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Reversible (sufficient) quantum channels

Let S be a set of quantum states, ® a quantum channel.

We say that @ is reversible (sufficient) with respect to S if there
exists some channel U (recovery channel) such that

Vod(p)=p, peS.

D. Petz, Commun. Math. Phys., 1986
D. Petz, The Quarterly J. of Math., 1988



The setting and assumptions

B(H) - operators on a finite dimensional Hilbert space H

® A set of states
Sc{peBH), p=0, Trp=1}

e A channel ® : B(H) — B(K), completely positive and trace
preserving

Assumptions:

There is a faithful (full rank) state o € S, its image ®(0) € B(K)
is also faithful.



Preservation of the relative entropy

The relative entropy: for states p, o

Tr [p(log(p) —log(o))], supp(p) < supp(o)
D(pllo) =
0, otherwise.

® Data processing inequality: for a channel ®
D(@(p)[|[®(0)) < D(pllo),
e If D(p|lo) < oo, then reversibility is equivalent to

D(®(p)|®(c)) = D(pllo),  VpeS.



Universal recovery map

The Petz dual of & with respect to o
O, () = 01/2(1)*((1)(0)—1/2 ) <I>(J)_1/2)01/2
® &, is a channel B(K) — B(H) such that
b, 0P(0) =0
® O is reversible with respect to S if and only if

Q, 0 ®(p) = p, VpeS



Algebraic conditions for reversibility



Semigroup of channels preserving S

Let us consider the set of channels
Cs = 1{0: B(H) = B(H), 6(p) = p, Vp € S}

® convex and compact semigroup (closed under composition)
® has a faithful fixed state: 0 € S.

By the mean ergodic theorem, there is some Es € Cg such that

Es0BO =00&s5 =¢&g, VO € Cs.

We see that such &g is unique and

£8=E&s, &(p)=p, VYpeS.



The minimal sufficient subalgebra

The adjoint £5 is a faithful conditional expectation
=
its range is a subalgebra Mg := £5(B(H)).
Mg is the minimal sufficient subalgebra with respect to S:

® p > plmg is a channel reversible with respect to S
® Mg is contained in any subalgebra with this property.



The range of a conditional expectation

Let £ : B(H) — B(H) be such that £* is a conditional
expectation.

There is a decomposition H = ©, HE ®@ HE such that

@B ) ® Iym

E(B(H ;@B (Hy) ® wn

for some fixed states w, € B(HLE).



The Koashi-Imoto decomposition

Applying this to £g, we obtain

Ms=EPBH") @ Lsn

pP= @Mn(p)pn & on, Vp €S,
n

® {un(p)} is a probability distribution (classical part of S)

* p, € B( ﬁL) are states (depending on p)

® o, € B( S’R) are fixed states.

M. Koashi, N. Imoto, Phys. Rev. A, 2002
P. Hayden, R. Jésza, D. Petz, A. Winter, Commun. Math. Phys., 2004
A. tuczak, Int. J. Theor. Phys., 2014

Y. Kuramochi, J. Math. Phys., 2018



Generators of Mg

The minimal sufficient subalgebra is generated by:
® Connes cocycles:
it it

p , peS, tekR.

® Radon Nikodym derivatives:

(o V2 po 12, pesS, teR.



Reversible channels with respect to S

Assume that ® is reversible.

® |et U be a recovery channel, then ¥ o ® € Cg, so that
Eso(Pod)=(Vod)ols=_Es.
® Note that £s o W is also a recovery channel, so we may assume
EsoW =T, Uod=_¢Eg.
® We then have @ o ¥ = &g, where

So == {®(p), p € S}



Reversible channels with respect to S

A channel @ : B(H) — B(K) is reversible with respect to S iff
D[ pg, : Ms, =2 Mss.
Equivalently, there is

® a decomposition K = @, KL @ I
® unitaries U, : ’HE’L — IC{;
® channels @, : B(’Hf’R) — B(KE)

such that

<I>|B(H§,L®H§,R) = U;: . Un ® (I)n.



Reversible channels with respect to S

Further conditions for reversibility: preserving the generators

® Connes cocycles
O*(B(p)"D(0) ") = plo T, VWpeS, teR;
® Radon-Nikodym derivatives:
O*(@(0) 2D (p)B(0)2) = 020V, pe

® Petz dual
Pro®(p)=p, VYpeES.



Conditions on S

Given a channel ®, what are the conditions for states in S?
We fix a faithful state 0 € S. Then we must have
S C Fix(®, 0 @) := {p, ¢, 0 P(p) = p}.

Put

n

1
F:=lim — E (B 0 D),
non
k=1

then F* is a conditional expectation and

F(B(H)) = Fix(®, o D).



Conditions on S

There is

* a decomposition H = @, He 7" @ Hy "
* and states w, € B(Hp ")

such that @ is reversible with respect to S if and only ifall pe S
have the form

p = Alp)on @ wn

for some probability distribution {\,,(p)} and states
pn € BH®OL),



Reversibility by Rényi relative entropies



Preservation of standard Rényi relative entropies

The standard (Petz-type) Rényi relative entropies, o > 0:

1
— logTr p%'™® a+#1
Dalpllr) = a—1 B 17 ?

Tr p(logp — logo), a=1.
e satisfy data processing inequality for « € (0, 2].

® is sufficient with respect to S if and only if
Da(®(p)|1®(0)) = Dalpllo),  VpeS

for some a € (0, 2).

D. Petz, 1986, 1988

AJ, D. Petz, Commun. Math. Phys, 2006

F. Hiai, M. Mosonyi, D. Petz, C. Bény, Rev. Math. Phys. 2011
F. Hiai, M. Mosonyi, Rev. Math. Phys. 2017



Preservation of sandwiched Rényi relative entropies

The sandwiched (minimal) Rényi relative entropies, o > 0:

-«

_a _a\ &
log Tr <0127paﬁ) aF#1

Da(PHU) =¢a-1
Tr p(log p — log o), a=1.

e satisfy data processing inequality for a € [1/2, o]
® is sufficient with respect to S if and only if
Da(®(p)|®(0)) = Dalpllo),  YpeS

for some a € (1/2,00).



Sandwiched Rényi relative entropy

We look at . . na
Qalpllo) = Tr (o7 po 5" )
so that

1
a—1

D (pllo) = log Qa(pllo)

® For o > 1: interpolation L,-norms
® For a € (1/2,1): a variational formula, relation to case o > 1

® The case a = 1 (relative entropy): solved by Petz



An interpolation L,-norm with respect to a state

Let us define a norm in B(H), for a > 1:
l-a l-a é
[Xllao = (Tr o5 X0 5" |*)
We have for any state p:

Qalpllo) = ol

(0%
a,o
The norm can be obtained by complex interpolation between

1 1
[X[e =T [X] = X[, [ Xl = llo72 X2




Hadamard three lines theorem

For any function on S = {z € C, Re(z) € [0,1]},
f:8— B(H), continuous, analytic in int(S)

we have:

e forany a > 1,
1f(1/a)lla,e < max |[f(it)]|oo,c max || f(1 + it)[|y
teR teR

e |f equality holds for some v > 1, then it holds for all



Hadamard three lines theorem

For any p > 0 and «, we define a function

l—a 1—a)za 11—z

foal2) = llollizo0 = (o5 po's ) " 05, zes

* fral/a)=p,

® The equality in Hadamard three lines theorem is attained:

1fp.a(1/ @)oo = max || faq (it) | co,o max || fa,o (1 + it) |1
teR teR



Positive trace preserving maps are contractions

Let @ : B(H) — B(K) be a positive trace preserving linear map:

® Fora=1,
[e(X)[h <[ X[, X € B(H)
® For a = o0,
12X lloo,2(0) = 195 (072X 0™ ) oo < [ X |00
® For o > 1, by Riesz-Thorin (complex interpolation)

[2(X)la0@) < [[Xllae: X € B(H).



The case v = 2

Let o = 2.

® || - ||2,+ is a Hilbert space norm, with the inner product
(X,Y)y = Tr X*¢'/2y o'/?
® For a positive trace preserving map @ : B(H) — B(K),
(X, 2(Y))a(o) = (Po(X),Y)s, X eB(K), Y e B(H)
® Since ® is a contraction,

[P(Y)l2,0(0) = Y ]l2.0 == P50 ®(Y) =Y.



Preservation and reversibility

Let ® be a channel and assume that for some a > 1,

12(0)lla,@(0) = Hp”a,cr< <= Da(2(p)[|®(0)) = Da(plla)>

For a = 2, we get

12(0)ll2,0(0) = lPll2e == P50 P(p) =p

so that @ is reversible.



Preservation and reversibility

Fora=a > 1:

1—z l-a 1-a\?¥ 1-z
1) = fpa(2) = Ipl %0 (05 po's" )" o5,
Then

[ollae = I1F(L/@)lae = 12(f(1/@))lla,e0)
< max || (f(it))l| oo o(r) max [ (f(1 + it))

< 1gﬂg}RXIIf( it)loo,o max [[f(1 +it)]l1 = llplla.0

We have equalities, for any a > 1. This implies

[@(f (/)o@ = IfA/Dlae, — a>1.



Preservation and reversibility

We obtain

1®(7)

‘27‘1)(‘7) = HTHQ,Uv so that @, o (P(T) =T,

for s
T:= f(1/2) = ot (01;7&,0012_7&) 2 o1,
We know that ®, o ®(p) = p iff p is of the form

p= @ Pn @ wp, (with fixed faithful states wy,)

with respect to the decomposition
H =@ Hy o @ 1y o,

Since &, 0o ®(0) = 0 and &, o ®(7) = 7, this must be true.



A variational formula for o € [1/2,1)

For aw € [1/2,1), we have

(3

Qulpllo) = Xeér(lqg)H aTr pX +(1—a)Tr (U%X_la%)m
With 7 := %= > 1, this can be written as
3 - A (Al/23 -1 1/2
Qa(pllo) = Xeé%g)HaTr pX + (1 —a)Qy(c "X o /%||o).

If p is also faithful, attained at the unique element

1 1

2y po’?)

1
a=lgay,

— 1
X=02(o
R. L. Frank, E. H. Lieb, J. Math. Phys., 2013

F. Hiai, Quantum f-Divergences in von Neumann Algebras: Reversibility of
Quantum Operations, 2021



Positive trace preserving maps

Let & : B(H) — B(K) be a positive trace preserving map,
~ loa  1-a\ @
Qalpllor) = Tr (05" po'" )"

For Y € B(K)*", we have

(o120 (Y " 1)o?||o)

Q,
Qy(26(®(0) Y 1 2(0)/?)|l0)
< Qy(2(0)'2Y ' @(0) /2 ®(0))

Q’Y(UI/Z(I)*(Y)—IO_I/ZHO_)

We used the Choi inequality ®*(Y)~! < &*(Y '), definition of &,
and monotonicity of @, v > 1.



Positive trace preserving maps

We get, for Y € B(K)**

Qalpllo) < aTr p@*(Y) + (1 = a)Q,(c"?2*(Y) o' /2|0)
< aTr &(p)Y + (1 - a)Q4(2(0)?Y ' 2(0)"?||(0))

Taking the inf,

Qa(pllo) < Qu(®(p)[|®(0)),

so that

Da(pllo) = Da(®(p)||®(0)).



Preservation and reversibility

Let @ : B(H) — B(K) be a channel such that

Qa(pllo) = Qu(®(p) ]| ®(0)).

If p is faithful, then the infima in the variational formulas are
attained at unique X € B(H)"" resp. Y € B(K) and

X =o*(Y).
We also infer that
Qy (0’ X o' 2|o) = Qy (a2 (Y )02 o)
Q(25(®(0)' 2V 71 D(0)"/?)||0)
Q(2(0) 2V 1 ®(0)"/?|0(0))



Preservation and reversibility

Put
g= 01/2)27101/27 v = @(0)1/2}771(“0)1/2

Then
() =p,  Qy(v]®(0)) = Qy(ullo) = Qy(Po(v)]|®s((0)))
By the results for v > 1, ® o ®,(v) = v, so that

Dy 0P(pu) =P, 0P 0P, (v) =D, (v) = p.

From
y—1 1 1\1l-a ~y-1
nw=o 2 <U2wpa2w> o 2,

we get &, o P(p) = p as before.



Reversibility by hypothesis testing



Quantum hypothesis testing

Suppose p,0 € S(H) are given, one of them is the true state:

® we test the hypothesis Hy = o against H; = p
® 3 test: an effect 0 < T < I,

Tr [Tw] — probability of rejecting Hy in the state w
® error probabilities:
o(T) =Te[oT],  B(T) =Tr[p(I - T)]
® Bayes error probabilities for A € [0, 1]:

P.(X\,0,p,T) :=Xa(T) + (1 — \)B(T)



Quantum Neyman-Pearson lemma

Put P, 1 :=supp((p — so)+), Pso:=1—Ps 4 — P, _.

A test T is Bayes optimal for A € (0,1) if and only if

T:Psy++X, 0§X§P570, 5:%

and then
Pe()\a g, P) = Ogl%glpe()\’ T, P, T)

— (1= N1 - Tr[(p— s0)4])
— (1= N)(s — T [(p — s0)_])

(1 =@ =Nllp—sall)

N | =



Data processing inequalities

We clearly have for any quantum channel ® and X € [0, 1]:

Pe(X, ®(0), @(p)) = Pe(A, 0, p),

or equivalently, for any s € R:

12(p) = s®(0)ll1r < [lp = solls;

T [(®(p) — s9(0))4] < Tr[(p — s0).;
Tr[(®(p) - s9(0))-] < Tr[(p — s0)-].



Equality in DPI

The following are equivalent:

* P.(\,®(0),®(p)) = Pe(N,0,p), A €[0,1];
* |@(p) —sP(o)[1=lp—sol1, s €R;

° Tr[(® P) —s®(0))1] =Tr[(p—s0)4] s € R;
* Tr[(®(p) — s®(0))-] = Tr[(p—s0)-]. s € R;
* O(Qs4) =Psq, sER;
* O*(Qs,—)=Ps_, seR.

( Qs+ = supp((®(p) — s®(0))+))

Can we get recoverability?



An integral formula for relative entropy

For any pair if states p, o:

Dpll) = [ G T = Do+ to)-]

For A > 0 such that 0 < p < Ao

A S
D(pll) = [ 5 Trlp = 50)-] +log(h) +1- A

If such \ does not exist, both sides are co.



Reversibility via hypothesis testing

Let p,o € B(H) be any states, ® : B(H) — B(K) a channel.
Assume that

Pe(A, ®(0), ®(p)) = Pe(A, 0,p), A € [0, 1]
Equivalently,

Tr (®(p) — s®(0))~ = Tr(p—s0)—, s €R,

the same is true with o replaced by oo := (p + o).



Reversibility via hypothesis testing

We have
p <200,  P(p) < 29(0p).

By the integral representation,

2 S
Diplloo) = [T l(p = s0)-] +log(2) <1

2 ds

/O — Tr[(®(p) — 5@(0)-] +log(2) — 1
= D(®(p)[|®(00))

It follows that

gy 0 @(p) =p, P50 (I)(U) =0.



Broadcasting and distinguishability



Broadcasting

A broadcasting channel A: B(H) — B(H ® H), p a state:

H

H Ty H

No-broadcasting: for A := Tro 0 A, Ay := Try 0 A,

Tr

A1(p) = Aa(p) = p for all p is impossible

Restricted to a subset S of states:

Broadcasting is possible <= S is commutative.



Broadcasting and distinguishability

Let p, o be states. Instead of broadcasting {p, o}, we require

Both Ay and As preserve distinguishability of p, o:
Pe()‘v Al(p)a Al(a)) = Pe()‘a A2(p)7 AQ(U))

= P.(\, p,0), A e [0,1].

Then Aj, Ay are reversible with respect to {p,o}. If ¥y, g are
the recovery channels, then

(\Ifl ®\I/2) oA

is a broadcasting channel for {p,o}. Hence p, o must commute.



Broadcasting and distinguishability

If we assume P.(\,A1(p),A1(0)) = P.(\, p,0), A € [0,1]:

e there is a channel A’ : B(H) — B(H ® H) such that A}
preserves p and o and (A))* is a conditional expectation,
while A/2 = Az.

® The ranges of (A})* and A% must commute

® Any test on the second part acts on the commutant M/{p,a}

® Pe(A A2(p),A2(0)) = Pe(A, u(p), u(o)), A € [0,1],

{u(p), u(o)} - the classical part of the Koashi-Imoto
decomposition of {p,c}.
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