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Discrimination of quantum states

M, = M,(C), D, be the set of states (= density matrices),
po; p1 € Dy
e p unknown, p € {po, p1} with some a priori probablity
(A, 1 —X). Decide which is p.
o tests: E € M,, 0 < E <[ effects, Tr pE - probability of
choosing pg

e optimality: minimize the average error probability
Pr(E) :==ATr (I — E)po + (1 — A\)Tr Epq

It is well known that

. 1
Jmin, PA(E) = 5(1= A0 — (1= Npall)

(Helstrom, 1969)



Discrimination of quantum channels
Cm,n = {channels M, = Mp}, &g, 1 € Cpyp.
e ® unknown, ® € {®g, P}, with probability (A, 1 — X)
e tests: triples (/,p, E), p € Dy, E an effect in My,

)

Tr E(® ® id;)(p) - probability of choosing ®g.

e minimal average error probability

) 1
(ln"l!r;_) P\(E) = 5(1 — [[Adg — (1 — N)P1]fs)

91l = max max (& @ idh) (o) |2 = max &2 id(p)]

(Kitaev 1997)



Positive cones, bases and order units

Let V be a real vector space, dim(V) < oo, V* its dual, with
duality (-, ).
e P CV a positive cone: closed convex cone, PN —P = {0},
V=P-P
e ordered vector space: x <pyify—x€P
e P* C V* the dual cone: {f € V*,(f,p) >0, p € P},
e BC P abase: forpe P, p#0, 3 unique s >0,b € B:
p=sb
e ¢ € P an order unit: for x € V, dr > 0: x <p re,

There is a 1-1 correspondence between bases of P and order units
ee P*:
B={peP, (e,p)=1} =B,



Order unit norms and base norms

Let e € P* be an order unit, B = B, the corresponding base of P.
Let [0, e]p« = {f € V*,0 <p« f <p- e}.

e order unit norm: f € V*:
If|le :=inf{XA > 0,—Xe <p- f <p- Ae}
e its dual is the base norm: v € V:
vllg :=inf{t +s,v =tby —sby,s, t >0,b1, b € B}

= sup (2f —e,v)
fE[O,e]P*



Base norms and discrimination

Formally, we can consider the discrimination problem in the base
B: let by, b1 € B
e b e B unknown, b € {bg, b1}
e tests: affine maps B — [0,1] = t € [0, €] p+,
(t, b) is the probability of choosing by
e Given 0 < X\ <1, the average error probability is

PE(t) =X — (t,Abg — (1 — \)by)

It follows that

. 1
min  P2(t) = Z(1 — |[Aby — (1 — \)b1||B)
te[0,e] px 2



Discrimination of states

Let V = Ml = {x € M,, x = x*}, then
e V* =V, with duality (a, b) = Tr ab, (but we formally
distinguish V - space of states and V* - space of effects)

e P= M = P*is a (self-dual) positive cone,

e e = I, is an order unit in (V*, M;7), Be = D, the
corresponding base and

F-lle =111 - low = - Ml

o tests: elements in [0, /] - effects



Discrimination of states by restricted tests

Suppose the set of tests is restricted: let £ C M," be such that
(i) & is closed, convex and int(E) # ()
(i) 0e &, Ec & implies| —E €&
We will call £ an admissible set of effects. Then
o Pf:=U0t€ is a positive cone in V*, PE C M.
e | is an order unit in (V*, P¢)
e £C0,/]py €0,1]
e |Ix|l(e) := supgecg Tr (2E — I)x defines a norm in M}.
We have

1

min PA(E) = 5 (1= lIApo = (1 = N)pille))

(Matthews, Werner, Winter 2009; Reeb, Kastoryano, Wolf 2011 )



Discrimination of states by restricted tests

Let Pc = (P%)* C V and
De:={pe P, Trp=1}

is a base of Pg, corresponding to /. Note that [0, /]p: is a
admissible set of effects and

Ixllcey = 1Ixllqto.n) = [IXllpe < lIxlx

Since M;" C Pe, po, p1 € D, C De elements of a larger base.
(Reeb, Kastoryano, Wolf 2011)



Examples

Take M2 = MI @ M), Let

K L
Csep={) E@F,EeMh Fe MY E&F=1IL<K}
i=1 i=1
Erocc = implemented by LOCC measurements

Erocce ={) JEi®Fi, 0< Ej < lm, 0< Fi, > Fi < I}

Then
* _ px* _ px _ L + +
'DgLoccH - 'DfLocc - Pgsep = Sep := Mm ® Mn

and
Erocc S Erocc S [0, l]sep = Esep



Hermiticity-preserving linear maps

Let Ly p = {P: M, = My, linear, ®(a*) = ®(a)*,a € M,}.

Lr,=Mh =M &M,

with duality defined by
(b,a® b) =Tra'®d(b), ac My, be M,
Note that
(d,A) =Tr C(®)*A,  Aec M

where C : L, , — M! is the Choi isomorphism:

n

C(®) = (¢ @idn)(En), En=|en)(en], |en) = an in)



Positive cones in L, ,

Some natural positive cones:
e P; = positive maps.
e CP = completely positive (cp) maps
o Py = k-positive maps.
e S1 = entanglement breaking maps

e S; = partially entanglement breaking maps

We have

Slgskgsm/\n:CP:PmAnCPkgPI



Mapping cones

Mapping cones: Let P(m,n) C L, , be postive cones such that if
® € P(m, n) then 1 o ® ohy € P(j,1) for all cp maps
¢12Mm—>Mj, w2ZM/—>Mn.

(Stérmer 1986)

e toP(m,n)ot are again mapping cones.

e All previous examples are mapping cones, invariant under this
transformation.



Dual cones

Pi = Sk = elements of Schmidt rank < k:

k
Ski={D_ [ Wil [bi) = > I @nf), & € C™, i € C}
i j=1
i Pf = 51 = Sep
o CP* = M},

S = k — BP k-block-positive operators

81 = BP block-positive operators

(Skowronek, Stérmer,Zyczkowski 2009)



Choi isomorphism on positive cones

e C(CP) = /\/I,',*;n = CP
o C(PK)=k— BP
o C(Sk) = Sk

(Skowronek, Stérmer,Zyczkowski 2009)
Let P(m, n) are mapping cones. Then
e P(m,n) =P*(m,n) or C(P(m,n)) satisfy:
(1/)1 ® ¢2)(P(’77 k)) = P(m7 I)

for all cp maps 91 : M, — My, ¥ 1 M — M,;. We will call
this again mapping cones.

e P(m,n)" are mapping cones as well.



Quantum channels as a base of a cone

Fix the cone P =CP in L, p.
Let V={® e Ly, Trd(a)=cTra, for some c € R}.

e Vis a subspace in L, ,, generated by the set Cp, , of channels
V¥=M

h oL, where

Vi={XeMr (6,X)=0,0cV)

mn»

Q =V NCP is a positive cone in V
o ={A+VEH Ae M}
Cm,n is a base of Q

e The corresponding order unit is

1
e=;mﬁwﬂz{m®maepﬁ



Discrimination of quantum channels

Let ®g, ®1 € Crpyp, unknown & € {dg, 1}, prior (A, 1 — ).
o tests: t € [0, e]o-

e minimum average error probability:

. 1
min  Py(t) = 5(1 — [[A®o — (1 = A)®4]lc,, ,)
te[0,e] o 2

t € [0, €]~ iff there is some o0 € D, and 0 < T < I, ® o such
that
(d,t)y = (b, T) ="Tr C(d))tT, dcVy

We note that (T,/ ® o0 — T) is a quantum 1-tester, or
PPOVM

(Chiribella, D'Ariano, Perinotti 2008, Ziman 2008)

e such a tester T is not unique for t.



Quantum 1-testers

Theorem (Ziman , Chiribella et al.)

T € M, is a quantum 1-tester if and only if there is a triple
(I, p, E), where p € Dy and E an effect in My, such that

(&, T) =TrE(®®id))(p), @ a channel

e Note that there are many triples corresponding to the same
tester.

e Atest t €[0,e]o- can be seen as an equivalence class of
triples (1, p, E).

It follows that || - [[c,., = I - [[o-



Optimal triples

A triple (/, p, E) is optimal if

Py(l,p, E) = in Px(k,p,F
/\(7p7 ) (krglf],__) )\( 0 )
Let 77 = (®; ® idk)(p), i = 0,1. Then
e 7, € Dy and Try 7 = Trpyp, i =0, 1.

e If (1, p, E) is optimal, then E must be an optimal test for
T, T1, A
E =supp(Arg — (1 — \)71)+



Optimal triples

Let (/, p, E) be a triple such that o := Trp,(p) is of rank n. Let
7i = (®; @ idi)(p), i = 0,1. Then (I, p, E) is an optimal triple if
and only if

1. E =supp(Ao — (1 — A1)+

2. Try, |At0 — (1 — A)71] is a multiple of o.

In particular, there exists an optimal triple with p a maximally
entangled state if and only if

Trum, [AC(®0) — (1 = A)C(®1)| = cln,

for some ¢ € R.



Restricted tests for channels

An admissible family of tests: Let 7 C Q* be such that
(i) T is closed, convex and int(T) # ()

(i) 0eTandte T impliese—tec T

(iii) if t € T and (k,p, E) € t, then

Y1 @ e
p‘L

Y3

defines a test in T for all channels 91, 92, 13.

We will consider

e tests with the effect E restricted to some admissible set of
effects;

e tests with the input state p restricted to some positive cone
(mapping cone).



Restricted tests for channels

Let P(m, n) be mapping cones,
CP(m,n) C P(m,n) C Pi(m,n).

Let V={® e Lp, Trd(a) = cTra}, put Q=VNP.

e Q" ={A+ V- AcP*}

e e=1/+ Vs an order unit in (V*, Q%)

e B. = {trace preserving elements in P} =: Cp D Cm p
Put 7 = [0, e]g+: ®g, P considered as elements of Cp. Then

min Py (t) = %(1 — [|IA®o — (1 = N)®1ic,)

teT



Restrictions on effects

Thegrem
Let P = (P*)t. Then T ={(l,p,E) €t, E €[0,/]p,n 1}

More generally, let £(m, /) be an admissible set of effects, for all
m, I, such that

(p@Y)(E) CE, ¢, cp subunital maps
Then

e P(m,n) := Pg(m pn) are mapping cones
* |l = (@ @ ¥)(A)llg). @, subunital cp maps



Restriction on effects

Let 7 = {t, (/,p,E) € t with E € &(m, [)}. Then

1
min Py(t) = =

min 2(1 = [[A®o — (1 = AN)®P1llcp—(e))

where
[Pl cps(e) = max [(® @ idn) ()|l (£ (m,n))
* lpo®otlcre) < [®llcpo(e). @9 channels
o Let P(m, n) = CY(P(m, n)t), then

[Pl cp—(ey < 1Pl cp—(10,15) = max [(P@idn)(p)llDp = [|Pllc,



Restriction of input states

Let P(m, n) be mapping cones. Let
T=A{t, (I,p,E) € t, with p € P(n,/)}

Then
e 7T is an admissible family of tests.
o minger PA(t) = 3(1 — [A®Pg — (1 — N)®P1|[p—.cp), where

b = P ®id
[@lp-sce = max [(®@id)(o)]s

nn



Restriction on input states by restriction on effects

The same can be obtained by a restriction on effects: Let
(I,p,E) €t, pe P(n,1). Then we can find (k, o/, F) € t, such that

F e &p(m, k) := {(idm @ ¥)(E),
toyote P(k, /),w(ll) < I, E€ [0, Im/],/E N}

e Ep is an admissible set of effects and (¢ ® ¢)(Ep) C Ep for
@, 1 subunital cp maps

e te T ifandonlyif (k,p,E) €t, E € Ep(m, k).
[Pllp—cp = 1®Pllcpier) < 1®lle,



Examples

Let P = Sep
o restrict p € Sep: ]l seprcp = maxen, [|9(0)],
e this is the same as restrict E € £ occ+
e restrict E € Esep: view ®g, Py as positive trace preserving
maps
o £ € & occ: there are channels such that
[P0 — P1llcp—(g0cc) > |Po — Pillsep—scp
(Matthews, Piani, Watrous, 2010)
Let P = 5,.

e restrict p € Si: || P||s,cp = Mmax,ep,, (P @ idk)(p)]|1.
(Johnston, Kribs, Paulsen, Pereira, 2010)

e this is the same as using triples (k/, p, E), E € £ occe (mk;h)
e restrict E € [0, /]s,: ®o, P1 k-positive trace preserving maps
o ||[®g — P1]|cp—s, > ||Plls,—cp for some channels &g, ®;.



Conclusion

e Base norms appear in discrimination problems also for
quantum channels (and for more general quantum protocols).

e Importance of mapping cones also in this context.

e For restricted tests, it is enough to consider restrictions only
on effects and not on input states (but not other way round).



