

Non-classical features in general probabilistic theories

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences Bratislava, Slovakia

jencova@mat.savba.sk

In a class of general probabilistic theories (GPT), we characterize incompatibility of measurements, steering and Bell nonlocality as particular forms of entanglement. See [4] for details.

1. GPT: Basic definitions and assumptions

The basic ingredients in a GPT are states (preparations) and effects (yes/no experiments), assigning probabilities to each state [2]. We generally assume

• convexity:

- a state space is a (compact) convex subset K of a finite dimensional vector space
- effects: affine maps $K \rightarrow [0, 1]$
- -channels (devices): affine maps $K \to K'$

• local tomography:

- composite systems have tensor product structure: the compositie state space $K_1 \widetilde{\otimes} K_2$ satisfies

$$K_1 \otimes K_2 \subseteq K_1 \widetilde{\otimes} K_2 \subseteq K_1 \widehat{\otimes} K_2$$
,

- $-K_1 \otimes K_2$ is the set of **separable states**
- $-K_1\widehat{\otimes}K_2$ is the maximal tensor product
- **entangled states** are elements of $K_1 \widetilde{\otimes} K_2 \setminus K_1 \otimes K_2$

Some notation:

- \bullet E(K) = the set of effects
- \bullet A(K) =all affine maps $K \to \mathbb{R}$
- $A(K)^+$ = the convex cone of positive maps in A(K)
- $V(K) := \bigcup_{\lambda > 0} \lambda K \simeq$ positive functionals on A(K)

2. Examples

2.1 Classical state space

An n-dimensional simplex Δ_n . If K is a state space, a channel $f: K \to \Delta_n$ represents a **measurement** with values in $\{\omega_0,\omega_1,\ldots,\omega_n\}$:

$$f(x) = \sum_{i} f_i(x)\delta_i, \qquad f_i \in E(K)$$

mapping $x \in K$ to outcome probabilities $f_0(x), \ldots, f_n(x)$.

2.2 Quantum state space

The set

$$\mathfrak{S}(\mathcal{H}) := \{ \rho \in B(\mathcal{H})^+, \operatorname{Tr} \rho = 1 \}$$

of density operators on a Hilbert space, $\dim(\mathcal{H}) < \infty$.

2.3 Semiclassical state space

A product of simplices

$$S = S_{l_1,...,l_k} := \Delta_{l_1-1} \times \cdots \times \Delta_{l_k-1}.$$

This state space will be useful below. Elements of S can be interpreted as conditional probabilities.

Observation: Each projection $m^i : S \rightarrow \Delta_{l_i-1}$ is a measurement. The corresponding effects m_i^i generate extreme the rays of $A(S)^+$.

Figure 1: $S_{2,2}$ $A(S_{2,2})^+$

Figure 2: $S_{3,2}$ a base of $A(S_{3,2})^+$

a base of $A(S_{2,2,2})^+$

3. Incompatible measurements

Let $\mathcal{F} = \{f^1, \dots, f^k\}$ be a collection of measurements $f^i: K \to \Delta_{l_i-1}$. We say that \mathcal{F} is **compatible** if all f^i are marginals of a single **joint measurement** $g: K \to \Delta_{\prod_i l_i - 1}$:

$$f_j^i = \sum_{n_1, \dots, n_{i-1}, n_{i+1}, \dots, k} g_{n_1, \dots, n_{i-1}, j, n_{i+1}, \dots, n_k}.$$

Observation: \mathcal{F} defines a channel

$$\mathcal{F} = f^1 \times \cdots \times f^k : K \to \mathsf{S}_{l_1, \dots, l_k}.$$

Theorem

 \mathcal{F} is compatible if and only if it is entanglement breaking:

3.1 Incompatibility witnesses

Let $x_i \in K$ be a basis of $A(K)^*$, $e_i \in A(K)$ a dual basis. For any linear map $\Phi: A(K)^* \to A(K)^*$, put

$$\operatorname{Tr}(\Phi) = \sum_{i} \langle e_i, \Phi(x_i) \rangle.$$

Theorem

 \mathcal{F} is incompatible if and only if there is an **incompatibil**ity witness: an affine map $W: S \rightarrow V(K)$ such that

$$\operatorname{Tr}(W \circ \mathcal{F}) < 0.$$

Example 1. Let $\mathcal{F} = \{f^1, f^2\}$. A witness W maps $S_{2,2}$ onto a parallelogram with vertices $\phi_{i,j} = W(s_{i,j}) \in V(K)$ and

$$\operatorname{Tr}(W \circ \mathcal{F}) = \langle 1_K, \phi_{2,2} \rangle + \langle f_1^1, \phi_{1,2} - \phi_{2,2} \rangle + \langle f_1^2, \phi_{2,1} - \phi_{2,2} \rangle.$$

W is a witness iff

$$\|\phi_{1,2} - \phi_{2,2}\|_{K} + \|\phi_{2,1} - \phi_{2,2}\|_{K} > \langle 1_{K}, \phi \rangle,$$

 $\|\cdot\|_K$ is the base norm.

3.2 Incompatibility degree

We can use witnesses to quantify incompatibility:

$$ID_{\mathcal{C}}(\mathcal{F}) := \max_{W \in \mathcal{C}} -\text{Tr}(W \circ \mathcal{F}),$$

Putting

$$\mathcal{C} = \{ W, \operatorname{Tr} (W \circ \mathcal{T}_{p,q}) = 1 \},$$

where $\mathcal{T}_{p,q}: K \ni x \mapsto (p,q) \in S_{2,2}$, we obtain known incompatibility degrees [3]. Note that $ID_{p,q}(\mathcal{F}) \leq 1/k$.

Theorem (maximal incompatibility)

Let \mathcal{F} be a pair of two-outcome measurements. Then the incompatibility degree $ID_{p,q}(\mathcal{F}) = 1/2$ if and only if \mathcal{F} is a retraction.

4. Steering in GPT

Similarly to quantum steering [6], we have the following scenario: A and B share an unknown state $y_{AB} \in K_A \widetilde{\otimes} K_B$. Aapplies measurements from the collection \mathcal{F} , B knows the post-measurement states

$$y_{j|i} = (f_j^i \otimes id)(y_{AB}),$$

but not \mathcal{F} . The conditional states form an **assemblage**:

$$\{y_{j|i} \in K_B, \sum_{i} y_{j|i} = y_B, \forall i\}$$

We say that an assemblage **certifies steering** if it does not admit a local hidden state model

$$y_{j|i} = \sum_{\lambda} p(\lambda)p(j|i,\lambda)x_{\lambda}, \qquad x_{\lambda} \in K_B$$

Observation: All assemblages can be identified with elements of $S \widehat{\otimes} K_B$. The assemblage $\{y_{i|i}\}$ is obtained as $(\mathcal{F} \otimes id)(y_{AB})$.

Theorem

An assemblage $(\mathcal{F} \otimes id)(y_{AB})$ certifies steering iff it is entangled.

4.1 Steering witnesses

Any y_{AB} defines an affine map $T_y: A(K_B)^+ \to V(K_A)$.

Theorem

The assemblage $(\mathcal{F} \otimes id)(y_{AB})$ certifies steering iff there is a steering witness $W_{steer}: S \to A(K_B)^+$, such that

$$\operatorname{Tr}(W_{steer} \circ \mathcal{F} \circ T_y) = \operatorname{Tr}(T_y \circ W_{steer} \circ \mathcal{F}) < 0.$$

Note that $T_y \circ W_{steer}$ must be an incompatibility witness.

5. Bell nonlocality

This time, both parties apply measurements from collections \mathcal{F}_A and \mathcal{F}_B to their respective systems and report the results. The state y_{AB} is **Bell nonlocal** if the obtained conditional probabilities cannot be explained by a local hidden variable model

$$p(a,b|i_A,i_B) = \sum_{\lambda} p(\lambda) p(a|i_A,\lambda) p(b|i_B,\lambda).$$

Observation: This is a particular case of steering: put $y'_{AB} := (id \otimes \mathcal{F}_B)(y_{AB}) \in K_A \widehat{\otimes} S_B$, then $(\mathcal{F}_A \otimes id)(y'_{AB}) = 0$ $(\mathcal{F}_A\otimes\mathcal{F}_B)(y)\in \mathsf{S}_A\widehat{\otimes}\mathsf{S}_B$ and y_{AB} is Bell nonlocal iff $(\mathcal{F}_A \otimes \mathcal{F}_B)(y) \notin S_A \otimes S_B$.

5.1 Bell witnesses and Bell's inequalities

A **Bell witness** is a steering witness in this special case: $W_{Bell}: S_A \to A(S_B)^+$. Bell's inequalities have the form

$$\operatorname{Tr}\left(T_{y'}\circ W_{Bell}\circ\mathcal{F}_{A}\right)=\operatorname{Tr}\left(T_{y}\circ\mathcal{F}_{B}^{*}\circ W_{Bell}\circ\mathcal{F}_{A}\right)\geq0$$

Note that $W = T_y \circ \mathcal{F}_B^* \circ W_{Bell}$ must be an incompatibility witness for violation of this inequality.

Example 2. For CHSH, W_{Bell} is an affine isomorphism $V(S_{2,2}) \rightarrow A(S_{2,2})^+$. Therefore, CHSH vioaltion is equivalent to incompatibility if also $V(K_A) \simeq A(K_B)^+$ (cf. [7, 1]).

In general, $V(S_A) \not\simeq A(S_B)^+$, (see Fig. 2 and 3). This might explain the fact that some incompatibility cannot be detected by violation of Bell's inequalities, [5].

References

[1] P. Busch, N. Stevens. *Phys. Rev. A*, 86:022123, 2014.

[2] G. Chiribella, G. M. D'Ariano, P. Perinotti, *Phys. Rev. A*, 81:062348, 2010

[3] T. Heinosaari, T. Miyadera, and M. Ziman. J. Phys. A: Math. Theor., 49:123001, 2016.

[4] A. Jenčová. arXiv:1705.08008, 2017.

[5] M. T. Quintino, T. Vértesi, N. Brunner. *Phys. Rev. Lett.*, 113:160402, 2014.

[6] H. M. Wiseman, S. J. Jones, A. C. Doherty. *Phys. Rev.* Lett., 98:140402, 2007.

[7] M. M. Wolf, D. Perez-Garcia, C. Fernandez *Phys. Rev.* Lett., 103:230402, 2009.