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Discrimination of quantum states

Mn = Mn(C), Dn be the set of states (= density matrices),
ρ0, ρ1 ∈ Dn

• ρ unknown, ρ ∈ {ρ0, ρ1} with some a priori probablity
(λ, 1− λ). Decide which is ρ.

• tests: E ∈ Mn, 0 ≤ E ≤ I effects, Tr ρE - probability of
choosing ρ0

• optimality: minimize the average error probability

Pλ(E ) := λTr (I − E )ρ0 + (1− λ)TrEρ1

It is well known that

min
0≤E≤I

Pλ(E ) =
1

2
(1− ‖λρ0 − (1− λ)ρ1‖1)

(Helstrom, 1969)



Discrimination of quantum channels

Cm,n = {channels Mn → Mm}, Φ0,Φ1 ∈ Cm,n.

• Φ unknown, Φ ∈ {Φ0,Φ1}, with probability (λ, 1− λ)

• tests: triples (l , ρ,E ), ρ ∈ Dnl , E an effect in Mml ,

ρ

Φ

E

TrE (Φ⊗ idl)(ρ) - probability of choosing Φ0.

• minimal average error probability

min
(l ,ρ,E)

Pλ(E ) =
1

2
(1− ‖λΦ0 − (1− λ)Φ1‖�)

‖Φ‖� = max
l

max
ρ∈Dnl

‖(Φ⊗ idl)(ρ)‖1 = max
ρ∈Dnn

‖Φ⊗ idn(ρ)‖1

(Kitaev 1997)



Positive cones, bases and order units

Let V be a real vector space, dim(V) <∞, V∗ its dual, with
duality 〈·, ·〉.
• P ⊂ V a positive cone: closed convex cone, P ∩ −P = {0},
V = P − P

• ordered vector space: x ≤P y if y − x ∈ P

• P∗ ⊂ V∗ the dual cone: {f ∈ V∗, 〈f , p〉 ≥ 0, p ∈ P},
• B ⊂ P a base: for p ∈ P, p 6= 0, ∃ unique s > 0, b ∈ B:
p = sb

• e ∈ P an order unit: for x ∈ V, ∃r > 0: x ≤P re,

There is a 1-1 correspondence between bases of P and order units
e ∈ P∗:

B = {p ∈ P, 〈e, p〉 = 1} =: Be



Order unit norms and base norms

Let e ∈ P∗ be an order unit, B = Be the corresponding base of P.
Let [0, e]P∗ = {f ∈ V∗, 0 ≤P∗ f ≤P∗ e}.
• order unit norm: f ∈ V∗:

‖f ‖e := inf{λ > 0,−λe ≤P∗ f ≤P∗ λe}

• its dual is the base norm: v ∈ V:

‖v‖B := inf{t + s, v = tb1 − sb2, s, t ≥ 0, b1, b2 ∈ B}
= sup

f ∈[0,e]P∗
〈2f − e, v〉



Base norms and discrimination

Formally, we can consider the discrimination problem in the base
B: let b0, b1 ∈ B

• b ∈ B unknown, b ∈ {b0, b1}
• tests: affine maps B → [0, 1] ≡ t ∈ [0, e]P∗ ,
〈t, b〉 is the probability of choosing b0

• Given 0 ≤ λ ≤ 1, the average error probability is

PB
λ (t) = λ− 〈t, λb0 − (1− λ)b1〉

It follows that

min
t∈[0,e]P∗

PB
λ (t) =

1

2
(1− ‖λb0 − (1− λ)b1‖B)



Discrimination of states

Let V = Mh
n = {x ∈ Mn, x = x∗}, then

• V∗ ≡ V, with duality 〈a, b〉 = Tr ab, (but we formally
distinguish V - space of states and V∗ - space of effects)

• P = M+
n = P∗ is a (self-dual) positive cone,

• e = In is an order unit in (V∗,M+
n ), Be = Dn the

corresponding base and

‖ · ‖e = ‖ · ‖, ‖ · ‖Dn = ‖ · ‖1

• tests: elements in [0, I ] - effects



Discrimination of states by restricted tests

Suppose the set of tests is restricted: let E ⊂ M+
n be such that

(i) E is closed, convex and int(E) 6= ∅
(ii) 0 ∈ E , E ∈ E implies I − E ∈ E

We will call E an admissible set of effects. Then

• P∗E := ∪t>0tE is a positive cone in V∗, P∗E ⊆ M+
n .

• I is an order unit in (V∗,P∗E)

• E ⊆ [0, I ]P∗E ⊆ [0, I ]

• ‖x‖(E) := supE∈E Tr (2E − I )x defines a norm in Mh
n .

We have

min
E∈E

Pλ(E ) =
1

2
(1− ‖λρ0 − (1− λ)ρ1‖(E))

(Matthews, Werner, Winter 2009; Reeb, Kastoryano, Wolf 2011 )



Discrimination of states by restricted tests

Let PE = (P∗E)∗ ⊂ V and

DE := {ρ ∈ PE ,Tr ρ = 1}

is a base of PE , corresponding to I . Note that [0, I ]P∗E is a
admissible set of effects and

‖x‖(E) ≤ ‖x‖([0,I ]P∗E )
= ‖x‖DE ≤ ‖x‖1

Since M+
n ⊆ PE , ρ0, ρ1 ∈ Dn ⊆ DE elements of a larger base.

(Reeb, Kastoryano, Wolf 2011)



Examples

Take Mh
mn = Mh

m ⊗Mh
n . Let

Esep = {
K∑
i=1

Ei ⊗ Fi ,Ei ∈ M+
m ,Fi ∈ M+

n ,

L∑
i=1

Ei ⊗ Fi = I , L ≤ K}

ELOCC = implemented by LOCC measurements

ELOCC← = {
∑
i

Ei ⊗ Fi , 0 ≤ Ei ≤ Im, 0 ≤ Fi ,
∑
i

Fi ≤ In}

Then
P∗ELOCC←

= P∗ELOCC
= P∗Esep = Sep := M+

m ⊗M+
n

and
ELOCC← ( ELOCC ( [0, I ]Sep = ESep



Hermiticity-preserving linear maps

Let Lm,n := {Φ : Mn → Mm linear,Φ(a∗) = Φ(a)∗, a ∈ Mn}.

L∗m,n ≡ Mh
mn ≡ Mh

m ⊗Mh
n ,

with duality defined by

〈Φ, a⊗ b〉 = Tr atΦ(b), a ∈ Mm, b ∈ Mn

Note that
〈Φ,A〉 = TrC (Φ)tA, A ∈ Mh

mn,

where C : Lm,n → Mh
mn is the Choi isomorphism:

C (Φ) = (Φ⊗ idn)(En), En = |en〉〈en|, |en〉 =
n∑

i=1

|in ⊗ in〉



Positive cones in Lm,n

Some natural positive cones:

• P1 = positive maps.

• CP = completely positive (cp) maps

• Pk = k-positive maps.

• S1 = entanglement breaking maps

• Sk = partially entanglement breaking maps

We have

S1 ⊆ Sk ⊆ Sm∧n = CP = Pm∧n ⊆ Pk ⊆ P1



Mapping cones

Mapping cones: Let P(m, n) ⊂ Lm,n be postive cones such that if
Φ ∈ P(m, n) then ψ1 ◦ Φ ◦ ψ2 ∈ P(j , l) for all cp maps
ψ1 : Mm → Mj , ψ2 : Ml → Mn.

(Störmer 1986)

• t ◦ P(m, n) ◦ t are again mapping cones.

• All previous examples are mapping cones, invariant under this
transformation.



Dual cones

• P∗k = Sk ≡ elements of Schmidt rank ≤ k :

Sk := {
∑
i

|ψi 〉〈ψi |, |ψi 〉 =
k∑

j=1

|ξij ⊗ ηij 〉, ξij ∈ Cm, ηij ∈ Cn}

• P∗1 = S1 = Sep

• CP∗ = M+
mn

• S∗k = k − BP k-block-positive operators

• S∗1 = BP block-positive operators

(Skowronek, Störmer,Zyczkowski 2009)



Choi isomorphism on positive cones

• C (CP) = M+
mn = CP

• C (Pk) = k − BP

• C (Sk) = Sk

(Skowronek, Störmer,Zyczkowski 2009)

Let P(m, n) are mapping cones. Then

• P(m, n) = P∗(m, n) or C (P(m, n)) satisfy:

(ψ1 ⊗ ψ2)(P(n, k)) = P(m, l)

for all cp maps ψ1 : Mn → Mm, ψ2 : Mk → Ml . We will call
this again mapping cones.

• P(m, n)t are mapping cones as well.



Quantum channels as a base of a cone

Fix the cone P = CP in Lm,n.
Let V = {Φ ∈ Lm,n, TrΦ(a) = cTr a, for some c ∈ R}.
• V is a subspace in Lm,n, generated by the set Cm,n of channels

• V∗ ≡ Mh
mn|V⊥ , where

V⊥ = {X ∈ Mh
mn, 〈Φ,X 〉 = 0,Φ ∈ V}

• Q = V ∩ CP is a positive cone in V
• Q∗ = {A + V⊥,A ∈ M+

mn}
• Cm,n is a base of Q
• The corresponding order unit is

e =
1

n
Imn + V⊥ = {Im ⊗ σ, σ ∈ Dn}



Discrimination of quantum channels

Let Φ0,Φ1 ∈ Cm,n, unknown Φ ∈ {Φ0,Φ1}, prior (λ, 1− λ).

• tests: t ∈ [0, e]Q∗

• minimum average error probability:

min
t∈[0,e]Q∗

Pλ(t) =
1

2
(1− ‖λΦ0 − (1− λ)Φ1‖Cm,n)

• t ∈ [0, e]Q∗ iff there is some σ ∈ Dn and 0 ≤ T ≤ Im ⊗ σ such
that

〈Φ, t〉V = 〈Φ,T 〉 = TrC (Φ)tT , Φ ∈ V

• We note that (T , I ⊗ σ − T ) is a quantum 1-tester, or
PPOVM

(Chiribella, D’Ariano, Perinotti 2008, Ziman 2008)

• such a tester T is not unique for t.



Quantum 1-testers

Theorem (Ziman , Chiribella et al.)

T ∈ Mmn is a quantum 1-tester if and only if there is a triple
(l , ρ,E ), where ρ ∈ Dnl and E an effect in Mml , such that

〈Φ,T 〉 = TrE (Φ⊗ idl)(ρ), Φ a channel

• Note that there are many triples corresponding to the same
tester.

• A test t ∈ [0, e]Q∗ can be seen as an equivalence class of
triples (l , ρ,E ).

It follows that ‖ · ‖Cm,n = ‖ · ‖�.



Optimal triples

A triple (l , ρ,E ) is optimal if

Pλ(l , ρ,E ) = min
(k,ρ′,F )

Pλ(k , ρ′,F )

Let τi = (Φi ⊗ idk)(ρ), i = 0, 1. Then

• τi ∈ Dmk and TrMmτi = TrMnρ, i = 0, 1.

• If (l , ρ,E ) is optimal, then E must be an optimal test for
τ0, τ1, λ:

E = supp(λτ0 − (1− λ)τ1)+



Optimal triples

Let (l , ρ,E ) be a triple such that σ := TrMn(ρ) is of rank n. Let
τi = (Φi ⊗ idk)(ρ), i = 0, 1. Then (l , ρ,E ) is an optimal triple if
and only if

1. E = supp(λτ0 − (1− λ)τ1)+

2. TrMm |λτ0 − (1− λ)τ1| is a multiple of σ.

In particular, there exists an optimal triple with ρ a maximally
entangled state if and only if

TrMm |λC (Φ0)− (1− λ)C (Φ1)| = cIn,

for some c ∈ R.



Restricted tests for channels

An admissible family of tests: Let T ⊂ Q∗ be such that

(i) T is closed, convex and int(T ) 6= ∅
(ii) 0 ∈ T and t ∈ T implies e − t ∈ T
(iii) if t ∈ T and (k , ρ,E ) ∈ t, then

ρ

ψ1 Φ ψ2

ψ3

E

defines a test in T for all channels ψ1, ψ2, ψ3.

We will consider

• tests with the effect E restricted to some admissible set of
effects;

• tests with the input state ρ restricted to some positive cone
(mapping cone).



Restricted tests for channels

Let P(m, n) be mapping cones,

CP(m, n) ⊆ P(m, n) ⊆ P1(m, n).

Let V = {Φ ∈ Lm,n,TrΦ(a) = cTr a}, put Q = V ∩ P.

• Q∗ = {A + V⊥,A ∈ P∗}
• e = 1

n I + V⊥ is an order unit in (V∗,Q∗)
• Be = {trace preserving elements in P} =: CP ⊇ Cm,n

Put T = [0, e]Q∗ : Φ0,Φ1 considered as elements of CP . Then

min
t∈T

Pλ(t) =
1

2
(1− ‖λΦ0 − (1− λ)Φ1‖CP )



Restrictions on effects

Theorem
Let P̃ = (P∗)t . Then T = {(l , ρ,E ) ∈ t, E ∈ [0, I ]P̃(m,l)}.

More generally, let E(m, l) be an admissible set of effects, for all
m, l , such that

(φ⊗ ψ)(E) ⊆ E , φ, ψ cp subunital maps

Then

• P(m, n) := PE(m,n) are mapping cones

• ‖A‖(E) ≥ ‖(φ⊗ ψ)(A)‖(E), φ, ψ subunital cp maps



Restriction on effects

Let T = {t, (l , ρ,E ) ∈ t with E ∈ E(m, l)}. Then

min
t∈T

Pλ(t) =
1

2
(1− ‖λΦ0 − (1− λ)Φ1‖CP→(E))

where

‖Φ‖CP→(E) = max
ρ∈Dnn

‖(Φ⊗ idn)(ρ)‖(E(m,n))

• ‖φ ◦ Φ ◦ ψ‖CP→(E) ≤ ‖Φ‖CP→(E), φ, ψ channels

• Let P̃(m, n) = C−1(P(m, n)t), then

‖Φ‖CP→(E) ≤ ‖Φ‖CP→([0,I ]P) = max
ρ∈Dnn

‖(Φ⊗idn)(ρ)‖DP
= ‖Φ‖CP̃



Restriction of input states

Let P(m, n) be mapping cones. Let

T = {t, (l , ρ,E ) ∈ t, with ρ ∈ P(n, l)}

Then

• T is an admissible family of tests.

• mint∈T Pλ(t) = 1
2(1− ‖λΦ0 − (1− λ)Φ1‖P→CP), where

‖Φ‖P→CP = max
ρ∈Dnn∩P

‖(Φ⊗ id)(ρ)‖1



Restriction on input states by restriction on effects

The same can be obtained by a restriction on effects: Let
(l , ρ,E ) ∈ t, ρ ∈ P(n, l). Then we can find (k, ρ′,F ) ∈ t, such that

F ∈ EP(m, k) := {(idm ⊗ ψ)(E ),

t ◦ ψ ◦ t ∈ P(k, l), ψ(Il) ≤ Ik ,E ∈ [0, Iml ], l ∈ N}

• EP is an admissible set of effects and (φ⊗ ψ)(EP) ⊂ EP for
φ, ψ subunital cp maps

• t ∈ T if and only if (k , ρ,E ) ∈ t, E ∈ EP(m, k).

‖Φ‖P→CP = ‖Φ‖CP→(EP) ≤ ‖Φ‖CP̃



Examples

Let P = Sep

• restrict ρ ∈ Sep: ‖Φ‖Sep→CP = maxρ∈Dn ‖Φ(ρ)‖1,

• this is the same as restrict E ∈ ELOCC←

• restrict E ∈ ESep: view Φ0, Φ1 as positive trace preserving
maps

• E ∈ ELOCC : there are channels such that
‖Φ0 − Φ1‖CP→(ELOCC ) > ‖Φ0 − Φ1‖Sep→CP

(Matthews, Piani, Watrous, 2010)

Let P = Sk .

• restrict ρ ∈ Sk : ‖Φ‖Sk→CP = maxρ∈Dnk
‖(Φ⊗ idk)(ρ)‖1,

(Johnston, Kribs, Paulsen, Pereira, 2010)

• this is the same as using triples (kl , ρ,E ), E ∈ ELOCC←(mk;l)

• restrict E ∈ [0, I ]Sk : Φ0, Φ1 k-positive trace preserving maps

• ‖Φ0 − Φ1‖CP→Sk > ‖Φ‖Sk→CP for some channels Φ0,Φ1.



Conclusion

• Base norms appear in discrimination problems also for
quantum channels (and for more general quantum protocols).

• Importance of mapping cones also in this context.

• For restricted tests, it is enough to consider restrictions only
on effects and not on input states (but not other way round).


