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Effect algebras

An effect algebra is a system (E , 0, 1,⊕), where 0, 1 ∈ E are
constants, ⊕ is a partial binary operation on E such that:

(E1) if a⊕ b is defined, then b ⊕ a is defined and a⊕ b = b ⊕ a;

(E2) if a⊕ b and (a⊕ b)⊕ c are defined, then a⊕ (b ⊕ c) is
defined and a⊕ (b ⊕ c) = (a⊕ b)⊕ c;

(E3) for every a ∈ E there is unique a′ ∈ E such that a⊕ a′ = 1;

(E4) if a⊕ 1 ∈ E , then a = 0.

Partial order: a ≤ b if there is some c ∈ E , such that b = a⊕ c

Foulis & Bennett, 1994
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Effect algebras

An algebraic model of the algebra of Hilbert space effects:

E ∈ B(H), 0 ≤ E ≤ I

which represent measurements on a quantum system in the Hilbert
space formalism

Fundamental questions:

I What are the properties that characterize the algebra of
Hilbert space effects?

I How to derive quantum theory from some basic operational
postulates?
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States and effects

Basic concepts of an operational theory:

I S - set of states: preparations of the system

I E - set of effects: yes/no measurements on the system

I F : E × S → [0, 1]: probability of outcome ”yes

E is represented as a convex effect algebra
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Convex effect algebras

A convex effect algebra (or an effect module): an effect algebra
(E , 0, 1,⊕) with an EA-bimorphism

[0, 1]× E → E , (λ, a) 7→ λa,

such that
µ(λa) = λ(µa), 1a = a.

Representation of CEA

Every convex effect algebra is affinely isomorphic to an inter-
val [0, u] in an ordered vector space (V ,V+) with an order
unit u.

Gudder & Pulmannová, 1998
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Contexts

Let E be a convex effect algebra. Then a ∈ E is

I sharp if a ∈ E such that a ∧ a′ = 0

I indecomposable if b ≤ a implies that b = ta for some t ∈ [0, 1]

Let S1(E ) be the set of sharp indecomposable elements in E .

A context is a finite set A = {a1, . . . , an} ∈ S1(E ) such that

a1 ⊕ · · · ⊕ an = 1
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Spectral effect algebras

Let E be a convex effect algebra.

Spectral decomposition of a ∈ E :

a = µ1a1 ⊕ · · · ⊕ µnan,

where {a1, . . . , an} is a context in E , µ1, . . . , µn ∈ [0, 1].

Spectral effect algebra

A convex effect algebra (E , 0, 1,⊕) where any a ∈ E has a
spectral decomposition.

Gudder, 2018
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Basic examples

Classical theory

Let Ω = {ω1, . . . , ωn}, E = {f : Ω→ [0, 1]} (fuzzy events). E is
specified as spectral effect algebra with a single context:

ai (ωj) = δij , i , j = 1, . . . , n.

Quantum theory

Let H be a Hilbert space, dim(H) = n, E = E(H) - Hilbert space
effects. Then E is a spectral effect algebra with uncountably many
contexts having the same number of elements:

- sets {e1, . . . , en} of orthogonal minimal projections
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The number of contexts in a spectral effect algebra

Question: (Gudder, 2018)
What is the possible number of contexts in a spectral effect
algebra?

Answer:
Either one or uncountably many:

I if there is more than one context, there are a, b ∈ S1(E ) that
are not summable

I each cλ := λa + (1− λ)b, λ ∈ [0, 1], has a spectral
decomposition in some context Cλ

I we show that if Cλ = Cµ for some λ 6= µ, then a, b ∈ Cλ

I a contradiction, since a, b are not summable

I hence Cλ 6= Cµ if λ 6= µ ∈ [0, 1] - uncountably many contexts.
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Further examples: effects over a convex set

K ⊂ Rm, compact, convex, E = E (K ) = {f : K → [0, 1], affine}

E is a spectral effect algebra if K is a spectral convex set:
= any exposed face F has a ”complement” F ′:

K ⊂ F ⊕c Tan(F ′), K ⊂ Tan(F )⊕c F
′, Tan(F ) ∩ Tan(F ′) = ∅

Alfsen & Shultz, 2003



Further examples: effects over a convex set

K ⊂ Rm, compact, convex, E = E (K ) = {f : K → [0, 1], affine}

E is a spectral effect algebra if K is a spectral convex set:
= any exposed face F has a ”complement” F ′:

K ⊂ F ⊕c Tan(F ′), K ⊂ Tan(F )⊕c F
′, Tan(F ) ∩ Tan(F ′) = ∅

Alfsen & Shultz, 2003



Further examples: effects over a convex set

K ⊂ Rm, compact, convex, E = E (K ) = {f : K → [0, 1], affine}

E is a spectral effect algebra if K is a spectral convex set:
= any exposed face F has a ”complement” F ′:

b

b

b

b

F

Tan(F )

F ′ = Tan(F ′)

b

b

F
Tan(F )

F ′

Tan(F ′)

K ⊂ F ⊕c Tan(F ′), K ⊂ Tan(F )⊕c F
′, Tan(F ) ∩ Tan(F ′) = ∅

Alfsen & Shultz, 2003



Further examples: effects over a convex set

K ⊂ Rm, compact, convex, E = E (K ) = {f : K → [0, 1], affine}

E is a spectral effect algebra if K is a spectral convex set:
= any exposed face F has a ”complement” F ′:

b

b

b

b

F

Tan(F )

F ′ = Tan(F ′)

b

b

F
Tan(F )

F ′

Tan(F ′)

K ⊂ F ⊕c Tan(F ′), K ⊂ Tan(F )⊕c F
′, Tan(F ) ∩ Tan(F ′) = ∅

Alfsen & Shultz, 2003



Further examples: effects over a convex set

I K strictly convex and smooth, then E (K ) is spectral, each
context has two elements

I K = {(x , y , z), z4 ≤ (x2 − y2)(1− x)2, x ∈ [0, 1], |y | ≤ x}

”triangular pillow”

E (K ) is spectral, one context
having 3 elements and
uncountably many contexts
having 2 elements.

Alfsen & Shultz, 2003
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Constructions with spectral effect algebras

Let E1, E2 be spectral effect algebras.

Direct product:
E1 × E2 = {(a1, a2), a1 ∈ E1, a2 ∈ E2}, with

I (a1, a2)⊕ (b1, b2) = (a1 ⊕ b1, a2 ⊕ b2)

I λ(a1, a2) = (λa1, λa2)

is a spectral effect algebra.

Direct sum:
E1⊕E2 = {[(λa1, (1−λ)a2)]∼, a1 ∈ E1, a2 ∈ E2, λ ∈ [0, 1]}, where

I ∼ is determined by (1, 0) ∼ (0, 1)

I is a convex effect algebra

but not spectral (unless E1 or E2 is isomorphic to [0, 1])
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A non-example: effects on the square

Let K = [0, 1]× [0, 1] ⊂ R2. Then

I E (K ) = E ([0, 1])⊕ E ([0, 1])

I E ([0, 1]) ' E ({0, 1}) is classical, hence it is spectral

I it follows that E (K ) is not spectral

E (K ) has exactly 2 contexts
{a1, a2} and {b1, b2}, inherited
from the two classical spectral ef-
fect algebras
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Sharply determining state spaces

I state space of an effect algebra

S(E ) = {EA morphisms E → [0, 1]}

I if E is convex, all s ∈ S(E ) are affine

I sharply determining S(E ): for any sharp e ∈ E and a ∈ E ,

s(a) = 0 whenever s ∈ S(E ), s(e) = 0 =⇒ a ≤ e

Gudder, Pulmannová, Bugajski, Beltrametti, 1999



Sharply determining state spaces

Let E be a spectral effect algebra, S(E ) sharply determining.

I sharp elements = extremal elements

I the set of sharp elements is a subalgebra

I sharp elements = a1 ⊕ · · · ⊕ ak , a1, . . . , ak ∈ S1(E )

I E is sharply dominating:
over any element there is a smallest sharp element

I the set of sharp elements is an orthomodular lattice
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Sharply determining state spaces

Uniqueness of spectral decomposition:

Theorem
Let E be a spectral effect algebra, S(E ) sharply determining. Let
a ∈ E have spectral decompositions in contexts {a1, . . . , an} and
{b1, . . . , bm}:

a = ⊕N
i=1λi

(
⊕ja

i
j

)
= ⊕M

k=1µk

(
⊕lb

k
l

)
,

λ1 > · · · > λN > 0, µ1 > · · · > µM > 0. Then N = M, λi = µi
and

⊕ja
i
j = ⊕lb

i
l .



Thank you for your attention.


