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Abstract. Let M be a von Neumann algebra. We define the non-commutative
extension of information geometry by embeddings of M into non-commutative
Lp-spaces. Using the geometry of uniformly convex Banach spaces and dual-
ity of the Lp and Lq spaces for 1/p+1/q = 1, we show that we can introduce
the α-divergence, for α ∈ (−1, 1), in a similar manner as Amari in the clas-
sical case. If restricted to the positive cone, the α-divergence belongs to the
class of quasi-entropies, defined by Petz.

1. Introduction.

The classical information geometry deals with the differential geo-
metric aspects of families of probability densities with respect to a given
measure µ. The theory, developed in [1, 5], has been already extended
to the nonparametric case, where the manifold is modelled on some
infinite dimensional Banach space, see [22, 8].

Noncommutative version of the theory has also been proposed, mostly
restricted to (invertible) density operators on finite dimensional Hilbert
spaces, [11, 14, 17, 21], but there are results in infinite dimensions,
[9, 12, 23, 24].

An interesting part of the classical (finite dimensional) information
geometry, developed by Amari and Nagaoka [1, 2], deals with the struc-
ture of Riemannian manifolds with a pair of dual flat affine connections.
For such manifolds, there is a pair (θ, η) of dual affine coordinate sys-
tems, related by Legendre transformations

θi =
∂

∂ηi

ϕ(η) ηi =
∂

∂θi

ψ(θ),
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where ψ, ϕ are potential functions, satisfying

ψ(θ) + ϕ(η)−
∑

i

θiηi = 0

A quasi–distance, called the divergence, is then defined by

D(θ1, θ2) = ψ(θ1) + ϕ(η2)−
∑

i

θ1iη2i

For manifolds of probability density functions, flat with respect to the
±α–connections, the corresponding α-divergence belongs to the class
of Cziszár’s f -divergences

Sf (p, q) =

∫
f(

q

p
)dp

where f is a convex function.
The f -divergences were generalized to von Neumann algebras by Petz

in [20] by means of the relative modular operator of normal positive
functionals on M :

Sg(φ, ψ) = (g(∆φ,ψ)ξψ, ξψ)

where f is operator convex and ξψ is the vector representative of ψ.
On the other hand, Amari’s construction of the α-divergence, starting
from a pair of dual flat connections, was extended to the manifold of
faithful positive linear functionals on a matrix algebra Mn(C), [14, 11]
and it was shown that this divergence belongs to the class defined by
Petz. The main purpose of the present paper is the extension of this
construction to all von Neumann algebras.

One of the important results of the infinite dimensional, classical and
quantum, version of information geometry is the definition of Amari-
Chentsov α-connections for α ∈ (−1, 1) given in [8] and [9]. This
definition uses the α-embedding of the manifold of density functions
(or density operators with respect to a n.s.f. trace on a semifinite von
Neumann algebra) into the unit sphere of the (noncommutative) Lp-
space, with p = 2/(1 − α). It was shown that the Amari–Nagaoka
duality of the +α and −α-connections is exactly the Lp-space duality
and that the fact that these spaces for 1 < p < ∞ are uniformly convex
is basic for this definition.

In the present paper, the α-embedding is defined in a similar manner,
but it is extended to the whole predual M∗. This embedding is used
to define the manifold structure on M∗. The flat α-connections are
induced from the trivial connection on Lp, in our setting the connection
is defined on the tangent bundle. Its dual, living on the cotangent
bundle, is the −α-connection. Moreover, the ±α-embeddings define
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a pair of dual coordinates on M∗. Using the uniform convexity of
the Lp spaces, it is shown that the dual coordinates are related by
potential functions, just as in Amari’s theory. From this, we can define
a divergence functional on Lp(M, φ).

Via the α-embedding, the divergence in Lp(M,φ) induces a func-
tional on M∗×M∗, which is called the α-divergence. We will show that
if restricted to the positive cone, the α–divergence is exactly the Petz
quasi-entropy Sgα , with

gα(t) :=
2

1− α
+

2

1 + α
t− 4

1− α2
t

1+α
2 .

We will further investigate the properties of the divergence in Lp(M,φ),
especially the projection theorems. These imply some existence and
uniqueness results for the α–projections, which generalize the projec-
tion theorems in [1].

2. Geometry of Banach spaces.

In this paragraph, we list some facts about convexity and smoothness
of Banach spaces, see [15, 7] for details.

Let X be a Banach space and let X∗ be the dual of X. For u ∈ X∗

we denote 〈x, u〉 = u(x). Let K be a closed convex subset in X with
nonempty interior and let S be the boundary of K. In particular, let
Sr be the sphere with radius r in X.

2.1. Supporting hyperplanes and functionals. Let us first recall
that a (closed) hyperplane in X is a linear manifold x + H with x ∈ X
and H a closed linear subspace of codimension 1. Each hyperplane is
uniquely given by x and an element u ∈ X∗ having H as the null-space.
Conversely, each u ∈ X∗ defines the hyperplane

x + Ker u = {y ∈ X, 〈y, u〉 = γ = 〈x, u〉}.
If x + H is a real hyperplane in a complex Banach space, then H is
given by a real linear continuous functional u and there is a unique
v ∈ X∗, such that u = <v. Each real hyperplane determines two
closed half-spaces {〈x, u〉 ≤ γ} and {〈x, u〉 ≥ γ}.

A supporting hyperplane of K is a real hyperplane x+H, containing
at least one point of K and such that K lies in one of the two closed
half-spaces determined by x + H. If u is the corresponding real linear
functional, then u (or −u) attains its maximum on K. There is at least
one supporting hyperplane through every boundary point of K.
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2.2. Smoothness and strict convexity. A point x ∈ S1 is called
a point of smoothness if there is exactly one supporting hyperplane
passing through x, the tangent hyperplane at x. Equivalently, there is
a unique point vx ∈ X∗, ‖vx‖ = 1, such that vx attains its norm at x.
The tangent hyperplane is then determined by u = <vx and all points
in the unit ball satisfy <〈y, vx〉 ≤ 1. If each element in S1 is a point of
smoothness, then we say that X is smooth.

The norm in X is said to be weakly (Gateaux) differentiable at x ∈ S1

if for each y ∈ S1, the limit

(1) lim
t→0

‖x + ty‖ − ‖x‖
t

=: q′(x, y)

exists. The space X is smooth if and only if its norm is weakly differ-
entiable at each x ∈ S1. The weak derivative is given by

q′(x, y) = <〈y, vx〉.
In such a case, norm is weakly differentiable at each x ∈ X except the
origin, and q′(x, y) = <〈y, vx/‖x‖〉, where vx/‖x‖ is the unique point in
the unit sphere S∗1 in X∗, such that 〈x, vx/‖x‖〉 = ‖x‖.

We say that K is strictly convex, if every boundary point of K is
and extreme point, that is, if S contains no line segment. In this case,
every supporting hyperplane of K contains exactly one point of S. The
space X is strictly convex if the closed unit ball K1 is strictly convex.
There is a duality between strict convexity and smoothness of a Banach
space:

(i) If X∗ is strictly convex then X is smooth.
(ii) If X∗ is smooth then X is strictly convex.

2.3. Uniform smoothness and uniform convexity. We say that
the norm in X is strongly (Frèchet) differentiable at x ∈ S1 if the
limit (1) exists uniformly for y ∈ S1, if this is true for all x ∈ S1, the
norm is termed strongly differentiable. The norm is uniformly strongly
differentiable if (1) exists uniformly in x, y ∈ S1. Clearly, if the norm
is strongly differentiable, then X is smooth and the map

S1 3 x 7→ vx ∈ S∗1

is well defined. Moreover, we have

Theorem 2.1. [7, 6] The norm is (uniformly) strongly differentiable
if and only if the map x 7→ vx is single-valued and norm to norm
(uniformly) continuous from S1 to S∗1 .
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The space X is uniformly smooth if for each ε > 0 there is an η(ε) >
0, such that ‖x‖ ≥ 1, ‖y‖ ≥ 1 and ‖x − y‖ ≤ η(ε) always implies
‖x + y‖ ≥ ‖x‖+ ‖y‖ − ε‖x− y‖.

The dual notion to uniform smoothness is uniform convexity: X is
uniformly convex if for each 0 < ε ≤ 2 there is a δ(ε) > 0 such that if
x, y ∈ K1 and ‖x−y‖ ≥ ε, then ‖1

2
(x+y)‖ ≤ 1−δ(ε). The function δ(ε)

is called the module of convexity. Every uniformly convex Banach space
is strictly convex and reflexive. Moreover, the following statements are
equivalent.

(i) The norm on X (X∗) is uniformly strongly differentiable.
(ii) X is uniformly smooth (uniformly convex).
(iii) X∗ is uniformly convex (uniformly smooth).

Let us now define the map F : X \ {0} → X∗ \ {0} by

F (x) = ‖x‖vx/‖x‖

Then F is a support mapping [7], that is,

(i) ‖x‖ = 1 implies ‖F (x)‖ = 1 = 〈x, F (x)〉
(ii) λ ≥ 0 implies F (λx) = λF (x)

It follows from paragraph 2.2 that if X is smooth, the support mapping
is unique. If we put F (0) = 0, then we have

Theorem 2.2. [6] Let the Banach space X be uniformly convex and
let the norm be strongly differentiable. Then F is a homeomorphism of
X onto X∗ (in the norm topologies).

3. Noncommutative Lp spaces.

In this section, we recall the definition and some properties of non-
commutative Lp spaces on a von Neumann algebra, following the ap-
proach in [4, 16].

Let M be a von Neumann algebra and let φ be a faithful normal
semifinite weight. We denote Nφ the set of y ∈ M satisfying φ(y∗y) <
∞ and M0 the set of all elements in Nφ ∩ N∗

φ, entire analytic with

respect to the modular automorphism σφ
t associated with φ. We also

denote the GNS map by Nφ 3 y 7→ ηφ(y) ∈ Hφ.
Let 1 ≤ p ≤ ∞. The non-commutative Lp-space with respect to φ is

the space Lp(M, φ) of all closed operators acting on the Hilbert space
Hφ, satisfying

TJφσ
φ
−i/p(y)Jφ ⊃ JφyJφT,

for all y ∈ M0, such that the Lp-norm

‖T‖p = { sup
x∈M0,‖x‖≤1

‖|T |p/2ηφ(x)‖}2/p
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is finite. Then Lp(M, φ) with this norm is a Banach space. Let 1 <
p < ∞, then Lp(M, φ) is uniformly convex and uniformly strongly
differentiable. The dual space L∗p(M, φ) is Lq(M, φ), with 1/p+1/q = 1,
where the duality is given by

(2) 〈T, T ′〉φ = lim
y→1

( Tηφ(y) , T ′ηφ(y) )

where T ∈ Lp(M, φ), T ′ ∈ Lq(M,φ). The limit is taken in the *-
strong topology with restriction y ∈ M0, ‖y‖ ≤ 1. Each T ∈ Lp(M,φ),
1 ≤ p < ∞, has a unique polar decomposition of the form

(3) T = u∆
1/p
ψ,φ

where ψ ∈ M+
∗ , u ∈ M is a partial isometry, such that the support

projection s(ψ) = u∗u and ∆ψ,φ is the relative modular operator, see
Appendix C in [4] for definition and basic properties. We have

(4) ‖u∆
1/p
ψ,φ‖p = ψ(1)1/p.

On the other hand, each operator of the form (3) is in Lp(M, φ). The
positive cone L+

p (M, φ) is the set of positive operators in Lp(M,φ) and
we have

L+
p (M, φ) = {∆1/p

ψ,φ, ψ ∈ M+
∗ }

The identity

(5) ϕ(au) = 〈u∆ϕ,φ, a
∗〉φ

for a ∈ M gives an isometric isomorphism of M∗ and L1(M, φ). Simi-
larly, L2(M, φ) is isomorphic to Hφ by

u∆
1/2
ϕ,φ 7→ uξϕ,

where ξϕ is the vector representative of ϕ in the natural positive cone
in Hφ.

If φ̃ is a different n.s.f. weight, then there is an isometric isomorphism
τp(φ̃, φ) : Lp(M,φ) → Lp(M, φ̃) and

(6) 〈T, T ′〉φ = 〈τp(φ̃, φ)T, τq(φ̃, φ)T ′〉φ̃
holds for all T ∈ Lp(M, φ) and T ′ ∈ Lq(M, φ).

A bilinear form on Lp(M,φ)× Lq(M, φ) is defined by

[T, T ′]φ = 〈T, T
′∗〉φ, T ∈ Lp(M,φ), T ′ ∈ Lq(M,φ)

If Tk ∈ Lpk
(M, φ),

∑
k 1/pk = 1/r, then the product T = T1...Tn is well

defined as an element of Lr(M, φ) and

‖T‖r ≤ ‖T1‖p1 . . . ‖Tn‖pn
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If r = 1, then

[T1 . . . Tn]φ := [T, 1]φ = [T1 . . . Tk, Tk+1 . . . Tn]φ =(7)

= [Tk+1 . . . TnT1 . . . Tk]φ

for each 1 ≤ k ≤ n− 1 and

(8) |[T1 . . . Tn]φ| ≤ ‖T1‖p1 . . . ‖Tn‖pn

Let Lh
p(M, φ) = {T ∈ Lp(M,φ), T = T ∗}. Since the adjoint op-

eration is a conjugate linear isometry on Lp(M,φ), Lh
p(M, φ) is a real

Banach subspace of Lp(M,φ). Moreover, for 1 < p < ∞, Lh
p(M, φ) is

uniformly convex and the dual Lh∗
p (M, φ) = Lh

q (M, φ) for 1/p+1/q = 1.

4. The manifold and dual affine connections.

Let M be a von Neumann algebra and let φ be a faithful normal
semifinite weight.

For −1 < α < 1, we define the non-commutative α-embedding by

`φ
α : M∗ → Lp(M, φ), p =

2

1− α

ω 7→ pu∆
1/p
ϕ,φ

where ω(a) = ϕ(au), a ∈ M is the polar decomposition of ω. It is
clear from uniqueness of the polar decompositions that `φ

α is bijective.

Moreover, it maps the hermitian (that is, ω(a∗) = ω(a) ) elements in
M∗ onto Lh

p(M,φ) and M+
∗ onto the positive cone L+

p (M,φ).
If ψ is a different f.n.s. weight, then the space Lp(M,ψ) is identified

with Lp(M,φ) by the isometric isomorphism τp(ψ, φ). The correspond-
ing α-embeddings are related by

`ψ
α = τp(ψ, φ)`φ

α

We denote by Mα the set M∗ with the manifold structure induced
from `φ

α. Due to the above isomorphism, the manifold structure does
not depend of the choice of φ. For ω ∈ M∗, `φ

α(ω) ∈ Lp(M, φ) will be
called the α-coordinate of ω. The −α-coordinate is an element of the
dual space Lq(M, φ), 1/p + 1/q = 1. Moreover, for ω1, ω2 ∈ M∗ and a
n.s.f. weight ψ, we have by (6)

〈`ψ
α(ω1), `

ψ
−α(ω2)〉ψ = 〈τp(ψ, φ)`φ

α(ω1), τq(ψ, φ)`φ
−α(ω2)〉ψ =(9)

= 〈`φ
α(ω1), `

φ
−α(ω2)〉φ

In the sequel, we will just write `α instead of `φ
α. We will say that `α(ω)

and `−α(ω) are dual coordinates of ω ∈ M∗.
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Remark 4.1. It is clear that it is also possible to define the manifold
structure on hermitian elements in M∗, using the real Banach space
Lh

p(M, φ). All the subsequent statements hold also for this case.

The trivial connection on Lp(M,φ) induces a globally flat affine con-
nection on the tangent bundle TMα, called the α-connection. Let us
recall that there is a one-to-one correspondence between affine con-
nections and parallel transports on TMα. If the connection is glob-
ally flat, the parallel transport is given by a family of isomorphisms
Ux,y : Tx(Mα) → Ty(Mα), x, y ∈Mα, satisfying

(i) Ux,x = Id,
(ii) Uy,zUx,y = Ux,z

In our case, the tangent space Tx(Mα) can be identified with Lp(M,φ)
and the map Ux,y is the identity map for all x, y ∈Mα. We define the
dual connection as in [8], that is, a linear connection on the cotan-
gent bundle T ∗Mα, such that the corresponding parallel transport U∗

satisfies

〈v, U∗
x,y(w)〉φ = 〈Uy,x(v), w〉φ = 〈v, w〉φ

for w ∈ (Tx(Mα))∗ ≡ Lq(M, φ) and v ∈ Ty(Mα). Obviously, U∗ is
the trivial parallel transport in Lq(M, φ), hence the dual of the α-
connection is the −α-connection.

5. Duality.

The Lp spaces for 1 < p < ∞ are uniformly convex and uniformly
smooth, therefore we can use the results of Section 2.

Let ω ∈ M∗. We will show how ω is related to its dual coordinates.

Proposition 5.1. Let ω ∈ M∗ and let ω(a) = ψ(au) be the polar
decomposition. Then

pqω(a) = 〈`α(ω), a∗u∗`−α(ω)〉φ, a ∈ M.

Proof. We have s(∆ψ,φ) = s(ψ) = u∗u. From this and from (5), (7) it
follows that

ψ(au) = 〈u∆ψ,φ, a
∗〉φ = [u∆ψ,φu

∗ua]φ = [u∆
1/p
ψ,φ∆

1/q
ψ,φu

∗ua]φ =

= [u∆
1/p
ψ,φ, ∆

1/q
ψ,φu

∗ua]φ =
1

pq
〈`α(ω), a∗u∗`−α(ω)〉φ

¤
Let x = `α(ω) and x̃ = `−α(ω) be the dual coordinates of ω ∈ M∗.

The map

x 7→ x̃ = `−α`−1
α (x)
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is called the duality map. It is easy to see from (4) and Proposition
5.1 that for x ∈ Lp(M, φ) we have

(10) ‖ x̃

q
‖q

q = ‖x

p
‖p

p =
1

pq
〈x, x̃〉φ

It follows that

(11) vx/‖x‖p = ‖x

p
‖1−p

p

x̃

q

Proposition 5.2. The duality map is a homeomorphism Lp(M, φ) →
Lq(M, φ).

Proof. It is immediate from (10) that the duality map is continuous at
0. Further, let F be the map defined in Section 2 and x 6= 0, then we
have from (11)

F (x) = ‖x‖pvx/‖x‖p =
pp

pq
‖x‖2−p

p x̃

The statement now follows from Theorem 2.2.
¤

Let us define the function Ψp : Lp(M, φ) → R+ by

Ψp(x) = q‖x

p
‖p

p = qϕ(1),

where x = pu∆
1/p
ϕ,φ. Then we have

Proposition 5.3. Ψp is strongly differentiable. The strong derivative
at x is given by

DΨp(x)(y) = <〈y, x̃〉φ, y ∈ Lp(M,φ)

where x̃ is the dual coordinate. If 1/p + 1/q = 1, then

Ψq(x̃) = <〈x, x̃〉φ −Ψp(x)

Proof. We have from uniform smoothness of Lp(M,φ) that the norm
is strongly differentiable at all points except x = 0 and

D‖x‖p(y) = <〈y, vx/‖x‖p〉φ
It follows from (11) that for x 6= 0,

DΨp(x)(y) = q‖x

p
‖p−1

p <〈y, vx/‖x‖p〉φ = <〈y, x̃〉φ
As p > 1, the function ‖x

p
‖p

p is strongly differentiable at x = 0 and

DΨp(0)(y) = 0 = <〈y, 0̃〉φ
The last equality is rather obvious.

¤
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In the commutative case, as well as on the manifold of positive defi-
nite n×n matrices, Ψp is the potential function in the sense of Amari,
see [1] and [14, 11]. In general, it is not twice differentiable, but the
above Proposition shows that the Legendre transformations, relating
the dual coordinate systems, are still valid. It will be also clear from
the results of the next Section, that

Ψq(x̃) = sup
y∈Lp(M,φ)

(<〈y, x̃〉φ −Ψp(y))

hence Ψq is the conjugate of the convex function Ψp.

6. Divergence in Lp(M, φ).

Following [1], the function Dp : Lp(M, φ)×Lp(M,φ) → R+, defined
by

Dp(x, y) = Ψp(x) + Ψq(ỹ)−<〈x, ỹ〉φ
is called the divergence. It has the following properties.

Proposition 6.1. (i) Let fp(t) = p + qtp − pqt. Then

(12) Dp(x, y) ≥ ‖y

p
‖p

pfp(
‖x‖p

‖y‖p

)

for all x, y ∈ Lp(M, φ), where for y = 0, we take the limit
limt→0 tpfp(s/t) = qsp for all s. In particular, Dp(x, y) ≥ 0 for
all x, y ∈ Lp(M, φ) and equality is attained if and only if x = y.

(ii) Dp is jointly continuous and strongly differentiable in the first
variable.

(iii) Dp(y, x) = Dq(x̃, ỹ)
(iv) Dp(x, y) + Dp(y, z) = Dp(x, z) + <〈x− y, z̃ − ỹ〉φ

Proof. The statement (ii) follows from Proposition 5.2 and 5.3. (iii)
and (iv) follow easily from the definition of Dp. We will now prove (i).
If y = 0, then Dp(x, y) = Ψp(x) and if x = 0, Dp(x, y) = Ψq(ỹ), which
is equal to the right hand side of (12).

Let now x 6= 0, y 6= 0 and let t = ‖x‖p/‖y‖p. Then by (11)

<〈x, ỹ〉φ = tq‖y

p
‖p−1

p <〈x
t
, vy/‖y‖p〉φ

Let ‖y‖p = r and let Sr be the sphere with radius r in Lp(M,φ). Then
y, x

t
∈ Sr. From Section 2, the tangent hyperplane y + H to Sr at y

is given by <〈z, vy/r〉φ = r, Sr lies entirely in the half-space given by
<〈z, vy/r〉φ ≤ r and y is the unique point of Sr contained in y + H.
Hence,

Dp(x, y) ≥ Ψp(x) + Ψq(ỹ)− tpq‖y

p
‖p

p = ‖y

p
‖p

pfp(t) ≥ 0,

10



where equality is attained in the first inequality if and only if x
t

= y,
and in the second inequality if and only if t = 1. ¤

We will also need the following lemma.

Lemma 6.1. Let y ∈ Lp(M,φ), d > 0 and let

Uy,d := {x ∈ Lp(M, φ), Dp(x, y) ≤ d}
Then Uy,d is convex and weakly compact.

Proof. It is easy to see that Dp is convex in the first variable, therefore
the set Uy,d is also convex. To show that it is weakly compact, it is
sufficient to prove that it is weakly closed and norm bounded.

Let {xn} be a sequence in Uy,d, converging weakly to some x ∈
Lp(M,φ). Then ‖x‖p ≤ lim infn→∞ ‖xn‖p. We therefore have

Dp(x, y) = Ψq(ỹ) + q‖x

p
‖p

p − 〈x, ỹ〉φ ≤

≤ lim inf
n→∞

(Ψq(ỹ) + q‖xn

p
‖p

p − 〈xn, ỹ〉φ) =

= lim inf
n→∞

Dp(xn, y) ≤ d

and Uy,d is weakly closed.
Finally, for x ∈ Uy,d, we have by Proposition 6.1 (i),

‖y

p
‖p

pfp(
‖x‖p

‖y‖p

) ≤ Dp(x, y) ≤ d

As fp(t) goes to infinity for t →∞, we see that ‖x‖p is bounded. ¤

7. Dp-projections.

Let C be a subset in Lp(M,φ), y ∈ Lp(M, φ). If there is a point
xm ∈ C, such that

Dp(xm, y) = min
x∈C

Dp(x, y)

then xm will be called a Dp-projection of y to C. In this section, we
prove some uniqueness and existence results for Dp-projections.

Proposition 7.1. Let C be a convex subset in Lp(M, φ), y ∈ Lp(M,φ)
and xm ∈ C. The following are equivalent.

(i) Dp(xm, y) = minx∈C Dp(x, y)

(ii) ỹ − x̃m is in the normal cone to C at xm, that is,

<〈x− xm, ỹ − x̃m〉φ ≤ 0, ∀x ∈ C

(iii) Dp(x, y) ≥ Dp(x, xm) + Dp(xm, y), ∀x ∈ C
11



If such a point exists, it is unique.

Proof. Let xm be a point in C satisfying (i) and let x ∈ C. Then xt =
tx + (1− t)xm lies in C for all t ∈ [0, 1] and thus Dp(xt, y) ≥ Dp(xm, y)
on [0, 1]. We have from Proposition 5.3

0 ≤ d

dt+
Dp(xt, y)|t=0 = <〈x− xm, x̃m − ỹ〉φ

which is (ii). Further, from Proposition 6.1 (iv)

<〈x− xm, x̃m − ỹ〉φ = Dp(x, y)−Dp(x, xm)−Dp(xm, y),

hence (ii) implies (iii). Finally, let xm satisfy (iii), then we clearly have
Dp(xm, y) ≤ Dp(x, y), for all x ∈ C.

To prove uniqueness, suppose that x1 and x2 are points in C, satis-
fying (iii). Then

Dp(x1, y) ≥ Dp(x1, x2)+Dp(x2, y) ≥ Dp(x1, x2)+Dp(x2, x1)+Dp(x1, y).

It follows that Dp(x1, x2) + Dp(x2, x1) ≤ 0 and hence x1 = x2. ¤

Proposition 7.2. Let C 6= ∅ be a weakly closed subset in Lp(M,φ)
and y ∈ Lp(M,φ). Then there exists a Dp-projection of y to C.

Proof. For some d > 0, the set Uy,d has a nonempty intersection with C.
By Lemma 6.1, the sets Uy,d∩C are weakly compact. The intersection
of these sets for all such d is therefore nonempty and is equal to some
Uy,ρ ∩ C. Then ρ = minx∈C Dp(x, y) and all the points in Uy,ρ ∩ C are
Dp-projections of y in C. ¤

By Propositions 7.1 and 7.2, if C is a nonempty convex weakly closed
subset in Lp(M, φ), we can define the map y 7→ xm, which sends each
point y to its unique Dp-projection in C.

Proposition 7.3. Let C 6= ∅ be a weakly closed convex subset in
Lp(M,φ). Then the Dp-projection is continuous from Lp(M,φ) with
its norm topology to C with the relative weak topology.

Proof. Let {yn} be a sequence in Lp(M, φ) converging in norm to y.
Let xn

m be the unique Dp-projection of yn and xm be the unique Dp-
projection of y in C, obtained by Propositions 7.2 and 7.1. We have to
prove that xn

m converges weakly to xm.
As the duality map is continuous, we have ỹn → ỹ in Lq(M,φ). Fur-

ther, we have from joint continuity of Dp that lim Dp(z, y
n) = Dp(z, y)

and lim Dp(y
n, z) = Dp(y, z) for any z ∈ Lp(M, φ), in particular,

lim Dp(y
n, y) = lim Dp(y, yn) = 0.

12



Let k1 > 0 be such that ‖y‖ ≤ k1 and ‖yn‖ ≤ k1 for all n. Further, let
us choose an element z ∈ C. By Proposition 6.1 (i) and the definition
of the Dp-projection, we have

fp(
‖xn

m‖
‖yn‖ ) ≤ Dp(z, y

n)

‖yn/p‖p
(13)

fp(
‖xm‖
‖y‖ ) ≤ Dp(z, y)

‖y/p‖p
(14)

As the right hand side of (13) converges to the right hand side of (14),
we see that there is a constant k2 > 0, such that ‖xm‖ ≤ k2 and
‖xn

m‖ ≤ k2 for all n. For sufficiently large n, we get by Proposition 6.1
(iv)

dn := Dp(x
n
m, yn) = inf

x∈C,‖x‖p≤k2

Dp(x, yn) =

= inf
x∈C,‖x‖p≤k2

{Dp(x, y) + Dp(y, yn)−<〈x− y, ỹn − ỹ〉φ} ≤
≤ Dp(xm, y) + Dp(y, yn) + (k1 + k2)‖ỹ − ỹn‖q ≤ d + ε

where d := Dp(xm, y). Similarly,

Dp(x
n
m, y) = Dp(x

n
m, yn) + Dp(y

n, y)−<〈xn
m − yn, ỹ − ỹn〉φ ≤

≤ dn + Dp(y
n, y) + (k1 + k2)‖ỹ − ỹn‖q ≤ d + 2ε

Hence for sufficiently large n, xn
m ∈ Uy,d+2ε∩C. These sets are nonempty

and weakly compact, therefore {xn
m} contains a weakly convergent sub-

sequence. On the other hand, any limit of such subsequence has to be
in Uy,d+2ε ∩C for all ε and thus also in

⋂
ε Uy,d+2ε ∩C. By uniqueness,

this intersection contains a single point xm, it follows that xn
m converges

weakly to xm. ¤

8. The α-divergence in M∗.

Let α ∈ (−1, 1) and let p = 2
1−α

. The divergence in Lp(M,φ) defines

the functional Sα : M∗ ×M∗ → R+,

Sα(ω1, ω2) := Dp(`α(ω1), `α(ω2)) =

= qϕ(1) + pψ(1)− pq<〈u∆
1/p
ϕ,φ, v∆

1/q
ψ,φ〉φ

where ω1(a) = ϕ(au) and ω2(a) = ψ(av) are the polar decompositions.
It is called the α-divergence. Let us remark that a similar definition
for the α-divergence appeared also in the Discussion in [19].

It follows from (9) that Sα does not depend of φ. In particular, if ψ
is faithful, then

〈u∆
1/p
ϕ,φ, v∆

1/q
ψ,φ〉φ = (∆

1/(2p)
ϕ,ξψ

ξψ, ∆
1/(2p)
ϕ,ξψ

u∗vξψ)
13



where ξψ is a vector representative of ψ. It follows that if ϕ, ψ ∈ M+
∗ ,

ψ is faithful and ∆ϕ,ξψ
=

∫
λEλ is the spectral decomposition, then

Sα(ϕ, ψ) = (gp(∆ϕ,ξψ
)ξψ, ξψ) =

∫
gp(λ)‖Eλξψ‖2

where gp(t) = p + qt − pqt1/p. Hence, in this case the α-divergence is
equal to the quasi entropy S1

gp
, defined by Petz in [20](see also [18]).

We will show that this is true on the whole of M+
∗ ×M+

∗ .

Lemma 8.1. Let ϕ, ψ ∈ M+
∗ , u, v ∈ M be partial isometries satisfying

u∗u = s(ϕ), v∗v = s(ψ). Let p, q > 1 be such that 1
p

+ 1
q

= 1. Then

(15) 〈u∆
1/p
ϕ,φ, v∆

1/q
ψ,φ〉φ = ( ∆

1/(2p)
ϕ,ξψ

ξψ, ∆
1/(2p)
ϕ,ξψ

u∗vξψ )

where ξψ is a vector representative of ψ.

Proof. Let 1/p ≤ 1/2. We have

〈u∆
1/p
ϕ,φ , v∆

1/q
ψ,φ〉φ = lim

y→1
( ∆

1/2−1/p
ψ,φ v∗u∆

1/p
ϕ,φηφ(y) , ∆

1/2
ψ,φηφ(y) ),

with y ∈ M0, ‖y‖ ≤ 1. For y ∈ Nφ,

( ∆
1/2−1/p
ψ,φ v∗u∆

1/p
ϕ,φηφ(y) , ∆

1/2
ψ,φηφ(y) ) =(16)

= ( Jξψ ,ηφ
∆

1/2
ψ,φηφ(y) , Jξψ ,ηφ

∆
1/2−1/p
ψ,φ v∗u∆

1/p
ϕ,φηφ(y) ) =

= ( y∗ξψ , Jξψ ,ηφ
∆

1/2−1/p
ψ,φ v∗u∆

1/p
ϕ,φηφ(y) ),

here we have used that J∗ξψ ,ηφ
Jξψ ,ηφ

= s(ψ) = s(∆ψ,φ), the support of

∆ψ,φ. Let t ∈ R, then

Jξψ ,ηφ
∆

1/2−it
ψ,φ v∗u∆it

ϕ,φηφ(y) = Sξψ ,ηφ
∆−it

ψ,φv
∗u∆it

ϕ,φηφ(y) =

Sξψ ,ηφ
v∗∆−it

ψv ,φ∆
it
ϕu,φuηφ(y) = Sξψ ,ηφ

v∗(Dψv : Dϕu)−tuηφ(y) =

y∗u∗(Dψv : Dϕu)
∗
−tvξψ

where ϕu(a) = ϕ(u∗au) and u∆it
ϕ,φu

∗ = ∆it
ϕu,φ by (C.8) in [4]. From

this, we have

( y∗ξψ , Jξψ ,ηφ
∆

1/2−it
ψ,φ v∗u∆it

ϕ,φηφ(y) ) = ( (Dψv : Dϕu)−tuyy∗ξψ , vξψ ) =

= ( ∆−it
ψv ,ξψ

∆it
ϕu,ξψ

uyy∗ξψ , vξψ ) = ( u∆it
ϕ,ξψ

yy∗ξψ , vξψ ),

where we have used (C.5) and (C.8) of [4]. It follows that for z = it,

(17) ( y∗ξψ , Jξψ ,ηφ
∆

1/2−z
ψ,φ v∗u∆z

ϕ,φηφ(y) ) = (y∗ξψ , y∗∆z̄
ϕ,ξψ

u∗vξψ ).

By Lemma 3.1 in [16], both sides of (17) are holomorphic for 0 < <z <
1/2 and continuous for 0 ≤ <z ≤ 1/2. The equation (15) holds for
1/p ≤ 1/2 by (16) and analytic continuation of (17).
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Let now 1/q ≤ 1/2. We have by the first part of the proof

〈u∆
1/p
ϕ,φ , v∆

1/q
ψ,φ〉φ = ( uξϕ , v∆

1/q
ξψ ,ξϕ

ξϕ ) = ( Sξϕ,ξψ
u∗vξψ , ∆

1/q
ξψ ,ξϕ

Sξϕ,ξψ
ξψ )

= ( Jξψ,ξϕ∆
1/q
ξψ ,ξϕ

Jξϕ,ξψ
∆

1/2
ξϕ,ξψ

ξψ , ∆
1/2
ξϕ,ξψ

u∗vξψ ) =

= ( ∆
1/p−1/2
ϕ,ξψ

ξψ, ∆
1/2
ϕ,ξψ

u∗vξψ ),

we have used the equations (C.14) J∗η1,η2
= Jη2,η1 and (β5) Jη1,η2∆η1,η2Jη2,η1 =

∆−1
η2,η1

from Appendix C in [4]. ¤
It follows that Sα(ϕ, ψ) = S1

gp
(ϕ, ψ) for all positive normal function-

als ϕ and ψ. The function gp, 1 < p < ∞ is operator convex and it
follows from the results in [20] that

(i) Sα is jointly convex on M+
∗ ×M+

∗
(ii) Sα decreases under stochastic maps on M+

∗ ×M+
∗

(iii) Sα is lower semicontinuous on M ∗+×F(M+
∗ ) endowed with the

product of norm topologies, where F(M+
∗ ) denotes the set of

faithful elements in M+
∗ .

The following properties of the α-divergence are valid on M∗ ×M∗
and are immediate consequences of the results of Section 6.

(i) Positivity

Sα(ϕ, ψ) ≥ ‖ψ‖1gp(
‖ϕ‖1

‖ψ‖1

) ≥ 0

and Sα(ϕ, ψ) = 0 if and only if ϕ = ψ (here ‖ · ‖1 is the norm
in M∗).

(ii) Sα(ϕ, ψ) = S−α(ψ, ϕ)
(iii) generalized Pythagorean relation

Sα(ϕ, ψ) + Sα(ψ, σ) = Sα(ϕ, σ) + <〈`α(ϕ)− `α(ψ), `−α(σ)− `−α(ψ)〉φ
Let ϕ, ψ ∈ M∗ and let xt, t ∈ [0, 1] be a curve in Lp(M, φ), given by

xt := `α(ϕ) + t(`α(ψ)− `α(ϕ)),

then `−1
α (xt) is the α-geodesic in M∗, connecting ϕ and ψ. Notice that

the Pythagorean relation (iii) is a generalization of the classical version
in [1], which says that equality is attained if and only if the α-geodesic
connecting ψ and ϕ is orthogonal to the −α-geodesic connecting ψ and
σ.

We also define the α-projection of ϕ ∈ M∗ onto a subset C ⊂ M∗ as
the element in C that minimizes Sα(·, ϕ) over C. We will say that a
subset C ⊂ M∗ is α-convex if `α(C) is convex. The next Proposition
is a generalization of the results in [1, 2] and follows directly from
Proposition 7.1.
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Proposition 8.1. Let C ⊂ M∗ be α-convex and let ψ ∈ M∗, ϕm ∈ C.
The following are equivalent.

(i) ϕm is an α-projection of ψ in C.
(ii) For all σ ∈ C,

Sα(σ, ψ) ≥ Sα(ϕm, ψ) + S−α(ϕm, σ).

(iii) If ψt is the −α-geodesic connecting ϕm and ψ, then d
dt

`−α(ψt)
lies in the normal cone to `α(C) at `α(ϕm).

If such a point exists, it is unique.

The topology induced by the α-embedding from the norm, resp. the
weak topology in Lp(M,φ) will be called the α-, resp. the α-weak
topology. The following Proposition is also immediate from Section 7.

Proposition 8.2. Let C be a nonempty subset in M∗ and let ψ ∈ M∗.

(i) If C is α-weakly closed, then there exists an α-projection of ψ
in C.

(ii) If C is α-convex, α-weakly closed, then the α-projection is a
continuous map from M∗ with the α-topology to C with the rel-
ative α-weak topology.

9. The case α = 0.

Let α = 0, p = q = 2. The space L2(M,φ) can be identified with the
Hilbert space Hφ and the dual pairing 〈·, ·〉φ is the inner product (·, ·)
in Hφ. Through this identification, the 0-embedding becomes the map

ω 7→ 2uξϕ

where ω(a) = ϕ(au) is the polar decomposition of ω and ξϕ is the unique
vector representative of ϕ in the natural positive cone V in Hφ. Hence
the 0-embedding maps M∗ bijectively onto Hφ. Up to multiplication
by 2, the restriction of `0 to the positive cone M+

∗ corresponds to the
identification of the positive normal functionals with elements in V
proved by Araki in [3]. It has been also shown that this identification
is a homeomorphism M+

∗ → V . It follows that the relative 0-topology
is the same as the relative L1-topology in M+

∗ .
The duality map is the identity on Hφ and the potential function is

Ψ2(x) =
1

2
‖x‖2

Therefore, the potential function is C∞-diferentiable and

D2Ψ2(x)(y, z) = <(y, z) ∀x ∈ Hφ
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It follows that Ψ2 defines a Riemannian metric in the tangent bundle
TM0, which corresponds to the real part of the inner product, induced
from the 0-embedding. In the matrix case, this metric was studied on
density matrices and it was shown that it coincides with the Wigner–
Yanase metric, see [10].

The D2-divergence in Hφ is

D2(x, y) =
1

2
‖x− y‖2,

hence the D2-projection corresponds to minimizing the Hilbert space
norm. This means, in particular, that there is a unique D2-projection
onto every closed convex subset of Hφ.

The 0-divergence in M∗ becomes

S0(ω1, ω2) = 2‖uξϕ − vξψ‖2

On the positive cone, the 0-divergence generalizes the classical Hellinger
distance.

10. The unit sphere.

The α-embedding maps the unit sphere S in M∗ onto the sphere Sp

with radius p in Lp(M, φ). The duality map x 7→ x̃ maps Sp onto the
sphere S ′q with radius q in the dual space Lq(M, φ). From (11), we have
that for x ∈ Sp,

(18) x̃ = qvx/p

Proposition 10.1. The duality map Sp 3 x 7→ x̃ ∈ S ′q is uniformly
continuous.

Proof. The statement follows from (18) and Theorem 2.1. ¤

For each x ∈ Sp, there is a unique tangent hyperplane x+Hx through
x, where Hx is given by the condition

<〈y, x̃〉φ = q<〈y, vx/p〉φ = 0

Hence there is a splitting Lp(M, φ) = Hx ⊕ [x] and, similarly as in [8],
there is a continuous projection πx : Lp(M, φ) → Hx, given by

πx(y) = y −<〈y, vx/‖x‖p〉φ
x

p
= y − 1

pq
<〈y, x̃〉φx,

which is obtained by minimizing the Lp-norm.
As the norm is strongly differentiable, the unit sphere forms a dif-

ferentiable submanifold Dα in Mα. Let ω ∈ Dα and let x ∈ Sp be
its α-coordinate. The tangent space Tx(Dα) can be identified with the
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tangent hyperplane Hx and πx can be used to project the α-connection
onto TDα.

Remark 10.1. Let ψ be a faithful state with the α-coordinate x in
Lp(M,φ) and let ξψ be the vector representative of ψ in a natural

positive cone. Then ψ has the α-coordinate τp(ψ, φ)(x) = p∆
1/p
ξψ

in

Lp(M,ψ) and the dual coordinate τq(ψ, φ)(x̃) = q∆
1/q
ξψ

in Lq(M,ψ).

By (9) we have for y ∈ Lp(M,φ),

〈y, x̃〉φ = 〈τp(ψ, φ)(y), q∆
1/q
ξψ
〉ψ = (yψξψ, q∆

1/q
ξψ

ξψ) = q〈yψ, 1〉ψ
where yψ = τp(ψ, φ)(y). It follows that τp(ψ, φ) maps Tx(Dα) onto the
subspace

Fα
ψ := {z ∈ Lp(M, ψ), <〈z, 1〉ψ = 0}

This corresponds to the results in [9], where the α-connection is ob-
tained on the fiber bundle Fα over a manifold of faithful states.

The projected connection, even in the classical and the matrix case, is
no longer flat. Hence, it does not define a divergence, but nevertheless,
we can use the restriction of Sα as a quasi-distance on the unit sphere.
This restriction has the form

Sα(ω1, ω2) = pq(1−<〈u∆
1/p
ϕ,φ, v∆

1/q
ψ,φ〉φ)

which corresponds to the definition of the α-divergence in [1] for prob-
ability densities and in [13] for density matrices.
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