Quantum versions of the classical randomization criterion

Anna Jenčová
Mathematical Institute, Slovak Academy of Sciences

Oberwolfach, 2014

Classical statistical experiments and randomizations

- Statistical experiment:

$$
\mathcal{E}=\left(X,\left\{p_{1}, \ldots, p_{n}\right\}\right)
$$

probability distributions over a finite set X

- Randomization of \mathcal{E} : let $\mu: X \times Y \rightarrow[0,1]$ a Markov kernel,

$$
\mu(\mathcal{E}):=\left(Y,\left\{\mu\left(p_{1}\right), \ldots, \mu\left(p_{n}\right)\right\}\right)
$$

- Suppose $\mathcal{F}=\left(Y,\left\{q_{1}, \ldots, q_{n}\right\}\right)$, is it a randomization of \mathcal{E} ?
- How far is \mathcal{F} from a randomization of \mathcal{E} ?

$$
\delta(\mathcal{E}, \mathcal{F})=\inf _{\mu} \sup _{i}\left\|\mu\left(p_{i}\right)-q_{i}\right\|_{1}
$$

- Le Cam distance

$$
\Delta(\mathcal{E}, \mathcal{F})=\max \{\delta(\mathcal{E}, \mathcal{F}), \delta(\mathcal{F}, \mathcal{E})\}
$$

Statistical decision problems

Decision problem: (\mathcal{E}, D, w),

- \mathcal{E} is an experiment
- D is a finite set of decisions
- $w:\{1, \ldots, n\} \times D \rightarrow \mathbb{R}^{+}$loss function
- (D, w) - (classical) decision space

Decision rule: a Markov kernel $\mu: X \times D \rightarrow[0,1]$,
$\mu(x, d)$ - probability of choosing d if x was observed
Risk of μ at i :

$$
R_{\mathcal{E}}(i, w, \mu)=\sum_{x, d} p_{i}(x) \mu(x, d) w(i, d)
$$

Deficiency of experiments

Let $\mathcal{E}=\left(X,\left\{p_{1}, \ldots, p_{n}\right\}\right), \mathcal{F}=\left(Y,\left\{q_{1}, \ldots, q_{n}\right\}\right), \epsilon \geq 0$.
\mathcal{E} is ϵ-deficient w.r. to $\mathcal{F}, \mathcal{E} \succeq_{\epsilon} \mathcal{F}$, if:
for any (D, w) and any Markov kernel $\mu: Y \times D \rightarrow[0,1]$ there is a Markov kernel $\nu: X \times D \rightarrow[0,1]$ such that

$$
R_{\mathcal{E}}(i, w, \nu) \leq R_{\mathcal{F}}(i, w, \mu)+\epsilon \max _{d} w_{i, d}, \quad i=1, \ldots, n
$$

or, equivalently,

$$
\sum_{i} R_{\mathcal{E}}(i, w, \nu) \leq \sum_{i} R_{\mathcal{F}}(i, w, \mu)+\epsilon\|w\|,
$$

where $\|w\|=\sum_{i} \max _{d} w_{i, d}$.

The classical randomization criterion

Theorem (Blackwell, 1951)
$\mathcal{E} \succeq_{0} \mathcal{F}$ if and only if \mathcal{F} is a randomization of $\mathcal{E}(\delta(\mathcal{E}, \mathcal{F})=0)$.
Theorem (Törgersen 1970)
$\mathcal{E} \succeq_{\epsilon} \mathcal{F}$ if and only if $\delta(\mathcal{E}, \mathcal{F}) \leq 2 \epsilon$: there is a Markov kernel $\lambda: X \times Y \rightarrow[0,1]$, such that

$$
\left\|\lambda\left(p_{i}\right)-q_{i}\right\|_{1} \leq 2 \epsilon, \quad i=1, \ldots, n
$$

Quantum experiments and randomizations

Quantum statistical experiment

$$
\mathcal{E}=\left(H,\left\{\rho_{1}, \ldots, \rho_{n}\right\}\right),
$$

$\operatorname{dim}(H)<\infty, \rho_{i}$ are states (density matrices):

$$
\rho_{i} \in \mathfrak{S}(H)=\left\{\rho \in B(H)^{+}, \operatorname{Tr} \rho=1\right\}
$$

Randomization: $\alpha: \mathfrak{S}(H) \rightarrow \mathfrak{S}(K)$ affine map,

$$
\mathcal{E} \mapsto \alpha(\mathcal{E})=\left\{\alpha\left(\rho_{1}\right), \ldots, \alpha\left(\rho_{n}\right)\right\}
$$

- α extends to a positive trace preserving map $B(H) \rightarrow B(K)$.
- α is required to be completely positive:
$\alpha \otimes \operatorname{id}_{L}: B(H \otimes L) \rightarrow B(K \otimes L)-$ is positive for all $\operatorname{dim}(L)<\infty$

Quantum experiments and decision problems

Decision problem: (\mathcal{E}, D, w),

- $\mathcal{E}=\left(H,\left\{\rho_{1}, \ldots, \rho_{n}\right\}\right)$
- (D, w) a classical decision space

Decision rule is a measurement (POVM)

$$
\left\{M_{d}, d \in D\right\}, M_{d} \in B(H)^{+}, \sum_{d} M_{d}=I
$$

probability of choosing d at $i: \operatorname{Tr} M_{d} \rho_{i}$
Risk:

$$
R_{\mathcal{E}}(i, w, M)=\sum_{d} w_{i, d} \operatorname{Tr} M_{d} \rho_{i}
$$

Classical deficiency of quantum experiments

Let $\mathcal{E}=\left(H,\left\{\rho_{1}, \ldots, \rho_{n}\right\}\right), \mathcal{F}=\left(K,\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}\right), \epsilon \geq 0$.
\mathcal{E} is classically ϵ-deficient w.r. to $\mathcal{F}, \mathcal{E} \succeq_{\epsilon}^{c} \mathcal{F}$, if: for any (D, w) and any POVM $\left\{M_{d}, d \in D\right\} \subset B(K)^{+}$ there is a POVM $\left\{N_{d}, d \in D\right\} \subset B(H)^{+}$such that

$$
\sum_{\theta} R_{\mathcal{E}}(i, w, N) \leq \sum_{i} R_{\mathcal{F}}(i, w, M)+\epsilon\|w\|
$$

where $\|w\|=\sum_{i} \max _{d} w_{i, d}$.

Quantum randomization criterion

We may define

$$
\delta(\mathcal{E}, \mathcal{F})=\inf _{\alpha} \sup _{i}\left\|\alpha\left(\rho_{i}\right)-\sigma_{i}\right\|_{1}
$$

inf taken over all channels. It is easy to see that

$$
\delta(\mathcal{E}, \mathcal{F}) \leq 2 \epsilon \Longrightarrow \mathcal{E} \succeq_{\epsilon}^{c} \mathcal{F}
$$

The opposite is not true, even for positive α (Matsumoto)

Some special cases

The equivalence holds for

- abelian \mathcal{F} (all σ_{i} commute)
- pairs of qubit states: $\operatorname{dim}(H)=\operatorname{dim}(K)=2, n=2, \epsilon=0$ an equivalent condition is

$$
\left\|\rho_{1}-t \rho_{2}\right\|_{1} \geq\left\|\sigma_{1}-t \sigma_{2}\right\|_{1}, \quad t \geq 0
$$

not true for $\operatorname{dim}>2$ or $n>2$
(Alberti and Uhlmann, 1981)

Quantum Blackwell theorem

Theorem (Buscemi, 2012)
$\delta(\mathcal{E}, \mathcal{F})=0$ if and only if $\mathcal{E} \otimes \mathcal{E}_{0} \succeq_{0}^{c} \mathcal{F} \otimes \mathcal{E}_{0}$, where

$$
\mathcal{E} \otimes \mathcal{E}_{0}=\left(H \otimes K,\left\{\rho_{i} \otimes \tau_{j}, i=1, \ldots, n, j=1, \ldots, d_{K}^{2}\right\}\right)
$$

$\operatorname{span}\left(\left\{\tau_{j}, j=1, \ldots, d_{K}^{2}\right\}\right)=B(K)$.

Quantum decision spaces

Quantum decision space is a pair (D, W), where

- D is a Hilbert space, $\operatorname{dim}(D)<\infty$
- $W:\{1, \ldots, n\} \rightarrow B(D)^{+}$loss function
- (D, W) is classical if W has commutative range

Let $\mathcal{E}=\left(H,\left\{\rho_{i}, \ldots, \rho_{n}\right\}\right)$.
Quantum decision rule is a channel $\phi: B(H) \rightarrow B(D)$ Risk:

$$
R_{\mathcal{E}}(i, W, \phi)=\operatorname{Tr} W_{i} \phi\left(\rho_{i}\right)
$$

Quantum deficiency and randomization criterion

\mathcal{E} is quantum ϵ-deficient w.r. to $\mathcal{F}, \mathcal{E} \succeq_{\epsilon} \mathcal{F}$, if:
for every quantum (D, W) and any channel $\phi: B(K) \rightarrow B(D)$, there is a channel $\psi: B(H) \rightarrow B(D)$ such that

$$
\sum_{i} R_{\mathcal{E}}(i, W, \psi) \leq \sum_{i} R_{\mathcal{F}}(i, W, \phi)+\epsilon\|W\|,
$$

$$
\|W\|=\sum_{i}\left\|W_{i}\right\| .
$$

Theorem (Matsumoto 2010)
$\mathcal{E} \succeq_{\epsilon} \mathcal{F}$ if and only if

$$
\delta(\mathcal{E}, \mathcal{F})=\inf _{\alpha} \max _{i}\left\|\alpha\left(\rho_{i}\right)-\sigma_{i}\right\|_{1} \leq 2 \epsilon,
$$

Possible extensions

- positivity requirements for randomizations (positive, k-positive, entanglement-breaking,...)
- positivity requirements for decision rules
- decision problems for quantum operations: channels, combs, other protocols

Positive cones, bases and norms

- (\mathcal{V}, P) real finite dim. ordered vector space,
- $\left(\mathcal{V}^{*}, P^{*}\right)$ - dual space with dual cone

$$
P^{*}=\left\{p^{*} \in \mathcal{V}^{*},\left\langle p^{*}, p\right\rangle \geq 0, \forall p \in P\right\}
$$

- base of $P: S \subset P$ compact convex and such that for any $0 \neq p \in P, p=t b, t>0, p \in S$ uniquely
- all bases of P have the form

$$
S_{e}=\{p \in P,\langle e, p\rangle=1\}
$$

for some $e \in \operatorname{int}\left(P^{*}\right)$

Base norm and order unit norm

Let $S=S_{e}$ be a base of P

- base norm

$$
\|v\|_{S}=\inf \left\{\lambda+\mu, v=\lambda s_{1}-\mu s_{2}, \lambda, \mu \geq 0, s_{1}, s_{2} \in S\right\}
$$

- order unit norm

$$
\|f\|_{S}^{*}=\|f\|_{e}=\inf \left\{\lambda>0, \lambda e \pm f \in P^{*}\right\}
$$

Base sections and norms

- base section: $B=\mathcal{T} \cap S, S$ a base of $P, \mathcal{T} \subseteq \mathcal{V}$ a subspace, $\mathcal{T} \cap \operatorname{int}(P) \neq \emptyset$
- dual section: $\tilde{B}=\left\{\tilde{b} \in P^{*},\langle\tilde{b}, b\rangle=1, \forall b \in B\right\}$
- \tilde{B} is a base section in $P^{*}, \tilde{\tilde{B}}=B$

We define

$$
\mathcal{O}_{B}=\left\{p_{1}-p_{2}, p_{1}, p_{2} \in P, p_{1}+p_{2} \in B\right\}
$$

Theorem
\mathcal{O}_{B} is the unit ball of a norm $\|\cdot\|_{B}$ in \mathcal{V}. The dual norm is $\|\cdot\|_{\tilde{B}}$.

Properties

- If $B=S$ a base of P, then $\|\cdot\|_{B}$ is the base norm.
- If $B=\{b\}$, then $b \in \operatorname{int}(P)$ and $\|\cdot\|_{B}=\|\cdot\|_{b}$ is the order unit norm.
- In general,

$$
\|x\|_{B}=\inf _{b \in B \cap \operatorname{int}(P)}\|x\|_{b}=\sup _{B \subseteq S}\|x\|_{S}
$$

- If $x \in P,\|x\|_{B}=\sup _{\tilde{b} \in \tilde{B}}\langle\tilde{b}, x\rangle$

Discrimination of elements of base sections

- Suppose $b_{1}, b_{2} \in B$ are given and $b \in\left\{b_{1}, b_{2}\right\}$ with prior probabilities $\lambda, 1-\lambda$.
- test (measurement): $m: B \rightarrow[0,1]$ affine maps,

$$
m: b \mapsto \operatorname{Prob}\left\{b_{2} \text { is chosen }\right\}
$$

- given by $m \in P^{*}$, such that $\tilde{b}-m \in P^{*}$ for some $\tilde{b} \in \tilde{B}$ and

$$
m(b)=\langle m, b\rangle
$$

- Bayes error probability:

$$
E(m)=\lambda\left\langle m, b_{1}\right\rangle+(1-\lambda)\left\langle\tilde{b}-m, b_{2}\right\rangle
$$

- minimum Bayes error probability

$$
\min _{m} E(m)=\frac{1}{2}\left(1-\left\|\lambda b_{1}-(1-\lambda) b_{2}\right\|_{B}\right)
$$

Decision problems for elements of base sections

Let $\mathcal{E}=\left\{b_{1}, \ldots, b_{n}\right\} \subset B, \lambda_{1}, \ldots, \lambda_{n}$ prior probabilities

- (D, w) (classical) decision space
- decision function (measurement): affine map $m: B \rightarrow P(D)$

$$
m: b \mapsto\{\text { probabilities of choosing } d, d \in D\}
$$

- $m_{d} \in P^{*}, \sum_{d} m_{d} \in \tilde{B}$
- Bayes risk:

$$
E(m)=\sum_{i} \lambda_{i} \sum_{d} w_{i, d}\left\langle m_{d}, b_{i}\right\rangle
$$

- minimum Bayes risk

$$
\min _{m} E(m)=\|w\|-\max _{m}\left\langle m, \bar{b}_{w^{\prime}}\right\rangle=\|w\|-\left\|\bar{b}_{w^{\prime}}\right\|_{B_{D}}
$$

$$
\begin{aligned}
& B_{D}=\{(b, \ldots, b), b \in B\} \text { is a base section in } P^{|D|}, \\
& \bar{b}_{w^{\prime}} \in P^{|D|} .
\end{aligned}
$$

States

- $\mathcal{V}=B_{h}(H)=\left\{X=X^{*} \in B(H)\right\}=\mathcal{V}^{*},\langle X, Y\rangle=\operatorname{Tr} X Y$
- $P=B(H)^{+}=P^{*}$
- $B=\mathfrak{S}(H)=S_{l}$,
- $\|X\|_{B}=\|X\|_{1}=\operatorname{Tr}|X|$
- $\|X\|_{I}=\|X\|$
- $\|\cdot\|_{B_{D}}=\|\cdot\|^{\diamond}$

The space of linear maps

- $\mathcal{V}=\mathcal{L}(H, K)=\left\{\phi: B(H) \rightarrow B(K), \phi\left(A^{*}\right)=\phi(A)^{*}\right\}$
- Define $s: \mathcal{L}(H, H) \rightarrow \mathbb{R}$,

$$
s(\phi)=\sum_{i, j}\left\langle e_{i}, \phi\left(\left|e_{i}\right\rangle\left\langle e_{j}\right|\right) e_{j}\right\rangle, \quad \phi \in \mathcal{L}(H, H)
$$

- $\mathcal{V}^{*}=\mathcal{L}(K, H)$,

$$
\begin{gathered}
\langle\psi, \phi\rangle=s(\psi \circ \phi)=s(\phi \circ \psi), \quad \phi \in \mathcal{L}(H, K), \psi \in \mathcal{L}(K, H) \\
\langle\alpha \circ \psi, \phi\rangle=\langle\psi, \phi \circ \alpha\rangle
\end{gathered}
$$

Quantum channels

- $P=C P(H, K)$ completely positive maps
- $\mathcal{C}(H, K)$ the set of channels is a base section in P
- the dual section is the set

$$
\mathcal{S}(K, H)=\{B \mapsto(\operatorname{Tr} B) \sigma, \sigma \in \mathfrak{S}(H)\}
$$

- measurements: $\left(H_{0}, \rho, M\right), \rho \in \mathfrak{S}\left(H \otimes H_{0}\right), M$ a POVM in $B\left(K \otimes H_{0}\right)$

$$
m_{d}(\phi)=\operatorname{Tr} M_{d}(\phi \otimes i d)(\rho)
$$

- the base section norm

$$
\|\phi\|_{\diamond}=\sup _{\rho \in \mathfrak{S}(H \otimes H)}\|(\phi \otimes i d)(\rho)\|_{1}
$$

- the dual norm $\|\cdot\|^{\triangleright}$

Optimality of tests with max. entangled input state

Choi matrix: $C(\phi)=(\phi \otimes i d)\left(\left|\psi_{H}\right\rangle\left\langle\psi_{H}\right|\right)$,
$\left|\psi_{\boldsymbol{H}}\right\rangle$ maximally entangled state
Theorem (AJ, 2013)
Let $\Phi_{1}, \Phi_{2} \in \mathcal{C}(H, K)$ and consider the symmetric hypothesis testing problem. Then there exists an optimal test $\left(H,\left|\psi_{H}\right\rangle\left\langle\psi_{H}\right|, M\right)$ with max. entangled input state if and only if

$$
\operatorname{Tr}_{k}\left|C\left(\Phi_{1}\right)-C\left(\Phi_{2}\right)\right| \propto I
$$

Quantum experiments and randomizations II

Let $\mathcal{E}=\left(H,\left\{\rho_{1}, \ldots, \rho_{n}\right\}\right)$.

- cq-channel $\Phi_{\mathcal{E}}^{c q}: B\left(\mathbb{C}^{n}\right) \rightarrow B(H)$,

$$
A \mapsto \sum_{i} A_{i i} \rho_{i}
$$

- randomization: $\alpha \in \mathcal{C}(H, K)$,

$$
\Phi_{\alpha(\mathcal{E})}^{c q}=\alpha \circ \Phi_{\mathcal{E}}^{c q}
$$

- if $\mathcal{E}^{\prime}=\left(H,\left\{\rho_{1}^{\prime}, \ldots, \rho_{n}^{\prime}\right\}\right)$,

$$
\left\|\Phi_{\mathcal{E}}^{c q}-\Phi_{\mathcal{E}^{\prime}}^{c q}\right\|_{\diamond}=\sup _{i}\left\|\rho_{i}-\rho_{i}^{\prime}\right\|_{1}
$$

Quantum channels and post-processigs

- Let $\Phi \in \mathcal{C}(H, K)$
- post-processing: $\alpha \circ \Phi, \alpha \in \mathcal{C}\left(K, K^{\prime}\right)$
- for $\psi \in \mathcal{C}\left(H, K^{\prime}\right)$,

$$
\delta_{\text {post }}(\Phi, \Psi):=\inf _{\alpha}\|\alpha \circ \Phi-\Psi\|_{\diamond}
$$

- post-processing Le Cam distance

$$
\Delta_{\text {post }}(\Phi, \Psi)=\max \left\{\delta_{\text {post }}(\Phi, \Psi), \delta_{\text {post }}(\Psi, \Phi)\right\}
$$

- for experiments

$$
\delta_{\text {post }}\left(\Phi_{\mathcal{E}}^{c q}, \Phi_{\mathcal{F}}^{c q}\right)=\delta(\mathcal{E}, \mathcal{F})
$$

Post-processing decision problems

Let $\Phi \in \mathcal{C}(H, K)$

- D a Hilbert space
- decision rule: post-processing $\psi \circ \Phi, \psi \in \mathcal{C}(K, D)$
- loss function: affine $\operatorname{map} \mathcal{C}(H, \mathcal{D}) \rightarrow \mathbb{R}^{+} \equiv \Gamma \in C P(D, H)$,
- (D, Γ) post-processing decision space, classical if Γ is a cq-map
- risk

$$
\langle\psi \circ \Phi, \Gamma\rangle=\langle\psi, \Gamma \circ \Phi\rangle
$$

Post-processing deficiency

Let $\Phi \in \mathcal{C}(H, K), \Psi \in \mathcal{C}\left(H, K^{\prime}\right), \epsilon \geq 0$.

Definition

Post-processing deficiency: $\Phi \succeq_{\epsilon} \Psi$ if for every D, loss function $\Gamma \in C P(D, H)$ and $\psi^{\prime} \in \mathcal{C}\left(K^{\prime}, D\right)$, there is some $\psi \in \mathcal{C}(K, D)$, such that

$$
\langle\psi \circ \Phi, \Gamma\rangle \leq\left\langle\psi^{\prime} \circ \Psi, \Gamma\right\rangle+\epsilon\|\Gamma\|^{\diamond}
$$

Post-processing randomization theorem

Theorem
Let $\Phi \in \mathcal{C}(H, K), \Psi \in \mathcal{C}\left(H, K^{\prime}\right), \epsilon \geq 0$. The following are equivalent.

- $\Phi \succeq_{\epsilon} \Psi$
- For every $\Gamma \in C P\left(K^{\prime}, H\right)$,

$$
\|\Psi \circ \Gamma\|^{\diamond} \leq\|\Phi \circ \Gamma\|^{\diamond}+\epsilon\|\Gamma\|^{\diamond}
$$

- There is a channel $\alpha \in \mathcal{C}\left(K, K^{\prime}\right)$ such that

$$
\|\alpha \circ \Phi-\Psi\|_{\diamond} \leq 2 \epsilon
$$

Quantum statistical experiments

Theorem
Let $\mathcal{E}=\left(H,\left\{\rho_{1}, \ldots, \rho_{n}\right\}\right), \mathcal{F}=\left(K,\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}\right)$. The following are equivalent.

- $\mathcal{E} \succeq_{\epsilon, \mathcal{P}} \mathcal{F}$
- for any $W_{1}, \ldots, W_{n} \in B(K)^{+}$

$$
\left\|\Phi_{W, \mathcal{F}}\right\|_{\mathcal{P}}^{\diamond} \leq\left\|\Phi_{W, \mathcal{E}}\right\|_{\mathcal{P}}^{\diamond}+\epsilon\|W\|,
$$

where $\Phi_{W, \mathcal{E}}(A)=\sum_{\theta} \operatorname{Tr}\left(W_{i} A\right) \rho_{i},\|W\|=\sum_{i}\left\|W_{i}\right\|$.

- there is some $\alpha \in \mathcal{C}_{\mathcal{P}}(H, K)$ such that

$$
\sup \left\|\alpha\left(\rho_{i}\right)-\sigma_{i}\right\|_{1} \leq 2 \epsilon
$$

Classical post-processing deficiency

Classical post-processing deficiency $\Phi \succeq_{\epsilon, c l} \Psi$: Restrict to classical decision spaces (Γ is a cq-map)

Theorem
The following are equivalent.

- $\Phi \succeq_{\epsilon, c l} \Psi$
- for any finite sequence $W_{1}, \ldots, W_{n} \subset B(H)^{+}$,

$$
\left\|\Phi_{\Phi(W)}^{c q}\right\|^{\diamond} \leq\left\|\Phi_{\Psi(W)}^{c q}\right\|^{\diamond}+\epsilon\left\|\Phi_{W}^{c q}\right\|^{\diamond}
$$

- For any POVM $M_{1}, \ldots, M_{n} \subset B(K)$ there is a POVM $N_{1}, \ldots, N_{n} \subset B(H)$ such that

$$
\|N \circ \Phi-M \circ \Psi\|_{\diamond} \leq 2 \epsilon
$$

Classical and quantum post-processing deficiency

Theorem
Let $\Phi \in \mathcal{C}(H, K), \Psi \in \mathcal{C}\left(H, K^{\prime}\right)$.

- For any $\epsilon \geq 0, \Phi \succeq_{\epsilon} \Psi$ if and only if

$$
\Phi \otimes i d_{K^{\prime}} \succeq_{\epsilon, c l} \Psi \otimes i d_{K^{\prime}}
$$

- Let $\xi \in \mathcal{C}\left(H_{0}, K^{\prime}\right)$ be surjective. Then $\Phi \succeq_{0} \Psi$ if and only if

$$
\Phi \otimes \xi \succeq_{0, c l} \Psi \otimes \xi
$$

Pre-processing deficiency

pre-processings: $\Phi \circ \beta$, for some channel β.
Let $\Phi \in \mathcal{C}(H, K), \Psi \in \mathcal{C}\left(H^{\prime}, K\right)$.

Definition

Pre-processing deficiency: $\Phi \succeq^{\epsilon} \Psi$ if for every D, loss function
$\Gamma \in C P(K, D)$ and $\beta^{\prime} \in \mathcal{C}(D, H)$, there is some $\beta \in \mathcal{C}\left(D, H^{\prime}\right)$, such that

$$
\langle\Phi \circ \beta, \Gamma\rangle \leq\left\langle\Psi \circ \beta^{\prime}, \Gamma\right\rangle+\epsilon\|\Gamma\|^{\triangleright}
$$

Pre-processing randomization theorem

Theorem
Let $\Phi \in \mathcal{C}(H, K), \Psi \in \mathcal{C}\left(H^{\prime}, K\right), \epsilon \geq 0$. The following are equivalent.

- $\Phi \succeq^{\epsilon} \Psi$
- For every $\Gamma \in C P\left(K, H^{\prime}\right)$,

$$
\|\Gamma \circ \Psi\|^{\diamond} \leq\|\Gamma \circ \Phi\|^{\diamond}+\epsilon\|\Gamma\|^{\diamond}
$$

- There is a channel $\beta \in \mathcal{C}\left(H^{\prime}, H\right)$ such that

$$
\|\Phi \circ \beta-\Psi\|_{\diamond} \leq 2 \epsilon
$$

Classical pre-processing deficiency

- (D, Γ) is classical if Γ is a qc-map.
- classical pre-processing deficiency: $\Phi \succeq^{\epsilon, c l} \Psi$
- $\mathcal{E} \succeq^{\epsilon, c l} \mathcal{F}$ iff $\mathcal{E} \supset_{\epsilon} \mathcal{F}$:

$$
\sup _{\sigma \in \mathfrak{S}\left(H^{\prime}\right)} \inf _{\rho \in \mathfrak{S}(H)}\|\Psi(\sigma)-\Phi(\rho)\|_{1} \leq 2 \epsilon
$$

Theorem

- $\Phi \succeq^{0} \Psi$ iff $\Phi \otimes \xi \supseteq_{0} \Psi \otimes \xi$ for some injective $\xi \in \mathcal{C}\left(H^{\prime}, K_{0}\right)$
- $\Phi \succeq^{\epsilon} \Psi$ implies $\Phi \otimes \xi \supseteq_{\epsilon} \Psi \otimes \xi$ for any channel ξ
- $\Phi \otimes i d \supseteq_{\epsilon} \Psi \otimes$ id implies $\Phi \succeq^{\epsilon^{\prime}} \Psi$, for $\epsilon^{\prime}=\epsilon+\frac{1}{2} \sqrt{\epsilon}$.

Cleannes of POVMs (Buscemi et al. 2005)

Let $M=\left(M_{1}, \ldots, M_{m}\right)$ be a POVM on H.

- A qc-channel

$$
\Phi_{M}^{q c}: A \mapsto \sum_{i} \operatorname{Tr}\left(M_{i} A\right)|i\rangle\langle i|
$$

- $\Phi_{M}^{q c} \circ \beta=\Phi_{\beta^{*}(M)}^{q c}$
- Let $N=\left(N_{1}, \ldots, N_{n}\right)$ be a POVM on $H, \Phi_{M}^{q c} \succeq_{0} \Phi_{N}^{q c}$ iff M is post-processing cleaner than N
- Let $N=\left(N_{1}, \ldots, N_{m}\right)$ be a POVM on H^{\prime}, then $\Phi_{M}^{q c} \succeq^{0} \Phi_{N}^{q c}$ iff M is pre-processing cleaner than N.

Randomization criterion for POVMs

Theorem
Let $M_{1}, \ldots, M_{n} \subset B(H), N_{1}, \ldots, N_{n} \subset B\left(H^{\prime}\right)$. The following are equivalent.

- $M \succeq^{\epsilon} N$
- For every $W_{1}, \ldots, W_{n} \subset B\left(H^{\prime}\right)^{+}$,

$$
\left\|\Phi_{M, W}\right\|^{\diamond} \leq\left\|\Phi_{N, W}\right\|^{\diamond}+\epsilon\left\|\Phi_{W}^{c q}\right\|^{\diamond}
$$

- there is some $\beta \in \mathcal{C}\left(H^{\prime}, H\right)$ such that

$$
\left\|\Phi_{\beta^{*}(M)}^{q c}-\Phi_{N}^{q c}\right\|_{\diamond} \leq 2 \epsilon
$$

