Distinguishing quantum channels by restricted testers

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

Symposium KCIK, Sopot, May 23-25, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Discrimination of quantum states

 $M_n = M_n(\mathbb{C}), D_n$ be the set of states (= density matrices), $ho_0,
ho_1 \in D_n$

- ρ unknown, $\rho \in \{\rho_0, \rho_1\}$ with some a priori probablity $(\lambda, 1 \lambda)$. Decide which is ρ .
- tests: E ∈ M_n, 0 ≤ E ≤ I effects, Tr ρE probability of choosing ρ₀
- optimality: minimize the average error probability

$$P_{\lambda}(E) := \lambda \operatorname{Tr} (I - E) \rho_0 + (1 - \lambda) \operatorname{Tr} E \rho_1$$

It is well known that

$$\min_{0 \le E \le I} P_{\lambda}(E) = \frac{1}{2} (1 - \|\lambda \rho_0 - (1 - \lambda)\rho_1\|_1)$$

(Helstrom, 1969)

Discrimination of quantum channels

 $\mathcal{C}_{m,n} = \{ \text{channels } M_n \rightarrow M_m \}, \ \Phi_0, \Phi_1 \in \mathcal{C}_{m,n}.$

- Φ unknown, $\Phi \in \{\Phi_0, \Phi_1\}$, with probability $(\lambda, 1 \lambda)$
- tests: triples (I, ρ, E) , $\rho \in D_{nI}$, E an effect in M_{mI} ,

 $\operatorname{Tr} E(\Phi \otimes id_l)(\rho)$ - probability of choosing Φ_0 .

minimal average error probability

$$\min_{(l,\rho,E)} P_{\lambda}(E) = \frac{1}{2} (1 - \|\lambda \Phi_0 - (1 - \lambda) \Phi_1\|_{\diamond})$$

 $\|\Phi\|_{\diamond} = \max_{I} \max_{\rho \in D_{nl}} \|(\Phi \otimes id_{I})(\rho)\|_{1} = \max_{\rho \in D_{nn}} \|\Phi \otimes id_{n}(\rho)\|_{1}$

(Kitaev 1997)

Positive cones, bases and order units

Let \mathcal{V} be a real vector space, dim $(\mathcal{V}) < \infty$, \mathcal{V}^* its dual, with duality $\langle \cdot, \cdot \rangle$.

- $P \subset V$ a positive cone: closed convex cone, $P \cap -P = \{0\}$, V = P P
- ordered vector space: $x \leq_P y$ if $y x \in P$
- $P^* \subset \mathcal{V}^*$ the dual cone: $\{f \in \mathcal{V}^*, \langle f, p \rangle \ge 0, p \in P\}$,
- $B \subset P$ a base: for $p \in P$, $p \neq 0$, \exists unique $s > 0, b \in B$: p = sb
- $e \in P$ an order unit: for $x \in \mathcal{V}$, $\exists r > 0$: $x \leq_P re$,

There is a 1-1 correspondence between bases of P and order units $e \in P^*$:

$$B = \{ p \in P, \ \langle e, p
angle = 1 \} =: B_e$$

Order unit norms and base norms

Let $e \in P^*$ be an order unit, $B = B_e$ the corresponding base of P. Let $[0, e]_{P^*} = \{f \in \mathcal{V}^*, 0 \leq_{P^*} f \leq_{P^*} e\}.$

• order unit norm: $f \in \mathcal{V}^*$:

$$\|f\|_e := \inf\{\lambda > 0, -\lambda e \leq_{P^*} f \leq_{P^*} \lambda e\}$$

• its dual is the base norm: $v \in \mathcal{V}$:

$$\|v\|_{B} := \inf\{t + s, v = tb_{1} - sb_{2}, s, t \ge 0, b_{1}, b_{2} \in B\}$$
$$= \sup_{f \in [0, e]_{P^{*}}} \langle 2f - e, v \rangle$$

Base norms and discrimination

Formally, we can consider the discrimination problem in the base B: let $b_0, b_1 \in B$

- $b \in B$ unknown, $b \in \{b_0, b_1\}$
- tests: affine maps $B \to [0,1] \equiv t \in [0,e]_{P^*}$, $\langle t,b \rangle$ is the probability of choosing b_0
- Given $0 \le \lambda \le 1$, the average error probability is

$$\mathcal{P}^{B}_{\lambda}(t) = \lambda - \langle t, \lambda b_{0} - (1-\lambda)b_{1}
angle$$

It follows that

$$\min_{t \in [0,e]_{P^*}} P^B_{\lambda}(t) = \frac{1}{2} (1 - \|\lambda b_0 - (1 - \lambda)b_1\|_B)$$

Discrimination of states

Let
$$\mathcal{V} = M_n^h = \{x \in M_n, x = x^*\}$$
, then

V^{*} ≡ V, with duality ⟨a, b⟩ = Tr ab, (but we formally distinguish V - space of states and V^{*} - space of effects)

•
$$P = M_n^+ = P^*$$
 is a (self-dual) positive cone,

e = I_n is an order unit in (V*, M⁺_n), B_e = D_n the corresponding base and

$$\|\cdot\|_{e} = \|\cdot\|, \|\cdot\|_{D_{n}} = \|\cdot\|_{1}$$

• tests: elements in [0, 1] - effects

Discrimination of states by restricted tests

Suppose the set of tests is restricted: let $\mathcal{E} \subset M_n^+$ be such that

(i)
$$\mathcal{E}$$
 is closed, convex and $int(\mathcal{E}) \neq \emptyset$

(ii) $0 \in \mathcal{E}$, $E \in \mathcal{E}$ implies $I - E \in \mathcal{E}$

We will call $\mathcal E$ an admissible set of effects. Then

- $P_{\mathcal{E}}^* := \cup_{t>0} t\mathcal{E}$ is a positive cone in \mathcal{V}^* , $P_{\mathcal{E}}^* \subseteq M_n^+$.
- I is an order unit in (V^{*}, P^{*}_E)
- $\mathcal{E} \subseteq [0, I]_{P_{\mathcal{E}}^*} \subseteq [0, I]$
- $||x||_{(\mathcal{E})} := \sup_{E \in \mathcal{E}} \operatorname{Tr} (2E I)x$ defines a norm in M_n^h .

We have

$$\min_{E\in\mathcal{E}} P_{\lambda}(E) = \frac{1}{2}(1 - \|\lambda\rho_0 - (1 - \lambda)\rho_1\|_{(\mathcal{E})})$$

(Matthews, Werner, Winter 2009; Reeb, Kastoryano, Wolf 2011)

Discrimination of states by restricted tests

Let $P_{\mathcal{E}} = (P_{\mathcal{E}}^*)^* \subset \mathcal{V}$ and

$$D_{\mathcal{E}} := \{ \rho \in P_{\mathcal{E}}, \operatorname{Tr} \rho = 1 \}$$

is a base of $P_{\mathcal{E}}$, corresponding to *I*. Note that $[0, I]_{P_{\mathcal{E}}^*}$ is a admissible set of effects and

$$\|x\|_{(\mathcal{E})} \le \|x\|_{([0,I]_{P_{\mathcal{E}}^*})} = \|x\|_{D_{\mathcal{E}}} \le \|x\|_1$$

Since $M_n^+ \subseteq P_{\mathcal{E}}$, $\rho_0, \rho_1 \in D_n \subseteq D_{\mathcal{E}}$ elements of a larger base. (Reeb, Kastoryano, Wolf 2011)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

Take $M_{mn}^{h} = M_{m}^{h} \otimes M_{n}^{h}$. Let $\mathcal{E}_{sep} = \{\sum_{i=1}^{K} E_{i} \otimes F_{i}, E_{i} \in M_{m}^{+}, F_{i} \in M_{n}^{+}, \sum_{i=1}^{L} E_{i} \otimes F_{i} = I, L \leq K\}$ $\mathcal{E}_{LOCC} = \text{ implemented by LOCC measurements}$ $\mathcal{E}_{LOCC} \leftarrow = \{\sum_{i} E_{i} \otimes F_{i}, 0 \leq E_{i} \leq I_{m}, 0 \leq F_{i}, \sum_{i} F_{i} \leq I_{n}\}$

Then

$$P^*_{\mathcal{E}_{LOCC}\leftarrow}=P^*_{\mathcal{E}_{LOCC}}=P^*_{\mathcal{E}_{sep}}=Sep:=M^+_m\otimes M^+_n$$

and

$$\mathcal{E}_{LOCC} \leftarrow \subsetneq \mathcal{E}_{LOCC} \subsetneq [0, I]_{Sep} = \mathcal{E}_{Sep}$$

Hermiticity-preserving linear maps

Let
$$\mathcal{L}_{m,n} := \{ \Phi : M_n \to M_m \text{ linear}, \Phi(a^*) = \Phi(a)^*, a \in M_n \}.$$

$$\mathcal{L}_{m,n}^* \equiv M_{mn}^h \equiv M_m^h \otimes M_n^h,$$

with duality defined by

$$\langle \Phi, a \otimes b \rangle = \operatorname{Tr} a^t \Phi(b), \quad a \in M_m, \ b \in M_n$$

Note that

$$\langle \Phi, A \rangle = \operatorname{Tr} C(\Phi)^t A, \qquad A \in M^h_{mn},$$

where $C: \mathcal{L}_{m,n} \to M_{mn}^h$ is the Choi isomorphism:

$$C(\Phi) = (\Phi \otimes id_n)(E_n), \quad E_n = |e_n\rangle\langle e_n|, \ |e_n\rangle = \sum_{i=1}^n |i_n \otimes i_n\rangle$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Positive cones in $\mathcal{L}_{m,n}$

Some natural positive cones:

- $\mathcal{P}_1 = \text{positive maps.}$
- $\mathcal{CP} = \text{completely positive (cp) maps}$
- $\mathcal{P}_k = k$ -positive maps.
- $\mathcal{S}_1 = \mathsf{entanglement}$ breaking maps
- S_k = partially entanglement breaking maps

We have

$$S_1 \subseteq S_k \subseteq S_{m \wedge n} = CP = P_{m \wedge n} \subseteq P_k \subseteq P_1$$

Mapping cones

Mapping cones: Let $\mathcal{P}(m, n) \subset \mathcal{L}_{m,n}$ be postive cones such that if $\Phi \in \mathcal{P}(m, n)$ then $\psi_1 \circ \Phi \circ \psi_2 \in \mathcal{P}(j, l)$ for all cp maps $\psi_1 : M_m \to M_j, \ \psi_2 : M_l \to M_n$.

(Störmer 1986)

- $t \circ \mathcal{P}(m, n) \circ t$ are again mapping cones.
- All previous examples are mapping cones, invariant under this transformation.

Dual cones

• $\mathcal{P}_k^* = S_k \equiv$ elements of Schmidt rank $\leq k$:

$$S_k := \{\sum_i |\psi_i\rangle \langle \psi_i|, |\psi_i\rangle = \sum_{j=1}^k |\xi_j^i \otimes \eta_j^i\rangle, \xi_j^i \in \mathbb{C}^m, \eta_j^i \in \mathbb{C}^n\}$$

•
$$\mathcal{P}_1^* = S_1 = Sep$$

- $\mathcal{CP}^* = M_{mn}^+$
- $S_k^* = k BP \ k$ -block-positive operators
- $S_1^* = BP$ block-positive operators

(Skowronek, Störmer, Zyczkowski 2009)

Choi isomorphism on positive cones

•
$$C(\mathcal{CP}) = M_{mn}^+ = CP$$

•
$$C(\mathcal{P}_k) = k - BP$$

•
$$C(\mathcal{S}_k) = S_k$$

(Skowronek, Störmer, Zyczkowski 2009)

Let $\mathcal{P}(m, n)$ are mapping cones. Then

• $P(m,n) = \mathcal{P}^*(m,n)$ or $C(\mathcal{P}(m,n))$ satisfy:

$$(\psi_1 \otimes \psi_2)(P(n,k)) = P(m,l)$$

for all cp maps $\psi_1 : M_n \to M_m, \ \psi_2 : M_k \to M_l$. We will call this again mapping cones.

• $P(m, n)^t$ are mapping cones as well.

Quantum channels as a base of a cone

Fix the cone $\mathcal{P} = \mathcal{CP}$ in $\mathcal{L}_{m,n}$. Let $\mathcal{V} = \{ \Phi \in \mathcal{L}_{m,n}, \operatorname{Tr} \Phi(a) = c \operatorname{Tr} a, \text{ for some } c \in \mathbb{R} \}.$

- \mathcal{V} is a subspace in $\mathcal{L}_{m,n}$, generated by the set $\mathcal{C}_{m,n}$ of channels
- $\mathcal{V}^* \equiv M^h_{mn}|_{\mathcal{V}^\perp}$, where

$$\mathcal{V}^{\perp} = \{ X \in M_{mn}^h, \langle \Phi, X \rangle = 0, \Phi \in \mathcal{V} \}$$

- $\mathcal{Q} = \mathcal{V} \cap \mathcal{CP}$ is a positive cone in \mathcal{V}
- $\mathcal{Q}^* = \{A + \mathcal{V}^\perp, A \in M_{mn}^+\}$
- $\mathcal{C}_{m,n}$ is a base of \mathcal{Q}
- The corresponding order unit is

$$e = \frac{1}{n}I_{mn} + \mathcal{V}^{\perp} = \{I_m \otimes \sigma, \sigma \in D_n\}$$

Discrimination of quantum channels

Let $\Phi_0, \Phi_1 \in \mathcal{C}_{m,n}$, unknown $\Phi \in {\{\Phi_0, \Phi_1\}}$, prior $(\lambda, 1 - \lambda)$.

- tests: t ∈ [0, e]_{Q*}
- minimum average error probability:

$$\min_{\mathbf{t}\in[0,e]_{\mathcal{Q}^*}} P_{\lambda}(\mathbf{t}) = \frac{1}{2}(1 - \|\lambda\Phi_0 - (1-\lambda)\Phi_1\|_{\mathcal{C}_{m,n}})$$

• $\mathbf{t} \in [0, e]_{Q^*}$ iff there is some $\sigma \in D_n$ and $0 \le T \le I_m \otimes \sigma$ such that

$$\langle \Phi, \mathbf{t} \rangle_{\mathcal{V}} = \langle \Phi, T \rangle = \operatorname{Tr} C(\Phi)^t T, \quad \Phi \in \mathcal{V}$$

• We note that $(T, I \otimes \sigma - T)$ is a quantum 1-tester, or PPOVM

(Chiribella, D'Ariano, Perinotti 2008, Ziman 2008)

• such a tester T is not unique for **t**.

Quantum 1-testers

Theorem (Ziman , Chiribella et al.)

 $T \in M_{mn}$ is a quantum 1-tester if and only if there is a triple (I, ρ, E) , where $\rho \in D_{nl}$ and E an effect in M_{ml} , such that

$$\langle \Phi, T \rangle = \operatorname{Tr} E(\Phi \otimes id_I)(\rho), \quad \Phi \text{ a channel}$$

- Note that there are many triples corresponding to the same tester.
- A test t ∈ [0, e]_{Q*} can be seen as an equivalence class of triples (*l*, ρ, *E*).

It follows that $\|\cdot\|_{\mathcal{C}_{m,n}} = \|\cdot\|_{\diamond}$.

Optimal triples

A triple (I, ρ, E) is optimal if

$$P_{\lambda}(I,\rho,E) = \min_{(k,\rho',F)} P_{\lambda}(k,\rho',F)$$

Let $\tau_i = (\Phi_i \otimes id_k)(\rho)$, i = 0, 1. Then

- $\tau_i \in D_{mk}$ and $\operatorname{Tr}_{M_m} \tau_i = \operatorname{Tr}_{M_n} \rho$, i = 0, 1.
- If (I, ρ, E) is optimal, then E must be an optimal test for τ_0, τ_1, λ :

$$E = \operatorname{supp}(\lambda \tau_0 - (1 - \lambda)\tau_1)_+$$

Optimal triples

Let (I, ρ, E) be a triple such that $\sigma := \operatorname{Tr}_{M_n}(\rho)$ is of rank *n*. Let $\tau_i = (\Phi_i \otimes id_k)(\rho)$, i = 0, 1. Then (I, ρ, E) is an optimal triple if and only if

- 1. $E = \operatorname{supp}(\lambda \tau_0 (1 \lambda)\tau_1)_+$
- 2. $\operatorname{Tr}_{M_m} |\lambda \tau_0 (1 \lambda) \tau_1|$ is a multiple of σ .

In particular, there exists an optimal triple with ρ a maximally entangled state if and only if

$$\operatorname{Tr}_{M_m} |\lambda C(\Phi_0) - (1 - \lambda) C(\Phi_1)| = c I_n,$$

for some $c \in \mathbb{R}$.

Restricted tests for channels

An admissible family of tests: Let $\mathcal{T} \subset \mathcal{Q}^*$ be such that (i) \mathcal{T} is closed, convex and $int(\mathcal{T}) \neq \emptyset$ (ii) $0 \in \mathcal{T}$ and $\mathbf{t} \in \mathcal{T}$ implies $e - \mathbf{t} \in \mathcal{T}$ (iii) if $\mathbf{t} \in \mathcal{T}$ and $(k, \rho, E) \in \mathbf{t}$, then

defines a test in \mathcal{T} for all channels ψ_1, ψ_2, ψ_3 .

We will consider

- tests with the effect E restricted to some admissible set of effects;
- tests with the input state ρ restricted to some positive cone (mapping cone).

Restricted tests for channels

Let $\mathcal{P}(m, n)$ be mapping cones,

$$\mathcal{CP}(m,n) \subseteq \mathcal{P}(m,n) \subseteq \mathcal{P}_1(m,n).$$
Let $\mathcal{V} = \{\Phi \in \mathcal{L}_{m,n}, \operatorname{Tr} \Phi(a) = c \operatorname{Tr} a\}$, put $\mathcal{Q} = \mathcal{V} \cap \mathcal{P}$.
• $\mathcal{Q}^* = \{A + \mathcal{V}^{\perp}, A \in \mathcal{P}^*\}$
• $e = \frac{1}{n}I + \mathcal{V}^{\perp}$ is an order unit in $(\mathcal{V}^*, \mathcal{Q}^*)$
• $B_e = \{\text{trace preserving elements in } \mathcal{P}\} =: \mathcal{C}_{\mathcal{P}} \supseteq \mathcal{C}_{m,n}$
Put $\mathcal{T} = [0, e]_{\mathcal{Q}^*}: \Phi_0, \Phi_1 \text{ considered as elements of } \mathcal{C}_{\mathcal{P}}.$ Then
 $\min_{\mathbf{t} \in \mathcal{T}} \mathcal{P}_{\lambda}(\mathbf{t}) = \frac{1}{2}(1 - \|\lambda \Phi_0 - (1 - \lambda)\Phi_1\|_{\mathcal{C}_{\mathcal{P}}})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Restrictions on effects

Theorem Let $\tilde{P} = (\mathcal{P}^*)^t$. Then $\mathcal{T} = \{(I, \rho, E) \in \mathbf{t}, E \in [0, I]_{\tilde{P}(m, I)}\}.$

More generally, let $\mathcal{E}(m, l)$ be an admissible set of effects, for all m, l, such that

$$(\phi \otimes \psi)(\mathcal{E}) \subseteq \mathcal{E}, \ \phi, \psi$$
 cp subunital maps

Then

- $P(m, n) := P_{\mathcal{E}(m, n)}$ are mapping cones
- $\|A\|_{(\mathcal{E})} \geq \|(\phi \otimes \psi)(A)\|_{(\mathcal{E})}$, ϕ, ψ subunital cp maps

Restriction on effects

Let
$$\mathcal{T} = \{\mathbf{t}, (l, \rho, E) \in \mathbf{t} \text{ with } E \in \mathcal{E}(m, l)\}$$
. Then

$$\min_{\mathbf{t} \in \mathcal{T}} P_{\lambda}(\mathbf{t}) = \frac{1}{2}(1 - \|\lambda \Phi_0 - (1 - \lambda)\Phi_1\|_{CP \to (\mathcal{E})})$$

where

$$\|\Phi\|_{CP\to(\mathcal{E})} = \max_{\rho\in D_{nn}} \|(\Phi\otimes id_n)(\rho)\|_{(\mathcal{E}(m,n))}$$

• $\|\phi \circ \Phi \circ \psi\|_{CP \to (\mathcal{E})} \le \|\Phi\|_{CP \to (\mathcal{E})}, \phi, \psi$ channels • Let $\tilde{\mathcal{P}}(m, n) = C^{-1}(P(m, n)^t)$, then $\|\Phi\|_{CP \to (\mathcal{E})} \le \|\Phi\|_{CP \to ([0, I]_P)} = \max_{\rho \in D_{nn}} \|(\Phi \otimes id_n)(\rho)\|_{D_P} = \|\Phi\|_{\mathcal{C}_{\tilde{\mathcal{P}}}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Restriction of input states

Let P(m, n) be mapping cones. Let

$$\mathcal{T} = \{\mathbf{t}, \ (I, \rho, E) \in \mathbf{t}, \text{ with } \rho \in P(n, I)\}$$

Then

- \mathcal{T} is an admissible family of tests.
- $\min_{\mathbf{t}\in\mathcal{T}} P_{\lambda}(\mathbf{t}) = \frac{1}{2}(1 \|\lambda\Phi_0 (1 \lambda)\Phi_1\|_{P \to CP})$, where

$$\|\Phi\|_{P\to CP} = \max_{\rho\in D_{nn}\cap P} \|(\Phi\otimes id)(\rho)\|_1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Restriction on input states by restriction on effects

The same can be obtained by a restriction on effects: Let $(I, \rho, E) \in \mathbf{t}$, $\rho \in P(n, I)$. Then we can find $(k, \rho', F) \in \mathbf{t}$, such that

$$F \in \mathcal{E}_{P}(m,k) := \{ (id_{m} \otimes \psi)(E), \\ t \circ \psi \circ t \in P(k,l), \psi(l_{l}) \leq l_{k}, E \in [0, l_{ml}], l \in \mathbb{N} \}$$

E_P is an admissible set of effects and (φ ⊗ ψ)(*E_P*) ⊂ *E_P* for φ, ψ subunital cp maps

(日) (同) (三) (三) (三) (○) (○)

• $\mathbf{t} \in \mathcal{T}$ if and only if $(k, \rho, E) \in \mathbf{t}$, $E \in \mathcal{E}_P(m, k)$. $\|\Phi\|_{P \to CP} = \|\Phi\|_{CP \to (\mathcal{E}_P)} \le \|\Phi\|_{\mathcal{C}_{\tilde{P}}}$

Examples

Let P = Sep

- restrict $\rho \in Sep$: $\|\Phi\|_{Sep \to CP} = \max_{\rho \in D_n} \|\Phi(\rho)\|_1$,
- this is the same as restrict $E \in \mathcal{E}_{LOCC^{\leftarrow}}$
- restrict *E* ∈ *E*_{Sep}: view Φ₀, Φ₁ as positive trace preserving maps
- $E \in \mathcal{E}_{LOCC}$: there are channels such that $\|\Phi_0 - \Phi_1\|_{CP \to (\mathcal{E}_{LOCC})} > \|\Phi_0 - \Phi_1\|_{Sep \to CP}$ (Matthews, Piani, Watrous, 2010)

Let $P = S_k$.

- restrict $\rho \in S_k$: $\|\Phi\|_{S_k \to CP} = \max_{\rho \in D_{nk}} \|(\Phi \otimes id_k)(\rho)\|_1$, (Johnston, Kribs, Paulsen, Pereira, 2010)
- this is the same as using triples (kl, ρ, E) , $E \in \mathcal{E}_{LOCC \leftarrow (mk;l)}$
- restrict $E \in [0, I]_{S_k}$: Φ_0 , Φ_1 *k*-positive trace preserving maps
- $\|\Phi_0 \Phi_1\|_{CP \to S_k} > \|\Phi\|_{S_k \to CP}$ for some channels Φ_0, Φ_1 .

Conclusion

- Base norms appear in discrimination problems also for quantum channels (and for more general quantum protocols).
- Importance of mapping cones also in this context.
- For restricted tests, it is enough to consider restrictions only on effects and not on input states (but not other way round).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <