
Optimal input states for
discrimination of quantum channels

Anna Jenčová
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1. Multiple hypothesis testing for quantum channels

Assume that a channel Φ : B(H) → B(K) is known to be
one of Φ1, . . . ,Φm, with prior probabilities λ1, . . . , λm. The
task is to determine which one, with the greatest probability
of success.
A most general scheme for this task is given by a triple
(H0, ρ,M), where ρ ∈ S(H⊗H0) is a (pure) input state and
M = {M1, . . . ,Mn} is a POVM on B(K ⊗H0). The value

TrMi(Φj ⊗ id)(ρ)

is interpreted as the probability that Φi is chosen when the
true channel is Φj. The average success probability is then

P (M,ρ) =
∑
i

λiTr[Mi(Φi ⊗ id)(ρ)]. (1)

The task is to maximize P (M,ρ) over all input states ρ and
POVMs M . It had been observed [6, 8] that entangled in-
put states give greater success probability in some cases,
however, there are situations when the maximally entan-
gled input state is not optimal. It is therefore important to
find out whether an optimal scheme with a given input state
exists. A related problem was studied in [7].

2. Process POVMs and SDP formulation of the
problem

Alternatively, channel measurements are described by pro-
cess POVMs [9] (or testers [1], see also [3]), which is a col-
lection F = {F1, . . . , Fm} of positive operators in B(K⊗H),
such that

∑
iFi = I ⊗ σ for some state σ ∈ S(H). The

average success probability is then

P (F ) =
∑
i

λiTr[C(Φi)Fi], (2)

where C(Φ) is the Choi operator of Φ, [2]. Using this form,
our task becomes a problem of semidefinite programming:

max Tr[CF ]

F ∈ B(Cn ⊗K ⊗H)

Tr[F ] = dim(K)

Tr[(I ⊗Xi)F ] = 0, i = 1, . . . , k

F ≥ 0

Here C =
∑
i |i 〉〈 i| ⊗ C(Φi) and X1, . . . , Xk is any basis of

the (real) linear subspace

L := {X = X∗ ∈ B(K ⊗H),TrKX = 0}.

3. Optimality conditions

Using standard results of SDP, we obtain the following:
Theorem 1. Let F̂ be a process POVM. Then F̂ is optimal if
and only if there is some λ0 > 0 and some channel Ψ, such
that for i = 1, . . . ,m,

λiC(Φi) ≤ λ0C(Ψ)

and
(λ0C(Ψ)− λiC(Φi))F̂i = 0.

Moreover, in this case, the optimal success probability is

Tr[F̂C] = min
Φ

min{t > 0, λiC(Φi) ≤ tC(Φ), ∀i} = λ0,

the minimum is taken over all channels B(H)→ B(K).
We can characterize optimal measurement schemes as fol-
lows:
Corollary 1. Let ρ ∈ S(H ⊗ H) be such that σ := Tr1ρ is
invertible. Then (H, ρ,M) is optimal if and only if

Z :=
∑
j

λjMj(Φj ⊗ id)(ρ) ≥ λi(Φi ⊗ id)(ρ), i = 1, . . . ,m

and TrKZ ∝ σ.
Similar results were obtained in [5], in a broader context
and by different methods. Apart from the last condition on
the partial trace of Z, these are optimality conditions for a
POVM in MHT for the ensemble {λi, (Φi ⊗ id)(ρ)}, [4].

4. Optimal discrimination with a maximally
entangled input state

Let m = 2. Using the known characterization of optimal
POVMs in this case, we obtain a simple condition for ex-
istence of an optimal scheme with a maximally entangled
input state:
Corollary 2. Let Φ1,Φ2 : B(H) → B(K) be channels, λ ∈
(0, 1). An optimal scheme (H, ρ,M) with a maximally en-
tangled input state ρ exists if and only if the Choi operators
satisfy

TrK|λC(Φ1)− (1− λ)C(Φ2)| = aI, (MEI)

here |X| = (X∗X)1/2. Moreover, in this case, the optimal
success probability is Popt = a+1

2 .
We apply this last condition to check the existence of op-
timal procedures with maximally entangled input states for
discrimination of some types of channels.

5. Examples

For two channels Φ1, Φ2 and λ ∈ (0, 1), we put

φλ = λΦ1 − (1− λ)Φ2.

For a unitary U ∈ U(H), let ΦU : B(H)→ B(H), A 7→ U∗AU .

5.1 Covariant channels
Let G be a group and let g 7→ Ug ∈ U(H), g 7→ Vg ∈ U(K) be
unitary representations. Let Φ1 and Φ2 satisfy

Φi(U
∗
gAUg) = V ∗g Φi(A)Vg, g ∈ G,A ∈ B(H), i = 1, 2.

Then

Ū∗gTrK|C(φλ)|Ūg = TrK|C(φλ ◦ ΦUg)| = TrK|C(φλ)|.

Assume that the representation g 7→ Ug is irreducible. Then
(MEI) holds for Φ1,Φ2 and any λ ∈ (0, 1).

5.2 Unitary channels
Let U, V ∈ U(H) and put W := V ∗U . Then (MEI) holds for
ΦU , ΦV and some λ ∈ (0, 1) if and only if

Tr[W ]W + Tr[W ]W ∗ ∝ I.

Equivalently, either TrW = 0 or W has at most two distinct
eigenvalues, both of the same multiplicity.

5.3 Qubit channels
Let Φ1,Φ2 : B(C2) → B(C2) be qubit channels. Then (MEI)
holds if and only if

TrK|C(φλ) + (φλ(I) + (1− 2λ)I)⊗ I| = TrK|C(φλ)|.

In particular, if there is some c > 0 such that

Φ2(I) = cΦ1(I) + (1− c)I,

then (MEI) holds with λ = 1/(1 + c). If both channels are
unital, it holds for any λ ∈ (0, 1).
On the other hand, let Φ1 = id and let Φ2 = Ψα,β be the
channel

Ψα,β :

3∑
i=0

wiσi 7→ w0I +

3∑
i=1

(t + Tw)iσi

where σ0 = I, σ1, . . . , σ3 are the Pauli matrices and

w =

w1
w2
w3

 , t =

 0
0

sinα sin β

 , T =

 cosα 0 0
0 cos β 0
0 0 cosα cos β


The graph below shows values of the function

d(α, β) := ‖I − ν(TrK|C(φ1/2)|)‖1,

ν(A) = (2/Tr[A])A, the axes correspond to α = lπ, β = kπ.

This suggests that (MEI) holds only if either α = π or β = π,
that is if Φ2 is unital (joint work with Tomasz Tylec).

5.4 Measurements
For a POVM M = M1, . . . ,Mn on B(H), we denote

ΦM : B(H) 3 A 7→
∑
i

Tr[AMi]|i 〉〈 i| ∈ B(Cn).

This is a qc-channel. If Φ1 = ΦM and Φ2 = ΦN , (MEI) reads∑
i

|λMi − (1− λ)Ni| ∝ I.

Let M and N be von Neumann measurements,

Mi = |ξi 〉〈 ξi|, Ni = |ηi 〉〈 ηi|,

for two ONB’s |ξ1 〉, . . . , |ξn 〉 and |η1 〉, . . . , |ηn 〉. Let λ = 1/2.
Then (MEI) becomes∑

i

ciPξi,ηi = 2aI, a = n−1
∑
i

ci

where ci =
√

1− |〈 ξi, ηi 〉|2 and Pξi,ηi is the projection onto
span(ξi, ηi). This implies ci 6= 0, for all i. An equivalent con-
dition is that the matrix

(2aI − C)−1/2(W − diag(W ))C−1/2

is unitary, where W = (〈 ξi, ηj 〉), C = diag(c1, . . . , cn). Some
results are listed below.

• For n = 2 (MEI) always holds (for any λ), since ΦM and
ΦN are unital qubit channels.

• For n = 3, (MEI) holds if and only if there is a cyclic per-
mutation σ of {1, 2, 3}, such that ηi = ξσ(i).

• Let the bases be mutually unbiased (MUB), then

W =
1√
n
H

for a Hadamard matrix H. We may assume that Hii = 1
for all i. Then (MEI) holds iff H + H∗ = 2I.

• For MUB, n = 4, (MEI) holds iff H = D∗H0D, where

H0 =


1 1 1 1
−1 1 −1 1
−1 1 1 −1
−1 −1 1 1


and D is some diagonal unitary.
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