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On quantum information manifolds

Anna Jenčová

16.1 Introduction

The aim of information geometry is to introduce a suitable geometrical structure on

families of probability distributions or quantum states. For parametrised statistical

models, such structure is based on two fundamental notions: the Fisher information

and the exponential family with its dual mixed parametrisation, see for example

(Amari 1985, Amari and Nagaoka 2000).

For the non-parametric situation, the solution was given by Pistone and Sempi

(Pistone and Sempi 1995, Pistone and Rogantin 1999), who introduced a Banach

manifold structure on the set P of probability distributions, equivalent to a given

one. For each µ ∈ P, the authors considered the non-parametric exponential family

at µ. As it turned out, this provides a C∞-atlas on P, with the exponential Orlicz

spaces LΦ(µ) as the underlying Banach spaces, here Φ is the Young function of the

form Φ(x) = cosh(x)− 1.

The present contribution deals with the case of quantum states: we want to

introduce a similar manifold structure on the set of faithful normal states of a von

Neumann algebra M. Since there is no suitable definition of a non-commutative

Orlicz space with respect to a state ϕ, it is not clear how to choose the Banach space

for the manifold. Of course, there is a natural Banach space structure, inherited from

the predual M∗. But, as it was already pointed out in (Streater 2004), this structure

is not suitable to define the geometry of states: for example, any neighbourhood of

a state ϕ contains states such that the relative entropy with respect to ϕ is infinite.

In (Jenčová 2006), we suggest the following construction. We define a Luxem-

burg norm using a quantum Young function, similar to that in (Streater 2004) but

restricted to the space of self-adjoint operators in M. Then we take the comple-

tion under this norm. In the classical case, this norm coincides with the norm of

Pistone and Sempi, restricted to bounded measurable functions. This is described

in Section 16.2. In Section 16.3, we show that an equivalent Banach space can be

obtained in a more natural and easier way, using some results of convex analysis.

In the following sections, we use the results in (Jenčová 2006) to introduce the

manifold, and discuss possible extensions.
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Section 16.6 is devoted to channels, that is, completely positive unital maps

between the algebras. We show that the structures we introduced are closely related

to sufficiency of channels and a new characterisation of sufficiency is given. As it

turns out, the new definition of the spaces provides a convenient way to deal with

these problems.

16.2 The quantum Orlicz space

We recall the definition and some properties of the quantum exponential Orlicz

space, as given in (Jenčová 2006).

16.2.1 Young functions and associated norms

Let V be a real Banach space and let V ∗ be its dual. We say that a function

Φ : V → R ∪ {∞} is a Young function, if it satisfies:

(i) Φ is convex and lower semicontinuous;

(ii) Φ(x) ≥ 0 for all x ∈ V and Φ(0) = 0,

(iii) Φ(x) = Φ(−x) for all x ∈ V ,

(iv) if x �= 0, then limt→∞ Φ(tx) = ∞.

Since Φ is convex, its effective domain

dom(Φ) := {x ∈ V, Φ(x) < ∞}

is a convex set. Let us define the sets

CΦ := {x ∈ V,Φ(x) ≤ 1},

LΦ := {x ∈ V,∃s > 0, such that Φ(sx) < ∞}.

Then LΦ is the smallest vector space, containing dom(Φ). Moreover, the Minkowski

functional of CΦ ,

‖x‖Φ := inf{ρ > 0, x ∈ ρCΦ} = inf{ρ > 0,Φ(ρ−1x) ≤ 1}

defines a norm in LΦ .

Let BΦ be the completion of LΦ under ‖ · ‖Φ . If the function Φ is finite valued,

Φ : V → R, (or, more generally, 0 ∈ int dom(Φ)), then Lφ = V and the norm ‖ · ‖Φ

is continuous with respect to the original norm in V , so that we have the continuous

inclusion V ⊑ BΦ .

Let now Φ : V → R be a Young function and let the function Φ∗ : V ∗ → R∪{∞}

be the conjugate of Φ,

Φ∗(v) = sup
x∈V

v(x)− Φ(x)

then Φ∗ is a Young function as well. The associated norm satisfies

|v(x)| ≤ 2‖x‖Φ‖v‖Φ∗ x ∈ BΦ , v ∈ BΦ∗

(the Hölder inequality), so that each v ∈ BΦ∗ defines a continuous linear functional

on BΦ , in fact, it can be shown that

LΦ∗ = BΦ∗ = B∗
Φ ⊑ V ∗
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in the sense that the norm ‖·‖φ∗ is equivalent with the usual norm in B∗
Φ . Similarly,

we have LΦ = V ⊑ BΦ ⊆ B∗
Φ∗ .

16.2.2 Relative entropy

Let M be a von Neumann algebra in standard form. Let M+
∗ be the set of normal

positive linear functionals and S∗ be the set of normal states on M. For ω and ϕ

in M+
∗ , the relative entropy is defined as

S(ω, ϕ) =







−〈log(∆ϕ,ξω
)ξω , ξω 〉 if suppω ≤ suppϕ

∞ otherwise

where ξω is the representing vector of ω in a natural positive cone and ∆ϕ,ξω
is the

relative modular operator. Then S is jointly convex and weakly lower semicontin-

uous. We will also need the following identity

S(ψλ , ϕ) + λS(ψ1 , ψλ ) + (1 − λ)S(ψ2 , ψλ ) = λS(ψ1 , ϕ) + (1− λ)S(ψ2 , ϕ) (16.1)

where ψ1 , ψ2 are normal states and ψλ = λψ1 + (1− λ)ψ2 , 0 ≤ λ ≤ 1. This implies

that S is strictly convex in the first variable.

Let us denote

Pϕ := {ω ∈ M+
∗ , S(ω, ϕ) < ∞}

Sϕ := {ω ∈ S∗, S(ω, ϕ) < ∞}

Kϕ,C := {ω ∈ S∗, S(ω, ϕ) ≤ C}, C > 0.

Then Pϕ is a convex cone dense in M+
∗ and Sϕ is a convex set generating Pϕ . By

(16.1), Sϕ is a face in S∗. For any C > 0, the set Kϕ,C separates the elements in

M and it is convex and compact in the σ(M∗,M)-topology.

16.2.3 The quantum exponential Orlicz space and its dual

Let Ms be the real Banach subspace of self-adjoint elements in M, then the dual

M∗
s is the subspace of Hermitian (not necessarily normal) functionals in M∗. We

define the functional Fϕ : M∗
s → R ∪ {∞} by

Fϕ (ω) =

{

S(ω, ϕ) if ω ∈ S∗

∞ otherwise.

Then Fϕ is strictly convex and lower semicontinuous; with dom(Fϕ ) = Sϕ . Its

conjugate

F ∗
ϕ (h) = sup

ω∈S∗

ω(h) − S(ω, ϕ)

is convex and lower semicontinuous; in fact, being finite valued, it is continuous on

Ms . We have F ∗∗
ϕ = Fϕ on M∗

s .

We define the function Φϕ : Ms → R by

Φϕ (h) =
exp(F ∗

ϕ (h)) + exp(F ∗
ϕ (−h))

2
− 1.
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Then Φϕ is a Young function. Let us denote ‖h‖ϕ := ‖h‖Φϕ
and Bϕ := BΦϕ

, then

we call Bϕ the quantum exponential Orlicz space.

Let h ∈ Ms , ‖h‖ϕ ≤ 1. Then

cosh(ω(h)) ≤ 2eS (ω,ϕ) .

It follows that each ω ∈ Sϕ defines a continuous linear functional on Bϕ . We denote

by Bϕ,0 the Banach subspace of centred elements in Bϕ , that is, h ∈ Bϕ with

ϕ(h) = 0. Then

Φϕ,0(h) =
F ∗

ϕ (h) + F ∗
ϕ (−h)

2

is a Young function on Ms,0 := {h ∈ Ms , ϕ(h) = 0} and it defines an equivalent

norm in Bϕ,0 .

Remark 16.1 Let M be commutative, then M = L∞(X, Σ, µ) for some measure

space (X, Σ, µ) with σ-finite measure µ. Then ϕ is a probability measure on Σ,

with the density p := dϕ/dµ ∈ L1(X, Σ, µ). For any Hermitian element u ∈ M,

F ∗
ϕ (u) = log

∫

exp(u)pdµ, so that

Φϕ (u) =

∫

cosh(u)pdµ − 1.

It follows that in this case, our space Bϕ coincides with the closure MΦ(ϕ) of

L∞(X, Σ, ϕ) in LΦ(ϕ).

Let us now describe the dual space B∗
ϕ,0 . It was proved that B∗

ϕ = Pϕ −Pϕ and

B∗
ϕ,0 = ∪nn(Kϕ,1 −Kϕ,1). If we denote by Cϕ,0 the closed unit ball in B∗

ϕ,0 , then

Cϕ,0 ⊆ Kϕ,1 −Kϕ,1 ⊆ 4Cϕ,0 (16.2)

so that any element in Cϕ,0 can be written as a difference of two states in Kϕ,1 .

For v in Sϕ − Sϕ , let Lv := {ω1 , ω2 ∈ Sϕ , v = ω1 − ω2}. We define the function

Ψϕ,0 : M∗
s,0 → R

+ by

Ψϕ,0(v) =







infLv
S(ω1 , ϕ) + S(ω2 , ϕ) if v ∈ Sϕ − Sϕ

∞ otherwise.

Then Ψϕ,0 is a Young function and it was proved that

Φ∗
ϕ,0(v) = 1/2Ψϕ,0(2v)

for v ∈ M∗
s,0 . It follows that the norm in B∗

ϕ,0 is equivalent with ‖ · ‖Ψϕ , 0
.

16.3 The spaces A(Kϕ ) and A(Kϕ )∗∗

In this section, we use a well-known representation of compact convex sets, see for

example (Asimow and Ellis 1980) for details. We obtain a Banach space, which

turns out to be equivalent to Bϕ,0 .
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Let K ⊂ S∗ be a convex set, compact in the σ(M∗,M)-topology and separating

the points in Ms . In particular, let Kϕ := Kϕ,1 . Let A(K) be the Banach space

of continuous affine functions f : K → R, with the supremum norm. Then K can

be identified with the set of states on A(K), where each element ω ∈ K acts on

A(K) by evaluation f �→ f(ω). Moreover, the topology of K coincides with the

weak*-topology of the state space.

It is clear that any self-adjoint element in M belongs to A(K), moreover, Ms

is a linear subspace in A(K), separating the points in K and containing all the

constant functions. It follows that Ms is norm-dense in A(K).

The dual space A(K)∗ is the set of all elements of the form

p : f �→ a1f(ω1) − a2f(ω2)

for some ω1 , ω2 ∈ K, a1 , a2 ∈ R
+ , so that A(K)∗ is a real linear subspace in M∗.

The embedding of A(K)∗ to M∗ is continuous and the weak*-topology on A(K)∗

coincides with σ(M∗,M) on bounded subsets. It is also easy to see that the second

dual A(K)∗∗ is the set of all bounded affine functionals on K.

Let L ⊆ K be convex and compact. For f ∈ A(K)∗∗, the restriction to L is in

A(L)∗∗, continuous if f ∈ A(K) and such that ‖f |L‖L ≤ ‖f‖K .

Lemma 16.1 Let a, b > 0, then A(Kϕ,a) = A(Kϕ,b) and A(Kϕ,a)∗∗ = A(Kϕ,b)
∗∗,

in the sense that the corresponding norms are equivalent.

Proof Suppose that a ≥ b. Since Kϕ,b ⊆ Kϕ,a , it follows that A(Kϕ,a) ⊆ A(Kϕ,b)

and A(Kϕ,a)∗∗ ⊆ A(Kϕ,b)
∗∗ with ‖f‖ϕ,b ≤ ‖f‖ϕ,a for f ∈ A(Kϕ,a)∗∗. On the other

hand, let ω ∈ Kϕ,a , then ωt := tω + (1 − t)ϕ ∈ Kϕ,b whenever t ≤ b/a. Then

ω = a/bωb/a − (a/b − 1)ϕ

so that Kϕ,a is contained in the closed ball with radius (2a − b)/b in A(Kϕ,b)
∗.

It follows that any f ∈ A(Kϕ,b)
∗∗ defines a bounded affine functional over Kϕ,a ,

continuous if f ∈ A(Kϕ,b) and

‖f‖ϕ,a = sup
ω∈Kϕ , a

|f(ω)| ≤ ‖f‖ϕ,b(2a − b)/b.

We see from the above proof that Sϕ ⊂ A(Kϕ,b)
∗ and each Kϕ,a is weak*-compact

in A(Kϕ,b)
∗. It follows that dom (Fϕ ) ⊂ A(Kϕ,b)

∗ and Fϕ is a convex weak*-lower

semicontinuous functional on A(Kϕ,b)
∗.

Let us denote by A0(K) the subspace of elements f ∈ A(K), such that f(ϕ) = 0.

Then we have

Theorem 16.1 A0(Kϕ ) = Bϕ,0 , with equivalent norms.

Proof We have by (16.2) that the norms are equivalent on Ms . The statement

follows from the fact that Ms is dense in both spaces.
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16.4 The perturbed states

As we have seen, Fϕ (ω) = S(ω, ϕ) defines a convex lower semicontinuous functional

A(Kϕ )∗ → R. Let f ∈ A(Kϕ )∗∗. We denote

cϕ (f) := inf
ω∈Sϕ

f(ω) + S(ω, ϕ).

Then −cϕ (−f) is the conjugate functional F ∗
ϕ (f), so that cϕ is concave and upper

semicontinuous, with values in R ∪ {−∞}.

Suppose that cϕ (f) is finite and that there is a state ψ ∈ Sϕ , such that

cϕ (f) = f(ψ) + S(ψ,ϕ).

Then this state is unique, this follows from the fact that S is strictly convex in the

first variable. Let us denote this state by ϕf . Note that if f ∈ Ms , then ϕf exists

and it is the perturbed state (Ohya and Petz 1993), so that we can see the mapping

f �→ ϕf as an extension of state perturbation.

In (Jenčová 2006), we defined the perturbed state for elements in Bϕ,0 ; we remark

that there we used the notation cϕ = F ∗
ϕ and the state was denoted by [ϕh ], h ∈ Bϕ .

It was shown that [ϕh ] is defined for all h ∈ Bϕ and that the map

Bϕ,0 ∈ h �→ [ϕh ]

can be used to define a C∞-atlas on the set of faithful states on M. By Theo-

rem 16.1, we have the same for A0(Kϕ ). We will recall the construction below, but

before that, we give some results obtained for f ∈ A(Kϕ )∗∗.

First of all, it is clear that cϕ (f + c) = cϕ (f) + c for any real c and ϕf = ϕf +c if

ϕf is defined. We may therefore suppose that f ∈ A0(Kϕ )∗∗.

Lemma 16.2 Let f ∈ A(Kϕ )∗∗ be such that ϕf exists. Then for all ω ∈ Sϕ ,

S(ω, ϕ) + f(ω) ≥ S(ω, ϕf ) + cϕ (f).

Equality is attained on the face in Sϕ , generated by ϕf .

Proof The statement is proved using the identity (16.1), the same way as Lemmas

12.1 and 12.2 in (Ohya and Petz 1993).

The previous lemma has several consequences. For example, it follows that

cϕ (f) ≤ −S(ϕ,ϕf ) ≤ 0 if f ∈ A0(Kϕ )∗∗. Further, S(ω, ϕf ) is bounded on Kϕ ,

so that Kϕ ⊆ Kϕf ,C for some C > 0. It also follows that Sϕ ⊆ Sϕf . In particular,

S(ϕ,ϕf ) < ∞ and since also S(ϕf , ϕ) < ∞, the states ϕ and ϕf have the same

support.

Lemma 16.3 Let ψ = ϕf for some f ∈ A(Kϕ )∗∗. Then we have the continuous

embeddings A(Kψ ) ⊑ A(Kϕ ) and A(Kψ )∗∗ ⊑ A(Kϕ )∗∗.

Proof Follows from Kϕ ⊆ Kψ ,C and Lemma 16.1.
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We will now consider the set of all states ϕf , with some f ∈ A(Kϕ )∗∗. Let ψ be

a normal state, such that ϕ ∈ Sψ . We denote

fψ (ω) := S(ω, ψ) − S(ω, ϕ) − S(ϕ,ψ).

By identity (16.1), fψ is an affine functional Kϕ → R ∪ {∞}, such that fψ (ϕ) = 0.

Theorem 16.2 Let ψ be a normal state. Then ψ = ϕf for some f ∈ A(Kϕ )∗∗ if

and only if ψ ∈ Sϕ and Kϕ ⊆ Kψ ,C for some C > 0.

Proof It is clear that ψ ∈ Sϕ if ψ = ϕf and we have seen that also Kϕ ⊆ Kψ ,C .

Conversely, if Kϕ ⊆ Kψ ,C , then fψ ∈ A0(Kϕ )∗∗ and

fψ (ω) + S(ω, ϕ) = S(ω, ψ) − S(ϕ,ψ) ≥ −S(ϕ,ψ)

for all ω ∈ Sϕ . Since equality is attained for ω = ψ, ψ = ϕfψ .

Note also that, by the above proof, cϕ (fψ ) = −S(ϕ,ψ).

16.4.1 The subdifferential

Let ψ ∈ Sϕ . The subdifferential at ψ is the set of elements f ∈ A0(Kϕ )∗∗, such

that ψ = ϕf . Let us denote the subdifferential by ∂ϕ (ψ). By Theorem 16.2, the

subdifferential at ψ is non-empty if and only if Kϕ ⊆ Kψ ,C .

Lemma 16.4 If ∂ϕ (ψ) �= ∅, then it is a closed convex subset in A0(Kϕ )∗∗. More-

over, cϕ is affine over ∂ϕ (ψ).

Proof Let f, g ∈ ∂ϕ (ψ) and let gλ = λg + (1 − λ)f , λ ∈ (0, 1). Then

gλ (ψ) + S(ψ,ϕ) = λcϕ (g) + (1 − λ)cϕ (f).

Since cϕ is concave, this implies that ψ = ϕgλ and that cϕ (gλ ) = λcϕ (g) + (1 −

λ)cϕ (f). Moreover, we can write

∂ϕ (ψ) = {g ∈ A(Kϕ )∗∗, cϕ (g) − g(ψ) ≥ S(ψ,ϕ)}

and this set is closed, since cϕ is upper semicontinuous.

Lemma 16.5 Let ψ ∈ Sϕ , ∂ϕ (ψ) �= ∅ and let g ∈ A0(Kϕ )∗∗. Then g ∈ ∂ϕ (ψ) if

and only if there is some k ∈ R, such that

g(ω)− fψ (ω) ≥ k, ω ∈ Sϕ and g(ψ) − f(ψ) = k. (16.3)

In this case, k = cϕ (g) − cϕ (fψ ) ≤ 0.

Proof If g ∈ ∂ϕ (ψ), then (16.3) follows from Lemma 16.2 and k ≤ 0 is obtained by

putting ω = ϕ. Conversely, suppose that (16.3) is true, then we have for ω ∈ Sϕ

g(ω) + S(ω, ϕ) = g(ω)− fψ (ω) + fψ (ω) + S(ω, ϕ) ≥ k + cϕ (fψ )
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and g(ψ) + S(ψ, ω) = k + cϕ (fψ ), this implies that ψ = ϕg and cϕ (g) = k + cϕ (fψ ).

16.4.2 The chain rule

Let Cϕ := {ψ ∈ Sϕ , Kϕ ⊆ Kψ ,C , Kψ ⊆ Kϕ,A for some A,C > 0}.

Theorem 16.3 Let ψ ∈ Cϕ . Then

(i) Sϕ = Sψ ,

(ii) A(Kϕ ) = A(Kψ ), A(Kϕ )∗∗ = A(Kψ )∗∗, with equivalent norms,

(iii) ϕ ∈ Cψ .

Proof Let ψ ∈ Cϕ . By Theorem 16.2, ψ = ϕf , f ∈ A(Kϕ )∗∗ and also ϕ = ψg for

some g ∈ A(Kψ )∗∗. Now we have (i) by Lemma 16.2 and (ii) by Lemma 16.3, (iii)

is obvious.

We also have the following chain rule.

Theorem 16.4 Let ψ ∈ Cϕ and let g ∈ A(Kϕ )∗∗ be such that ψg exists. Then

cψ (g) = cϕ (g + f)− cϕ (f), ψg = ϕf +g (16.4)

holds for f = fψ .

Proof Suppose that ψg exists, then

g(ω) + fψ (ω) + S(ω, ϕ) = g(ω) + S(ω, ψ) + cϕ (fψ ) ≥ cψ (g) + cϕ (fψ )

for all ω ∈ Sϕ = Sψ and equality is attained at ω = ψg . This implies cψ (g) =

cϕ (g + f) − cϕ (f) and ψg = ϕf +g .

16.5 The manifold structure

Let F be the set of faithful normal states on M. Let ϕ ∈ F . In this section we show

that we can use the map f �→ ϕf to define the manifold structure on F . So far, it

is not clear if this map is well-defined or one-to-one on A0(Kϕ )∗∗. The situation is

better if we restrict to A0(Kϕ ), as Theorem 16.5 shows.

Theorem 16.5 Let f ∈ A(Kϕ ). Then

(i) ϕf exists and ϕf ∈ Cϕ .

(ii) If g ∈ A(Kϕ ) is such that ϕg = ϕf , then f − g = ϕ(f − g).

(iii) In Lemma 16.2, equality is attained for all ω ∈ Sϕ , in particular,

f − f(ϕ) = fϕf .

(iv) The chain rule (16.4) holds for all f, g ∈ A(Kϕ ).
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Proof We may suppose that f ∈ A0(Kϕ ). By the results in (Jenčová 2006) and

Theorem 16.1, if f ∈ A0(Kϕ ) = Bϕ,0 , then ψ = ϕf exists, f − f(ψ) ∈ A0(Kψ ) =

Bψ ,0 and ϕ = ψ−f . By Theorem 16.2, ψ ∈ Cϕ and (i) is proved. (ii),(iii) and (iv)

were proved in (Jenčová 2006).

Proposition 16.1 is not needed in our construction. It shows that each ψ ∈ Cϕ is

faithful on A(Kϕ ).

Proposition 16.1 Let ψ ∈ Cϕ and let g ∈ A(Kϕ ) be positive. Then g(ψ) = 0

implies g = 0.

Proof Let g be a positive element in A(Kϕ ) = A(Kψ ), with g(ψ) = 0, then by

Lemma 16.5, fψ + g ∈ ∂ϕ (ψ). Since ψg exists, we have by the chain rule that

ψg = ϕfψ +g = ψ. Since g ∈ A0(Kψ ), g = 0.

Let us recall that a Cp -atlas on a set X is a family of pairs {(Ui , ei)}, such that

(i) Ui ⊂ X for all i and ∪Ui = X;

(ii) for all i, ei is a bijection of Ui onto an open subset ei(Ui) in some Banach

space Bi , and for all i, j, ei(Ui ∩ Uj ) is open in Bi ;

(iii) the map eje
−1
i : ei(Ui ∩ Uj ) → ej (Ui ∩ Uj ) is a Cp -isomorphism for all i, j.

Let now X = F . For ϕ ∈ F , let Vϕ be the open unit ball in A0(Kϕ ) and let

sϕ : Vϕ → F be the map f �→ ϕf . By Theorem 16.5, sϕ is a bijection onto the set

Uϕ := sϕ (Vϕ ). Let eϕ be the map Uϕ ∋ ψ �→ fψ ∈ Vϕ . Then we have

Theorem 16.6 (Jenčová 2006) {(Uϕ , eϕ ), ϕ ∈ F} is a C∞-atlas on F .

In the commutative case, the space corresponding to A(Kϕ ) is not the exponen-

tial Orlicz space LΦ , but the subspace MΦ , see Remark 16.1. The corresponding

commutative information manifold structure was considered in (Grasselli 2009). It

follows from the theory of Orlicz spaces that (under some reasonable conditions on

the base measure µ)

MΦ(µ)∗ = LΦ∗(µ), LΦ∗(µ)∗ = LΦ(µ).

By comparing A(Kϕ ) with these results, it seems that the quantum exponential

Orlicz space should be the second dual A(Kϕ )∗∗, rather than A(Kϕ ).

To get the counterpart of the Pistone and Sempi manifold, we would need to

extend the map sϕ to the unit ball V ∗∗
ϕ in A0(Kϕ )∗∗ and show that it is one-to-one.

At present, it is not clear how to prove this. At least, we can prove that cϕ is finite

on V ∗∗
ϕ .

Lemma 16.6 Let f ∈ A0(Kϕ )∗∗, ‖f‖ ≤ 1. Then 0 ≥ cϕ (f) ≥ −1 and the infimum

can be taken over Kϕ .

Proof Let ω ∈ Sϕ be such that S(ω, ϕ) > 1. Since the function t �→ S(ωt , ϕ)

is convex and lower semicontinuous in (0, 1), it is continuous and there is some
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t ∈ (0, 1) such that S(ωt , ϕ) = 1, recall that ωt = tω +(1− t)ϕ. By strict convexity,

it follows that 1 = S(ωt , ϕ) < tS(ω, ϕ) and S(ω, ϕ) > 1/t. On the other hand,

ωt ∈ Kϕ and therefore −1 ≤ f(ωt) = tf(ω). It follows that

f(ω) + S(ω, ϕ) > −1/t + 1/t = 0 = f(ϕ) + S(ϕ,ϕ) ≥ cϕ (f).

From this, cϕ (f) = infω∈Kϕ
f(ω) + S(ω, ϕ) ≥ −1.

16.6 Channels and sufficiency

Let N be another von Neumann algebra. A channel from N to M is a completely

positive, unital map α : N → M. We will also require that a channel is normal,

then its dual α∗ : ϕ �→ ϕ ◦ α maps normal states on M to normal states on N .

An important property of such channels is that the relative entropy is monotone

under these maps:

S(ω ◦ α,ϕ ◦ α) ≤ S(ω, ϕ), ω, ϕ ∈ S∗.

This implies that α∗ defines a continuous affine map Kϕ → Kϕ◦α . If f0 ∈

A(Kϕ◦α )∗∗, then composition with α∗ defines a bounded affine functional over Kϕ ,

which we denote by α(f0). Then α(f0) is continuous if f0 ∈ A(Kϕ◦α ) and

‖α(f0)‖ = sup
ω∈Kϕ

|f0(ω ◦ α)| ≤ sup
ω0 ∈Kϕ ◦α

|f0(ω0)| = ‖f0‖

so that α is a contraction A(Kϕ◦α )∗∗ → A(Kϕ )∗∗ and A(Kϕ◦α ) → A(Kϕ ).

Lemma 16.7 Let α : N → M be a channel and let g0 ∈ A(Kϕ◦α )∗∗. Then

cϕ◦α (g0) ≤ cϕ (α(g0)).

Proof We compute

cϕ (α(g0)) = inf
ω∈Sϕ

g0(ω ◦α) + S(ω, ϕ) ≥ inf
ω∈Sϕ

g0(ω ◦α) + S(ω ◦α,ϕ ◦α) ≥ cϕ◦α (g0).

Let S be a set of states in S∗(M). We say that the channel α : N → M is

sufficient for S if there is a channel β : M → N , such that

ω ◦ α ◦ β = ω, ω ∈ S.

This definition of sufficient channels was introduced in (Petz 1986), see also (Jenčová

and Petz 2006a), and several characterisations of sufficiency were given. Here we

are interested in the following two characterisations. For simplicity, we will assume

that the states, as well as the channel, are faithful.

Theorem 16.7 (Petz 1986) Let ψ ∈ Sϕ . The channel α is sufficient for the pair

{ψ,ϕ} if and only if S(ψ,ϕ) = S(ψ ◦ α,ϕ ◦ α).
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Theorem 16.8 (Jenčová and Petz 2006b) Let ψ = ϕf for some f ∈ Ms . Then α is

sufficient for {ψ,ϕ} if and only if there is some g0 ∈ Ns , such that ψ ◦α = (ϕ◦α)g0

and f = α(g0).

In this section we show how Theorem 16.8 can be extended to pairs {ψ,ϕ} such

that ∂ϕ (ψ) �= ∅.

So let ψ = ϕf for some f ∈ A(Kϕ )∗∗ and suppose that α : N → M is a sufficient

channel for the set {ψ,ϕ}. Let us denote ϕ0 := ϕ ◦ α, ψ0 := ψ ◦ α. Let β : M → N

be the channel such that ϕ0 ◦ β = ϕ, ψ0 ◦ β = ψ. We will show that ψ0 = ϕ
β (fψ )
0 .

To see this, note that for ω0 ∈ Sϕ0
,

β(fψ )(ω0) = fψ (ω0 ◦ β) = S(ω0 ◦ β, ψ) − S(ω0 ◦ β, ϕ) − S(ψ,ϕ).

Then

β(fψ )(ω0) + S(ω0 , ϕ0)

= S(ω0 ◦ β, ψ) + S(ω0 , ϕ0) − S(ω0 ◦ β, ϕ0 ◦ β) − S(ψ,ϕ) ≥ −S(ψ,ϕ) = cϕ (fψ )

by positivity and monotonicity of the relative entropy, and

β(fψ )(ψ0) + S(ψ0 , ϕ0) = −S(ψ,ϕ)

so that cϕ0
(β(fψ )) = cϕ (fψ ) and ψ0 = ϕ

β (fψ )
0 .

On the other hand, this implies by Theorem 16.2 that fψ0
∈ A(Kϕ0

)∗∗ and we

obtain in the same way that ψ = ϕα(fψ 0
) and cϕ (α(fψ0

)) = cϕ0
(fψ0

).

Theorem 16.9 Let ψ be such that ∂ϕ (ψ) �= ∅ and let α : N → M be a channel.

Let ϕ0 = ϕ ◦ α, ψ0 = ψ ◦ α The following are equivalent

(i) α is sufficient for the pair {ϕ,ψ},

(ii) fψ0
∈ A(Kϕ0

)∗∗ and ψ = ϕα(fψ 0
),

(iii) cϕ0
(fψ0

) = cϕ (fψ ).

Proof The implication (i) → (ii) was already proved above. Suppose (ii) holds, then

cϕ (α(fψ0
)) = α(fψ0

)(ψ) + S(ψ,ϕ) =

= −S(ψ0 , ϕ0)− S(ϕ0 , ψ0) + S(ψ,ϕ).

By putting ω = ϕ in Lemma 16.2, we obtain cϕ (α(fψ0
)) ≤ −S(ϕ,ψ). Then

0 ≤ S(ψ,ϕ) − S(ψ0 , ϕ0) ≤ S(ϕ0 , ψ0)− S(ϕ,ψ) ≤ 0.

It follows that cϕ (fψ ) = −S(ϕ,ψ) = −S(ϕ0 , ψ0) = cϕ0
(fψ0

), hence (iii) holds. The

implication (iii) → (i) follows from Theorem 16.7.

In particular, if ψ = ϕf for f ∈ A(Kϕ ), the above theorem can be formulated as

follows.

Theorem 16.10 Let ψ = ϕf , f ∈ A(Kϕ ) and α : N → M be a channel. Then α is

sufficient for {ψ,ϕ} if and only if there is some g0 ∈ A(Kϕ0
), such that ψ0 = ϕg0

0

and f = α(g0).
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Proof The statement follows from Theorem 16.9 and the fact that if ψ = ϕf for

f ∈ A0(Kϕ ), then we must have f = fψ , by Theorem 16.5.
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