant. Prob. Rel. Top., 9:331-351, 2006, arXiv:quant-ph/0604091. [8] H. Kosaki. J. Funct. Anal., 56:26-78, 1984.
[9] M. Mosonyi and F. Hiai. IEEE Transactions on Information Theory, 57:2474-2487, 2011, arXiv:0912.1286.
[10] M. Mosonyi and T. Ogawa. Commun. Math. Phys., 334:1617-1648, 2015, arXiv:1309.3228.
[11] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel. J. Math. Phys., 54:122203, 2013, arXiv:1306.3142.
[12] D. Petz. Rep. Math. Phys., 23:57-65, 1984.
[13] D. Petz. Quart. J. Math. Oxford, 39:97-108, 1988.
[14] M. M. Wilde, A. Winter, and D. Yang. Commun. Math. Phys., 331:593-622, 2014, arXiv:1306.1586.
[15] A. A. Zolotarev. Izvestiya VUZ Matematika, 26:36-43, 1982.

