Non-classical features in general probabilistic theories

Anna Jenčová
Mathematical Institute, Slovak Academy of Sciences
Bratislava, Slovakia

jencova@mat.savba.sk

In a class of general probabilistic theories (GPT), we characterize incompatibility of measurements, steering and Bell nonlocality as particular forms of entanglement. See [4] for details.

1. GPT: Basic definitions and assumptions

The basic ingredients in a GPT are states (preparations) and effects (yes/no experiments), assigning probabilities to each state [2]. We generally assume

- convexity:

- a state space is a (compact) convex subset K of a finite dimensional vector space
- effects: affine maps $K \rightarrow[0,1]$
- channels (devices): affine maps $K \rightarrow K^{\prime}$

- local tomography:

- composite systems have tensor product structure: the compositie state space $K_{1} \widetilde{\otimes} K_{2}$ satisfies

$$
K_{1} \otimes K_{2} \subseteq K_{1} \widetilde{\otimes} K_{2} \subseteq K_{1} \widehat{\otimes} K_{2}
$$

- $K_{1} \otimes K_{2}$ is the set of separable states
- $K_{1} \widehat{\otimes} K_{2}$ is the maximal tensor product
- entangled states are elements of $K_{1} \widetilde{\otimes} K_{2} \backslash K_{1} \otimes K_{2}$

Some notation:

- $E(K)=$ the set of effects
- $A(K)=$ all affine maps $K \rightarrow \mathbb{R}$
- $A(K)^{+}=$the convex cone of positive maps in $A(K)$
- $V(K):=\cup_{\lambda>0} \lambda K \simeq$ positive functionals on $A(K)$

2. Examples

2.1 Classical state space

An n-dimensional simplex Δ_{n}. If K is a state space, a channel $f: K \rightarrow \Delta_{n}$ represents a measurement with values in $\left\{\omega_{0}, \omega_{1}, \ldots, \omega_{n}\right\}$:

$$
f(x)=\sum_{i} f_{i}(x) \delta_{i}, \quad f_{i} \in E(K)
$$

mapping $x \in K$ to outcome probabilities $f_{0}(x), \ldots, f_{n}(x)$.

2.2 Quantum state space

The set

$$
\mathfrak{S}(\mathcal{H}):=\left\{\rho \in B(\mathcal{H})^{+}, \operatorname{Tr} \rho=1\right\}
$$

of density operators on a Hilbert space, $\operatorname{dim}(\mathcal{H})<\infty$.

2.3 Semiclassical state space

A product of simplices

$$
\mathrm{S}=\mathrm{S}_{l_{1}, \ldots, l_{k}}:=\Delta_{l_{1}-1} \times \cdots \times \Delta_{l_{k}-1} .
$$

This state space will be useful below. Elements of S can be interpreted as conditional probabilities.

$$
\begin{aligned}
& \text { Observation: Each projection } \mathrm{m}^{i}: \mathrm{S} \rightarrow \Delta_{l_{i}-1} \text { is a mea- } \\
& \text { surement. The corresponding effects } \mathrm{m}_{j}^{i} \text { generate ex- } \\
& \text { treme the rays of } A(\mathrm{~S})^{+} \text {. }
\end{aligned}
$$

Figure 1: $\mathrm{S}_{2,2}$

Figure 2: $\mathrm{S}_{3,2}$

$A\left(\mathrm{~S}_{2,2}\right)^{+}$

a base of $A\left(\mathrm{~S}_{3,2}\right)^{+}$

Figure 3: $\mathrm{S}_{2,2,2}$

a base of $A\left(\mathrm{~S}_{2,2,2}\right)^{+}$

3. Incompatible measurements

Let $\mathcal{F}=\left\{f^{1}, \ldots, f^{k}\right\}$ be a collection of measurements $f^{i}: K \rightarrow \Delta_{l_{i-1}}$. We say that \mathcal{F} is compatible if all f^{i} are marginals of a single joint measurement $g: K \rightarrow \Delta_{\Pi_{i} l_{i}-1}$:

Observation: \mathcal{F} defines a channel
 $$
\mathcal{F}=f^{1} \times \cdots \times f^{k}: K \rightarrow \mathrm{~S}_{l_{1}, \ldots, l_{k}} .
$$

Theorem

\mathcal{F} is compatible if and only if it is entanglement breaking:

3.1 Incompatibility witnesses

Let $x_{i} \in K$ be a basis of $A(K)^{*}, e_{i} \in A(K)$ a dual basis. For any linear map $\Phi: A(K)^{*} \rightarrow A(K)^{*}$, put

$$
\operatorname{Tr}(\Phi)=\sum\left\langle e_{i}, \Phi\left(x_{i}\right)\right\rangle .
$$

Theorem

\mathcal{F} is incompatible if and only if there is an incompatibility witness: an affine map $W: \mathrm{S} \rightarrow V(K)$ such that

$$
\operatorname{Tr}(W \circ \mathcal{F})<0
$$

Example 1. Let $\mathcal{F}=\left\{f^{1}, f^{2}\right\}$. A witness W maps $\mathrm{S}_{2,2}$ onto a parallelogram with vertices $\phi_{i, j}=W\left(\mathbf{s}_{i, j}\right) \in V(K)$ and
$\operatorname{Tr}(W \circ \mathcal{F})=\left\langle 1_{K}, \phi_{2,2}\right\rangle+\left\langle f_{1}^{1}, \phi_{1,2}-\phi_{2,2}\right\rangle+\left\langle f_{1}^{2}, \phi_{2,1}-\phi_{2,2}\right\rangle$.

W is a witness iff
$\left\|\phi_{1,2}-\phi_{2,2}\right\|_{K}+\left\|\phi_{2,1}-\phi_{2,2}\right\|_{K}>\left\langle 1_{K}, \phi\right\rangle$,
$\|\cdot\|_{K}$ is the base norm.

3.2 Incompatibility degree

We can use witnesses to quantify incompatibility

$$
I D_{\mathcal{C}}(\mathcal{F}):=\max _{W \in \mathcal{C}}-\operatorname{Tr}(W \circ \mathcal{F})
$$

Putting

$$
\mathcal{C}=\left\{W, \operatorname{Tr}\left(W \circ \mathcal{T}_{p, q}\right)=1\right\},
$$

where $\mathcal{T}_{p, q}: K \ni x \mapsto(p, q) \in \mathrm{S}_{2,2}$, we obtain known incompatibility degrees [3]. Note that $I D_{p, q}(\mathcal{F}) \leq 1 / k$.
Theorem (maximal incompatibility)
Let \mathcal{F} be a pair of two-outcome measurements. Then the incompatibility degree $I D_{p, q}(\mathcal{F})=1 / 2$ if and only if \mathcal{F} is a retraction.

4. Steering in GPT

Similarly to quantum steering [6], we have the following scenario: A and B share an unknown state $y_{A B} \in K_{A} \widetilde{\otimes} K_{B} . A$ applies measurements from the collection \mathcal{F}, B knows the post-measurement states

$$
y_{j \mid i}=\left(f_{j}^{i} \otimes i d\right)\left(y_{A B}\right),
$$

but not \mathcal{F}. The conditional states form an assemblage:

$$
\left\{y_{j \mid i} \in K_{B}, \sum_{i} y_{j \mid i}=y_{B}, \forall i\right\}
$$

We say that an assemblage certifies steering if it does not admit a local hidden state model

$$
y_{j \mid i}=\sum_{\lambda} p(\lambda) p(j \mid i, \lambda) x_{\lambda}, \quad x_{\lambda} \in K_{B}
$$

Observation: All assemblages can be identified with elements of $\mathrm{S} \widehat{\otimes} K_{B}$. The assemblage $\left\{y_{j \mid i}\right\}$ is obtained as

$(\mathcal{F} \otimes i d)\left(y_{A B}\right)$.

Theorem

An assemblage $(\mathcal{F} \otimes i d)\left(y_{A B}\right)$ certifies steering iff it is entangled.

4.1 Steering witnesses

Any $y_{A B}$ defines an affine map $T_{y}: A\left(K_{B}\right)^{+} \rightarrow V\left(K_{A}\right)$.
Theorem
The assemblage $(\mathcal{F} \otimes i d)\left(y_{A B}\right)$ certifies steering iff there is a steering witness $W_{\text {steer }}: \mathrm{S} \rightarrow A\left(K_{B}\right)^{+}$, such that
$\operatorname{Tr}\left(W_{\text {steer }} \circ \mathcal{F} \circ T_{y}\right)=\operatorname{Tr}\left(T_{y} \circ W_{\text {steer }} \circ \mathcal{F}\right)<0$.
Note that $T_{y} \circ W_{\text {steer }}$ must be an incompatibility witness.

5. Bell nonlocality

This time, both parties apply measurements from collections \mathcal{F}_{A} and \mathcal{F}_{B} to their respective systems and report the results. The state $y_{A B}$ is Bell nonlocal if the obtained con ditional probabilities cannot be explained by a local hidden variable model

$$
p\left(a, b \mid i_{A}, i_{B}\right)=\sum_{\lambda} p(\lambda) p\left(a \mid i_{A}, \lambda\right) p\left(b \mid i_{B}, \lambda\right) .
$$

Observation: This is a particular case of steering: put $y_{A B}^{\prime}:=\left(i d \otimes \mathcal{F}_{B}\right)\left(y_{A B}\right) \in K_{A} \widehat{\otimes} S_{B}$, then $\left(\mathcal{F}_{A} \otimes i d\right)\left(y_{A B}^{\prime}\right)=$ $\left(\mathcal{F}_{A} \otimes \mathcal{F}_{B}\right)(y) \in \mathrm{S}_{A} \widehat{\otimes} \mathrm{~S}_{B}$ and $y_{A B}$ is Bell nonlocal iff $\left(\mathcal{F}_{A} \otimes \mathcal{F}_{B}\right)(y) \notin \mathrm{S}_{A} \otimes \mathrm{~S}_{B}$.

5.1 Bell witnesses and Bell's inequalities

A Bell witness is a steering witness in this special case $W_{\text {Bell }}: \mathrm{S}_{A} \rightarrow A\left(\mathrm{~S}_{B}\right)^{+}$. Bell's inequalities have the form
$\operatorname{Tr}\left(T_{y^{\prime}} \circ W_{\text {Bell }} \circ \mathcal{F}_{A}\right)=\operatorname{Tr}\left(T_{y} \circ \mathcal{F}_{B}^{*} \circ W_{\text {Bell }} \circ \mathcal{F}_{A}\right) \geq 0$
Note that $W=T_{y} \circ \mathcal{F}_{B}^{*} \circ W_{\text {Bell }}$ must be an incompatibility witness for violation of this inequality.
Example 2. For $\mathrm{CHSH}, W_{\text {Bell }}$ is an affine isomorphism $V\left(\mathrm{~S}_{2,2}\right) \rightarrow A\left(\mathrm{~S}_{2,2}\right)^{+}$. Therefore, CHSH vioaltion is equivalent to incompatibility if also $V\left(K_{A}\right) \simeq A\left(K_{B}\right)^{+}$(cf. [7, 1]).
In general, $V\left(\mathrm{~S}_{A}\right) \not \not 千 A\left(\mathrm{~S}_{B}\right)^{+}$, (see Fig. 2 and 3). This might explain the fact that some incompatibility cannot be detected by violation of Bell's inequalities, [5].

References

[1] P. Busch, N. Stevens. Phys. Rev. A, 86:022123, 2014
[2] G. Chiribella, G. M. D’Ariano, P. Perinotti, Phys. Rev. A, 81:062348, 2010
[3] T. Heinosaari, T. Miyadera, and M. Ziman. J. Phys. A: Math. Theor., 49:123001, 2016
[4] A. Jenčová. arXiv:1705.08008, 2017.
[5] M. T. Quintino, T. Vértesi, N. Brunner. Phys. Rev. Lett. 113:160402, 2014.
[6] H. M. Wiseman, S. J. Jones, A. C. Doherty. Phys. Rev. Lett., 98:140402, 2007.
[7] M. M. Wolf, D. Perez-Garcia, C. Fernandez Phys. Rev. Lett., 103:230402, 2009.

