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[CS2] A. Jenčová, Base norms and discrimination of generalized quantum channels, J. Math.

Phys. 55 (2013), 022201
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Preface

One of the fundamental features of quantum theory is its probabilistic nature. The theory pro-
vides predictions about probabilities rather than the events themselves and it is not possible to
explain this indeterminism by lack of knowledge or presence of hidden variables. The classical
probability theory cannot encompass the truly quantum properties. Mathematical description of
quantum mechanics has to incorporate features like uncertainty principle, incompatibility of ob-
servables, superposition principle and entanglement. These features became powerful resources
in quantum information science.

The difference between the classical and quantum state spaces is already well understood.
While the classical state space is a Choquet simplex, quantum states have a more complicated
structure. In the present thesis, we aim at the study of more specific properties of parametrized
families of states. In the classical case, these properties are fundamental in theoretical statistics
and asymptotic estimation theory, with applications also in other areas. The quantum case is
often quite different and the properties have to be reformulated in a nontrivial way to recapture
the classical results. The purpose of this work is to gain some understanding of the similarities
and differences between the classical and quantum structures.

A parametrized family of states is called a statistical model, or a a statistical experiment. It
represents a prior knowledge of the true state of some system, or the distribution from which
some data are sampled. The states may be labeled by some interesting parameter and our ability
to estimate this parameter depends on the geometry of the set of states and on the parametriza-
tion. This lead to introduction of a differential-geometrical structure on statistical models, stud-
ied by information geometry. In the framework of decision theory, the performance of available
decision rules for various statistical tasks is studied and an ordering and a distance-like measure
on statistical experiments can be defined by their comparison. Special families of states ap-
pear in quantum information theory, where quantum channels, or some more specific protocols,
can be identified with certain convex subsets of a multipartite quantum state space. Statistical
tasks, such as estimation or discrimination problems, appear naturally also in this context and
the geometric structure of the state space plays a decisive role.
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Objectives of the thesis

The aim of this work is to find quantum versions of the results of two important theories, dealing
with parametrized families of probability distributions and their structure: information geome-
try and theory of comparison of statistical experiments. As a tool for one of these tasks, but also
as an interesting question in its own right, the convex structure of the set of quantum channels
and its role in statistical decision theory is investigated. The particular problems solved in the
thesis are the following:

• On the manifold of all positive definite complex matrices of a given dimension, we show
that the condition of dual flatness singles out a unique family of dualistic structures with a
monotone Riemannian metric.
• On the set of faithful states on a von Neumann algebra, we construct a Banach manifold

structure, corresponding to the classical Pistone-Sempi construction, and investigate its be-
haviour under quantum channels.
• We investigate affine connections on the state space of a von Neumann algebra, obtained by

embeddings into noncommutative Lp-spaces, their duality and the corresponding canonical
divergences.
• We find conditions for sufficiency of a quantum channel with respect to a set of states, given

in terms of some information-theoretical quantities such as error probabilities of hypothesis
testing or quantum Fisher information.
• Different forms of Blackwell’s informativity for quantum experiments are compared: in-

formativity with respect to all decision problems and informativity with respect to testing
problems.
• We find a fully quantum version of Le Cam’s randomization criterion with a clear operational

interpretation.
• Measurements and channels on convex subsets of the state space are studied, exploring their

convex structure, the corresponding base norms and their relation to the tasks of statistical
decision theory.

The thesis consists of twelve research papers, divided into three chapters according to their
main subject. In Part I below, we give an introduction to each subject, a brief overview of the
content of the corresponding works and a discussion of further research and open problems.
The papers can be found in Part II.
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Chapter 1

Basic definitions

The notion of a state is central to this work. For our purposes, it is a purely mathematical object.
A classical state is a probability distribution on some measurable space (Ω,A), we denote by
S(Ω,A) the set of all states on (Ω,A). If P ∈ S(Ω,A) is absolutely continuous with respect to
some σ-finite measure µ, it is represented by its density function

f ≡ dP

dµ
∈ L1(Ω,A, µ)+,

∫

Ω

fdµ = 1.

The set of all density functions with respect to µ will be denoted by S(Ω,A, µ).
A quantum state is a normal positive unital functional on some von Neumann algebraM

representing the observables of a quantum system. This definition contains classical states,
in the case when M is abelian. The set of all states on M will be denoted by S(M). If
M = B(H) is the algebra of bounded operators on a Hilbert space H, states are represented
by density operators, that is, positive trace class operators with unit trace. The set of all density
operators on H will be denoted by S(H). We will often deal with finite dimensional Hilbert
spaces, in which case the states can be identified with density matrices.

Transformations of states are represented by stochastic maps, also called channels or coarse-
grainings. In the classical case, they can be defined simply as affine maps between state spaces.
It is easy to see that such a map S(Ω1,A1, µ1) → S(Ω2,A2, µ2) extends to a positive map
L1(Ω1,A1, µ1) → L1(Ω2,A2, µ2) preserving the norms of positive operators. In the quantum
case, the channels are defined as preduals of unital normal completely positive maps between
von Neumann algebras (but sometimes weaker positivity conditions are required). In finite
dimensions, channels are identified with completely positive trace preserving maps between
algebras of operators.

As special cases, we will encounter channels between quantum and classical state spaces.
The quantum-to-classical channels are interpreted as measurements, assigning to each quantum
state a corresponding probability distribution on the set of measurement outcomes. Any mea-
surement can be uniquely represented by a positive operator valued measure (POVM), [38] and
conversely any POVM defines a measurement. A POVM is a map A 3 A 7→ M(A) ∈ M+,
which is σ-additive and normalized, M(Ω) = I . We will only deal with the situation when Ω
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14 Basic definitions

is a finite set, in which case any POVM is a collection of positive operators Mi ∈ M such that∑
iMi = I . Similarly, in this case, any classical-to-quantum channel, mapping classical states

to quantum ones, can be identified with a finite set of quantum states, parametrized by elements
of Ω.

A divergence is an information-theoretic measure of difference of two states. Such a mea-
sure has to be a contrast functional, which means that it is nonnegative and equal to zero if
and only if the states are equal. Another natural assumption is that it is nonincreasing under
stochastic maps, since transformations of states cannot increase their distinguishability. For a
divergence D, the inequality

D(T (ρ), T (σ)) ≤ D(ρ, σ),

for all pairs of states (σ, ρ) and all channels T is referred to as the data processing inequality.
An essential example of a classical divergence measure is the relative entropy [48], also

called Kullback-Leibler divergence or I-divergence. For two probability distributions P � Q,
it is defined as

S(P‖Q) =

∫
log(

dP

dQ
)dP.

More generally, for any convex function f on R+, the f -divergence [18, 54] is defined as

Sf (P‖Q) =

∫
f(
dP

dQ
)dQ.

Note that relative entropy is obtained for f = x log(x). Another special case is the α-divergence

Sα(P‖Q) =
4

1− α2

(
1−

∫
(
dP

dQ
)
1−α
2 dQ

)
, α 6= ±1.

For density operators, the Umegaki relative entropy [82] has the form

S(ρ‖σ) = Tr ρ(log(σ)− log(ρ)),

if the support of ρ is included in the support of σ and is infinite otherwise. In the setting of von
Neumann algebras, quantum relative entropy was defined by Araki [4] using the relative mod-
ular operator. Quantum versions of f -divergences, also called quasi-entropies, were introduced
by Petz [63, 64]. For density matrices (with some conditions on their supports), these have the
form

Sf (ρ‖σ) = Trσ1/2f(∆ρ,σ)(σ1/2),

where ∆ρ,σ is a positive operator on the Hilbert space of matrices equipped with the Hilbert-
Schmidt inner product (X, Y ) = TrX∗Y , defined as ∆ρ,σ : X 7→ ρXσ−1. The quasi-entropies
satisfy data processing inequality if the function f is operator convex. In particular, the version
of the α-divergence for density operators is given by

Sα(ρ‖σ) =
4

1− α2

(
1− Tr ρ

1−α
2 σ

1+α
2

)
,

but the requirement of monotonicity restricts the values of α to the interval [−3, 3]. The relative
entropy and α-divergences (or the closely related Rényi relative entropies), both classical and
quantum, are important distinguishability measures in information theory and statistics.



Chapter 2

The structures of information geometry

The aim of classical information geometry is the study of differential geometrical structures de-
rived from the properties of statistical models. These structures are already well understood and
the theory has a number of important applications e.g. in asymptotic estimation theory, infor-
mation theory, machine learning, statistical mechanics, biology and theory of neural networks.
Interested readers may refer to the monograph [3] by Amari and Nagaoka.

2.1 Information geometry for parametric models

A classical statistical model is a parametrized family

P = {pθ, θ ∈ Θ}, pθ ∈ S(Ω,A, µ).

If Θ ⊆ Rn is an open set and the parametrization θ 7→ pθ is sufficiently regular, it introduces
a differentiable manifold structure in P . It was first observed in the works by Rao [71] and
Jeffreys [39] that such a manifold can be endowed with a Riemannian metric λF , given by the
Fisher information

λFij(θ) = Epθ [∂i log(pθ)∂j log(pθ)], ∂i :=
∂

∂θi
.

The well-known Cramér-Rao inequality for the variance of unbiased estimators shows that this
metric expresses how precisely a point on the manifold can be distinguished from other points
in its neighborhood using statistical methods.

As it turned out, a Riemannian structure is not enough to capture the statistical properties of
the model. The importance of exponential families was pointed out by Efron [21], who defined
the statistical curvature for 1-dimensional models and shown its role in asymptotic estimation
theory. Based on this observation, Dawid [20] introduced the exponential affine connection∇(e)

on the manifold and proved that the statistical curvature is precisely the embedding curvature
of the model with respect to ∇(e). Amari [1] extended this work to a family of α-connections
parametrized by α ∈ R, containing ∇(e) for the value α = 1. These connections are defined
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16 The structures of information geometry

by a pullback of the natural affine structure on the set of measurable functions via the Amari

embeddings

pθ 7→ gα(pθ), gα(x) =





2
1−αx

1−α
2 , α 6= 1

log(x), α = 1.

(2.1)

Another special element in this family is the mixture connection ∇(m) := ∇(−1), arising from
the convex structure of the state space. The same class of connections is obtained as an affine
mixture

∇(α) =
1− α

2
∇(m) +

1 + α

2
∇(e), α ∈ R.

These geometric structures on a statistical model can be also introduced using f -divergences
[22]. If f is normalized such that f ′′(1) = 1, then

(λF )ij(θ) ≡ λF (∂i, ∂j)|θ = ∂i∂
′
jSf (pθ‖pθ′)|θ=θ′ , (2.2)

Γ
(α)
ijk(θ) ≡ λF (∇(α)

∂i
∂j, ∂k)|θ = ∂i∂j∂

′
kSf (pθ‖pθ′)|θ=θ′ , (2.3)

with ∂′i := ∂
∂θ′i

and α = 2f ′′′(1) + 3.
An important feature of the family of α-connections is that ∇(α) and ∇(−α) are dual with

respect to the Fisher metric λF . Manifolds with a dualistic structure (λ,∇,∇∗), consisting of
a Riemannian metric and a pair of dual connections, were investigated by Nagaoka and Amari
[62]. One of their deep results is that if the manifold is dually flat, a pair of dual coordinate
systems exists, connected by a strictly convex potential function Φ. The corresponding Bregman
divergence defines a distance-like measure on the manifold, called a canonical divergence:

D(pθ1 , pθ2) = DΦ(θ1, θ2) := Φ(θ1)− Φ(θ2)− ∂Φ(θ2)(θ1 − θ2).

For statistical manifolds, the relative entropy and the family of α-divergences can be derived in
this way. By construction, the canonical divergence satisfies a generalized Pythagorean relation
and certain projection theorems hold, which are important in optimization tasks.

A simple example of a flat statistical manifold is Pn, consisting of strictly positive probabil-
ity measures on n points. It is easy to see that Pn is ∇(±1)-flat. For α 6= ±1, the α-divergences
are obtained by restriction from the extended manifold P̂n of strictly positive functions, which
is ∇(α)-flat for all α ∈ R.

The family of connections {∇(α), α ∈ R} was obtained independently by Cencov [12] in
a quite different approach. Cencov introduced a category of statistical models with stochastic
maps as morphisms and investigated geometric structures that are invariant with respect to iso-
morphisms in this category. He proved that up to multiplication by a scalar, λF is the unique
Riemannian metric and∇(α), α ∈ R are the only affine connections with this property.
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2.2 Nonparametric information geometry

Nonparametric information geometry was introduced by Pistone and Sempi [69] and further
developed in [68]. Here the model consists of all elements in S(Ω,A, µ) equivalent to a given
one. This manifold has to be modelled on a Banach space, but the embeddings into Lp spaces,
used to define the connections in the parametric case, are not suitable for this, simply because
the positive cone in these spaces has an empty interior. Pistone a Sempi used the exponential

Orlicz space LΦ(p), given by the Young function

Φ(x) = cosh(x)− 1.

The subspace of centered functions in LΦ(p) then parametrizes the neighborhood of p on the
manifold of probability distributions equivalent to p as an exponential family. The exponential
Orlicz space is not even reflexive, so that the geometric structures introduced for parametric
models have no straightforward generalization. More precisely, there is no Riemannian struc-
ture and the Fisher information can be introduced as a continuous bilinear functional, defined
by differentiation of the cumulant generating functional. Affine connections on this manifold
were studied in [24, 25]. In this case, the α-connections live on separate fiber bundles and their
duality corresponds to the Banach space duality of Orlicz spaces.

2.3 Geometry of quantum states: the finite

dimensional case

The aim of quantum information geometry is the extension of the results of the classical theory
to families of quantum states. In the simplest case, the quantum system is represented on an
n-dimensional Hilbert space. It is then enough to study the geometry of the manifold Dn of
positive definite density matrices of dimension n, since any model of sufficient regularity can
be embedded into it. As an open subset of a finite dimensional real vector space, Dn has a
natural affine and manifold structure. But already in this simple case, we encounter problems
that do not appear in classical models.

The tangent space Tρ(Dn) at ρ ∈ Dn is isomorphic to the space of traceless Hermitian n×n
matrices. With this identification, any Riemannian metric on Dn has the form

λρ(X, Y ) = TrXJρ(Y ), X, Y ∈ Tρ(Dn), (2.4)

where Jρ is a suitable operator on matrices. An important example is the symmetric logarithmic

derivative JSLDρ , defined by

JSLDρ (Y ) = H, 2Y = ρH +Hρ.

This choice defines the SLD-metric λSLD [38], which is usually considered as the quantum
Fisher information, since it satisfies an analog of the classical Cramér-Rao inequality. But, in
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contrast to the classical case, this inequality is typically not optimal and cannot be attained even
asymptotically.

Inspired by the uniqueness result in [12], Cencov and Morozova [13] studied Riemannian
metrics onDn which are nonincreasing under quantum channels. Such metrics are called mono-

tone. It was proved that, unlike the classical case, there is a large family of such metrics. Later,
it was shown by Petz [67] that a Riemannian metric on Dn is monotone if and only if the
corresponding operator has the form

Jfρ := R−1
ρ f(LρR

−1
ρ )−1, Lρ(X) = ρX, Rρ(X) = Xρ (2.5)

for some operator monotone function f : (0,∞)→ (0,∞), which is symmetric, that is, f(t) =

tf(t−1) for all t > 0. With the normalization f(1) = 1, such a metric is called a quantum Fisher

information.
The family of quantum Fisher informations contains the SLD-metric as the smallest element.

Other important examples are given by the family of Wigner-Yanase-Dyson (WYD-) metrics
λα(= λ−α), parametrized by α ∈ [−3, 3] [32]. For α = ±1, we obtain the Bogoljubov-Kubo-
Mori (BKM-) metric, which is given as an infinitesimal version of the quantum relative entropy.
The choice α = ±3 yields the RLD-metric, which is the largest quantum Fisher information.
The SLD-metric is not contained in the WYD-family. In another approach, Lesniewski and
Ruskai [53] proved that any quantum Fisher information is obtained from a quasi-entropy as in
(2.2).

Classical constructions of the α-connections can be applied also in Dn. In particular, the
Amari embeddings

ρ 7→ gα(ρ), α ∈ R

with gα as in (2.1) can be used to pull back the affine structure of Hermitian matrices. As in
the classical case, we will denote these connections by ∇(α), α ∈ R, and we put ∇(e) := ∇(1)

and ∇(m) := ∇(−1). It is easy to see that both ∇(e) and ∇(m) are flat, however, they are not
dual with respect to the usual SLD-metric. Moreover, it was proved by Nagaoka that the dual to
∇(m) with respect to a monotone metric λ is not torsion-free, hence not flat, unless λ = λBKM

[61]. As in the classical case, ∇(α) is not flat for α 6= ±1, but the extension to the extended
manifold D̂n of positive definite matrices is flat for all α. This extension will be also denoted
by ∇(α). Duality of ∇(±α) with respect to a quantum Fisher information was studied also in
[31, 25, 27].

2.4 Nonparametric quantum information manifolds

The main obstacle in the construction of a nonparametric (infinite dimensional) quantum infor-
mation manifold was the lack of a suitable non-commutative counterpart of an Orlicz space.
For sets of density operators on a separable Hilbert space, some constructions were proposed
in [79, 26] using small perturbations of the Hamiltonian at each point of the manifold, or by
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a quantum Young function [78]. In [23], the α-connections for α ∈ (−1, 1) were defined on
manifolds of states on a semifinite von Neumann algebra by Amari embeddings, which map the
density operators into the non-commutative Lp-space Lp(M, τ), p = 2

1−α . It was shown that
duality of the connections is in fact obtained from duality of the spaces L 2

1−α
and L 2

1+α
and it

was pointed out that uniform convexity of Lp-spaces is crucial for projection of the Lp-space
geometry onto the set of states.

2.5 The results

In the first three papers in this chapter, constructions of dually flat affine connections onDn and
D̂n are discussed. In the rest, properties of noncommutative Lp spaces and the quantum (Araki)
relative entropy are used for a construction of a Banach manifold structure on the set of normal
states of a von Neumann algebra.

2.5.1 Content of the papers [IG1–6]

[IG1] On the extended manifold D̂n with a monotone Riemannian metric λ, we study dualistic
structures (λ,∇(α),∇(α)∗), where ∇(α)∗ is defined as the dual connection to ∇(α) with respect
to λ. We compute the torsion of these connections and it is pointed out that the dual connections
∇(α)∗ are in general not torsion free. If λ = λα for some α ∈ [−3, 3], we obtain the dually flat
structure (λα,∇(α),∇(−α)).
The dualistic structure is then projected onto the manifold of density matrices Dn and the em-
bedding curvature and Riemannian curvature tensors are computed. We also define divergence
functions on D̂n, considering the∇(α)∗-geodesics connecting two points and using the fact that
one-dimensional submanifolds are always torsion-free. For α = ±1, we do the same also
for Dn. As examples, we obtain the quantum α-divergences and the Umegaki and Belavkin-
Staszevski [5] versions of the relative entropy.

[IG2] Here we investigate a different construction of a dualistic structure. Using the classical
results by Eguchi, see (2.2), (2.3), and the work by Lesniewski and Ruskai [53], we obtain a
monotone metric and a dual pair of torsion-free affine connections in D̂n from a quasi-entropy.
These connections coincide with some ∇(α) on P̂n, but the parameter α is restricted to the
interval [−3, 3]. Using the theory of statistical manifolds devised by Lauritzen [50], we compute
the Riemannian curvature tensor. In particular, using Umegaki relative entropy, we obtain the
BKM-metric and the family of connections

1− α
2
∇(m) +

1 + α

2
∇(e), α ∈ [−1, 1].

It is pointed out that the Riemannian curvature of these connections cannot be 0 unless α = ±1,
so that these connections must be different from∇(α) if α 6= ±1.
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[IG3] This paper finishes both previous works by proving that in either construction, the unique
dually flat structures with respect to a monotone metric are given by (λα,∇(α),∇(−α)), α ∈
[−3, 3]. For this, we apply the results of Lauritzen and some tools of matrix analysis.

[IG4] We use the natural bijective mapping of the predual of a von Neumann algebra onto the
noncommutative Lp-space on M with respect to a faithful normal semifinite weight, defined
by Masuda [56]. Using duality and uniform convexity of the Lp-spaces, we obtain a pair of
coordinate systems on the set of positive normal functionals, connected by norm-continuous
maps that are uniformly continuous when restricted to states. The coordinate systems are re-
lated by Legendre transforms. Uniform Fréchet differentiability of the Lp-norms allows us to
define a divergence function, which turns out to be the quantum α-divergence Sα, α = p−2

p
. A

generalized Pythagorean relation and projection theorems for Sα are derived.

[IG5] We define a version of the exponential Orlicz space with respect to a faithful normal state
ϕ onM, using a Young function constructed from the convex conjugate of the Araki relative
entropy

cϕ(h) = sup
ω∈S(M)

ω(h)− S(ω‖ϕ), h = h∗ ∈M.

The quantum exponential Orlicz space with respect to ϕ is the completion of the space of self-
adjoint elements inM with respect to the corresponding Orlicz norm. It is proved that the dual
space is generated by positive normal functionals, such that the relative entropy with respect to
ϕ is finite.
By the relative entropy approach to perturbation of states, the set of faithful normal states is
endowed with a manifold structure modeled on the subspace of centered elements in this space,
together with exponential and mixture connections, living on the tangent and cotangent space,
respectively.

[IG6] Here we provide another construction of an exponential Orlicz space as the space of
continuous affine functions on the compact convex set

S1,ϕ = {ω ∈ S(M), S(ω‖ϕ) ≤ 1}.

We prove that this construction is equivalent to the previous one. It is shown that channels
between von Neumann algebras extend to morphisms of Banach manifolds and this construction
is functorial. Further, for a pair of faithful states ψ, ϕ ∈ S(M) contained in the same connected
component of the manifold, the adjoint of the channel extends to a mapping of the corresponding
coordinates if and only if the channel is sufficient (or reversible) with respect to {ψ, ϕ} (see
Section 3.4).
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2.5.2 Conclusions and open problems

In the classical case, there is a unique 1-parameter class of dualistic structures, satisfying the
Cencov invariance condition [12]. Moreover, these structures are all flat on the simplest clas-
sical manifold P̂n. As we have seen, there is a variety of such structures in the quantum case
and classical constructions lead to different results. But the requirement that the structures
should be flat on the simplest quantum manifold D̂n singles out the unique 1-parameter class
(λα,∇(α),∇(−α)), where, in contrast to the classical case, all the metrics are different and the
value of the parameter is restricted to the interval [−3, 3].

We constructed a Banach manifold structure on the set of faithful states of a von Neumann
algebra M, derived from Araki relative entropy. Channels induce contractions on the corre-
sponding tangent spaces and the coordinates are preserved on subsets of states if and only if
the channel is sufficient with respect to them. We also proved that the quantum α-divergences
appear as canonical divergences for dually flat connections, obtained by embeddings in non-
commutative Lp-spaces.

The relation of the constructed Orlicz spaces to known constructions of non-commutative
Lp-spaces is not known. Related questions are whether the constructed α-embeddings are com-
patible with the exponential manifold structure, differentiability of the divergences and possi-
bility to introduce some form of Fisher information on the manifold. It was also pointed out in
[IG6] that the proper quantum counterpart of the exponential Orlicz space is not the constructed
space Bϕ, but rather its second dual.

After our works on the nonparametric version were published, a new definition of a quantum
Orlicz space was proposed by Labuschagne [49]. Based on this definition, a nonparametric
quantum information manifold was constructed by Labuschagne and Majewski [55], with an
interpretation in description of large regular statistical systems, both classical and quantum. It
is an interesting question how this is related to our construction.

For classical information manifolds, it was proved by Amari [2] that the classical α-divergences
are the unique f -divergences that are Bregman divergences at the same time. It seems plausible
that this is the case also for the quantum α-divergences, but a rigorous proof is left for future
work.

2.5.3 Further related works by the author

• A. Jenčová, Dualistic properties of the manifold of quantum states, In: Disordered and

complex systems, AIP Conference Proceedings, Melville, New York 2001
• A. Jenčová, Quantum information geometry and standard purification, J. Math. Phys., 43

(2002), 2187-2201
• A. Jenčová, Geodesic distances on density matrices, J. Math. Phys. 45 (2004), 1787-1794





Chapter 3

Comparison of channels and statistical
experiments

3.1 Comparison of classical statistical experiments

In statistical decision theory, a statistical experiment is defined as a triple E = (Ω,A,P), where
P = {Pθ, θ ∈ Θ} ⊆ S(Ω,A) and Θ is a parameter set. In most cases, it is assumed that
the experiment is dominated, which means that we may assume that P ⊆ S(Ω,A, µ) for some
σ-finite measure µ. If Θ = {θ1, θ2}, the experiment is called binary.

The set P is interpreted as the set of possible probability distributions from which data are
sampled. Based on the sample, a decision d is chosen from the set of decisionsD. We will work
mostly with the situation when D is a finite set, but in general, D is a topological space. The
decision is evaluated according to a loss function W : Θ × D → R, where it is assumed that
the functions Wθ := W (θ, ·) are continuous and bounded, with ‖Wθ‖ = supt∈D |Wθ(t)|. The
triple (Θ, D,W ) is called a decision problem. If D consists of two elements, then (Θ, D,W ) is
called a testing problem.

A most general strategy for decision, or a decision rule, is given by a stochastic map M :

S(Ω,A, µ) → S(D,B0(D)), where B0(D) is the Baire field over D. The risk for the given
value of the parameter is computed as

RE,D,W,θ(M) =

∫

D

Wθ dM(Pθ).

The set of all decision rules will be denoted byR(E , D).
Let E = (Ω1,A1,P) and F = (Ω2,A2,Q) be dominated experiments with the same pa-

rameter set Θ and dominating measures µE and µF . The following preorder on statistical ex-
periments was introduced by Blackwell [6]: the experiment E is more informative than F , in
notation E � F , if for any decision problem (Θ, D,W ) and any M ∈ R(F , D) there is some
N ∈ R(E , D), such that

RE,D,W,θ(N) ≤ RF ,D,W,θ(M), ∀θ ∈ Θ.

23
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If T : S(Ω1,A1, µE) → S(Ω2,A2, µF) is a channel such that Q = T (P), we say that F =:

T (E) is a randomization of E . If (Θ, D,W ) is any decision problem and M ∈ R(F , D), then
M ◦ T ∈ R(E , D) and we have

RF ,D,W,θ(M) =

∫

D

Wθ dM(T (Pθ)) =

∫

D

Wθ d(M ◦ T (Pθ)) = RE,D,W,θ(M ◦ T ).

It follows that E � T (E). The following theorem is one of the basic results of the theory of
statistical experiments.

Theorem 1 (Blackwell-Sherman-Stein (BSS) [6, 73, 76]). E is more informative than F if and

only if F is a randomization of E .

Le Cam [51] extended the above preorder on statistical experiments as follows. He defined
the deficiency of E with respect to F as

δ(E ,F) := inf
T

sup
θ
‖pθ − T (qθ)‖1,

where the infimum is taken over all suitable channels. The Le Cam distance

∆(E ,F) := max{δ(E ,F), δ(F , E)}

is a pseudo-distance on the set of experiments with the same parameter set. Convergence with
respect to this distance is important in the theory of asymptotic statistics, [52]. The following
result is the celebrated Le Cam’s randomization criterion.

Theorem 2 (Le Cam’s randomization criterion [51]). Let E , F be statistical experiments, ε ≥ 0.

Then δ(E ,F) ≤ ε if and only if for every (D,W ) and M ∈ R(F , D) there is a decision rule

N ∈ R(E , D) such that

RE,D,W,θ(M
′) ≤ RF ,D,W,θ(M) + ε/2‖Wθ‖.

Other variants of deficiency can be obtained by restricting to some special type of decision
problems. In particular, deficiency with respect to testing problems is denoted by δ2 and the
corresponding preorder by �2. In general, �2 is weaker than �, but for binary experiments the
two preorders are equivalent, [81], see also [77].

3.2 Comparison of quantum statistical experiments

A quantum statistical experiment is defined as a pair E = (M,P), where, most generally,M
is a von Neumann algebra and P ⊆ S(M). This notion clearly contains (dominated) classi-
cal experiments, which correspond to quantum experiments on a commutative von Neumann
algebraM = L∞(Ω,A, µE). Let us denote the set of all quantum statistical experiments with
parameter set Θ by E(Θ).
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Let E ∈ E(Θ) and let (Θ, D,W ) be a decision problem. The decision rules in R(E , D)

are measurements (POVMs) with values in (D,B0(D)). In this work, we will consider only
experiments on the algebra B(H) for a finite dimensional Hilbert space H. In this case, it is
enough to consider decision problems with a finite decision set D. For M ∈ R(E , D), the risk
is computed as

RE,D,W,θ(M) =
∑

d∈D
Wθ(d)Tr ρθMd.

Example 3. A special type of a decision problem is multiple hypothesis testing. In this case,
Θ = D = {1, . . . ,m} and W (i, j) = 1 − δij . The task is to determine which of a given
set of states {ρ1, . . . , ρm} ⊂ S(H) is the true state of the system. Decision rules are POVMs
M = {M1, . . . ,Mm} and Tr ρiMj is interpreted as the probability of choosing ρjif the true state
is ρi. If prior probabilities λ1, . . . , λm are given, we are looking for a POVM with optimal Bayes
risk, or equivalently with the maximum Bayes probability of success. Let E be the ensemble

E := {λi, ρi}mi=1. The maximum Bayes success probability is defined as

Psucc(E) := max
M

∑

i

λiTr ρiMi, (3.1)

where the maximization is over all POVMs with m elements. Conditions for optimal POVMs
were given in [36, 37], an explicit expression is not known in general.

Example 4. If we put Θ = D = {0, 1} in the previous example, we obtain the discrimination

problem for two states ρ0, ρ1. Decision rules are given by {M, I−M} for operators 0 ≤M ≤ I

in B(H) and the maximal Bayes probability of success can be computed as [35, 38]

Psucc(E) = Πλ(ρ0, ρ1) :=
1

2
(1− ‖λρ0 − (1− λ)ρ1‖1),

where ‖ρ‖1 = Tr |ρ| is the trace norm onB(H). The optimal decision rule is {P, I−P}, where
P is the projection onto the support of the positive part of the operator λρ0 − (1− λ)ρ1.

The Blackwell preorder and deficiency can be extended to all experiments in E(Θ) in an
obvious way. If the experiment F is classical, the BSS theorem (Theorem 1) and Le Cam’s
randomization criterion (Theorem 2) hold [57, 40], but for arbitrary quantum experiments this
is no longer true [58].

A fully quantum version of the BSS theorem was first obtained by Shmaya [75] and Buscemi
[7]. In these works, either additional entanglement or composition of the experiment with a
complete set of states is required. A quantum version of the randomization criterion was proved
by Matsumoto [57], but the criterion is formulated in terms of quantum decision problems. This
generalization of classical decision problems is natural from a mathematical point of view, but
its operational significance is unclear.
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3.3 Comparison of channels

Comparison of statistical experiments is closely related to comparison of channels. For two
channels T and S with the same input space, we can say that T is less noisy than S if S is a
post-processing of T , that is, there is a channel R such that S = R ◦ T . Assume that the input
space is a classical state space S(Ω,A) with a finite set Ω, then the channels can be interpreted as
statistical experiments parametrized by the elements of Ω. In this interpretation, randomization
is the same as post-processing and the preorder� can be reformulated by comparing the optimal
success probabilities in multiple hypothesis testing (see Example 3) for the ensembles obtained
by applying S and T to any input ensemble.

Remark 5. For classical channels, a related ordering was introduced in a work by Shannon
[72], where error probabilities of channel coding schemes are compared. This ordering is
characterized by existence of channels Pi, Qi and probabilities λi, i = 1, . . . , k such that
S =

∑
i λiPi ◦ T ◦Qi. Other orderings of classical channels can be found in [46, 19, 70, 9].

For classical channels, we obtain an obvious version of the BSS theorem and randomization
criterion. However, as noted in the previous section, the BSS theorem in the classical formula-
tion does not hold for quantum channels even if the common input space is classical. A stronger
ordering is obtained if we consider ensembles on the input space coupled with an ancilla. As
it turns out, with this ordering, the BSS theorem can be recovered. This remarkable result was
first obtained by Chefles in [14] and was extended and refined in [7], in particular, it was proved
that no entanglement in the input ensemble is needed. Some applications were already found in
[11, 8, 10, 9].

3.4 Classical and quantum sufficient statistics

Let T be a channel and let E ∈ E(Θ) be a statistical experiment in the input space of T . Let
T (E) be the corresponding randomization E . The channel T is called sufficient with respect to

E if also E is a randomization of T (E), that is, there is some channel S such that

S ◦ T (ρθ) = ρθ, θ ∈ Θ. (3.2)

If E is classical, then by Theorem 1 and the paragraph below Example 4, such a channel exists
if and only if T (E) � E , so that E a T (E) are equivalent in the sense of Blackwell’s preorder.
In fact, it is enough that we have T (E) �2 E , since the equivalence classes with respect to �
and �2 are the same, [77]. For quantum experiments, validity of the corresponding statements
is not known. A sufficient channel is also called a statistical isomorphism [77].

A special case of a sufficient classical channel is a sufficient statistic. This is a measurable
map f : (Ω1,A1) → (Ω2,A2) such that the conditional probabilities Pθ[A|f ] =: P [A|f ],
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A ∈ A1 do not depend from θ. Let Tf denote the channel P 7→ P f then

S : Q 7→ S(Q), S(Q)(A) =

∫
P [A|f ]dQ, A ∈ A1

is a channel satisfying S ◦ Tf (Pθ) = S(P f
θ ) = Pθ. This means that T f is sufficient with respect

to E . If pθ = dPθ
dµ

, sufficient statistics are characterized by the factorization criterion

pθ(ω) = h(ω)qθ(f(ω)), µ− a.e.,

where qθ and h are nonnegative measurable functions. This means that pθ depends on θ only
through f . If there is some θ0 such that S(Pθ‖Pθ0) is finite for all θ, then f is sufficient with
respect to E if and only if [48]

S(P f
θ ‖P f

θ0
) = S(Pθ, Pθ0).

This statement holds for all classical channels and all f -divergences with a strictly convex
function f [18, 54].

Sufficiency of quantum channels in the general form given by (3.2) was first investigated in
the works by Petz, [65, 66], who studied conditions under which the Umegaki relative entropy
and the transition probability S1/2 is preserved under a quantum channel Φ for a pair of normal
states σ, ρ on a von Neumann algebraM. It turned out that as in the classical case, this happens
if and only if Φ is sufficient with respect to the experiment (M, {ρ, σ}). Another equivalent
condition is given in terms of the Connes cocycle derivative [Dρ,Dσ]t. In [66], the channels
are not necessarily completely positive, only 2-positivity is assumed.

A quantum version of the factorization criterion was proved in [59] for finite dimensional
algebras and in [42, 43] for all type I von Neumann algebras. In the paper [34], characteriza-
tions by preservation of other information quantities such as quantum f -divergences, Chernoff
and Hoeffding distances are given. In particular, a characterization in terms of quantum α-
divergences for α ∈ (−3, 3) holds, see also [43]. Shirokov [74] studied sufficiency of bosonic
channels.

The factorization criterion shows that sufficiency of a channel has strong implications on its
structure and also on the structure of the involved states. For this reason, sufficiency is useful
for finding equality conditions in inequalities involving entropic quantities. Most notably, it was
used for characterization of Markov triples by equality in strong subadditivity of entropy, see
[33, 42].

3.5 The results

In the first two works, we study characterizations of sufficient quantum channels by preservation
of quantities related to hypothesis testing and quantum Fisher information. The rest is devoted
to comparison of quantum experiments and a quantum randomization criterion.
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3.5.1 Content of the papers [CE1–4]

[CE1] This paper focuses on the special case of channels given by restriction of the states to a
subalgebra A ⊆ B(H) for a finite dimensional Hilbert space H. If such a channel is sufficient,
the subalgebra is called sufficient as well. For a pair of states {ρ0, ρ1}, we study subalgebras
with the property that the optimal error probabilities for discrimination between the restrictions
of ρ0 and ρ1 are the same as for discrimination of the original states. Such subalgebras are
called 2-sufficient. A necessary condition for 2-sufficiency is found and it is proved that it is
equivalent to sufficiency in the following special cases:

1. if ρit0Aρit0 ⊆ A for all t ∈ R,

2. if A is commutative

3. if ρ0 and ρ1 commute.

Moreover, 2-sufficiency of A⊗n with respect to {ρn⊗0 , ρn⊗1 } for all n is equivalent to sufficiency
of A with respect to {ρ0, ρ1}. This extends a classical result [77], which says that 2-sufficiency
is equivalent to sufficiency for classical statistical experiments.

[CE2] We explore various reversibility (sufficiency) conditions for a 2-positive trace preserving
map. We give an example of a non-quadratic operator convex function f which is strictly
convex, but preservation of the corresponding f -divergence does not imply sufficiency. This
result shows a difference from the commutative case and complements the results of [34]. We
prove characterizations in terms of the operator d(ρ, σ) = σ−1/2ρσ−1/2, which is a quantum
version of the Radon-Nikodym derivative. We also obtain a factorization criterion of the form

ρθ = Φ∗(Sθ)ρ, θ ∈ Θ,

where Φ∗ is the adjoint of Φ, Sθ is a positive operator satisfying Φ∗(S2
θ ) = (Φ∗(Sθ))2 and

ρ is a fixed density operator. We further show that preservation of the L1-distance, which is
equivalent to 2-sufficiency, characterizes sufficiency if the experiment is extended to contain all
orbits under the modular group of some dominating element. We also show that sufficiency is
characterized by preservation of the Chernoff and Hoeffding distances and of a large class of
quantum Fisher informations.

[CE3] In this paper, we investigate the quantum versions of the preorder �2 and deficiency
δ2 with respect to testing problems. Characterizations of the two notions are found and it is
proved that for binary quantum experiments, the two preorders are equivalent if and only if the
more informative experiment E is abelian. Moreover, F �2 E implies existence of a completely
positive map E → F , but this map is not necessarily trace preserving.

[CE4] For two channels Φ and Ψ with the same input space, we define deficiency of Ψ with
respect to Φ as the smallest distance between Φ and post-processings of Ψ, that is,

δ(Ψ,Φ) = inf
α
‖α ◦Ψ− Φ‖�,
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where the infimum is taken over the set of all channels between the corresponding output spaces.
Using the results of Chapter 4 on the properties of channels and the diamond norm, we prove
that δ(Ψ,Φ) ≤ ε if and only if for any ensemble {pi, ρi}i of states on the input space coupled
with an ancilla, the optimal success probabilities of the output ensembles satisfy

Psucc({pi, (Φ⊗ id)(ρi)}i) ≤ Psucc({pi, (Ψ⊗ id)(ρi)}i) +
ε

2
Psucc({pi, ρi}i).

As a consequence, we obtain a randomization criterion for arbitrary quantum statistical experi-
ments in terms of optimal success probabilities for certain ensembles. Over previously known
results, this has the advantage that the success probabilities have a clear operational meaning.

3.5.2 Conclusions and open problems

In this section, we proved various characterizations of the possibility of approximation of a
quantum statistical experiment by randomizations of another, along the lines of the classical
theory of statistical isomorphisms and comparison of statistical experiments. As it often hap-
pens, it is possible to obtain similar results as in the classical case, but the conditions are more
strict, and also the proofs are quite different. For example, while sufficient classical channels
are characterized by preservation of the f -divergence for an arbitrary strictly convex function f ,
this is no longer true in the quantum case. Even if f is operator convex, the support of the rep-
resenting measure must be large enough. Further, while the factorization criterion looks similar
to the classical one, the fact that the two factors have to commute has some strong consequences
for the structure of the states. On the other hand, it is probably not so surprising that entangle-
ment (or some other form of additional information) is needed for the quantum randomization
criterion.

It is still not clear whether preservation of error probabilities in hypothesis testing, or 2-
sufficiency, is equivalent to sufficiency also in the quantum case. While it is true if this condition
is required for testing of n i.i.d. copies of the states for all n, the one shot condition seems to
be not enough. But quantum experiments invariant under the modular group of a dominating
element behave similarly to classical experiments in this respect.

As it was recently observed, Umegaki relative entropy for density operators on a separable
Hilbert space is monotone under positive maps, [60]. It is also an interesting question whether
an equality condition similar to sufficiency for positive maps can be proved.

The deficiency δ(Φ,Ψ) for some special cases of channels already appeared in quantum
information theory, for example in the definition of approximately (anti)degradable channels
[80]. Our results can be further used to obtain an operational definition, similarly as it was
done for antidegradable channels in [11]. Another possible application is to ε-private and ε-
correctable channels [47].

The suggested framework can be applied to more general situations, for example for com-
parison of more specific quantum protocols, such as quantum combs [16] and more general
kinds of processings. More precisely, the processing can consist of a combination of pre- and
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post-processing, also allowing some correlations between input and output systems, either clas-
sical or quantum. This would be closer to the original definition by Shannon, [72]. In is also
possible to treat different types of positive maps, some results in this direction can be found in
the preprint [41]. Although our methods rely on finite dimensions, it seems plausible that the
useful properties of the norms can be extended also for channels operating on infinite dimen-
sional Hilbert spaces.

The notion of strong and weak convergence and local asymptotic normality, related to Le
Cam distance for quantum experiments is also worth investigation, see the joint paper with M.
Guta [28].

3.5.3 Further related works by the author

• A. Jenčová, D. Petz, Sufficiency in quantum statistical inference, Commun. Math. Phys.
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ples, IDAQP 9 (2006), 331-351
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Phys. 276 (2007), 341-379
• A. Jenčová, M.B. Ruskai, A unified treatment of convexity of relative entropy and related
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• A. Jenčová, D. Petz and J. Pitrik, Markov triplets on CCR-algebras, Acta Sci. Math.
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• A. Jenčová, The structure of strongly additive states and Markov triplets on the CAR

algebra, J. Math. Phys. 51 (2010), 112103
• A. Jenčová, Preservation of a quantum Rényi relative entropy implies existence of a re-

covery map, J. Phys. A: Math. Theor., 50 (2017), 085303
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Chapter 4

Generalized quantum channels and
measurements

In this chapter, we study measurements on quantum channels and other quantum devices, using
their convex structure. We will concentrate on quantum systems represented on finite dimen-
sional Hilbert spaces, where the sets of devices can be identified with convex subsets of quantum
state spaces. Moreover, we will discuss only measurements with a finite set of outcomes.

Let H and K be finite dimensional Hilbert spaces. Let L(H,K) denote the vector space of
linear maps B(H)→ B(K) and let C(H,K) be the set of channels. For Φ ∈ L(H,K), the Choi

representation [17] is defined as

C(Φ) =
1

d

∑

i,j

Φ(|ei 〉〈 ej|)⊗ |ei 〉〈 ej|,

where d = dim(H) and |e1 〉, . . . , |ed 〉 is some fixed orthonormal basis of H. The map Φ 7→
C(Φ) is a linear isomorphism of L(H,K) onto B(K ⊗ H). Moreover, the map Φ is com-
pletely positive if and only if C(Φ) is positive and Φ preserves trace if and only if Tr KC(Φ) =

dim(H)−1IH. It follows that the Choi representation identifies the set C(H,K) with a compact
convex subset of the bipartite state space S(K ⊗H).

4.1 Quantum channel measurements

A natural implementation of a channel measurement is obtained by applying the channels on
an input state and measure the outcome by a POVM. A more general scheme can be described
by a triple (H0, ρ,M), where H0 is a (finite dimensional) ancilla, ρ ∈ S(H ⊗H0) and M is a
POVM on K ⊗H0. In fact, this is the most general form of a channel measurement considered
in the literature.

Let X be the (finite) set of outcomes. The outcome probabilities are given as

px(Φ) = Tr (Φ⊗ idH0)(ρ)Mx, x ∈ X. (4.1)

31
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Such measurements serve as decision rules in statistical decision problems for quantum chan-
nels. For example, the discrimination problem of Example 4 can be formulated for a pair
of channels Φ0,Φ1 in an obvious way. Decision rules for this problem are given by triples
(H0, ρ,M) with two-outcome POVMs {M, I −M}. Let λ, 1 − λ be prior probabilities, then
the Bayes error probability is given by

Pe(H0, ρ,M) := λTr (Φ0 ⊗ idH0)(ρ)M + (1− λ)Tr (Φ1 ⊗ idH0)(ρ)(I −M)

= (1− λ) + Tr ((λΦ0 − (1− λ)Φ1)⊗ id)(ρ)M.

Optimizing over all (H0, ρ,M), we obtain

minPe(H0, ρ,M) =
1

2
(1− ‖λΦ0 − (1− λ)Φ1‖�),

where ‖ · ‖� is the diamond norm, given by [45]

‖Φ‖� := sup
ρ∈S(H⊗H)

‖(Φ⊗ id)(ρ)‖1 (4.2)

for any Φ ∈ L(H,K). For more information on discrimination of channels and the diamond
norm, see [83].

The description of measurement by triples is not unique. It is easy to see that there are many
different triples with the same outcome probabilities. A different framework was introduced in
[84], where the process POVMs were introduced. Similarly to a POVM, a process POVM (with
a finite set of outcomes) is defined as a collection of positive operators on K ⊗H, summing up
to IK ⊗ σ, where σ is some element in S(H). The outcome probabilities are given by

px(Φ) = TrC(Φ)(ρ)Fx, x ∈ X.

For each triple (H0, ρ,M), there is a unique process POVM with the same outcome probabilities
for all channels. Conversely, for each process POVM, there are many corresponding triples.
This description of measurements is again not one-to-one: one can see that there exist different
process POVMs describing the same channel measurement.

4.2 Quantum combs and testers

Process POVMs belong to a more general formalism of (probabilistic) quantum combs, see [16,
15] for details. Quantum combs are used in description of quantum networks. This formalism is
hierarchical and contains also admissible transformations between networks, these correspond
to networks of a higher rank.

A formal definition of a quantum comb is recursive: a (deterministic) 1-comb is a Choi ma-
trix of a channel, an N -comb is the Choi matrix of a completely positive map on a multipartite
tensor product that maps (N−1)-combs to 1-combs. A probabilisticN -comb is a positive oper-
ator majorized by a deterministic N -comb. All quantum combs can be represented by memory
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Figure 4.1: A deterministic quantum N -comb

ρ

H0

Ψ1

H1 H2

. . .

H2N−3

ΨN−1

H2N−2 H2N−1

ΨN

M

Figure 4.2: Quantum N -tester

channels, which are given by a sequence of channels connected by an ancilla, these form the
”teeth” of the comb, see Fig. 4.1.

Quantum testers are a special case of probabilistic quantum combs. More precisely, a quan-
tum N -tester T = {T1, . . . , Tm} is a collection of positive operators summing up to a special
type of (N + 1)-comb which maps all N -combs to 1. N -testers describe measurements on de-
terministicN -combs and can be represented as a deterministic comb with a measurement on the
ancilla, see Fig. 4.2. Similarly as for quantum channels, the optimal Bayes error probabilities
for discrimination of quantum N -combs Ξ0 and Ξ1 with prior probabilities λ, 1 − λ have the
form

min
T
Pe(T ) =

1

2
(1− ‖λΞ0 − (1− λ)Ξ1‖�N),

where

‖Ξ‖�N := sup
T
‖(T0 + T1)1/2Ξ(T0 + T1)1/2‖1

for any (Hermitian) matrix Ξ. The supremum is taken over the set of all two-outcome N -testers
T = {T0, T1}. See also [30, 29] for a similar framework of quantum games.

4.3 The results

The quantum devices described above have a natural convex structure which reflects the pos-
sibility to switch randomly between different devices of the same type. As it is in the case of
states, a measurement on any convex set K can be defined as an affine map from K into some
classical state space, assigning to each element the corresponding outcome probabilities. In the
works below, we study the relation between this definition of measurements or, more generally,
affine maps into state spaces, and the framework of quantum combs and testers. We also show
that the distinguishability norms ‖ · ‖�N arise naturally from the structure of quantum channels
and combs as convex subsets of multipartite state spaces.
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4.3.1 Content of the papers [CS1], [CS2]

[CS1] In this paper, we study affine maps on a convex subset K of the state space S(A) of a
finite dimensional C*-algebraA into the state space of another finite dimensional C*-algebra B.
If B is commutative, such a map corresponds to a measurement. We prove that all measurements
extend to positive affine maps on S(A) if and only if K is a section of the state space, that is

K = K⊥⊥ ∩ S(A).

In this case, the measurements are defined by collections of positive operators satisfying certain
normalization condition. Such collections are called generalized POVMs with respect to K.
This is true for the sets of N -combs, since these sets are given by linear constraints. The cor-
responding generalized POVMs for the set of N -combs are exactly the N -testers, in particular,
for quantum channels we obtain the process POVMs. The relation between measurements and
generalized POVMs is not one-to-one, as different generalized POVMs may correspond to the
same measurement.
IfB is not commutative, we also require that the affine map extends to a completely positive map
on the subspace generated by K. We show that each such map is the restriction of a completely
positive map onA, called a generalized channel. If the setK contains the tracial state, the set of
generalized channels forms a section of a multipartite state space. This leads to a definition of a
generalized supermap, special cases of which are quantum combs and testers. We also discuss
the equivalence relation on generalized channels and POVMs, given by restriction to K.

[CS2] We continue the study of sections of quantum state spaces or more general bases of
the cone of positive operators on a (finite dimensional) Hilbert space. It is shown that the
section defines a norm in the space of Hermitian operators, which is a distinguishability norm
for elements of the section. The dual norm is studied and it is shown that it again corresponds
to a base section. These norms are a generalization of both the base norms and the order unit
norms and have similar properties. It is proved that for the set of channels, the corresponding
norm is the diamond norm and (logarithm of) the dual norm is the conditional max-relative
entropy. Similarly, for N -combs, we obtain the norm ‖ · ‖�N and the dual norm also has a
similar form.
We further study statistical decision problems for elements of the section. It is shown that
average risks (or payoffs) of decision rules can be expressed in terms of the norm corresponding
to a related base section, in particular, the dual of the diamond norm can be used to express
optimal risks for decision rules for the set of quantum states. Optimality conditions for decision
rules are also given. As a corollary, a necessary and sufficient condition is obtained, under which
there is a triple with a maximally entangled input state which is optimal for discrimination of
two channels.
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4.3.2 Conclusions and open problems

We investigated affine maps on convex subsets of state spaces and proved that such maps repre-
sent certain quantum devices. Moreover, it was shown that some important norms on the set of
Hermitian linear maps can be obtained from the convex structure of sets of quantum channels
and that optimal risks of decision rules can be given in terms of similar norms. In particular,
we proved that the dual of the diamond norm gives the maximum success probability in mul-
tiple hypothesis testing problems, this was crucial for the proof of the quantum randomization
criterion in the previous chapter.

In the recent paper [44], optimality conditions for multiple hypothesis testing problems on
quantum channels were re-obtained, using semidefinite programming. Conditions for existence
of an optimal test with maximally entangled input states were again discussed and an upper
bound on error probability was given in the case that these conditions are not satisfied. One
can see that similar conditions and bounds can be found for more general quantum combs.
A specific example of a comb is an i.i.d. sequence of channels. It is a question whether the
mentioned results can be used to investigate asymptotic properties of channels.

4.3.3 Further related works by the author

• A. Jenčová, Extremality conditions for generalized channels, J. Math. Phys. 53 (2012),
122203
• A. Jenčová, Extremal generalized quantum measurements, Linear Algebra Appl. 439

(2013), 4070-4079
• Z. Puchala, A. Jenčová, M. Sedlák, M. Ziman, Exploring boundaries of quantum convex

structures: special role of unitary processes, Phys. Rev. A 92 (2015), 012304
• A. Jenčová, On the convex structure of process POVMs, J. Math. Phys. 57 (2016),

015207
• A. Jenčová, M. Plávala, Conditions for optimal input states for discrimination of quantum

channels, J. Math. Phys. 57 (2016), 122203
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In a finite quantum state space with a monotone metric, a family of torsion-free affine 
connections is introduced, in analogy with the classical or-connections defined by Amari. 
The dual connections with respect to the metric are found and it is shown that they are, in 
general, not torsion-free. The torsion and the Riemannian curvature are computed and the 
existence of efficient estimators is treated. Finally, geodesics are used to define a divergence 
function. 

1. The classical case 

Let 8 = {p(x,O) I 0 ~ ® _c IR m } be a smooth family of classical probability 
distributions on a sample space X. Then S can naturally be viewed as a differen- 
tiable manifold. The differential-geometrical aspects of a statistical manifold and their 
statistical implications were studied by many authors. The Riemannian structure is 
given by the Fisher information metric tensor 

go(O) = Eo[Oi log p(x, O)Oj log p(x, 0)], 

where Oi denotes a ~ .  In 1972, Chentsov in [6] introduced a family of affine con- 
nections in S and proved that the Fisher information and these connections were 
unique (up to a constant factor) in the manifold of distributions on a finite number 
of atoms, in the sense that these are invariant with respect to transformations of 
the sample space. In [1], Amari defined a one-parameter family of a-connections in 
S, which turned out to be the same as those defined by Chentsov. They may be 
introduced using the following o~-representations of the tangent space: 

Let g~ be a one-parameter family of functions, given by 

2 l--a 
g, , (x )= 1 , ,  x T  for o e ~ l  

log x for ce = 1. 

[121] 
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Let lu(x,O) = ga(p(x, 0)). The vector space spanned by the functions ailot(X,O), 
i = 1 . . . . .  p, is called the u-representation of the tangent space. The metric tensor 
gij is then 

# 

gij(O) = 70 i l c~ (X ,  O)3jl_~(x, O)dP. 

The u-connections are defined by 

ri3k (0) = f Oi Ojlu (x, 0) Okl-~ (x, O)dP. 

From this, it is clear that these connections are torsion-free, i.e. S~j k ot ot = r i j  k - r j i  k = 0 ,  
Vi, j ,  k, VO. Let now V and V* be two covariant derivatives on S, then we say that 
the covariant derivatives (the affine connections) are dual with respect to the metric 
if 

Xg(Y, Z) = g(Vxr,  Z) + g(Y, V}Z) 

or, in coefficients, 
Oigjk = Fij k -~- F*kj. 

It is easy to see that the ot and -o~ connections are mutually dual. 
Further, let r} be another coordinate system in S. The natural basis of the tangent 

a for the coordinate system 0 and {oi}, 0 i -- a space Tp at P ~ S is { 0 i } ,  0 i = ~ /  - -  0r/'--7" 
for z/. We say that 0 and r/ are mutually dual if their natural bases are biorthogonal, 
i.e. if 

g(Oi, o J) = *i. 

The metric tensor in the basis {a i} is given by 

g(0i, oj  ) .~. gij, (gij) = ( g i j ) - l .  

The next theorem (Theorem 3.4 in [1]) gives the necessary and sufficient condition 
for existence of such pair of coordinate systems. 

THEOREM 1.1. If a Riemannian manifold S has a pair of dual coordinate systems 
(0, r}), then there exist potential functions ~r(O) and ~b07) such that 

gij = aiOj~(O),  gij  = a io j~ ( r l ) .  (1) 

Conversely, if either of the potential functions ~t or dp exist such that (1) holds, there 
exists a pair of dual coordinate systems. The dual coordinate systems are related by 
the Legendre transformations 

Oi = 0i~(/7), ?~i : Oi~r(O) 

and the two potential functions satisfy the identity 

~(0) + $(T1) - ~ O~rlj = 0. (2) 
i 
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The most interesting results of [1] concern the case when the manifold S is 
a-flat, i.e. the Riemannian curvature tensor of the u-connection vanishes. Then ,5 is 
also -u-fiat .  It is known that for fiat manifolds, an affine coordinate system exists, 
i.e. the coefficients of the connection vanish. The next theorem (Theorem 3.5 in [1]) 
reveals the dualistic structure of t~-flat manifolds. 

THEOREM 1.2. When a Riemannian manifold S is flat with respect to a pair o f  
torsion-free dual ajfine connections V and V*, there exists a pair (0, r/) of  dual 
coordinate systems such that 0 is a V-affine and 17 is a V*-ajfine coordinate system. 

This result can be directly applied to the exponential and mixture families 

p(x, O) = exp { ~ Oici(x) -- ~r(O) ] 
i 

and 
p(x,O) = ~ Oidi(X ) dr ( 1 -  ~ Oi)Cn+l(X) 

i t 
which are q-l-flat, and the extended or-families 

n+l  

l~(x, O) = ~ OiCi(X ) 
i 

which are 4-or-flat (note that the extended u-families are not normed to 1). 
Let us consider an u-fiat family S with the dual coordinate systems (0, r/) and 

let ~(0)  and ~b(r/) be the potential functions. In [1], a divergence is introduced in 
S. It is called the or-divergence and it is given by 

D,~(O, 0') = ~k(O) + qb(rf) - ~ Oio;. 
i 

The divergence is not a usual distance, but it has some important properties: 
(i) it is strictly positive, Dc,(O, 0') > 0 with Dot(O, 0') = 0 iff 0 = 0', 

(ii) it is jointly convex in 0 and 0', 
(iii) D,~(O, 0') = D_,~(O', 0), 
(iv) it satisfies the relation 

1 ~--~gij(O)dOidOj, Du(O, 0 + dO) = D,~(O + dO, O) = -~ 
i j  

hence it induces the Riemannian distance, given by the Fisher information. 
Moreover, the divergences are shown to satisfy a generalized Pythagorean relation. 

There were some attempts to introduce a similar family of affine structures in 
the differentiable manifold of states of an n-level quantum system with a mono- 
tone metric. The  main difficulty here is that, as was first shown in [7], there is 
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no unique quantum analogue of the Fisher information metric and, moreover, the 
connections are in general not torsion-free. Hasegawa in [9] studied the case of 
quantum exponential and mixture families with the Kubo-Mori metric. In [13], the 
exponential and mixture connections (i.e. the case tz = 4-1) were defined also for 
arbitrary monotone metric and a divergence function was introduced. The aim of 
this paper is to use a similar method to define the a-connections and divergence 
functions for each tz and to investigate the dualistic properties of the manifold. 

2. The state space 

Let .M denote the differentiable manifold of all n-dimensional complex hermitian 
matrices and let .M + = {M ~ A4 I M > 0}. Let I'M be the tangent space at M, 
then I'M Can be identified with .M considered as a vector space. We introduce a 
Riemannian structure in .M +, defining an inner product in I"M by 

~.M(X, Y) = Tr X JM(Y), 

where JM is a suitable superoperator on matrices. The state space of an n-level 
quantum system can be identified with the submanifold 

~ = { D ~ . M  + I T r D = I } .  

The tangent space To C ]'o is the real vector space of all self-adjoint traceless 
matrices. If we consider the restriction of the Riemarmian structure ~. onto 7~, it is 
natural to require that ~. be monotone, in the sense that if T is a stochastic map, 
then 

~.T(M)(T(X), T(X))  < ~.M(X, X), VM ~ .M +, X ~ .M. 

As it was proved in [14], this is true iff JM is of the form 

1 1 

JM = (R~tf (LMRMI)R~t) -1, (3) 

where f : R + ---> R is an operator monotone function such that f(t) = tf(t -I) for 
every t > 0 and LM(A) = MA and RM(A) = AM, for each matrix A. We also 
adopt a normalization condition f(1) = I. Notice that we have Ju(X) = M-Ix 
whenever X and M commute, in particular, JM(M)= I. 

Let Tz~ be the cotangent space of :D at D, then T~ is the vector space of all 
observables A with the zero mean at D (i.e. Tr DA = 0). It is easy to see that 

T~ = {JD(H) I H E To}. (4) 

The metric ~ induces an inner product in T~, namely, 

~o(A1, A2) = ~.(J~I(AI), J~I(A2)) = TrAIJ.ol(A2). 

It can be interpreted as a generalized covariance of the observables A1 and A2. 
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EXAMPLE 2.1. Let the metric be determined by Jo(H) = G, where G D + D G  = 
2H, then it is called the metric of the symmetric logarithmic derivative. This metric 
is monotone, with the corresponding operator monotone function f ( x )  = l+x 2 ' s e e  

[5, 11, 15]. 

EXAMPLE 2.2. Another important example of a monotone metric is the well- 
known Kubo-Mori metric determined by Jo(H) = d log(D+tH)lt=o. The monotone 
metric is given by 

0 2 
~.D(H, K) = Tr HJD(K) = 0--~-s Tr (D + tH) log(D + sK)lt,s=O. 

Note that this metric is induced by the relative entropy D(p, tr) = T r p ( l o g p - l o g a )  
when the density matrices p and tr are infinitesimally distant from each other. 

EXAMPLE 2.3. [11, 16] Let JD(H) = I ( D ' I H  + HD~I). The corresponding 

metric is monotone, with f ( x )  = 2~ 7~-~, and it is called the metric of the right 
logarithmic derivative. 

For more about monotone metrics and their use see [15, 16, 10]. 

3. The g-representation 

Let g : ~ --> 11~ be a smooth (strictly) monotone function. We define an operator 
Lg[g] : TM -~ I'gCM) by 

d M Lg[M](H) = -~sg( + sH)ls=o. 

The following Lemma was proved in [17]. As it is frequently used in the sequel, 
we repeat the proof here. 

LEMMA 3.1. 
(i) Lg[M] is a linear map. 

(ii) Lfog[M] = Lf[g(M)]Lg[M]. In particular, if  g is invertible then Lg[M] is 
invertible and Lg[M]-I= Lg-l[g(M)]. 

(iii) Lg[M] is self-adjoint, with respect to the inner product (A, B) = Tr AB in 
A4. 

(iv) Lg[M](M)= g'(M)M, where g ' (x )= d~g(x). 
(V) Lg[M]-I ( I )= (g'(M)) -1, ! is the identity matrix. 

Proof: It is convenient to use the orthogonal (with respect to the inner product 
(A, B) above) decomposition of the tangent space introduced in [9], ?'M = C(M) 
C(M) ±, where C(M) = {X E A4 : X M  = MX} and C(M) ± = {i[M,X] : X E  
At}. 
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Let H ~ I'M be decomposed as H = H c + i[M, X], then, according to [4] (p. 
124), ~sg(M+sH)ls_--o = g ' (M)HC+i[g(M),  X]. The statements (i) and (ii) follow 

easily from this equality. Let K ~ TM, K = KC+ i[M, Y], then 

Tr KLg[M](H) = Tr KC g ' (M)H c - Tr [M, Y][g(M), X] 

= Tr g ' (M)KCn c - Tr [g(M), Y][M, X] = Tr Lg[M](K)H. 

which proves (iii). 
(iv) Lg[M](M) = a g ( ( 1  + s)M)ls=O = g'(M)M. 
(v) From (ii), 

Lg[M]-I(1) = Lg-~[g(M)](I) = ff-~g-l(g(M) + sl)ls=o = (g'(M)) -1. [] 

In what follows, we omit the indication of the point in square brackets if no 
confusion is possible. The vector space 

T g = {Lg(H) I H ~ To} 

will be called the g-representation of the tangent space To. The corresponding inner 
product in To g is 

3.~(G1, G2) = ~o(L~I(G1), Lg-I(G2)) = Tr G1Kg(G2), 

where K e = L~lJoL~  I. Similarly as before, the g-representation of the cotangent 
space is the space of all linear functionals on T~ and it is given by 

TA* = {Kg(G) IG E T~} = {Le-1(A ) I A E T~}. 

The inner product 

~Og(B1, B2) : ~ .g(K; l (n l ) ,  K~-I(B2)) = Tr B1K;I(B2) 
will be called the generalized g-covariance of B1 and B2. 

Clearly, if g is the identity function, we obtain the usual tangent and cotangent 
spaces To and T~. 

LEMMA 3.2. 

G E T g .~ ~ Tr(g ' (D))-IG = 0 ,  

B ro  g* Trg' O)o8 = 0. 

Proof." Both statements follow easily from Tr H = 0, H 6 To and Lemma 3.1(v) 
and (iv), respectively. [] 

EXAMPLE 3.1. The quantum analogue of Amari's u-representations is obtained 
if we put 

g(x) = g~(x). 
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In the sequel, we use the letter t~ to indicate the function g~, e.g. a-representation, 
T~, etc. For o~ ~ -4-1, (g~,(D)) -1 = l+~g_~(D) and g'~(D)D = A~-Zg~,(D) and thus 

G ~ T~ < ~. Trg_,~(D)G =O, 

B ~ T~* .~ ~. Trga(D)B =O. 

An application of Lemma 3.2 also for ot = -4-1 shows that T~* = TE ~' for each 
a,  so that Ka = L~IJoL~ 1 is an isomorphism K~ : T~ ~ Tz~ ~. This shows that 
the or- and -a-representations are in some sense dual, as in the classical case. In 
particular, if we put Jo = Ja = L_~La, then Ka = L_aL-~ 1 and we see that in 
this case K~ -1 = K-o, The corresponding family of metrics was studied in [10] and 
it was shown that the metric is monotone for a e [ -3 ,  3]. Moreover, for a = 4-1 
we obtain the Kubo-Mori metric and ot = 4-3 corresponds to the right logarithmic 
derivative. 

4. The atnne connections, torsion and curvature 

Let g :/I~ --~ l~ be a smooth strictly monotone function and let M, M t ~ A4 +. 
Clearly, both T g and T g* for each M can be identified with .M, so that there is 

a natural isomorphism I"A --> ]'g, given by the identity mapping. This isomorphism 
induces an affine connection on .M +. Let us denote the corresponding covariant 
derivative by fTg. 

Let Xl . . . . .  XN+I be a coordinate system in .M +. Let us denote Oi = ~ and let 

~Ii = OiM(x), a i  = Lg([- I i )  = Oig(M(x)), i = 1 . . . . .  N + 1. Then 

L (¢ jfzi) = Oiajg(M(x)). 

Hence, the coefficients of the affine connection are 

rgk(x) = ~.x(Vk,~g Hj,~ Hk) = Tr OiOjg(M(x))Kg(Gk), 

i, j ,  k = 1 . . . . .  N + 1. From this, it follows that this connection is torsion-free. 
If we use the functions g~, we obtain a one-parameter family of torsion-free 

connections ~a,  analogical to Amari's family of a-connections. It is easy to see 
that, unlike in the classical case, the connections V" and V-a are  no t  dual in 
general. 

To obtain the dual connection, consider the affine connection on A4 + induced 
- g ,  

by a similar identification I"M g* ~ T~,. The covariant derivative will be denoted by 

X7g*, this notation will be justified below. We have 

Zg 1 JM(~Tg* ~-Ij) : ai Kg(aj(x)  ). 

The coefficients of this connection are 
~ g ,  ~ g ,  . . . .  

rij k = ~,(V~.liHJ, l~k)  = Vg(L~I JM(V~Hj),  Kg(t~/~)) ---- Tr OiKg(Oj)Ok. (5) 
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PROPOSITION 4.1. Vg and Vg* are dual. 

Proof." For i, j ,  k = 1 . . . . .  N + 1, we have 

aix( rj, aix*(8j, 8k) = a Tr 8jr , (Sk)  
=Tra,(;jKg(8k)+TrGjaiK,(Sk) + r*kj" 

REMARK 4.1. Notice that for g = id, we obtain the mixture and exponential 
V (m) and V (~) connections defined in [13]. 

The components of the torsion tensor are 

~g, ~g, ~g, 
S~j k = r i j  k - Fji t = Tr {OiKs(Oj(x)) - a j K g ( O i ( x ) ) } O k ,  

so that this connection is torsion-free iff 

OiKg(Gj) = OjKg(Gi), Vi, j = 1 . . . .  , N + 1. 

Obviously, this is not always the case. 

EXAMPLE 4.1. Let us consider the connection V~*, ~ e [ -3 ,  3], and let the 
metric tensor be determined by J~. Then we have K~(Gj(x) )  = L_a([-lj(x)) = 
Ojg_a(M(x)) ,  so that the connection is torsion-free. Moreover, L~IJa = L_a and 
thus 

L_, , ( f7~  [-Ij) = O, Ojg_,~(M(x)). 

From this it follows that with this choice of the metric tensor one has V~* = Q-a 
as in the classical case. In particular, the exponential connection Q - l .  is torsion- 
free and Q4-1. = ~ :1  with the Kubo--Mori metric. Similarly, ~ - 3 . =  Q~:3 and the 
connections are torsion-free, with the metric of the right logarithmic derivative. 

Consider now :O as an N-dimensional submanifold in A4 and let tl . . . . .  tN be 
a coordinate system in ~P. As there is no danger of confusion, we use the symbol 
Oi also for a ~ .  Let Hi = OiD(t), Gi = Oig(D(t)), i = 1 . . . . .  N.  The afline structure 
in ~O is obtained by projecting the above affine connections orthogonaly onto ~P. 
Clearly, each density matrix D is orthogonal to the tangent space To in 7"o. Indeed, 
if H ~ To, 

~.D(H, D) = Tr n J o ( D )  = Tr n = 0. 

Moreover, ~.o(D, D) = 1. Using (iv) and (v) of Lemma 3.1, it follows that the 
covariant derivative is given by 

Le(V~jHi )  = Oiajg( Dt) - g ' (D,)DtTr  (g' (Dt) ) - l  OiOjg(Dt), 

L-g I J D ( V ~ H j )  = ~i K g ( ( ~ j  ( t ) )  - -  (g f (Dt) ) - lTr  g'(Dt) Dtai Kg (Gj (t)), 
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and the coefficients are 

F~k(t) = Tr Kg(Gk)OiOjg(Dt), 
g* 

Fij k (t) = Tr GkOi Kg (Gj (t)). 

And now some facts from differential geometry [1, 2]. Let k be the Riemannian 
curvature tensor of an affine connection V on an m-dimensional manifold A4 and 
let R* be the curvature tensor of the dual connection. Let X, Y, Z, W be vector 
fields. Then we have (see Lauritzen in [2]) 

R(X, Y, Z, W) = -R*(X,  Y, W, Z). (6) 

In particular, k = 0 iff R* = 0. Further, let A/" be a p-dimensional submanifold in 
.M with a coordinate system x. Let X1 . . . . .  Xp be the natural basis of the tangent 
space, associated with x, and let YI . . . . .  Ym-p be orthonormal vector fields on A4 
normal to A/'. Recall that the Euler-Schouten imbedding curvature is given by 

Hi j l=L(qTx iX j ,  Yl), i , j = l  . . . . .  p, 1 = I  . . . . .  m - p .  

Let us denote 

Hi; t ~7" =;~( x, Xj ,  Yl), i , j = l  . . . . .  p,  / = 1  . . . . .  m - p .  

The submanifold A/" is called autoparallel if its imbedding curvature vanishes, i.e. 
the parallel shift of a vector in Tx(A r) along a curve p(s)  in A/" stays in Tp~s)(Ar). 
Let V be the orthogonal projection of ~' onto A/'. 

PROPOSrrlON 4.2. Let R be the Riemannian curvature tensor o f  V and let f7 be 
torsion-free. Then 

Rijkl "-- Rijkl + E (n i kv I - I j * l v  -- njkvl't':t;v) (7) 
V 

for  i , j , k , l  = 1 . . . . .  p. 

Proof." The proof of this statement for the case of a metric connection, i.e. 
V = V*, can be found in [12], the general case is obtained by an easy modification 
of this proof. 

Let us now return to the submanifold Z) in A4 +. The Euler-Schouten imbedding 
curvature is 

H~I = Tr(g ' (D))- lOiOjg(D),  i, j = 1 . . . . .  N,  

and 
Hi~ 1 = Trg ' (D)DOiKg(Gy) ,  i, j = 1 . . . .  , N.  

PROPOSITION 4.3. Let g = gq. Then 

1 +oe  
H/~I= 2 rr ~ J~(nj) ,  

1 - o r  

2 
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and 

Proof." Let 0 / #  4-1. Compute, using Lemma 3.2, 

1 + 0/Tr g_~ (D)3i 0j g~ (D) H/~I= 2 

1 + 0 /  
= 2 {3jTrg_~(O)3igu(D)-Tr3jg_~(O)3ig~(O)} 

= _ 1 + 0/TrL_~(H,)La(Hi)__~ 
2 

1 -- 0/Trg~(D)OiKa(Gj) 

1--0/  
= 2 {3iTrga(D)L-dlJD(Hj) - Traig=(D)L-~IjD(Hj)} 

1 - o r ,  
- - - - y -  r r H j J D ( n i ) .  

The proof in the case 0 / =  4-1 is almost the same. [] 

Let Rg be the Riemannian curvature tensor of vg  in At +. Clearly, At+ can be 
parametrized in such a way that  

N+I 

g(M(x)) "" E xiGi. 
i=1 

(8) 

In this case, we will say that At+ is parametrized as an extended g-family. We 
have aiajg(M(x)) -----0, hence Fgk(X)= 0, for i, j ,  k = 1 . . . .  , N + 1 and for each 

x .  It means that this parametrization is afline and therefore k g = 0. Thus also 
R g * =  0. From the identity (7), the curvature tensor R g in ~D is equal to 

Rqkl~j ~ l - l g  l - l g *  ~ l - l g  l-lg* " ' jkl"i l l  "'ikl'"jll" 

If  g = g~, 

1 - -  0/2 
R i j k l ( D )  - -  4 {Tr HjJ~,(Hk)Tr HiJo(HD - Tr HiJa(Hk)Tr HjJo(Hl)}. 

We see that R ~ = 0 if a = 4-1. It is also clear that R ~ = R -a .  Statistical manifolds 
with this property are called conjugate symmetric and were studied by Lauritzen 
(see [2]). Here we have to be aware that R -~' # R '~*. The curvature tensor R ~* 
can be computed using the identity (6). 

Let At '  be a submanifold in At+ such that the Riemannian curvature tensor of 
the projection V u' of X) ~ onto At '  vanishes. Then At '  is fiat so that there exists 
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an affine coordinate system 0. The dual connection is curvature-free and if it is 
also torsion-free then it follows from Theorem 1.2 that there exists a dual V '~'*- 
affine coordinate system 7. This is the case if, for example, J = J~ or if M '  is 
one-dimensional, see Section 6. However, if the dual connection is not torsion-free, 
there is no coordinate system dual to 0. Indeed, if 0 is a dual coordinate system, 
then it follows from Amari's proof of Theorem 1.2 that 0 is V~'*-affine, i.e. the 
components of the connection vanish, F~j](1/) = 0 W?, Vi, j ,  k. But then we have 
for the components of the torsion tensor S[~ = I ' i j  ~ - I ' j ~  - -  0.  

5. A statistical interpretation 
Throughout this paragraph we suppose that a # 1. We will investigate a statis- 

tical interpretation of the a-representations of the tangent and cotangent space and 
the a-connections. 

Let D ' -  :D be a smooth p-dimensional submanifold and let 01 . . . . .  0p be the 
coordinate system in :D'. Let T~ be the tangent space of D' at 0, H[ = a)-~D(O), 

G' i = Lg(H[) and let V 'g and V 'g* denote the orthogonal projecti0ns of the affine 
connections onto D'. In [17], locally unbiased estimators were defined and a gen- 
eralized Cram~r-Rao inequality was proved for the generalized covariance. We give 
an analogical definition of the a-expectation and a-unbiasedness. 

DEFINITION 5.1. Let B = (B1 . . . . .  Bp) be a collection of observables. We will 
say that B is a locally a-unbiased estimator of  0 at 00 if 

(i) Trgu(Doo)Bi --- OOi for i = 1 . . . . .  p, 
(ii) ~Trg~(Do)Bi[oo - -  T r G j B i  : ~ij, i , j ,  = 1 . . . . .  p. 

The value Tr g~(D)A will be called the a-expectation of  the observable A. 

As follows from Example 3.1, the a-representation of the cotangent space  T~* 
can be interpreted as the space of all observables with zero a-expectation at D 
with inner product given by the generalized a-covariance ~0 ~. The following lemma 
is obvious. 

LEMMA 5.1. Let A = (A1 . . . . .  Ap) be a locally unbiased estimator of  0 at 0o. 
Then B = L~-I(A) = (L~I(A1) . . . . .  L~I(Ap)) is a locally a-unbiased estimator of  
0 at 0o. Moreover, ~o(Ai, Aj)=~oa(Bi,  Bj) and TrH[Aj =TrG~Bj,  i , j  = 1 . . . . .  p. 

The generalized Cram6r-Rao inequality from [17] can now be rewritten in the 
following form. 

= ~ (G i, G~) and let B ( B 1 , . .  Bp) be a THEOREM 5.1. Let ~'ij X(H[, H i ) =  ~ ' = ., 
locally a-unbiased estimator of  0 at O. Then 

~o~(B) >_ (Xo) -1 

in the sense of  the order on positive definite matrices. Moreover, equality is attained 
iff B is the biorthogonal basis o f  To =*. 
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An estimator B which is (c~-)unbiased (at each point) and such that its variance 
attains the Cram&-Rao bound  is called (a-)efficient. Clearly, such estimator does 
not always exist. The following necessary and sufficient condition is a generalization 
of  a result stated (without proof) in [13]. 

THEOREM 512. The ot-e~icient estimator exists iff 79' is a Vot*-autoparalIel sub- 
manifold and the coordinate system 01 . . . . .  Op is V'ot-affine. 

Proof." Let 79' be Vot*-autoparallel and l e t  the coordinate system be V'Of-affine, 
tot , i.e. VH:H j = 0, i, j = 1 .... p. Let us choose a point in the parameter space 

(0 = 0) and let B = (BI ..... Bp) be the biorthogonal basis of T0Of*. We prove that 

B is an a-efficient estimator. 
Let Xi(O) be a vot*-parallel vector field such that LZIJo(Xi(O)) = Bi, i = 

I ..... p, i.e. Xi =JoILot{Bi-g-ot(D(O))TrgOf(D(O))Bi} • As 79' is Vot*-antoparallel, 
Xj(O) ~ Td, ¥0. Compute 

OiTr got(D(O))Bj = Tr G~(O)Bj = Tr GI(O)L-~I Jo(Xj(O) ) = )~(H:, Xj), 

here we have used the identity TrG'i(O)g_Of(D(O))= O. Further, 

akXfH:, X:) 'ot ' ' 'ot* = X(Vn HI, Xj) + X(Hi, Xj). (9) 

'Of ' 0, Vi, k. Moreover, Since the parametrization is V'Of-affine, we have V~I~H i = 
, 'Of* 0. It Xj(O) ~ T~ and Xj  is Vot*-parallel, hence Xj is V'Of*,parallel, so that VH: Xj = 

follows that OkTrGI(O)B j = 0 for all 0. Since TrG~(O)Bj = 8ij, we have TrG'i(O)Bj 
= 8ij for each 0. We see that as Trgot(D(O))Bj = 0 and OiTrgot(D(O))Bj = 8ij for 
each 0, it follows that B is a-unbiased at each point 0. From Theorem 5.1, it now 
suffices to prove that Bj-Ojg_ot(D(O)) ~ ToOf*. But this follows easily from the fact 
that Xj(O) ~ Td and Tr got(D(O))Bj = Oj. 

Conversely, let B he the a-efficient estimator, then B is a-unbiased and the 
matrices Bi- Oig_ot(D(O)), i = I ..... p, form the biorthogonal basis of T0Of* ¥0. 

Let Xi = JoIL-a1(Bi- Oig_Of(D(O))), then Xi is a VOf*-parallel vector field and 

Xi ~ Td ¥0, hence Xi is V'ot*-paralleL Moreover, 

 fH:, xj) = Tr GIBj = 8,j. 

rot ! From (9) it now follows that ~.(Vn~H~,X j) = 0. But the matrices Xj(O), j = 
/Of I 1 . . . . .  p,  form a basis of  T~. We may conclude that V~/~H~ = 0, i, k = 1 . . . . .  p, 

so that the parametrization is V'Of-affine. 
To see that 79' is VOf*-autoparallel, it suffices to observe that the parallel vector 

fields Xi(O), i = 1 . . . . .  p, form a basis of  the tangent space T~ for each 0. [] 
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6. Geodesics and divergence functions 

Let us consider a Va-autoparallel submanifold in ~ for a = 4-1. Then it is 
V"-fiat, hence there is an affine coordinate system 0. If c~ ~ 4-1, we will consider 
the autoparallel submanifolds in .M +. As it was said at the end of Section 4, in 
general there is no hope for a dual coordinate system to exist, unless the dual 
connection is torsion-free. It means that we cannot use Amari's theory to define a 
divergence. However, one-dimensional submanifolds are always torsion-free, so that 
a divergence, function exists for each V 41. and V~*-geodesic. As suggested in [13], 
we use these functions to define a divergence function in D (.A~f+). 

Clearly, for each a, a V~*-geodesic is a solution of 

L~ -1Jp, (P,) = A, (10) 

where A E .A//, it means that each geodesic is determined by the observable A. 
The Va*-geodesic is given by 

(i) Jp,(ig,) = A - Tr ptA, for c~ = - 1 ,  
(ii) L] -1Jp, (Pt) = A - ptTr A, for (x = 1, 

(iii) L-~l J/,,(igt) = A - L~g_,~(p t )Tr  ga(p,)A, for ot # 4-1. 
Note that A can be replaced by A + c t  in (i), A + c ,  pt in (ii) and A+c ,g_a (p , )  

in (iii), c, E R, so that we may always suppose that A E TT*. 
The relation between V ~*- and ~'~*-geodesics is clarified in the following propo- 

sition. 

is a PROPOSITION 6.1. Let Pt be a solution o f  L-a lJ~( /g t )  = A. Then lot = TrOt 

V °~*-geodesic. 

Proof." From (3), Jp, = Tr/~,J~,. Compute 

T r L _  - Trp, Jp, (P,) = JA, (Pt) Tr ~, 

here we used the fact that J D ( D ) =  I (twice) and that Jo is self-adjoint. Further, 

L~ -1 Jp, (Pt) = A - L~ -1 (l)Tr L,x (pt)A. 

We use Lemma 3.1 (iv) and (v) to complete the proof. [] 

REMARK 6.1. Let Pt be as in (i). For each t, the coefficient of the affine 
connection is equal to 

v - l . ( t )  --1." d d =x(v~, p,,A)=Tr~{J.(A)}p,=Tr {a-Trp, alA=0. 

It follows that the parameter t is v - l * - ~ e .  Similarly, for Pt as in (ii), t is 
vl*-affine. In the case ~ ~ 4-1, the Va*-geodesic is not fiat, hence we consider (as 

58



t 34 A. ruN,OVA 

in the classical case) geodesics in AA +. If  Pt is the solution of  (10), t is V~*-attine. 
Moreover,  all affine coordinate systems are connected via affine transformations t ~-, 
a t +  b. This coordinate transformation changes the initial point and rescales the 

_1A observable A as a • 

LEMMA 6.1. Let oe = --1 and let Pt and l)t be as above. Then ¢ ( t )  = logTr~t  
is a potential function for  Pt. 

d 2 
Proof." We have to prove that ~ r a p ( t ) =  k(tSt, Pt). Compute 

~¢(t) 'rr~t 
-- -~rr ~t -- Tr pt A. 

Moreover, 
d 2 

k(~t,  ~bt) = Tr/gt Jp, (Pt) = Tr ptA = d - ~ ¢ ( t ) .  [] 

LEMMA 6.2. Let oe = 1, then ¢ ( t )  = Tr pt log pt is a potential function for  Pt. 

Proof." We may assume that A 6 T 1. ,  i.e. Tr A = 0. We have L11( logpt )  = 
Pt log Pt, hence 

¢ (t) = Tr L i- 1 (log Pt) = Tr Pt Jp, L 11 (log Pt) 

and 
d -1 

d ~/(t) = Tr p t Jp tL l l ( l ogp t )  + Tr p t -~  Jp, L 1 (logpt) 

= Tr A log Pt + Tr Pt L 1 (Pt) = Tr A log Pt; 

here we have used the fact that JD(A) = D - 1 A  whenever A commutes with D, 
thus Jp, (p t logpt)  = logpt ,  and Ll (p t )  = I. The rest of the proof is the same as 
above. [] 

LEMMA 6.3. Let oe ~ -4-1 and let Pt = Pt. Then ¢ ( t )  = i_~2~Tr Pt is the potential 
function . 

and 

Proof." 
d 1 - o e ,  
-~Tr  pt = Tr igtJp,(pt) = Tr ptL=(A) -- ----f-  rr g~(p , )A 

d 2 1 1 - ot 
- ~eTr L,~(bt)A = ~.(15t, Pt). [] dt 2 Tr pt -- 2 "2 

According to Theorem 1.2, P t  is also V = (V")-flat and there is a dual V ~ 
(V=)-aftine coordinate s. As we have seen in the proofs of the above lemmas, the 
dual coordinate is given by s ( t )  = ~ ( t )  = Trg=(pt )A for each oc Moreover, there 
is a divergence function D~ : p x p --* R. A divergence-measure in / )  (AA +) can 
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th, l.'n be defined as follows. Let Po, pl ~ 2). Let Pt be the unique V°'*-ge~esic 
connecting these two states. I f  ot ~ 4-1, the a-divergence is D~(po, Pl) = DaP(0, 1). 
If  ce = 4-1, we use the Va*-geodesic Pt = (Trpt) - lPt .  

PROPOSITION 6.2. 
(i) Let t~ = --1 and let Po, Pl ~ 7). Let /at be as above and let A be the unique 

observable determining Pt. Then 

D~(po, Pl )  = Tr  p l A .  

(ii) I f  ot = 1, then 

Da (po, Pl) = Tr P0 log Po + Tr (A - Pl) log Pl. 

(i~i) Let a ~ 4-1, Po, Pl ~ A4 +. Then 

2 
Da(po, Pl) -- - -  (Trp0 - Trp l )  + Trgu(pl)A. 

1 - o e  

Proof." From the definition of  the divergence function and the identity (2), we 
ob,:ain 

D~(tl, t2) = ~ ( t l )  - lP(t2) -b (t2 - tl)S2 

The rest of the proof is easy. [] 

Let now Pt be a geodesic connecting two states Po and Pl and let Pt,, Pt2 be two 
stales lying on Pt. Using Remark 6.1, it is easy to see that D~(pt,, Pt2) = DPa(tl, t2). 
It dso follows that for each p we may put D~(p, p) = 0. There are some properties 
of the divergence D~ which follow from the properties of  D~. 

¢i) Positivity: Dc,(p, t r )> 0 and Do,(p, t r )=  0 iff p = tr. 
(ii) Let tr = p + d t H .  Let A = L-~Ijn(H) and let Pt be the geodesic determined 

by A such that Pro = P. Then 

D~(p, p + dtH)  = D~(to, to + dt) -- dt2)~(H, H) 

and 
Da(p + dt H, p) = D°a (to + dt, to) = D~ (to, to + dt). 

It means that the a-divergence induces the metric. 

EXAMPLE 6.1. Let k be determined by ] ,  = L_~L~ for some , ~ ( - 3 ,  3). As 
we have seen, in this case V " * =  V -~ and this connection is torsion-free. Hence 
we have the same situation as in the classical case. Let ot = 4-1 and let us consider 
the exponential family 

m 

p(O) = e x p { ~ 0 i A i  - ~p(0)}. 
i - -1  
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Then it is +l-f lat  and ~ ( 0 ) =  logTr exp(OiAi) is the potential function. Hence the 
coordinate systems (0, {)7i = 0i~(0)} are mutually dual, 0 is V~-afline and )7 is 
V-a-affine. The divergence is given by 

Dl(PO, Pl) = Tr pl(lOg pl - log g0) 

which is the relative entropy. Similarly, for the mixture family 

m 

p(rl) = po at- ~_rl iAi ,  Tr Ai ~ 0)  

i=l 

the function ~p(O) = Trp(r /) logp(~) is the potential function, so that there is a 
pair of dual affine coordinate systems (r/, 0), see also [9]. The divergence is 

D-l(po) Pl) = DI(pl,  Po). 

For ot # + l ,  we consider the extended a-family 

m 

Let ~ t (0 )=  1~2 Trp(0).  Then 

and 

p(O) = ggl ( Z  OiAi). 

0 0 2 Tr g~l (~_~ O k A k )  - -  
OOi l~t(O) ~. OOi 1 - a k 

i+1 

2 
- -  Tr L~ -1Ai -~  Tr g_a (p (0))Ai 
1--o~ 

0 0 1 
= g_ (gg oia ))a, OOj Tr g_,~ (p (O))Ai k 

= Tr L_~L-~ 1 (Aj)Ak = L°'(Ai, Aj), 

hence ,p(0) is the potential function. Thus there is a pair of dual affine coordinate 
systems and a divergence 

Da (P0, Pl ) = Tr gu (Pl) (g-a (Pl) - g-a (Po)). 

This a-divergence was defined also in [8]. It is easy to see that the above divergence 
functions are the same as those from Proposition 6.2. 

EXAMPLE 6.2. ([5, 13]) Let ot = --1 and let ~. be the metric of the symmetric 
logarithmic derivative. Then it is easy to see that 

Pt = exp{l(tA - @(t))}PoexP{½(tA - @(t))}, 
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where ¢ ( t )  = logTrp0exp(tA) is a solution of (i). Hence it is a v-l*-geodesic 
and the coordinate t is V~*-atfine. It follows that Pt is also V-l-flat and there is 
a v-l-afl ine coordinate system s(t)= TrptA. Further, the divergence is 

1 1 1 1 1 

D-I(PO, P l )  = 2Trpl logpo~(pgplp~)~po ~. 

Clearly, this divergence coincides with the relative entropy if /90 and Pl commute. 
Moreover, Pt has the Gibbs state e x p ( t A -  ~( t ) )  as a special case. 

EXAMPLE 6.3. Let ot = - 1  and let ), be the metric of the right logarithmic 
derivative. Then it is easy to see that 

~)t = F½ exp{tQF(A)}F½, 

1 1 ~ ] 1 where QF is a linear operator given by Q F I ( A )  = ~(F-~AF= + F=AF-~), is a 
solution of (10). If /90 and Pl are two states, 

1 1 

Pt = P~ exp{(t - 1)Qm (A) - ~(t)}p~, 

with ~ ( t ) =  l o g T r p l e x p { ( t -  1)Qp~(A)}, is a V-l*-geodesic. Choose A so that 

1 1 

pl ~ exp{-Qpl (a)}p~ = P0. 

Pt is then the v-l*-geodesic connecting these two states. We see that the divergence 
is given by 

1 1 

D - I ( p 0 , / 9 1 )  = TrplA = Trpl logp~polp~ 

This version of the relative entropy appeared also in [3]. 

REFERENCES 

[1] S. Amari: Differential-geometrical methods in statistics, Lecture Notes in Statistics 28, Springer, Berlin 
1985. 

[2] S. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, C. R. Rao: Differential geometry in 
statistical inference. IMS Lecture Notes--Monograph series 10, Mayward 1987. 

[3] V. P. Belavkin and E Staszewski: C*-algebraic generalizations of relative entropy and entropy, Ann. Inst. 
Henri Poincar~ A37 (1982), 51-58. 

[4] R. Bhatia: Matrix analysis, Springer, New York 1997. 
[5] S. L. Braunstein and C. M. Caves: Geometry of quantum states. In: Quantum Communication, Computing 

and Measurement (I-Iirota et al., Eds.), Plenum Press, New York 1994. 
[6] N. N. Chentsov: Statistical decision rules and optimal inferences, Translation of Math. Monog. 53, Amer. 

Math. Society, Providence 1982. 
[7] N. N. Chentsov and Morozova: Markov invariant geometry on state manifolds (in Russian), ltogi Nauki 

i Tekhniki 36 (1990), 69-102. 
[8] H. Hasegawa: Rep. Math. Phys. 33 (1993), 87-93. 
[9] H. Hasegawa: Rep. Math. Phys. 39 (1997), 49-68. 

[10] H. Hasegawa and D. Petz: Non-commutative extension of information geometry H. In: Quantum Com- 
munication, Computing and Measurement, (eds. Hirota et al.), Plenum Press, New York 1997. 

62



138 A. JEN(~OVA 

[11] A. S. Holevo: Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam 1982. 
[12] S. Kobayashi, K. Nomizu: Foundation of Differential Geometry, Volume 11, Intcrscience, Wiley, New 

York, London 1963. 
[13] H. Hagaoka: Differential geometrical aspects of quantum state estimation and relative entropy. In: Quantum 

Communication, Computing and Measurement (eds. Hirota et al.) Plenum Press, New York, 1994. 
[14] D. Petz and Cs. SudS: J. Math. Phys. 37 (1996), 2662-2673. 
[15] D. Petz: Information geometry of quantum states. In: Quantum Probability Communications, vol. 10 (eds. 

R.L. Hudson et al,), World Scientific, 135-158, Singapore. 
[16] D. Petz: Linear Algebra Appl. 244 (1996), 81-96. 
[17] D. Petz and A. Jen~ov~: On quantum Fisher information, to appear. 

63



International Journal of Theoretical Physics, Vol. 43, Nos. 7/8, August 2004 ( C© 2004)

Generalized Relative Entropies as Contrast
Functionals on Density Matrices

Anna Jenčová1

We use a class of generalized relative entropies on density matrices to obtain one-
parameter families of torsion-free affine connections.

KEY WORDS: generalized relative entropies; information geometry; affine
connections.

1. INTRODUCTION

The aim of quantum information geometry is to introduce the quantum coun-
terparts of the basic structures of the classical theory, namely Riemannian metrics
and families of affine connections. It is an important feature of the classical infor-
mation manifolds, that if invariancy with respect to bijective transformations of
the sample space is required, then these structures are unique (up to a multiplica-
tion factor): the Fisher metric and the family of Chentsov-Amari α-connections
(Amari, 1985; Chentsov, 1982).

Let F = {p(·, θ )|θ ∈ �} be a manifold of classical probability densities with
respect to a common measure P . To define the affine connections, Amari (1985)
used a family of functions

fα(x) =



2

1 − α
x

1−α
2 α 
= 1

log(x) α = 1
(1)

Let lα(x , θ ) = fα(p(x , θ )). The coefficients of the Fisher information metric tensor
and the α-connections are given by

gi j (θ ) =
∫

∂i lα(x , θ )∂ j l−α(x , θ ) dP, ∀α
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�α
i jk(θ ) =

∫
∂i∂ j lα(x , θ )∂kl−α(x , θ ) dP

These connection are torsion-free and the α and −α connections are dual with
respect to the Fisher metric, in the sense that if ∇±α are the covariant derivatives
and X, Y, Z are vector fields, then

Xg(Y, Z ) = g
(∇α

X Y, Z
) + g

(
Y, ∇−α

X Z
)

There are more equivalent ways to introduce the Fisher metric and the affine
connections. In the present paper, we follow the approach of Eguchi (1983), who
used contrast functionals, see also Amari (1985).

A functional ρ over F × F is called a contrast functional if

(i) ρ(θ1, θ2) ≥ 0 for all θ1, θ2 ∈ �

(ii) ρ(θ1, θ2) = 0 if and only if θ1 = θ2

The Riemannian metric and Christoffel symbols of the affine connections are
defined by

gρ

i j (θ ) = − ∂2

∂θi∂θ ′
j

ρ(θ , θ ′)|θ=θ ′ (2)

�
ρ

i jk(θ ) = − ∂3

∂θiθ jθ
′
k

ρ(θ , θ ′)|θ=θ ′ (3)

Let f : (0, ∞) → R be a convex function satisfying f (1) = 0, then

ρ f (θ1, θ2) = Eθ1

[
f

(
p(X, θ2)

p(X, θ1)

)]

defines a contrast functional. It was shown that in this case, gρ

i j = f ′′(1)gi j , where
gi j denotes the coefficients of the Fisher metric and the corresponding affine con-
nection coincides with the α-connection with α = 2 f ′′′(1) + 3 f ′′(1).

As one would expect, the situation is different in noncommutative case. Here,
the equivalent of the Fisher metric would be a Riemannian metric, which is mono-
tone with respect to completely positive trace preserving maps. For manifolds
of n × n density matrices, it was proved by Chentsov and Morozova (1990) that
such metric is not unique. Later, Petz (1996) characterized the class of mono-
tone metrics in terms of operator monotone functions. Nagaoka (1994) defines
the affine α-connection for α = −1 (the mixture connection) using the natural flat
affine structure on density matrices. The exponential connection is defined as its
dual with respect to the given monotone metric. This approach was generalized in
Jenčová (2001a), for all α. Unlike the classical case, the dual connections are not
torsion free in general. In Jenčová (2001b), it was shown that the dual connection
to the α-connection is torsion-free only for a special monotone metric λα .
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Lesniewski and Ruskai (1999) used a class of generalized relative entropies,
defined in Petz (1986), as contrast functionals on (non-normalized) density ma-
trices. It was shown that each monotone metric can be obtained in the form
(2) for a certain convex subset of relative entropies. The aim of the following
paper is to use this subset to obtain a class of torsion free α-connections, such that
α and -α-connections are dual. We question the coincidence with the Fisher metric
and classical affine α-connections on commutative submanifolds, use the language
of statistical manifolds by Lauritzen (Amari et al., 1987), to give formulas for the
Riemannian curvature tensor. We also treat some important examples.

2. GENERALIZED RELATIVE ENTROPIES
AND MONOTONE METRICS

Let D denote the set of n × n complex Hermitian matrices and let D+ be the
subset of positive definite matrices. As an open subset in D, D+ inherits a natural
affine parametrization and has the structure of a differentiable manifold. Let Tρ be
the tangent space at ρ and let λ be the monotone Riemannian metric. Then λ is of
the form (Petz, 1996)

λρ(X, Y ) = Tr X Jρ(Y ), J−1
ρ = f (Lρ R−1

ρ )Rρ

where f : (0, ∞) → R is an operator monotone function satisfying f (t) = t f (t−1)
and a normalization condition f (1) = 1, Lρ and Rρ are the left and right multipli-
cation operator, respectively.

Let G be the set of operator convex functions g : (0, ∞) → R, satisfying
g(1) = 0 and g′′(1) = 1. It is known that each operator convex function with
g(1) = 0 can be written in the form

g(w) = a(w − 1) + b(w − 1)2 + c
(w − 1)2

w
+

∫ ∞

0
(w − 1)2 1 + s

w + s
dµ(s) (4)

where b, c ≥ 0 and µ is a positive finite measure on (0, ∞). The value of a ∈ R
does not influence any of the following structures and therefore two functions in
G that differ only in a will be treated as equal.

Let P be the set of positive finite measures µ on [0, ∞], such that
∫

[0,∞] dµ =
1
2 . Then (4) establishes a one-to-one correspondence between G and P , with c =
µ({0}), b = µ({∞}).

If g is an operator convex function, we define its transpose ĝ by ĝ(w) =
wg(w−1). It is clear that ĝ ∈ G if g ∈ G and that g �→ ĝ induces the map P → P ,
given by µ �→ µ̂, where dµ̂(s) = dµ(s−1).

If g = ĝ, we say that g is symmetric. The subset of symmetric functions in
G will be denoted by Gsym. Let ∼ be the equivalence relation on G

g1 ∼ g2 ⇐⇒ g1 + ĝ1 = g2 + ĝ2.
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The quotient space G|∼ is isomorphic to Gsym. Similarly, Psym denotes the subset
of measures symmetric with respect to the transform s �→ s−1 and we have an
equivalence relation ∼ on P . Let us denote by Gh the equivalence class containing
1
2 h, where 1

2 h ∈ Gsym, and similarly Pm .
In Petz (1986), see also Lesniewski and Ruskai (1999), the following class

of generalized relative entropies on D+ was introduced.

Definition 2.1. Let g ∈ G. The relative g-entropy Hg : D+ × D+ → R is defined
by

Hg(ρ , σ ) = Tr ρ
1
2 g

(
Lσ

Rρ

)
(ρ

1
2 )

Proposition 2.1. (Lesniewski and Ruskai, 1999).
Let g ∈ G and let a, b, c and µ be as above. Then

Hg(ρ , σ ) = aTr (σ − ρ)

+ Tr (σ − ρ)

{
bρ−1 + cσ−1 +

∫ ∞

0

1 + s

Lσ + s Rρ

dµ(s)

}
(σ − ρ)

= aTr (σ − ρ) + Tr (σ − ρ)R−1
ρ k

(
Lσ

Rρ

)
(σ − ρ)

where

k(w) =
∫

[0,∞]

1 + s

w + s
dµ(s) = g(w) − a(w − 1)

(w − 1)2
.

The relative g-entropy can be used to define a Riemannian structure on D+

as follows. Let X, Y ∈ Tρ , then

λρ(X, Y ) = − ∂2

∂s∂t
Hg(ρ + s X, ρ + tY )|s=t=0 = Tr X R−1

ρ ksym

(
Lρ

Rρ

)
(Y )

where

ksym(w) = k(w) + w−1k(w−1) = g(w) + ĝ(w)

(w − 1)2
.

It was proved that this defines a monotone metric, where the corresponding operator
monotone function is f = 1/k. Conversely, for a given monotone metric, we may
put g(w) = (w−1)2

f (w) . The condition g′′(1) = 1 is equivalent to the normalization
condition f (1) = 1. Thus we have

Proposition 2.2. There is a one-to-one correspondence between monotone
Riemannian metrics and equivalence classes Gh.
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3. AFFINE CONNECTIONS

Let θ ∈ � ⊆ RN be a smooth parameter in D+ and let ∂i = ∂
∂θi

. Let us fix a
monotone Riemannian metric λ on D+ and let Gh be the corresponding equivalence
class. Let us choose a function g ∈ Gh . In correspondence with the classical theory,
we define the affine connections ∇g by

�
g
i jk(θ ) = λθ (∇∂i ∂ j , ∂k) = −∂i∂ j

∂

∂θ ′
k

Hg(D(θ ), D(θ ′))|θ=θ ′

It is easy to show that this satisfies the transformation rules of an affine connection.

Proposition 3.1. Let g ∈ Gh. Then the connections ∇g and ∇ ĝ are dual with
respect to λ. Moreover, the connections are torsion-free.

Proof: Consider the natural flat affine structure in D+ and let X be a vector
field, parallel with respect to this affine structure, then X is constant over D+.
As there is no danger of confusion, we will denote its value Xρ ∈ D at ρ by the
same letter. Let X , Y , Z be such vector fields. If g ∈ Gh , then clearly ĝ ∈ Gh and
Hĝ(ρ , σ ) = Hg(σ, ρ), so that

λρ

(∇ ĝ
X Y, Z

) = − ∂3

∂t∂s∂u
Hg(ρ + u Z , ρ + s X + tY )|s=t=u=0

Using the previous section, we get

Xλρ(Y, Z ) = d

dt
λρ+t X (Y, Z )|t=0

= d

dt

(
− ∂2

∂s∂u
Hg(ρ + t X + sY, ρ + t X + u Z )|s=u=0

)
t=0

= λρ

(∇g
X Y, Z

) + λρ

(
Y, ∇ ĝ

X Z
)

so that the connections are dual. Torsion-freeness is obvious. �

Let cg : (0, ∞) × (0, ∞) → R be given by cg(x , y) = 1
y k( x

y ), where k is as in

Proposition 2.1. Note that cg(y, x) = cĝ(x , y) is obtained from w−1k(w−1) and that
csym

g (x , y) = cg(x , y) + cg(y, x) = 1
y ksym( x

y ) is the Morozova-Chentsov function.
From Proposition 2.1, we get

Hg(ρ , σ ) = aTr (σ − ρ) + Tr (σ − ρ)cg(Lσ , Rρ)(σ − ρ) (5)

For σ, ρ ∈ D+, the operator cg(Lσ , Rρ) is positive on the space of n × n complex
matrices with Hilbert-Schmidt inner product 〈X, Y 〉 = Tr X∗Y .
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Proposition 3.2. Let

Ts(X, Y, Z ) = (1 + s) Tr X
1

s Rρ + Lρ

(Y )
1

Rρ + sLρ

(Z )

and let T∞ = lims→∞ Ts. Then

λρ

(∇g
X Y, Z

) = 2
∫

[0,∞]
�Ts(Z , X, Y ) dµ(s) −

−2
∫

[0,∞]
(�Ts(Y, X, Z ) + �Ts(X, Y, Z )) dµ̂(s)

Proof: From (5), we get

λρ

(∇g
X Y, Z

) = − d

ds
Tr {Xcg(Lρ+s Z , Rρ)(Y ) + Y cg(Lρ+s Z , Rρ)(X )

− Xcg(Lρ , Rρ+sY )(Z ) − Zcg(Lρ , Rρ+sY )(X )

− Y cg(Lρ , Rρ+s X )(Z ) − Zcg(Lρ , Rρ+s X )(Y )}|s=0

Further, for ρ , σ ∈ D+ and X, Y ∈ D,

Tr Y cg(Lσ , Rρ)(X ) = 〈Y, cg(Lσ , Rρ)(X )〉 = 〈cg(Lσ , Rρ)(Y ), X〉
= 〈X, cg(Lσ , Rρ)(Y )〉− = Tr Xcg(Lσ , Rρ)(Y )−

It follows that

λρ

(∇g
X Y, Z

) = −2�Tr

{
X

d

ds
cg(Lρ+s Z , Rρ)(Y )

−
[

X
d

ds
cg(Lρ , Rρ+sY )(Z ) + Y

d

ds
cg(Lρ , Rρ+s X )(Z )

]}
|s=0

We have

cg(x , y) = µ({0})x−1 + µ({∞})y−1 +
∫ ∞

0

1 + s

x + sy
dµ(s) (6)

Let us first suppose that µ({0}) = µ({∞}) = 0. Then we compute

d

dt
cg(Lρ+t Z , Rρ)|0 = −

∫ ∞

0
(1 + s)

1

Lρ + s Rρ

L Z
1

Lρ + s Rρ

dµ(s)

d

dt
cg(Rρ , Lρ+tY )|0 = −

∫ ∞

0
s(1 + s)

1

Rρ + sLρ

LY
1

Rρ + sLρ

dµ(s)

so that

− d

dt
Tr Xcg(Lρ+t Z , Rρ)(Y )|0
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=
∫ ∞

0
(1 + s)Tr

1

Rρ + sLρ

(X )Z
1

s Rρ + Lρ

(Y ) dµ(s)

=
∫ ∞

0
Ts(Z , Y, X ) dµ(s)

and

− d

dt
Tr Xcg(Rρ , Lρ+tY )(Z )|0

=
∫ ∞

0
s(1 + s)Tr

1

s Rρ + Lρ

(X )Y
1

Rρ + sLρ

(Z ) dµ(s)

=
∫ ∞

0
(1 + s)Tr

1

Rρ + sLρ

(X )Y
1

s Rρ + Lρ

(Z ) dµ̂(s)

=
∫ ∞

0
Ts(Y, Z , X ) dµ̂(s)

It follows that for each s ∈ [0, ∞),

2�Ts(X, Y, Z ) = Ts(X, Y, Z ) + Ts(X, Z , Y )

so that �Ts is a covariant 3-tensor, symmetric in last two variables. The statement
now follows easily.

Let µ be concentrated in 0 and ∞. It is clear that T∞ = 0 and we obtain by
a direct computation from (6) that

λρ

(∇g
X Y, Z

) = µ({0})(T0(Z , Y, X ) + T0(Z , X, Y )) − µ({∞})(T0(Y, X, Z )

+ T0(Y, Z , X ) + T0(X, Y, Z ) + T0(X, Z , Y )) �

3.1. Families of Connections

Let Gh be the equivalence class corresponding to the monotone metric λ. Let
g ∈ Gh . If g is symmetric, then the connection ∇g is self dual and torsion free,
hence it is the metric connection. If λ is fixed, we denote the metric connection by
∇̄.

Let g 
= ĝ. As Gh is a convex set, it contains all the functions

gα = 1 − α

2
g + 1 + α

2
ĝ

for α ∈ [−1, 1]. If λ and g are fixed, we denote the corresponding connection by
∇α . Then

∇α = 1 − α

2
∇ + 1 + α

2
∇∗
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where∇ and∇∗ are the covariant derivatives corresponding to g and ĝ, respectively.
The connections ∇α and ∇−α are dual with respect to λ, ∇−1 = ∇, ∇1 = ∇∗ and
∇0 = ∇̄ for all g. Clearly, such family of α-connections depends on the choice of
g ∈ Gh and is therefore not unique.

3.2. Commutative Submanifolds

Let ρ, X , Y , and Z be all mutually commuting. Then it is easy to see that
λρ(X, Y ) = Tr ρ−1 XY and

λρ

(∇g
X Y, Z

) = −1 + α∗

2
Tr ρ−2XYZ

where α∗ = 2g′′′(1) + 3. This corresponds to the Fisher metric and the α∗-
connection in the commutative case. It seems to be a natural question to ask if,
for each λ, it is possible to obtain the α∗-connections at least for α∗ ∈ [−1, 1], if
restricted to commutative submanifolds. From the next proposition (and examples
below) it follows that this is not true.

Let the Riemannian metric λ correspond to the equivalence class Gh , resp.
Pm . Let µmax be a measure with supp µ ⊆ [1, ∞], such that µmax coincides with
m on (1, ∞] and µmax({1}) = 1

2 m({1}). Then we have

Proposition 3.3. Let µmax be as above and let gmax be the corresponding operator
convex function. Then gmax ∈ Gh and for each g ∈ Gh, we have

−3 ≤ ĝ′′′
max(1) ≤ g′′′(1) ≤ g′′′

max(1) ≤ 0

Proof: First, it is easy to see that µmax is a positive finite measure and
∫

[0,∞]
dµmax = 1

2

∫
[0,∞] dm = 1

2 . Moreover, µ̂max is concentrated in [0, 1], µ̂max coin-
cides with m on [0, 1) and µ̂max({1}) = 1

2 m({1}), so that µmax + µ̂max = m. It
follows that gmax ∈ Gh . Let now g ∈ Gh and let µ ∈ Pm be the corresponding
measure. Then

g′′′(1) = −6
∫

[0,∞]

1

1 + s
dµ(s)

and∫
[0,∞]

1

1 + s
dµ(s) =

∫
(1,∞]

s

1 + s
dµ(s−1) + 1

2
µ({1}) +

∫
(1,∞]

1

1 + s
dµ(s)

≥
∫

(1,∞]

1

1 + s
dm(s) + 1

4
m({1}) =

∫
[0,∞]

1

1 + s
dµmax ≥ 0
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and similarly, ∫
[0,∞]

1

1 + s
dµ(s) ≤

∫
[0,∞]

1

1 + s
dµ̂max(s) ≤ 1

2 �

4. EXAMPLE 1: THE EXTREME BOUNDARY OF G
The extreme boundary of G consists of the functions

gs(w) = 1 + s

2

(w − 1)2

w + s
for s ≥ 0

g∞(w) = 1

2
(w − 1)2

We have ĝs = gs−1 for s > 0 and ĝ0 = g∞, g1 being the only symmetric one
of these functions. The corresponding measures are µs(t) = 1

2δ(s − t).
Let s ∈ [0, 1]. Denote hs = gs + ĝs , then

hs(w) = (1 + s)2

2
(w − 1)2 w + 1

(w + s)(sw + 1)

Let λs be the corresponding monotone metric. It is easy to see that gs,max = ĝs

and that

Gs := Ghs =
{

gα = 1 − α

2
gs + 1 + α

2
gs−1 : α ∈ [−1, 1]

}

In particular, G1 = {g1}. It follows that for each λs , we have a unique family
of α-connections. If we consider commutative submanifolds, we obtain classical
α∗-connections with α∗ ∈ [−3 1−s

1+s , 3 1−s
1+s ]. Two important special cases, s = 1 and

s = 0 will be treated below.

4.1. The Metric of Bures

Let us consider the previous example with s = 1. Then

h1(w) = 2
(w − 1)2

w + 1

and the corresponding monotone metric is given by

λ1ρ(X, Y ) = Tr X
2

Lρ + Rρ

(Y )

It is the smallest metric in the class of monotone metrics. We have already seen
that the corresponding equivalence class consists of only one function g1. It means
that the only connection that we can obtain is the metric connection ∇̄.
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4.2. The Largest Monotone Metric

Let s = 0. Then

h0(w) = 1

2
(w − 1)2 w + 1

w

and λ0 is given by

λ0ρ(X, Y ) = Tr X
1

2

(
R−1

ρ + L−1
ρ

)
(Y )

It is the largest monotone metric. On commutative submanifolds, we obtain α∗

-connections for α∗ in the largest possible interval α∗ ∈ [−3, 3]. It is easy to see
from Proposition 3.3 that this is the only monotone metric with this property.

5. STATISTICAL MANIFOLDS

The manifold D+ with a monotone metric and a class of α-connections can
be regarded as a statistical manifold in the sense of Lauritzen (Amari et al., 1987).
A statistical manifold is a triple (M, g, D̃), where M is a differentiable manifold,
g a metric tensor and D̃ a symmetric covariant 3-tensor, called the skewness of the
manifold. On M , a class of α-connections is introduced by

∇α
X Y = ∇̄X Y − α

2
D(X, Y ), (7)

where ∇̄ is the metric connection and the tensor D is defined by D̃(X, Y, Z ) =
g(D(X, Y ), Z ). These connections are torsion free, this is equivalent to symmetry
of D̃, resp. D. The Riemannian curvature tensor is defined as

Rα(X, Y, Z , W ) = g
(∇α

X∇α
Y Z − ∇α

Y ∇α
X Z − ∇α

[X,Y ] Z , W
)

Statistical manifolds satisfying Rα = R−α for all α are called conjugate sym-
metric. It is proved that R−α − Rα = α{F(X, Y, Z , W ) − F(Y, X, Z , W )}, where
F(X, Y, Z , W ) = (∇̄X D̃)(Y, Z , W ), so that a statistical manifold is conjugate sym-
metric if and only if the tensor F is symmetric. It also follows that the condition

∃α0 
= 0, Rα0 = R−α0

is sufficient for conjugate symmetry.
Let now λ be a monotone metric on D+ and let Gh be the corresponding

equivalence class. Let g ∈ Gh such that g is not symmetric and let us consider the
corresponding family of connections. Let

D(X, Y ) = ∇X Y − ∇∗
X Y

Then the triple (D+, λ, D̃) is a statistical manifold, with D̃(X, Y, Z ) = λ(D(X, Y ),
Z ), and the family of connections has the form (7).
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Let K be a covariant k-tensor field, then its symmetrization K sym is defined as

K sym(X1, . . . , Xk) = 1

k!

∑
π

K
(
Xπ (1), . . . , Xπ (k)

)

where π runs over all permutations of the set {1, . . . , k}.

Proposition 5.1. Let T sym
s be the symmetrization of �Ts. Then D̃ has the form

D̃(X, Y, Z ) = 6
∫

[0,∞]
T sym

s (X, Y, Z ) d(µ − µ̂)(s)

Proof: Straightforward from Proposition 3.2. �

Let us now compute the Riemannian curvature tensor Rα of the α-connection.

Proposition 5.2. Let X, Y, Z , W be vector fields on M+ and let R̄ = R0. Then

Rα(X, Y, Z , W ) = R̄(X, Y, Z , W ) + α

2
{F(Y, X, Z , W ) − F(X, Y, Z , W )}

+ α2

4
{λ(D(X, W ), D(Y, Z )) − λ(D(X, Z ), D(Y, W ))}

Proof: As we are going to establish a tensorial equality, we may suppose that
[X, Y ] = 0. As the metric connection is symmetric, we have ∇̄X Y − ∇̄Y X = 0.
From (7) we obtain, using symmetry of D̃

λ
(∇α

X∇α
Y Z , W

) = λ(∇̄X ∇̄Y Z , W ) − α

2
{λ(∇̄X D(Y, Z ), W ) + λ(D(X, ∇̄Y Z ), W )}

+ α2

4
λ(D(X, W ), D(Y, Z ))

Subtracting the expression with interchanged X and Y and using self-duality and
symmetry of ∇̄ completes the proof. �

Corollary 5.1. Let the manifold be conjugate symmetric. Then we have

Rα(X, Y, Z , W ) = R̄(X, Y, Z , W )

+ α2

4
{λ(D(X, W ), D(Y, Z )) − λ(D(X, Z ), D(Y, W ))}

If θ �→ ρ(θ ) is a smooth parametrization of D+, then

Rα
i jkl(θ ) = R̄i jkl(θ ) + α2

4

∑
β,γ

(D̃ilβ D̃ jkγ − D̃ikβ D̃ jlγ )λβγ

where λi j = (λ−1)i j .
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Corollary 5.2. If ∃α0 
= 0, such that Rα0 = 0, then

Rα(X, Y, Z , W ) = α2 − α2
0

4
{λ(D(X, W ), D(Y, Z )) − λ(D(X, Z ), D(Y, W ))}

for ∀α. Moreover, there exists a parametrization, θ �→ ρ(θ ), such that

Rα
i jkl = α2 − α2

0

4α2
0

∑
β,γ

(�ilβ� jkγ − �ikβ� jlγ )λβγ

where �i jk = λ(∇−α0
∂i

∂ j , ∂k) are the Christoffel symbols of ∇−α0 .

Proof: The connections ∇α and ∇−α are mutually dual, therefore 0 = Rα0 =
R−α0 . It follows that the manifold is conjugate symmetric and we may use
Corollary 5.1.

Further, let us define

Dα0 (X, Y ) = ∇−α0 − ∇α0 ,

then Dα0 = α0 D and

∇α = ∇̄ − α

2α0
Dα0

It follows that

Rα(X, Y, Z , W ) = α2 − α2
0

4α2
0

{λ(Dα0 (X, W ), Dα0 (Y, Z ))

− λ(Dα0 (X, Z ), Dα0 (Y, W ))}
As the manifold is ±α0-flat, there exists an α0-affine parametrization θ �→ ρ(θ ),
i.e. such that ∇α0

∂i
∂ j = 0 for all i, j . It follows that

D̃α0
i jk = λ(Dα0 (∂i , ∂ j ), ∂k) = �i jk , ∀i, j, k �

Corollary 5.3. If ∃α1 
= ±α2 such that Rα1 = Rα2 = 0, then Rα = 0 for all α.

Proof: We may suppose that α1 
= 0 and use Corollary 5.2. �

6. EXAMPLE 2: α-DIVERGENCES

Let

gα =




4

1 − α2

(
1 + w

2
− w

1+α
2

)
α 
= ±1

− log w α = −1

w log w α = 1
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Then gα ∈ G for α ∈ [−3, 3]. Moreover, ĝα = g−α . The corresponding family of
relative entropies and monotone metrics was defined by Hasegawa (1993). We have

λα(X, Y ) = ∂2

∂s∂t
Tr fα(ρ + s X ) f−α(ρ + tY )|t=s=0

where fα is the family of functions defined in Section 1. It is easy to show that
the corresponding affine connections ∇gα coincide with the α-connections for λα

defined in Jenčová (2001a). As the connections are torsion-free, this is the only
case when this may happen, see also Jenčová (2001b).

There are some important special cases. For α = ±1 we obtain the well known
Bogoljubov-Kubo-Mori (BKM) metric. Another important example is α = ±3,
corresponding to the largest monotone metric, see Example 4.2. This is the unique
monotone metric that is contained in both classes λα and λs from Section 4.

Let us fix α0 ∈ (0, 3]. Then

hα0 (w) = gα0 (w) + g−α0 (w) = 4

1 − α2
0

(
1 − w

1−α0
2

)(
1 − w

1+α0
2

)

If we proceed as in the proof of Corrolary 5.2, we see that the family of connections

∇α = ∇̄ − α

2α0
Dα0 ,

can be obtained from Gα0 = Ghα0
for α ∈ [−α0, α0]. In particular, ∇α0 = ∇gα0 . As

it was shown in Jenčová (2001a), the connection ∇±α0 is flat, i.e. the Riemannian
curvature tensor R±α0 vanishes. Hence, for the -α0-affine parametrization θ ,

Rα
i jkl = α2 − α2

0

4α2
0

{
λα0

(∇α0
∂i

∂l , ∇α0
∂ j

∂k
) − λα0

(∇α0
∂i

∂k , ∇α0
∂ j

∂l
)}

= α2 − α2
0

4α2
0

∑
β,γ

(
�

α0
ilβ�

α0
jkγ − �

α0
ikβ�

α0
jlγ

)
λβγ

where

�
α0
i jk = Tr ∂i∂ j fα0 (ρ)∂k f−α0 (ρ)

In particular, for α0 = 1 (the BKM metric), ∇g−1 and ∇g1 correspond to the
mixture and exponential connections ∇ (m) and ∇ (e), respectively. The α-connection
is then a convex mixture of the (m) and (e)-connections,

∇α = 1 − α

2
∇ (m) + 1 + α

2
∇ (e)

In the commutative case, this is an equivalent definition of the α-connections. If we
consider the natural affine parametrization ρ(θ ) = ρ0 + ∑

i θi Xi , the coefficients
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of Riemannian curvature tensor can be written in the form

Rα
i jkl = α2 − 1

4
Tr

∫ 1

0
{∂i∂ j log(ρ)ρ t∂ j∂k log(ρ)ρ1−t

− ∂i∂k log(ρ)ρ t ∂ j∂l log(ρ)ρ1−t } dt

If {Xi } is an orthonormal basis of D with respect to the metric λBKM
ρ0

, we may
compute the coefficients at θ = 0 as

Rα
i jkl = α2 − 1

4

∑
β

(�ilβ� jkβ − �ikβ� jlβ)

where

�i jk = Tr ∂i∂ j log(ρ)Xk = −Tr Xk

∫ ∞

0
[(ρ0 + s)−1 Xi (ρ0 + s)−1 X j (ρ0 + s)−1

+ (ρ0 + s)−1 X j (ρ0 + s)−1 Xi (ρ0 + s)−1] ds

As it was already proved e.g. in Petz (1994), the Riemannian curvature R̄ of the
metric connection given by λBKM is not equal to 0. Using Corrolary 5.3, it follows
that Rα = 0 if and only if α = ±1.
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On the manifold of positive definite matrices, we investigate the existence of pairs of 
fiat affine connections, dual with respect to a given monotone metric. The connections are 
defined either using the ot-embeddings and finding the duals with respect to the metric, or 
by means of contrast functionals. We show that in both cases, the existence of such a pair 
of connections is possible if and only if the metric is given by the Wigner-Yanase-Dyson 
skew information. 

Keywnrds: monotone metrics, fiat affine connections, duality, generalized relative entropies, 
WYD metrics. 

1. I n t r o d u c t i o n  

An important feature of the classical information geometry is the uniqueness of its 
structures, the Fisher metric and the family of affine a-connections on a manifold 
79 of probability distributions [5, 1]. In the case of finite quantum systems, this 
uniqueness does not take place: it was shown by Chentsov and Morozova [6] and 
later by Petz [22] that there are infinitely many Riemannian metrics, which are 
monotone with respect to stochastic maps. As for the affine connections, there were 
several definitions of the a-connections [16, 19, 12, 14]. 

In the commutative case, two equivalent definitions of the connections were used 
by Amari [1]. First, the connections can be defined using a-embeddings (a-repre- 
sentations) given by the family of functions 

2 t-~ 
x ~- ,  a ~ l ,  

f a ( x )  = 1 - a (1) 
log(x), a = 1. 

On the other hand, the connections can be defined as mixtures of the exponential 
and the mixture connections, 

1 V<~)_ l + a v ~ e ) +  - a v ( m ) "  (2) 
2 2 

[3311 
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Such connections are torsion-free and the a and -or connections are dual with 
respect to the Fisher metric. Moreover, in the case of a finite system, that is on the 
manifold of all (non-normalized) multinomial distributions, the a-connections are flat 
for a l i a .  

The definition involving a-representations can be easily generalized to noncom- 
mutative case to obtain a family of flat connections V (~) on the manifold of positive 
definite matrices. This definition was treated also by the present author in [16] and 
[17]. The dual of such a-connection with respect to a given monotone metric is 
in general different from the -a-connection. The duals have vanishing Riemannian 
curvature, but are not always torsion-free and hence not flat. The condition that the 
dual of the a-connection with respect to a monotone metric is torsion-free restricts 
a to the interval [ -3 ,  3] and, for such a, singles out a monotone metric k~, which 
belongs to the family of Wigner-Yanase-Dyson (WYD) metrics. This is also equiva- 
lent to the condition that the dual of V (~) is V (-a), see also [10]. A brief description 
of these results is given in Sections 2 and 3. 

For a = ±1,  we get the Kubo-Mori-Bogoljubov metric, with respect to which 
the mixture V (m) and exponential V (e) connections are dual. As in the classical 
case, we may use mixtures of V (e) and V (m) to define a family of torsion-free 
connections, having the required duality properties with respect to the BKM metric. 
In our approach, however, the value of ot in (2) will be restricted to the interval 
[ -1 ,  1], but the proofs in Section 5 suggest that our results hold more generally. 
Convex mixtures were considered also by Grasselli and Streater, see the Discussion in 
[11]. We will answer the questions discussed there in proving that, for a ~ ( -1 ,  1), 
affine connections defined by (2) are different from the a-connections and are not 
flat. A simple direct proof of this fact can be found at the end of Section 5. 

Another way to define an affine connection was proposed by Eguchi in [9], by 
means of a contrast functional on 79. A functional q~ : 79 × 7 9 -+ ~ is a contrast 
functional if it satisfies ~b(p, q) > 0 for all p, q and ~b(p, q) = 0 if and only 
if p = q. Using such a functional, a metric tensor and affine connection can be 
defined. Let 01 . . . . .  Op be a smooth parametrization of 79 and let Oi, i = 1 . . . . .  p,  
be the corresponding vector fields, then the metric tensor is given by 

gO. .,j = -OiOjdp(p(O), P(O') )[o=o,. 

An affine connection V 0 is defined by 

Fi4~k = gO (V~ Oj, Ok) = -Oi Oj O~k~b (p(O), p(O'))10=0'. 

Consider a special class of contrast functionals q~g, related to convex functions g 
satisfying g ( 1 ) =  0 by 

Cg(p,q)= f g(q)dp. 
In this case, it was shown [1] that the corresponding metric is the Fisher metric 
(multiplied by g"(1)) and the affine connection is the a-connection, a = 2g~"(1)+3. 
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As the quantum counterpart of such functionals we will use the relative g-entropies 
Hg defined by Petz [20], 

Hg(p, or) = Tr pl/2g(Lo/Rp)(pl/2), 

where g is an operator convex function and g(1) = 0. It was shown that [18]: 

(a) In the normalized case (or if Trp = Tra) ,  He( p, a) > 0 and Hg(p, o-) = 0 if 
and only if p = a.  

(b) Hg(Xp, )~a) = )~Hg(p, if) for each 3. > 0. 
(c) Hg is jointly convex in p and a.  
(d) Hg is monotone, that is, it decreases under stochastic maps. 
(e) Hg is differentiable. 

We see that Hg is a contrast functional on the manifold of quantum states, and 
we will show that we can use it to define the geometrical structures as above, even 
in the non-normalized case. The relative g-entropies were used by Lesniewski and 
Ruskai [18], who proved that the Riemannian structure given by Hg is monotone 
for each g and, conversely, each monotone metric is obtained in this way. A short 
account on some of their results is in Section 4. 

In Section 5 we will use Hg to define an affine connection and show that 
this definition contains both the a-connections, defined from a-embeddings, and the 
convex mixtures of V (m) and V (e~. We will show that for each monotone metric 
there is a family of such connections (the p-connections) parametrized by p 6 [0, 1], 
such that they are torsion-free and the p- and ( 1 -  p)-connections are dual. We 
will then use the theory of statistical manifolds by Lauritzen [2] to investigate the 
Riemannian curvature of the connections. 

Finally, in the last section we will show that a pair of dual flat connections 
exists if and only if the metric is one of the WYD metrics )~. The flat con: 
nections are then the +a-connections. This result holds for the connections given 
by the relative g-entropies. It is known from [1] that dual flat connections give 
rise to divergence functionals on the manifold, it is therefore reasonable to con- 
sider connections defined from functionals having the properties (a)-(e). The class 
of g-entropies seems to be large enough, although it does not contain all such 
functionals (see [18]). The main results of the present paper can be summarized as 
follows: If a pair of dual flat connections is required, the structures of information 
geometry are unique even in the quantum case, at least if we consider only con- 
nections defined by the relative g-entropies. These structures are provided by the 
family of Wigner-Yanase-Dyson metrics and the a-connections. 

2. The manifold and monotone metrics 

Let 34n(C) be the space of n x n complex matrices, 34h be the real linear 
subspace of hermitian matrices and let 34 C 34h denote the set of positive definite 
matrices. As an open subset in a finite-dimensional real vector space, 34 inherits 
the structure of a differentiable manifold. The tangent space Tp of 34 at p is the 
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linear space of directional (Frbchet) derivatives in the direction of smooth curves 
in A4 and it can be identified with A4h in an obvious way. In the present paper, 
the elements of the tangent space, seen as directional derivative operators, will 
be denoted by X, 32, etc., while the corresponding capital letters will mean their 
representations X = X(fl) etc. in A4h. The map X ~ X is the same as Amari's 
-1-representation of the tangent space in the classical case [1], see also the next 
section. The vector fields on A4 are represented by Mh-Valued functions on .M. If 
X, 32 are vector fields, then the bracket [X, 3;] is unrelated to the usual commutator 
of the representing matrices and these two should not be confused. In the present 
paper we will use [., .] only in the first (vector fields) meaning. 

A Riemannian structure is introduced in .M by 

xp(x, Y) = Tr XJp(I'), X, Y c rp, 

where Jp is a suitable operator on matrices. We say that the metric )~ is monotone 
if it is monotone with respect to stochastic maps, that is, we have 

~.r(R)(T(X), T(X)) <_ ~.p(X, X), p ~ M, X ~ Tp, 

for a stochastic map T. It is an important result of Petz [22], that this is equivalent 
to 

Jp = R-fl/ZF(Lp/Rp) -1R~ 1/2, 

where F • II~ + ~ 1I~ is an operator monotone function, which is symmetric, F(x) = 
xF(x-1), and normalized, F(1) = 1. The operators Lp and Rp are the left and 
right multiplication operators. Clearly, Jp(X) = p - i X  if X and p commute, so that 
the restriction of k to commutative submanifolds is the Fisher metric. 

EXAMPLE 2.1. Let Jp be the symmetric logarithmic derivative, given by Jp(X) = 
Y, Yp-Jr pY = 2X, then the metric ). is monotone, with F ( x ) =  l+x This metric 

2 " 
is sometimes called the Bures metric and it is the smallest monotone Riemannian 
metric. 

EXAMPLE 2.2. The largest monotone metric is given by the operator monotone 
function F(x) = 1-%7-2x In this case Jp(X) = l (p-~X+Xp-1)  is the right logarithmic 
derivative (RLD). 

EXAMPLE 2.3. An important example of a monotone metric is the Kubo-Mori-  
Bogoljubov (BKM) metric, obtained from 

0 2 
- - T r  (p + sX) log(p + tY)ls,t=o = ~.p(X, Y) 
~sOt 

In this case F(x) x-1 
- -  log(x)" 
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3. The a-representation and a-connections 

Let f • ~ --+ ~ be a monotone function and let p E A4. Let us define the 
operator Lf[p] • .A4h ~ .A4h by 

d 
Lf[p](X)  = --~s f ( p + sX)]s=O. 

This operator has the following properties [16]: 

(i) The chain rule: Lfog[p] = Lf[g(p)]Lg[p]. In particular, if f is invertible 
then Lf[p] is invertible and L f [ p ] - l =  Lf-J[ f (p)] .  

( i i )  Lf[p] is a self-adjoint operator in .A4h, with respect to the Hilbert-Schmidt 
inner product (X, Y) = Tr X*Y. 

(iii) If Xp --- pX,  then Lf[p](X)  = f ' ( p ) X ,  f ' ( x )  = d f ( x ) .  

Let now f~ be given by (1). The map 

e~ " M ~ p ~ f ~ ( p )  E M h  

will be called the a-embedding of A4. The a-embedding induces the map 

Tp ~ X w-~ X( f~(p))  = L,~[p](X) E .A4h, 

where L,~[p] := LA[p], it will be called the a-representation of the tangent vector 
X. We will often omit the indication of the point in the square brackets, if no 
confusion is possible. 

Let )~ be a monotone metric and let Y1 = L,~(X1) and Y2 = Lc~(X2) be the 
a-representations of the tangent vectors Xa and X2, then 

~p(X1, X2)  = Yr Y1Ka(Y2), (3) 

where K~ = L~IJpL~ 1. 

EXAMPLE 3.1. The family of Wigner-Yanase-Dyson (WYD) metrics ~.~ is defined 
by JR = L_,~L~. In [15], it was shown that such metrics are monotone for a E 
[ -3 ,  3] and that there are no other monotone metrics, satisfying 

02 
)~p(X, Y) = OsotTr f ( p  + s X ) f * ( p  + tY)ls,t=o 

for some functions f and f*.  The corresponding operator monotone function is 

1 - - a  2 (x --  1) 2 
F~(x) = - -  

(x~-- - 1 ) ( X T  -- 1) 

As special cases we obtain the BKM metric for a = 4-1 and RLD metric for 
a = 4-3. The smallest metric in this class is the Wigner-Yanase (WY) metric, 
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corresponding to ot = 0, here Fo(x) = ¼(1 + (~ '~)2,  the Bures metric is not 

included. For the metric )~, o t c  [ - 3 ,  3], we have K,~ = L_o,L-d 1. It can be shown 
that K~ 1 = K_~ if and only if )v = L,,. 

The connection V (~) is defined by 

L~( (V~)y) (p ) )  = Xy f~ , (p )  

for smooth vector fields X, 3;. Clearly, a vector field is parallel with respect to this 
connection if  and only if  its a-representation is a constant hermitian matrix-valued 
function on 34. For oe = - 1  and ot = 1, we get the mixture and exponential 
connections, sometimes denoted by V (m) and V (e>. The mixture connection coincides 
with the natural fiat affine structure inherited from Adh. 

For each ot there is a coordinate system ~1 . . . . .  ~N, such that f~(p(~))  = 
Y~4 ~i Zi ,  where Zi e .Mh, i = 1, . . . ,  N,  form a basis of .Mh. Clearly, such coordi- 
nate system is V(~)-attine. The existence of  an a n n e  coordinate system is equivalent 
to flatness of the connection V {'~), that is, the connections are torsion-free and the 
Riemannian curvature tensor vanishes. Thus we have a one-parameter family of fiat 
o~-connections, just as in the classical case. But, contrary to the classical case, the 
V ('~) and V {-'~} are not dual for a general monotone metric. 

Let us define the connection V (~)* by 

L a l j p  ((V~)*y)(p))  m_ ,.12'L~ -1 Jp(g) = X K ~ L ~ ( Y ) .  

It can be easily seen from (3) that the connections V (~ and V ('*)* are dual 
with respect to L. It follows that V (~)* is also curvature free and it is torsion-free 
if  and only if  [16] 

X L ~  1Jp (Y) --- y L ~  1Jp (X) (4) 

for all vector fields satisfying [X, y ]  = 0. 

THEOREM 3.1 ([17]). Let ot C [ - 3 ,  3]. The following conditions are equivalent: 

(i) (V(~)) * is torsion-free. 
(ii) Jp = L~L_~. 

(iii) (V(~)) * = V (-~). 

Proof: (i):=>(ii): Let 0 ~+ p(O) be a smooth parametrization of .M and let Oi = 
a_ i = 1, N. Let us denote Xi(O) -- ~i(p(O)). Let V (~)* be torsion-free and 
O O i  ' " " " 

let /7/(0) = L-dlJp(o)(Xi(O)), i = 1 . . . . .  N.  Then we get from (4) that Ojfi = OiFj 
for all i, j .  

Let A1 . . . . .  AN be a basis of .Mh and let Fi(O) = ~7_,~ j~k(O)Ak, then Oifjk(O) = 
ajf,.k(O) for all k, i and j .  This implies the existence of functions ~bl . . . . .  ~bN, 
such that J~k(0) = ai~k(O). Let 4~(0)= ~,kePk(O)Ak, then Fi = Oiq). Moreover, if 
Pt = p(O(t)) is a curve in 34, then 

i 

84



FLAT CONNECTIONS AND WlGNER-YANASE-DYSON METRICS 337 

Let now p 6 34 and let us consider the curve Pt = p(O(t)) = tp + (1 - t). Using 
the fact that d ~T Pt = P -- 1 and Pt commute for all t, we have 

/o tp(0(1)) - ~b(0(0)) = d~(O(t))dt = L~l[pt]Jp,(p - 1)dt 

fo a-I 
= (1 + t (p  - 1))  T ( p  --  1 ) d t  = f _ ~  ( p )  - f _ ~  ( I ) .  

Therefore, ~b(0)= f _ u ( p ( O ) ) +  c. It follows that 

L~ 1Jp(o)(Xi (0)) = Fi (0) = Oi f -a  (P (0)) = L_~ (Xi (0)) 

and J; = L~L_~. 
(ii) ~ (iii) and (iii) ~ (i) are quite clear. [] 

The statement for a = 4-1 was already proved in [3]. The equivalence (ii)~. '.. 
(iii) was proved (by a different method) in [11] for ot = -4-1 and in [10] for 

~ ( - 1 ,  1). 

REMARK 3.1. Let 73 = {p 6 34 • Trp  = 1} be the submanifold of quantum states. 
The connections induced on 73 are orthogonal projections of the above connections. 
The Riemannian curvature is given by [16] 

1 - Ot 2 
R'~(X, Y, Z, W) -- ~ {Tr Y J , (Z )Tr  X J p ( W )  - T r X J , ~ ( Z ) T r Y J p ( W ) } ,  

where p 6 79, X , Y , Z , W  ~ Tp(73), and thus R ~ = 0 if  and only if a = 4-1. 
Therefore, the or-connections are not fiat on 73, unless a = 4-1, which corresponds 
to the classical results. 

4. Relative g-entropies and monotone metrics 

Let G be the set of all operator convex functions (0, oo) ~ I~, satisfying g(1) = 
0 and g"(1) = 1. For g 6 G, we define the relative g-entropy Hg : 34 x 34 --~ I~ 
by [201 

Hg(p, (7) -~ Tr pl/Z g(La / Rp)(pl/2). 

The set G is the set of functions of the form 

g ( u ) = a ( u -  1 ) +  f[0,oo] ( u -  1)2 1-~+. s d / z ( S ) , u  -t- s (5) 

where /~ is a positive finite measure on [0, o~] satisfying f[0,~] dlz(s) = 1/2 and 
a = g~(1) is a real number. We will denote by b = /z({cx~}) and c = #({0}) the 
possible atoms in 0 and o~, then 

(u -- 1) 2 f ~  2 1 + s 
g(u) = a(u - 1) + b(u - 1) 2 + c - -  + (u - 1) ---:--dl~(S). 

Jo bl u w s  
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For an operator convex function g we define its transpose ~(u) = ug(u-1). 
Clearly, g 6 G implies ~, ~ G, with the positive measure /2 satisfying d/2(s) = 
d~(s  -1) and ~ = - a .  We say that g is symmetric if g = ~. For each symmetric 
function h ~ G, we denote by Gh C G the convex subset of functions such that 
g + ~ = 2h. If g ~ Gh, then clearly ~ ~ G h and H~(p, ~) = He(or, p). 

THEOREM 4.1 ([18]). For each p, cr ~ A4, 

where 

Hg(p, cr) = a T r  (~ - p) 

{ f?l+s } + T r ( ~ - p )  b p - l + c ~ - l +  L~+sRpdtX(s )  ( g - p )  

= aTr (cr - p) + Tr (e - p)R2Xk(L~,/Rp)(~ - p), 

fo °° 1 + s  g(u) - a(u - 1) k(u) = ~ -~ ,, dl~(S) = (u - 1) 2 (6) 

Theorem 4.1 implies that if a = 0, Hg is a contrast functional on M.  The value 
of g'(1) = a does not influence the Riemannian structure and connections defined 
by Hg, so that we may also use functions with g ' ( 1 ) #  0, as it is sometimes more 
convenient, for example g ( u ) = -  log u. 

Let us consider the mixture connection V (m) on .M. A vector field on M 
is parallel with respect to V (m) if and only if its -1-representation is a constant 
.Mh-Valued function over .M. In the rest of the paper, we will deal only with such 
vector fields. The symbol X will denote the vector field such that the constant value 
of the -1-representation is X, similarly y ,  etc. Note that for such vector fields we 
have IX, y]  = 0. 

Let us define the Riemannian metric ~.g on A4 by 

02 
xg(x,  Y) -- OsotHg(p + sX,  p + tY)ls,t=o, YX, g E T;. (7) 

Then [ 18] 

with 

~g(x,  Y) ---- Tr XR~lksym(Lp/Rp)(Y), 

ksym(U) -- k(u) d- u-l  k(u -1) = g(u) d- ~, (u) 
(u - 1) 2 

Moreover, the function ksym is operator monotone decreasing, hence )~g is a mono- 
tone metric, with F ---- 1/ksym the corresponding operator monotone function. Note 
also that if h is a fixed symmetric function in G, then ~g defines the same mono- 
tone metric for each g ~ Gh. 

Conversely, if ~ is a monotone metric with the operator monotone function F, 
then 

1 (u - 1 )  2 
h(u) -- (8) 

2 F(u) 
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is a symmetric operator convex function with h(1) = 0, so that )~ = )h. The 
condition h"(1) = 1 is equivalent to the normalization condition F ( I )  = 1. This 
gives a one-to-one correspondence between the monotone metrics and the convex 
sets Gh, with symmetric h E G. 

5. The p-connections 

Let us fix a monotone metric )~ and let h be given by (8). Let us choose some 
g ~ Gh, then )~ = )~g. We define the affine connection V (g) by 

03 
)~p(v(xg)y, Z) - 8sOtO--------u Hg(p + sX  + tY, p + uZ)ls,t,u=O, 

just as in the classical case. It is clear that the restriction of V (g) to submanifolds 
of mutually commuting elements coincides with the classical a-connection, with 
oe = 2g"(1)  + 3. In contrast with the classical case, the condition g ~ G leads to a 
restriction on or. Indeed, we have 

g ' ( 1 )  = - 6  [ _ _ 1  d#(s) .  
Jto ,~] l + s  

From this, 0 > g ' ( 1 )  > - 3  and therefore c~ e [ -3 ,  3] for each g ~ G. 

PROPOSITION 5.1. The connections V (g) and V (D are dual with respect to )~. 
Moreover, the connections are torsion-free. 

Proof: We have 

x z p ( y ,  z )  - 
d 02 

du OtOs Hg(p + uX  + sY, p + uX + tZ)l~,t,.=o 

03 
- OsOtOu He(p -t- uX  Jr sY, p -q- tZ)ls,t,u=o 

03 
OsOtOu H~(p + uX  + tZ,  p + sY)ls,t,.=o 

= xp(v )y, z )  + x A y ,  

so that duality is proved. Moreover, as [X, y]  = O, the connection is torsion-free if 

V ~ ) Y -  V~)X = 0, which is obvious. [] 

If the function g is symmetric, then from Proposition 5.1, V (g) is serf-dual 
and torsion-free, hence it is the metric connection V. For g 7~ ~, let us define 
gp = pg + (1 - p)~, then g e ~  Gh for p e [0, 1] and ~p = gl-p.  For )~ and g fixed, 
the connection given by gp will be called the p-connection and denoted by V(e). 
Clearly, V (p) is a convex mixture of V (g) and V (~), 

V (p) = pV (g) + (1 - p)V (~). 
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Thus we have a one-parameter family of torsion-free p-connections, satisfying 
(V(e)) * = V (!-p~. We have V (l/z) = V for all g ~ Gh. In the rest of this sec- 
tion we will investigate the Riemannian curvature of the p-connections. 

EXAMPLE 5.1. We see from (5) that the extreme boundary of G consists of 
functions 

1 + s  (u --  1) 2 
g s ( u ) = - -  

2 u + s  
1 

ge~(u) = ~(u  -- 1) 2. 

for s >_ 0, 

We have ~'s = gs-I for s > 0 and g0 = got. In this case 

Gh, = {gp = pgs + (1 - -  p)gs,  P ~ [O, 1]}, 

where hs = ½(gs + ~ ) .  For the corresponding metric we obtain a unique family 
of p-connections. In particular, if s = 1, gl = h i  is symmetric and Ghl ---- { h i } .  

The corresponding metric is the Bures metric. Hence we see that for the Bures 
metric, we obtain only the metric connection, which is known to be not flat, see 
for example [7]. 

EXAMPLE 5.2. Let 

g~(u)  = 

4 ( l + u  I + ~  
2 u 2 ) ' o/ :~ 4-1, 

- logu,  ot = - 1 ,  

u logu,  ot = +1.  

Then g~ E G for ot ~ [ - 3 ,  3] and ~ = g_~. The relative entropies Hg,~ are (up to 
a linear term) the a-divergences defined by Hasegawa in [13]. It was also proved 
that )~g~ = X~, the WYD metric, and V g~ = V (~), the a-connection from Section 3, 
see also [14]. Hence, V (8~) is fiat. In particular, for ot = 4-1 we get the BKM 
metric and the mixture and exponential connection. The family of  p-connections 
for g(u)  = - log(u) is 

V (p) --- p V  (m) .-1- (1 - p ) V  (e) 

In the classical case, this is an equivalent definition of the a-connection, p = (1 - 
or)/2. In our case however, these connections are different from the o~-connections 
which, by Theorem 3.1, have torsion-free duals with respect to the BKM metric if  
and only if  ct = 4-1. 

To compute the Riemannian curvature tensor of V (p), we use the theory of 
statistical manifolds due to Lauritzen [2]. A statistical manifold is a triple (M,)~ , / ) ) ,  
where M is a differentiable manifold, X is a metric tensor and /9 is a symmetric 
covariant 3-tensor called the skewness. 
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On M, a class of connections is introduced by 

v(xP)Y = fTxY 1 - 2P D(x,  Y), (9) 
2 

where X, Y are smooth vector fields, V is the metric connection and the tensor D 
is given by D(X, Y, Z ) =  ~.(D(X, Y), Z). Such connections are torsion-free, this is 
equivalent to symmetry of D, resp. D. Moreover, (V(P))* = V (l-p). Let R p be the 
corresponding Riemannian curvature. The manifolds satisfying R p R 1-p for all p 
are called conjugate symmetric. It was proved in [2] that the manifold is conjugate 
symmetric if and only if the tensor F = V/) is symmetric. From symmetry of D, 
it follows that F is symmetric if (and only if) it is symmetric in X and Y. We 
also have that if there is some p ~ 1/2, such that R p = R l -p ,  then the manifold 
is conjugate symmetric. 

Let g ~ G, then (A4, xg, D), where D(X, Y) = V ~ ) Y -  V ~ Y ,  is a statistical 
manifold. The connections defined by (9) coincide with the p-connections if p 
[0, 1]. For simplicity, we denote this manifold by (.M, g). If g is symmetric, then 

= 0 and V (p~ = V for all p; in this case, the manifold is trivially conjugate 
symmetric. 

PROPOSITION 5.2. Let us denote [~ = R 1/2. Then 

1 - 2p 
RP(X, y ,  Z, W) = R(X, y ,  Z, W) + - - { F ( Y ,  2", Z, W) - F(X, y ,  Z, W)} 

2 
(1 - 2p) 2 

+ {X(D(X, W), D(Y, Z)) - ~.(D(X, Z), D(Y, W))}. 
4 

Proof: We have [X, y]  = 0 and therefore 

(P) (P) ~-7(P)~-7(P) .:7 R P ( X , y , Z , W )  = X ( V  x Vy Z - - - y  --x ~ , W ) .  

Let us now recall that 

F(X, y, Z, W) = ;Vb(y, Z, W ) -  b(fZxY, Z, W) - b(y ,  fZxZ, W ) -  b(y ,  Z, fZxW). 

From (9) we get 

v ( p ) k _ 7 ( p )  ~z __  1 - 2p [fTxD(Y, Z) + D(X, VyZ)} x - y  ~ - (Tx fTyZ 2 

(1 - 2p) 2 
+ D(X, D(Y, Z)). 

4 

Moreover, from self-duality of V, 

MfTxD(Y, Z) + D(X, fTyZ), W) = XD(y ,  Z, W) - D(y,  Z, fTxW) + D(X, fTyZ, W) 

and 
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L(D(X, D(y, Z)), W) = D(X, D(y, Z), W) = Z(D(X, W), D(y, Z)), 

this follows from symmetry of the tensor /). Subtracting the expression with inter- 
changed 2( and Y and using symmetry of x~ completes the proof. [] 

COROLLARY 5.1. Let g ~ ~ and let the connection V (g) be flat. Then the manifold 
(AA, g) is conjugate symmetric. Moreover, if R p° = 0 for some P0 E (0, 1) then 
RP = 0 for all p ~ [0, 1]. 

Proof: If V (g) is flat, then also its dual V (~) is flat, therefore 0 = R 1 = R ° and 
the manifold is conjugate symmetric. From Proposition 5.2, we see that 

0 = R(X, y ,  Z, W) + {X(D(X, W), D(y, Z)) X(D(X, Z), D(y, W))}, 

and therefore 

RP(X; Y, Z, W) = p(p - 1){X~(D(X, W), D(y, Z)) - MD(X, Z), D(y, W))}. 

If this vanishes for some P0 # 0, 1, then the term in brackets must be zero. [] 

Let ~ be the BKM metric and g ( u ) = - l o g ( u ) ,  then V (g) = V (m) is flat. It is 
known [21] that in this case, the metric connection is not flat, hence k = R 1/2 # O. 
It follows that pV (m) + (1 - p)V (e) is fiat if and only if p = 0 or p = 1. 

6. Opera tor  calculus 

In the following sections, we are going to prove that the connection V (g3 is 
flat if and only if V (g) = V ('~) for some ot ~ [ -3 ,  3]. To do this, we will need 
to compute the derivatives of functions of the form c(Lp, Rp). We use the same 
method as in [8]. 

Let c be a function, defined and complex analytic in a neighbourhood of (I~+) 2 
in C 2. As the operators Lp and Rp commute and have the same spectrum as p, 
by the operator calculus we have 

l f f  1 l d ~ d o  ' c(Lp, Rp) -- (2z~i) 2 c(~, ~) ~ _ Lp 11 - R---'-'~p 

where we integrate twice around the spectrum of p. We have 

d 
~c(Lp+tX, Rp)lt=o = 

0 2 

3sOt c(Lp+sX+tr, Rp)ls.t=o -- - -  

l f f  1 1 l d ~ d o  ' 
(2~ i f f  c(G ~l) ~--~-~pLx ~ _ LR 0 - R------~ 

1 1 1 1 

1 1 1 } 1 
+ ~ _ L p L X ~ L r ~ - - - Z ~ p  ~--~-~pd~drl, 
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02 1 1 
OsotC(Lp+sx, Rp+tr)ls,t=o - - - ( 2 ~ i ) 2 f f c ( e ,  O ) _ L p L x  z----z-. 1 ~ _ Lp 

1 1 
x - - R r  Rpd~d~. 

tl - Rp 0 - 

We express the derivatives in the form of divided differences [4]. Let us denote 

c(x, z) - c(y, z) 
T(x, ylz) = , (10) 

x - - y  
c(z, x) - c(z, y) 

T(zlx, y) = , (11) 
x - - y  

T(x, ylw) - T(y, zlw) 
T(x, y, zlw) = , (12) 

X - - Z  
T(x, ylz) - T(x, ylw) T(xlz, w) - T(ylz, w) 

T(x, ylz, w) = = (13) 
z - w  x - y  

Then we have: 

(i) T(x, ylz), T(zlx, y), T(x, ylz, w) are symmetric in x, y and z, w. 
T(x, y, zlw) is symmetric in x, y, z. 

0 0 
(ii) T(x, xlz) = -~c(x ,  z) and r(zlx,  x )  =  c(z, x), 

o 
(iii) T (x, x, zlw) = -~  T (x, zlw), 

1 02 
(iv) T(x, x, xlw) -- -~ ox2C(X, tO). 

Let p = Y~i XilOi)(lPi[ be the spectral decomposition of p. Let eij = Igti)(~Pj[, 
then {eij I i, j = 1 , . . . ,  n} is a basis of A4n(C). Let Rij : Leij, l)ij ~-- Rej i. Then 
uijekl = 8jkeil and vijeld = 8jleki. We also have 

Zp = ~'~ )~iblii, Rp --= Z ~.il)ii, c(Lp,  Rp) = Z c(~.i, )~j)uiil)jj. 
i i i,j 

Let X = Y~4,j xijeij" Inserting this into the expressions for derivatives, we get 

d 
-~c(Lp+tx, Rp)lt=o = Y~ T()~i, ~.j [)~k)Xij Uij 1)kk. (14) 

i,j,k 

Similarly, 

02 
OsotC(Lp+sx+tY, Rp)kt=o = ~ TO~i, ).j, )~kl)~l)(xijyjk + YijXj~)UikVu, (15) 

i,j,k,l 
02 

OsOtC(Lp+sx, Rp+tr)ls,t=o = Z T(~.i, ).j IL~, )~l)xijYlkUijVkl. (16) 
i,j,k,1 
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7. Conjugate symmetry 
Let g ~ G and let k be given by (6). Let us define the function c : R+x  I~ + ---> 1I~ 

by c(x, y ) =  (1 /y)k(x /y) .  As we see from the integral representation, the function 
k is operator monotone decreasing, therefore it has an analytic extension to the 
right halfplane in C. It follows that c is complex analytic in a neighbourhood of 
(R+)2 and we may use the results of the previous section. Note also that for ~, 
to(u) = u- lk (u  -1) and ~(x, y) = c(y, x). Moreover, ?(x, y) = c(x, y) + ~(x, y) = 
(1/y)ksym(X/y) is the Chentsov-Morozova function. As follows from (6), k(1) = 

1 for all f[0,c¢l d #  = 1/2, therefore c(x, x) = Tx g" 

LEMMA 7.1. Let c and ~ be as above. Then 

d 
Xp(V~)y, Z) = 2Re~ss Tr {X}(Lp+,y, Rp)(Z) + r}(Lp+,x ,  Rp)(Z) - 

- Xc(L + z, 

Proof: From Theorem 4.1 we compute 

03 
Xp(V~)Y, Z) = OsOtO------~Tr (uZ - sX  - tY)c(Lp+uz, R p + s X + t y ) ( u Z  - -  s X  - tY)ls,t,u=o 

d 
= - ~ s s T r  {Xc(Lv+sz, Rp)(Y) + Yc(Lp+sZ, Rp)(X) 

- Xc(Lp,  Rp+sr)(Z) - Zc(Lp, Rp+sr)(X) 

- rc(Lp, R p + s x ) ( Z )  - Zc(Lp, Rp+sx)(r)} Is=0" 
For cr, p ~ .M, c(L,~, Rp) is a positive operator on .Adn(C) endowed with the 

inner product (A, B ) = T r A * B .  For hermitian X and Y we have 

Tr Xc(L,r, Rp)(Y) -4-Tr Yc(La,  Rp)(X) -- 2ReTr Xc(L,, ,  Rp)(Y). 

Clearly, for all X ~ .Mh and sufficiently small s, p + sX  ~ M .  Moreover, 

Re Tr Xc(Lp,  Rp+~r)(Z) = Re Tr (Xc(L v, Rv+~y)(Z))* 

= Re Tr X~(Lp+~r, Rp)(Z). [] 

LEMMA 7.2. Let D(X,  y)  = V ~ ) y -  V~)Y and let D(X, Y, Z) = X(D(X, y) ,  Z). 
Let us denote er(X, y) = ~(x, y) - c(x, y) = c(y, x) - c(x, y) and let 

d 
a ( x ,  Y, Z) = -~sTr Xcr(Lp+sy, Rp)(Z). 

Then 

D(X, 3), Z) = 2Re{Q(X, Y, Z) q- Q(Y, X, Z) -4- a ( x ,  z ,  Y)} = 6asym(X, Y, Z), 

where Qsym is the symmetrization of  Q over X, Y, Z. 
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Proof: Straightforward from Lemma 7.1. [] 

Let us now denote by I'(x, Ylz) resp. R(x, ylz), etc. the expressions (10)-(13) 
for c - - ~ ,  resp. c = Cr. From Section 6 we find 

Q(X, Y, z)  = ~ R()~i, )~jlXk)XkiYijZjk. 
i,j,k 

(17) 

Further, 

XQ(Y, Z, W) = ~ R().i, )~j, )~kl)~l)(XijZjk + ZijXjk)WklYli 
i,j,k,1 

q- Z RO'i' )~jlXk' )~l)ZijWjlXlkYki" 
i,j,k,l 

(18) 

Clearly, x D ( y ,  z ,  w )  is the symmetrization of (18) over Y, Z,  W. 

PROPOSITION 7.1. Let 

S(x, ylz) -- - -  
1 

2O(x, y){l"(x,  zIY) + T(Y, zlx) - T(x, Ylz)). 

Then the -1-representation fT x Y (p ) = Y~,~ d~ e~, where 

daft ~--- ~ S().o~, ),fll).i)(xodyifl + yuixifl). 
i 

1 Proof: Let h = ~ ( g + ~ ) ,  then V = V (h). In this case c = l c  = b. From Lemma 
7.1 and Eq. (14) we see that 

)~p(fTxY(p), Z)  = Re ~ 7"(~' i ,  )~j IXk){xkiYijZjk + YkiXijZjk - -  XkiZijyjk}, 
i,j,k 

(19) 

Let us denote f,l~ = e ~ ,  for oe = 1 , . .  .n,  fd2 = e ~  + e ~ ,  o~ 7~ fl, and f~3 _- 

i ( e ~ - e ~ ) ,  ot ~ ft. Then { f l  u, ot = 1 , . .  k . , n , f ~ ,  k = 2 , 3 ,  ot < f l = 2  . . . . .  n} forms 
a basis of Tp with elements mutually orthogonal with respect to each monotone 
metric ~. Moreover, 

[ ~(x~, x~), k = 1, 

Suppose that 
(TxY(p) ~ k k = a~fl f~ ,  

k;a<_fl 

93



346 A. JEN~OV~ 

then fTxY(p) ~_,,~,~d,~e,~, where d ~  = 1 d ~  2 • 3 = % ~ ,  = a ~  + z a , ~ ,  i f  ot < /3 and 

d ~  = d~ .  From (19) we compute 

1 m .  2Re ~ S(L,~, L,~l~.j)x,~jyj,~, aua 
J 

a2~ = Re ~ S(~.~, ~.~l~.j){Xotjyjfl + YotjXjfi}, 
J 

a3~ = Im ~ S(~.,~, ~.~l~.j){x,~jy:~ + y,~jxj~}. 
J 

[] 

As we know from Section 5, (A/I, g) is conjugate symmetric if and only if 

x b ( y ,  z ,  w )  - y b ( x ,  z ,  w )  + b ( x ,  fTyz, w )  

+ b ( x ,  z ,  fTyw) - b ( y ,  v x z ,  w )  - b ( y ,  z ,  fTxw) = o. 

(20) 

Using Lemma 7.2, (17), (18) and Proposition 7.1, we express the above equality 
in terms of the divided differences and then insert the basis elements f ~ .  This and 
other further lengthy computations are best performed using some software suitable 
for symbolic calculations, like Maple or Mathematica. 

The equalities ~(x, y) = ~(y,x), Cr(X, y) = "---c~(y,x) and the definition and 
properties of divided differences imply that 

1 
R(x, ylx) -- - -  Cr(X, y) = R(x, y[y), (21) 

x - - y  
Ol 

R(x, xlx) -- where ot = 2g"(1) + 3, (22) 
6x 2' 

R(x, ylz, w) = -R(z ,  wlx, y), (23) 

T(x, YlZ, w) = 7"(z, wJx, y), (24) 

1 0 log0(x, y), (25) S(x, ylx) = ~ O---x 

S(x' xly) = ~ { 2 1 -  xo(x' X-~xC(X' Y) ]' (26) 

1 
S(x, x Ix) . . . .  (27) 

4x 

for all x , y , z , w > O .  

THEOREM 7.1. Let g 7 L ~, and let ~ = g + ~, gr = g -- g. I f  (.Ad, g )  is conjugate 
symmetric, then 

- ot~(u) = 2ugtr(u) - gr(U) + 2au + 2a (28) 

for all u > 0, where a = g'(1) and ot = 2g"(1) + 3. 
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Proof: Let us write the equality (20) for the basis elements f~/~ with t~, fl 
{1, 2}, in this case, the resulting expression depends only on eigenvalues 3.1 and ~-2 
of p. Let us put X = Z = ell and Y = W = e12 + e21, and let )~1 --- x, 3.2 = y. 
We get 

R(x, x, xly) - R(x, x, ylx) + R(x, ylx, x) - R(x, xlx, y) 

+ 3R(x, xlx)S(x,  xly) - S(x, x lx)(2R(x,  ylx) + R(x, xly)) = 0. 

We have 

ygr(x/y)  2a 
Cr(X, y ) =  (x - y)2 + x - y - - '  

y~(x /y )  
O(x, y) = - -  

(X -- y)2" 

From this and from (i)-(iv) and (21)-(27), we get the equation 

2g~t(X~ x +2a--}-ot~,t(y) q-gtr(y ) = 0 .  
" \ y ] y  

Putting u = x / y  and integrating this, taking into account that ~ ( 1 ) =  0, g r ( 1 ) =  0 
and g ' r (1 )=- -2a ,  we get (28). [] 

REMARK 7.1. Let g ¢ ~, ot and a be as above. According to Theorem 7.1, if 
(.At, g) is conjugate symmetric, then 

1 +-----~(u) = g'(u -1) + ug'(u) - au - a. (29) 
2 

If h is symmetric, then (M, h) is, of course, conjugate symmetric. In such a 
case, a = a = 0 and Eq. (29) reads 

h(u) = h ' (u  -1)  + uh'(u), 

which is fulfilled for all symmetric h 6 G. 

EXAMPLE 7.1. It is easily checked that (29) is satisfied for all pg~ + ( 1 - p ) g _ ~ ,  
p c [0, 1], ot~ [ -3 ,  3] (as it should be). On the other hand, it is not true for gs 
from the extreme boundary of G, unless s = 1, which is symmetric (the Bures 
case), or s = 0, which corresponds to g~, o~ = 3. 

8. Flat connections 

As we know from Corollary 5.1 and Proposition 5.2, the connection V (g) is flat 
if and only if 

(a) (At, g) is conjugate symmetric, 
(b) R(X, y ,  Z, W) + ¼{)~(D(X, W), D(y ,  Z)) - L(D(X,  Z), D(Y,  W))} = 0. 

This holds also for symmetric g, in that case (a) is satisfied and D = 0. 
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LEMMA 8.1. 

k ( x ,  y ,  z ,  w )  = x x ( g y z ,  w )  - y x ( g x z ,  w )  + x ( v x z ,  f zyw)  - z(gyz, v x w ) .  

Proof: The statement is proved similarly as Proposition 5.2, using self-duality 
and symmetry of V. [] 

As before, we compute 

X)~(fTyZ, W) = Re{XQ(Y, Z, W) + X(2(Z,  Y, W) - XQ(Y,  W, Z)}, 

where 

XQ_.(Y, Z, W) = E I"(~'i, Zj, ~.kl~.l)(XijZjk + ZijXjk)WklYli 
i,j,k,l 

+ ~ T()~i, ~,jl)~k, ~,l)ZijWjlXlkYki. 
i,j,k,l 

(30) 

Moreover, 

k(X, Y) = Tr X~(Lp, Rp)(Y) = ~_.,c()~i, ~,j)xjiYij. 
i,j 

(31) 

The second term in (b) can be written in a form using D: let {bj [ j  = 1 . . . .  N} 
be the orthonormal basis obtained by normalization of {fS~ I k = 1, 2, 3, ot < /3  = 
1 . . . . .  n}, then 

L(D(X, W), D(y,  Z)) - L(D(X, Z), D(Y, W)) 

= E { D ( X ,  W, bflD(Y, Z, bj) - D(X, Z, bj)D(Y, W, bj)}. 
J 

(32) 

Using Lemma 8.1, (30), (31), (32) and Proposition 7.1, we get from (b) an 
equation involving divided differences, and we may proceed in the same way as in 
Section 6. 

PROPOSITION 8.1. Let g E G. I f  the connection V (g) is flat, then 

(off - 1)~,(u) + ~'(u)(u - 1) - 2~/'(u)u(1 + u) + ~(grr(U ) + 2a)(u - 1) + 8 = 0 (33) 

for all u > O. 

Proof: Let X = Z = ell and Y = W = el2 + e21. From (b) we get the equation 

2T(x, x, xly) - 2T(x, x[x, y) - 2~(x, y)S(x, ylx) 2 -F 4~(x, x)S(x,  xlx)S(x,  xly) 
R(x,  x[x) 1 

3 (2R(x, ylx) + g(x ,  xly)) + _-7--~, (2R(x, ylx) + R(x,  xly)) 2 = 0. 
~(x, X) ctx, y) 
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For X = Z = elz + e21, Y = W = i(e12 - e21), Eq. (b) reads 

47"(y, y, x lx)  + 41"(x, x, yly)  - 81"(x, y]x, y) + 4O(x, x)S(x ,  x[y) 2 

+ 4O(y, y)S(y ,  ylx) 2 - (2R(x, ylx)  q- R(x ,  xly))  2 - (2R(x, yly)  + R(y ,  y[x)) 2 = 0. 

As in the proof of Theorem 7.1, we get after some rearrangements 

u [(g'r(U) + 2a) 2 - (~,'(u)) 2] + ~(u){2u~"(u) + ~'(u) + ot(gtr(U) q- 2a)} = 0 

from the first equation, and 

u [(gtr(U) "k- 2a) 2 - (~'(u))2] + {gtr(U)U - g,.(u) + 2a} 2 - {~t(u)u - ~(u)} 2 + 8~(u) = 0, 

from the second equation. 
f f  g is symmetric, then in the above two equations ot = a = 0 and gr = O. 

From this we get 

~,(u){-~,(u) + ~,t(u)(u - 1) - 2/,,tt(u)u(1 + u) + 8} = 0, 

which is (33). 
Let now g ~ ~,. From (a), (A/l, g) is conjugate symmetric, and therefore (28) 

holds. From this 

gtr(U)U - gr(U) + 2a = -ot~(u)  - u{gtr(U) + 2a}. 

Inserting this into the second equation and after some further computation we get 
(33). [] 

We are now in a position to prove our main theorem. 

THEOREM 8.1. Let g ~ G and ot = 2 g " t ( 1 ) + 3 .  Then ot ~ [ - 3 ,  3] and the 
connection V ~g~ is flat i f  and only i f  V Cg~ = V ~ .  

Proof: Let g be symmetric and suppose that V ~g~ is fiat. Then ~ = 2g and we 
get from (33) that g is a solution of  

- g ( u )  + gt (u)(u - 1) - 2gtt (u)u(1 + u) + 4 = 0 

with the initial conditions g(1) = 0, gt(1) = 0. The unique solution of this equation 
is 

g(u) = 2(1 - / ' i f ) 2  = g0. 

If  g # ~, then from (28) and (33) we get that gr is the solution of 

(or z -- 1)gr(u) -- (or z -- l)(1 + u)g~(u) + 4u(u + 2)g~t(u) 
t i t  q- 4uZ(u q- 1 ) g  r ( u )  - -  4a(ot  2 --  1) + 8ot = 0 
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with gr(1) = 0, g'r(1) = --2a and g~t(1) = 0. If ~ ~ 4-1, the unique solution is 

g r ( U )  - -  1 - a - u - r - )  - 1 ~ 2  + 2a (u - 1) 

= g_~(u)  - g~(u) - 2(a - g~(1))(u - 1), 

and from (28) we get ~ = ga + g-u.  
If ot = - 1 ,  then the solution of the above equation is 

gr(U) = log(u)(u + 1) - 2(a - g'_l(1))(u - 1), 

and from (28) we get 
~(u) = log(u)(u - 1). 

It follows that g = ga, up to an additional linear term ( g ' ( 1 ) -  g ~ ( 1 ) ) ( u -  1). [] 

COROLLARY 8.1. Let ~. be a monotone Riemannian metric and let f7 be the 
metric connection. Then f7 is f iat  if  and only i f  )~ is the WY metric (or = 0). 

Proof:  Let Gh be the convex subset of  G, corresponding to )~. Then X7 = V (h) 
and h = h implies that h"(1) = - 3 .  The proof now follows from Theorem 8.1. [] 
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Abstract

We present a construction of a Banach manifold structure on the set of faithful normal states of a von
Neumann algebra, where the underlying Banach space is a quantum analogue of an Orlicz space. On the
manifold, we introduce the exponential and mixture connections as dual pair of affine connections.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

An information manifold is a family of states of some classical or quantum system, endowed
with a differentiable manifold structure. For parametrized families of probability distributions,
the geometry of such manifolds and its applications in parameter estimation is already well
understood, see, for example, the books [3,4]. This development was started by Rao [20] and
Jeffreys [11], who suggested the Fisher information as a Riemannian metric for parametrized
statistical models. Later on, Effron [5] defined the concept of statistical curvature and pointed
out the importance of exponential models, which led to the introduction of the exponential affine
connection on the manifold. Amari in his well-known book [2] equipped the manifold with a
family of α-connections and introduced the concept of duality, which is related to the notion

E-mail address: jenca@mat.savba.sk.
1 The research was supported by the grant VEGA No. 1/3016/06, Center of Excellence SAS Physics of Information

I/2/2005 and Science and Technology Assistance Agency under the contract No. APVT-51-032002.

0022-1236/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2006.02.007

119
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of statistical divergence. The most important of these structures, in applications as well as in
the theory, is the dual pair of exponential and mixture connections, with the related statistical
divergence, called the I-divergence, or relative entropy.

The nonparametric information manifold was introduced by Pistone and Sempi [18,19], based
on the idea of a nonparametric exponential model. As it turned out, a natural parametrization
for such models is given by the exponential Orlicz space. Further developments, including the
definition of the affine connections and duality, can be found in [7,8].

For families of quantum states, similar structures were found in the finite-dimensional case,
see, for example, [10,12,15,17]. In infinite dimensions, the situation is more complicated. As
there is no suitable noncommutative counterpart of the exponential Orlicz space, it is not clear
how to choose the underlying Banach space for the manifold. Some suggestions can be found in
[9,13,21,22]. See also [1] for a definition of a noncommutative Orlicz space.

The aim of this paper is to introduce a differentiable manifold structure on the set of faithful
states of a quantum system, represented by a von Neumann algebra M. Moreover, we want this
manifold to be a quantum counterpart of the Pistone and Sempi construction.

We use an approach similar to Grasselli [8] in the commutative case: we define an Orlicz norm
on the space of self-adjoint operators in M and take the completion under this norm to be the
underlying Banach space for the manifold. The norm is defined by a quantum Young function,
as in [23]. The definition of a Young function on a Banach space, together with some results
on the associated norms, can be found in Section 3. For a faithful state ϕ, the quantum Orlicz
space Bϕ and its centered version Bϕ,0 are introduced in Section 4. The definition of the related
Young function is based on the relative entropy approach to state perturbation. We treat the dual
spaces in Section 6. The main result is contained in Section 8, where the manifold structure is
introduced and, moreover, the exponential and mixture connections are defined as a pair of dual
affine connections on each connected component of the manifold.

2. Preliminaries

We recall some properties of relative entropy and perturbed states, that will be needed later.
See [16] for details.

Let M be a von Neumann algebra in standard form. For ω and ϕ in M+∗ , the relative entropy
is defined as

S(ω,ϕ) =
{−〈log(�ϕ,ξω )ξω, ξω〉 if suppω � suppϕ,

∞ otherwise,

where ξω is the representing vector of ω in a natural positive cone and �ϕ,ξω is the relative
modular operator. Then S is jointly convex and weakly lower semicontinuous. Let us denote
Pϕ := {ω ∈ M+∗ , S(ω,ϕ) < ∞}, then Pϕ is a convex cone. We will need the following identity:

S(ψ,ϕ) +
∑

i

S(ψi,ψ) =
∑

i

S(ψi, ϕ), (1)

where ψi ∈ M+∗ , i = 1, . . . , n, and ψ = ∑
i ψi . Since S(ψi,ψ) is always finite, it follows from

this identity that
∑

i ψi ∈ Pϕ if and only if ψi ∈ Pϕ for all i.
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Let S∗ be the set of normal states on M and let Sϕ := {ω ∈ S∗, S(ω,ϕ) < ∞}. Then Sϕ is
a convex set and generates Pϕ . From (1), we get

S(ψλ,ϕ) + λS(ψ1,ψλ) + (1 − λ)S(ψ2,ψλ) = λS(ψ1, ϕ) + (1 − λ)S(ψ2, ϕ), (2)

where ψ1, ψ2 are normal states and ψλ = λψ1 + (1 − λ)ψ2, 0 � λ � 1. As above, it follows
that ψλ ∈ Sϕ if and only if both ψ1,ψ2 ∈ Sϕ , in other words, Sϕ is a face in S∗. For C > 0, we
define the set Sϕ,C := {ω, S(ω,ϕ) � C}. Then Sϕ,C is convex and compact in the σ(M∗,M)

topology.
Let us suppose that ϕ is a faithful normal state on M and let h be a self-adjoint element in M.

The perturbed state [ϕh] is defined as the unique maximizer of

sup
ω∈S∗

{
ω(h) − S(ω,ϕ)

}
. (3)

Then [ϕh] is a faithful normal state and S([ϕh], ϕ) is finite. Let cϕ(h) be the supremum in (3),
that is

cϕ(h) = [
ϕh

]
(h) − S

([
ϕh

]
, ϕ

)
. (4)

It is known that

ϕ(h) � cϕ(h) � logϕ
(
eh

)
. (5)

Moreover, we have

ω(h) − S(ω,ϕ) = cϕ(h) − S
(
ω,

[
ϕh

])
(6)

for any self-adjoint h ∈ M and ω ∈ S∗. Let h, k be self-adjoint elements in M, then the chain
rule [ϕh+k] = [[ϕh]k] and

cϕ(h + k) = c[ϕh](k) + cϕ(h) (7)

holds. Let now ξϕ be the vector representative of ϕ and let ϕh ∈ M+∗ be the functional induced
by the perturbed vector

ξh
ϕ := e

1
2 (log�ϕ+h)ξϕ = ecϕ(h)�

1
2
[ϕh],ϕξϕ.

Then cϕ(h) = logϕh(1) and [ϕh] = ϕh/ϕh(1). Moreover, if ϕh = ϕk , then h = k.

3. Young functions on Banach spaces and the associated norms

Let V be a real Banach space and let V ∗ be its dual, with the duality pairing 〈v, x〉 = v(x).
Recall that any convex lower semicontinuous function V → R ∪ {+∞} is lower semicontinuous
with respect to the σ(V,V ∗)-topology.
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3.1. The Young function

We will say that a function Φ :V → R ∪ {∞} is a Young function, if it satisfies:

(i) Φ is convex and lower semicontinuous,
(ii) Φ(x) � 0 for all x ∈ V and Φ(0) = 0,

(iii) Φ(x) = Φ(−x) for all x ∈ V ,
(iv) if x 	= 0, then limt→∞ Φ(tx) = ∞.

Lemma 3.1. Let Φ be a Young function. Let us define the sets

CΦ := {
x ∈ V,Φ(x) � 1

}
,

LΦ := {
x ∈ V,∃s > 0, such that Φ(sx) < ∞}

.

Then CΦ is absolutely convex and LΦ = ⋃
n nCΦ . In particular, LΦ is a (real) vector space.

Proof. Let x, y ∈ CΦ and let α,β ∈ R, such that |α| + |β| � 1. Put γ = 1 − |α| − |β|, then

Φ(αx + βy) = Φ
(|α| sgn(α)x + |β| sgn(β)y + γ 0

)
� |α|Φ(x) + |β|Φ(y) � 1

hence αx + βy ∈ CΦ and CΦ is absolutely convex.
Let now x ∈ LΦ and let s > 0 be such that Φ(sx) = K < ∞. Choose m ∈ N such that m �

max{1/s,K/s}, then by convexity

Φ

(
1

m
x

)
= Φ

(
1

ms
sx

)
� 1

ms
Φ(sx) = K

ms
� 1

and x ∈ mCΦ . Since obviously nCΦ ⊂ LΦ for all n, we have LΦ = ⋃
n nCΦ , which clearly

implies that LΦ is a vector space. �
Let us recall that the effective domain

dom(Φ) = {
x ∈ V, Φ(x) < ∞}

is a convex set. Any convex lower semicontinuous function is continuous in the interior of its
effective domain [6]. Clearly, LΦ is the smallest vector space containing dom(Φ).

In the space LΦ , we now introduce the Minkowski functional of CΦ ,

‖x‖Φ := inf{ρ > 0, x ∈ ρCΦ}.

Since CΦ is absolutely convex and absorbing, ‖ · ‖Φ is a seminorm. Moreover, ‖x‖Φ = 0 means
that Φ(tx) � 1 for all t > 0. By the property (iv), this implies that x = 0. It follows that ‖ · ‖Φ

defines a norm in LΦ . Let us denote by BΦ the completion of LΦ under this norm.

Lemma 3.2. Let x ∈ LΦ . Then ‖x‖Φ � 1 if and only if Φ(x) � 1.
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Proof. If ‖x‖Φ < 1, then x ∈ CΦ and Φ(x) � 1. Let now ‖x‖Φ = 1 and let tn < 1 be a se-
quence converging to 1. Then Φ(tnx) � 1 for all n and, by lower semicontinuity, Φ(x) �
lim infn Φ(tnx) � 1. Hence ‖x‖Φ � 1 implies Φ(x) � 1. On the other hand, if Φ(x) � 1, then
x ∈ CΦ and clearly ‖x‖Φ � 1. �
Lemma 3.3. Let x ∈ LΦ . Then ‖x‖Φ � 1 implies Φ(x) � ‖x‖Φ and ‖x‖Φ > 1 implies Φ(x) �
‖x‖Φ . Moreover, if Φ is finite valued, then ‖x‖Φ = 1 if and only if Φ(x) = 1.

Proof. Let ‖x‖Φ � 1. By convexity of Φ and Lemma 3.2,

Φ(x) = Φ

(
‖x‖Φ

x

‖x‖Φ

)
� ‖x‖ΦΦ

(
x

‖x‖Φ

)
� ‖x‖Φ.

Let now ‖x‖Φ > 1, then Φ(x) > 1. If Φ(x) = ∞, then the assertion is obviously true. Let
us suppose that Φ(x) is finite. The function t → Φ(tx) is convex and bounded on 〈0,1〉, hence
continuous on (0,1). It follows that Φ(tx) = 1 for some t in this interval and clearly t = 1/‖x‖Φ .
We have

1 = Φ(tx) � tΦ(x)

and hence ‖x‖Φ � Φ(x). This also proves that last statement. �
3.2. The conjugate function

Let V ∗ be the dual space. Let the function Φ∗ :V ∗ → R ∪ {∞} be the conjugate of Φ ,

Φ∗(v) = sup
x∈V

{
v(x) − Φ(x)

} = sup
x∈Dom(Φ)

{
v(x) − Φ(x)

}
.

The function Φ∗ is convex, lower semicontinuous and positive, Φ∗(v) = Φ∗(−v) and Φ∗(0) = 0.
But, in general, Φ∗ is not a Young function: consider the case when Φ(0) = 0 and Φ(x) = ∞
for all x 	= 0, then Φ is a Young function, but its conjugate is identically equal to 0 on V ∗ and
the condition (iv) is not satisfied.

Let (dom(Φ))⊥ be the orthogonal subspace to dom(Φ) in V ∗, that is

(
dom(Φ)

)⊥ := {
v ∈ V ∗, v(x) = 0 for all x ∈ dom(Φ)

}
.

Then (dom(Φ))⊥ is a closed subspace in V ∗. Let Ṽ be the quotient space Ṽ = V ∗/(dom(Φ))⊥ . If
u and v are elements in the same equivalence class, then

Φ∗(v) = sup
x∈dom(Φ)

{
v(x) − Φ(x)

} = sup
x∈dom(Φ)

{
u(x) − Φ(x)

} = Φ∗(u)

and Φ∗ is well defined as a function on Ṽ .

Lemma 3.4. Φ∗ : Ṽ → R ∪ {∞} is a Young function.
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Proof. It is easy to see that Φ∗ satisfies (i)–(iii) from the definition of a Young function. More-
over, it follows from the definition of the conjugate function that

∣∣v(x)
∣∣ � Φ(x) + Φ∗(v) for all x ∈ V,v ∈ Ṽ . (8)

Let v ∈ Ṽ , v 	= 0. Then there is an element x ∈ dom(Φ) such that v(x) 	= 0. It follows that
Φ∗(tv) � |tv(x)| − Φ(x) for all t and (iv) is satisfied. �

We will define CΦ∗ , LΦ∗ , ‖ · ‖Φ∗ and BΦ∗ in the same way as for Φ .

Lemma 3.5 (Hölder inequality).

∣∣v(x)
∣∣ � 2‖x‖Φ‖v‖Φ∗ for all x ∈ BΦ, v ∈ BΦ∗ .

Proof. Let x ∈ CΦ , v ∈ CΦ∗ , then by (8)

∣∣v(x)
∣∣ � Φ(x) + Φ∗(v) � 2.

Let x ∈ LΦ , v ∈ LΦ∗ . By Lemma 3.2, x/‖x‖Φ ∈ CΦ , v/‖v‖Φ∗ ∈ CΦ∗ and therefore |v(x)| �
2‖x‖Φ‖v‖Φ∗ . Clearly, the inequality extends to x ∈ BΦ , v ∈ BΦ∗ . �
3.3. The second conjugate

If E is a Banach space and H ⊂ E is a closed subspace, then the dual of the quotient space
(E/H) can be identified with H⊥. It follows that Ṽ ∗ ∩ V = (dom(Φ))⊥⊥, which is nothing else
than the closure of LΦ in V . Let us denote this space by V̄ .

As before, we can find the conjugate function to Φ∗ : Ṽ → R ∪ {+∞} with respect to the pair
(Ṽ , Ṽ ∗). Note that for x in V̄ , we have

sup
v∈Ṽ

{
v(x) − Φ∗(v)

} = sup
v∈V ∗

{
v(x) − Φ∗(v)

} = Φ∗∗(x),

where Φ∗∗ is the second conjugate to Φ : V → R ∪ {+∞}. Since Φ is convex and lower semi-
continuous, Φ∗∗(x) = Φ(x) on V [6]. It follows in particular that the restriction of Φ∗∗ to V̄ is
a Young function.

It is clear from Hölder inequality that any x ∈ LΦ defines a bounded linear functional on BΦ∗ .
Let ‖x‖∗

Φ∗ be its norm in B∗
Φ∗ , then by Lemma 3.2,

‖x‖∗
Φ∗ = sup

{∣∣v(x)
∣∣, Φ∗(v) � 1

}
.

Similarly, if v ∈ LΦ∗ , then v ∈ B∗
Φ and we have

‖v‖∗
Φ = sup

{∣∣v(x)
∣∣, Φ(x) � 1

}
.

Lemma 3.6. For x ∈ LΦ , we have ‖x‖Φ � ‖x‖∗
Φ∗ � 2‖x‖Φ . Similarly, if v ∈ LΦ∗ , then ‖v‖Φ∗ �

‖v‖∗
Φ � 2‖v‖Φ∗ .
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Proof. Let v ∈ LΦ∗ . By Hölder inequality, ‖v‖∗
Φ � 2‖v‖Φ∗ . Let now ‖v‖∗

Φ = 1, then for x ∈ CΦ

we have

v(x) − Φ(x) � 1.

On the other hand, for x ∈ dom(Φ), such that Φ(x) > 1, we get from Lemma 3.3

v(x) − Φ(x) � v(x) − ‖x‖Φ � 0.

It follows that Φ∗(v) � 1 and v ∈ CΦ∗ , hence ‖v‖Φ∗ � 1. Therefore, ‖v‖Φ∗ � ‖v‖∗
Φ for all

v ∈ LΦ∗ . The proof for x ∈ LΦ is the same, using the fact that Φ is the conjugate of Φ∗. �
Proposition 1. BΦ∗ ⊆ B∗

Φ and LΦ∗ = Ṽ ∩ B∗
Φ . Similarly, BΦ ⊆ B∗

Φ∗ and LΦ = V̄ ∩ B∗
Φ∗ .

Proof. As we have seen, LΦ∗ is a vector subspace in B∗
Φ and the norms in LΦ∗ and B∗

Φ are
equivalent, hence BΦ∗ ⊆ B∗

Φ . Let now v ∈ Ṽ ∩ B∗
Φ be such that ‖v‖∗

Φ = 1. Then Φ∗(v) � 1,
exactly as in the proof of Lemma 3.6. It follows that for all v ∈ Ṽ ∩ B∗

Φ , Φ∗(v/‖v‖∗
Φ) � 1 < ∞

and v ∈ LΦ∗ . Again, the proof for LΦ and BΦ is the same. �
Let Φ be a Young function such that 0 is an interior point in dom(Φ). Then the function Φ is

continuous in 0, therefore there is an open set U containing 0 such that U ⊂ CΦ . It follows that
CΦ is a neighborhood of 0 in V , hence it is absorbing in V :

V =
⋃
n

nCΦ = LΦ (as sets). (9)

Since CΦ is a convex body (that is, 0 is a topological interior point), its Minkowski functional
‖ · ‖Φ is continuous with respect to the original norm [14, p. 182]. It follows that we have the
continuous inclusion V � BΦ . Further, since dom(Φ) has non-empty interior, (dom(Φ))⊥ = {0}
and Ṽ = V ∗. Clearly also V̄ = V .

Proposition 2. Let 0 ∈ int dom(Φ). Then V � BΦ ⊆ B∗
Φ∗ and LΦ∗ = BΦ∗ = B∗

Φ � V ∗.

Proof. By (9), each x ∈ V is in LΦ , and by continuity, ‖x‖Φ � K‖x‖, for some fixed K > 0.
Let v ∈ B∗

Φ , then

∣∣v(x)
∣∣ � ‖v‖∗

Φ‖x‖Φ � K‖v‖∗
Φ‖x‖ for x ∈ V,

hence v ∈ V ∗ = Ṽ and ‖v‖∗ � K‖v‖∗
Φ . The statement now follows from Proposition 1. �

4. The spaces Bϕ and Bϕ,0

Let Ms be the real Banach subspace of self-adjoint elements in M, then the dual M∗
s is

the subspace of Hermitian (not necessarily normal) functionals in M∗. We define the functional
Fϕ :M∗

s → R ∪ {∞} by

Fϕ(ω) =
{

S(ω,ϕ) if ω ∈ S∗,
∞ otherwise.
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Then Fϕ is convex and lower semicontinuous, with dom(Fϕ) = Sϕ . It follows from (1) that Fϕ

is strictly convex. Its conjugate F ∗
ϕ is

F ∗
ϕ (h) = sup

ω∈S∗

{
ω(h) − Fϕ(ω)

} = cϕ(h), h ∈ Ms .

Hence cϕ is convex and lower semicontinuous, in fact, since finite valued, it is continuous on Ms .
We have c∗

ϕ = F ∗∗
ϕ = Fϕ on M∗

s . Note also that

cϕ(h + λ) = cϕ(h) + λ, ∀λ ∈ R. (10)

We define another convex and lower semicontinuous functional on M∗
s , namely,

F̄ϕ(ω) =
{

S(ω,ϕ) − ω(1) if ω ∈ M+∗ ,

∞ otherwise.

Then the conjugate functional is

F̄ ∗
ϕ (h) = sup

ω∈M+∗

{
ω(h) − S(ω,ϕ) + ω(1)

} = sup
ω∈S∗,λ∈R+

{
λω(h) − S(λω,ϕ) + λ

}

= sup
ω∈S∗,λ∈R+

{
λ
(
ω(h) − S(ω,ϕ)

) − λ logλ + λ
}

= sup
λ∈R+

{
λ
(
cϕ(h) + 1

) − λ logλ
} = ecϕ(h) = ϕh(1).

Again, h → ϕh(1) is convex and continuous and F̄ ∗∗
ϕ = F̄ϕ .

Next, we define a Young function on Ms . Let Φϕ :Ms → R+ be defined by

Φϕ(h) = ϕh(1) + ϕ−h(1)

2
− 1.

Lemma 4.1. Φϕ is a Young function.

Proof. The property (i) from the definition of a Young function follows from the properties of
h → ϕh(1). Since ϕh(1) = ecϕ(h) � eω(h)−S(ω,ϕ) for all normal states ω, we have

Φϕ(h) � cosh
(
ω(h)

)
e−S(ω,ϕ) − 1. (11)

In particular,

Φϕ(h) � cosh
(
ϕ(h)

) − 1 � 0 for all h. (12)

Since obviously Φϕ(0) = 0, (ii) follows. Let now h be such that ω(h) = 0 for all ω ∈ Sϕ , then
by definition, cϕ(h) = 0 and ϕ = ϕh, hence h = 0. Therefore if h 	= 0, then there is a state
ω ∈ Sϕ such that ω(h) 	= 0 and then limt→∞ cosh(tω(h)) = ∞, this implies (iv). Property (iii)
is obviously satisfied. �
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Let Cϕ := CΦϕ , Bϕ := BΦϕ and ‖ · ‖ϕ := ‖ · ‖Φϕ . Since domΦϕ = Ms , we have by Proposi-
tion 2 that Ms � Bϕ . If Φ∗

ϕ is the conjugate of Φϕ , then B∗
ϕ = BΦ∗

ϕ
� M∗

s .
Let now h ∈ Ms , such that ‖h‖ϕ = t > 0, that is,

Φϕ

(
h

t

)
= 1.

If ω is a state, then by (11),

cosh

(
ω(h)

t

)
� 2eS(ω,ϕ). (13)

If ω ∈ Sϕ , then |ω(h)| � ct , where c > 0 is some constant depending on S(ω,ϕ). It follows that
each ω ∈ Sϕ extends to a continuous linear functional on Bϕ . Moreover, for C > 0, Sϕ,C is an
equicontinuous subset in B∗

ϕ .
Let Ms,0 ⊂ Ms be the subspace of elements satisfying ϕ(h) = 0. Then by putting ω = ϕ

in (6), we get

cϕ(h) = S
(
ϕ,

[
ϕh

])
� 0.

Let us define

Φϕ,0(h) = cϕ(h) + cϕ(−h)

2
, h ∈ Mϕ,0.

Then it is easy to check that Φϕ,0 is a Young function on Mϕ,0. We have

Lemma 4.2. Let h ∈ Ms,0. Then

Φϕ,0(h) � Φϕ(h) � e2Φϕ,0 − 1.

Proof. The first inequality follows from a � ea − 1 for a � 0, the second follows from x + y �
2xy for x, y � 1. �

Let us construct the Banach space BΦϕ,0 =: Bϕ,0 and let ‖ · ‖ϕ,0 := ‖ · ‖Φϕ,0 .

Proposition 3. The norms ‖ · ‖ϕ,0 and ‖ · ‖ϕ are equivalent on Ms,0.

Proof. Let us denote Cϕ,0 := CΦϕ,0 . We show that

1

2
log 2Cϕ,0 ⊆ Cϕ ∩ Ms,0 ⊆ Cϕ,0. (14)

Let h ∈ Cϕ,0 and t = 1
2 log 2. Then by convexity, Φϕ,0(th) � t = 1

2 log 2 and hence

Φϕ(th) � e2Φϕ,0(th) − 1 � 1,
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which implies tCϕ,0 ⊆ Cϕ ∩ Ms,o. The other inclusion follows from the first inequality in
Lemma 4.2. It follows from (14) that for h ∈ Ms,0,

‖h‖ϕ,0 � ‖h‖ϕ � 2

log 2
‖h‖ϕ,0. �

Note that since ϕ ∈ Sϕ , ϕ extends to a bounded linear functional on Bϕ . Clearly, the comple-
tion of Ms,0 under the norm ‖ · ‖ϕ is the Banach subspace {h ∈ Bϕ, ϕ(h) = 0}. It follows from
the above proposition that Bϕ,0 can be identified with the subspace of centered elements in Bϕ .

5. Extension of cϕ

Since Sϕ ⊂ B∗
ϕ � M∗

s , the restriction of Fϕ is a strictly convex lower semicontinuous func-
tional on B∗

ϕ , with effective domain Sϕ . Its conjugate F ∗
ϕ is a lower semicontinuous extension

of cϕ to Bϕ , moreover, F ∗∗
ϕ = Fϕ . We show that this extension has again values in R and is

continuous.

Lemma 5.1. Let the sequence {hn}n ⊂ Ms be Cauchy in the norm ‖ · ‖ϕ . Then the sequences
{cϕ(hn)}n and {S([ϕhn ], ϕ)}n are bounded.

Proof. By (5), we have for all n

ϕ(hn) � cϕ(hn).

Since ϕ(hn) converges, cϕ(hn) is bounded from below. Let n0 be such that ‖hn − hn0‖ϕ < 1 for
all n � n0, then

ω(hn) − S(ω,ϕ) � ω(hn0) + cϕ(hn − hn0) � ‖hn0‖ + log 2

for all such n and ω ∈ Sϕ . It follows that {cϕ(hn)}n is bounded.
If {hn}n is Cauchy, then the sequence {thn}n is also Cauchy for all t ∈ R and there are con-

stants At,Bt , such that

At � cϕ(thn) � Bt , ∀n.

On the other hand, we have

d

dt
cϕ(thn)

∣∣∣∣
t=1

= [
ϕhn

]
(hn).

By convexity,

cϕ(thn) � cϕ(hn) + (t − 1)
d

dt
cϕ(thn)

∣∣∣∣
t=1

� A1 + (t − 1)
[
ϕhn

]
(hn).

For arbitrary fixed t > 1, we get

[
ϕhn

]
(hn) � Bt − A1

t − 1
, ∀n.
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Boundedness of S([ϕhn ], ϕ) now follows from

0 � S
([

ϕhn
]
, ϕ

) = [
ϕhn

]
(hn) − cϕ(hn). �

Theorem 4. Let {hn}n be a sequence in Ms , converging to some h in Bϕ . Then

lim
n

cϕ(hn) = sup
ω∈Sϕ

{
ω(h) − S(ω,ϕ)

}
(15)

and there is a unique state ψ ∈ Sϕ such that the supremum is attained. The state ψ is faith-
ful. Moreover, limn S([ϕhn], ϕ) = S(ψ,ϕ), limn[ϕhn(hn)] = ψ(h) and limn S(ψ, [ϕhn ]) = 0. In
particular, [ϕhn ] converges to ψ in norm.

The state ψ will be denoted by [ϕh] and the limit limn cϕ(hn) =: cϕ(h).

Proof. This proof is similar to the proof of [16, Theorem 12.3].
By Lemma 5.1, there is some C > 0 such that [ϕhn ] ∈ Sϕ,C for all n. The set Sϕ,C is weakly

relatively compact in S∗ and hence there is subsequence [ϕhnk ] converging weakly to a state
ψ ∈ Sϕ,C . We will show that [ϕhnk ](hnk

) converges to ψ(h).
Since Sϕ,C is an equicontinuous subset in B∗

ϕ , ω(hn) converges to ω(h) uniformly for all
ω ∈ Sϕ,C . This implies

∣∣[ϕhnk

]
(hnk

) − [
ϕhnk

]
(h)

∣∣ < ε

for sufficiently large nk . We further have

∣∣[ϕhnk

]
(h) − ψ(h)

∣∣ �
∣∣[ϕhnk

]
(h) − [

ϕhnk

]
(hm)

∣∣ + ∣∣[ϕhnk

]
(hm) − ψ(hm)

∣∣
+ ∣∣ψ(hm) − ψ(h)

∣∣ < ε

for sufficiently large m and nk . Putting both inequalities together, we get [ϕhnk ](hnk
) → ψ(h).

Let ω ∈ Sϕ . By definition,

[
ϕhnk

]
(hnk

) − S
([

ϕhnk

]
, ϕ

) = cϕ(hnk
) � ω(hnk

) − S(ω,ϕ).

By weak lower semicontinuity of the relative entropy, we get

ψ(h) − S(ψ,ϕ) � lim sup cϕ(hnk
) � ω(h) − S(ω,ϕ) (16)

and thus ψ is a maximizer of (15). On the other hand,

ψ(hnk
) − S(ψ,ϕ) �

[
ϕhnk

]
(hnk

) − S
([

ϕhnk

]
, ϕ

) = cϕ(hnk
).

From this and (16), it follows that ψ(h) − S(ψ,ϕ) = lim cϕ(hnk
). It also follows that

lim supS
([

ϕhnk

]
, ϕ

)
� S(ψ,ϕ)

and this, together with lower semicontinuity implies that S([ϕhnk ], ϕ) converges to S(ψ,ϕ).
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To show that such ψ is unique, suppose that ψ ′ is another maximizer, then for ψλ := λψ +
(1 − λ)ψ ′, 0 � λ � 1, we have

ψ(h) − S(ψ,ϕ) � ψλ(h) − S(ψλ,ϕ)

� ψλ(h) − λS(ψ,ϕ) − (1 − λ)S(ψ ′, ϕ) = ψ(h) − S(ψ,ϕ)

hence ψλ is a maximizer as well and, moreover,

S(ψλ,ϕ) = λS(ψ,ϕ) + (1 − λ)S(ψ ′, ϕ).

By strict convexity, this implies that ψ = ψ ′. It also follows that the whole sequence [ϕhn ] con-
verges weakly to ψ .

Using (6), we have

S(ϕ,ψ) � lim inf
n

S
(
ϕ,

[
ϕhn

]) = lim
n

cϕ(hn) − ϕ(h) < ∞.

This implies that suppϕ � suppψ and ψ is faithful. Finally, by taking the limit in the equality

ψ(hn) − S(ψ,ϕ) = cϕ(hn) − S
(
ψ,

[
ϕhn

])

we get limn S(ψ, [ϕhn ]) → 0. �
Corollary 5.1. Let hn be a sequence in Bϕ , then hn → 0 if and only if cϕ(thn) → 0 for all t ∈ R.

Proof. Let hn be such that cϕ(thn) = logϕthn(1) converges to 0, then ϕthn(1) converges to 1,
for all t ∈ R. Therefore, for each ε > 0, Φϕ(hn/ε) < 1 for large enough n, that is, ‖hn‖ϕ → 0.
The converse follows from Theorem 4. �

In particular, if hn ∈ Ms is a sequence converging strongly to h, then hn converges to h in
‖ · ‖ϕ , see [16].

6. The dual spaces

The dual space M∗
s,0 is obtained as the quotient space M∗

s /{ϕ}. Each equivalence class in
M∗

s,0 can be identified with its unique element v satisfying v(1) = 0. By Proposition 2, we have
B∗

ϕ,0 = BΦ∗
ϕ,0

� M∗
s,0. By Proposition 3, B∗

ϕ,0 is the same as B∗
ϕ/{ϕ}.

Lemma 6.1. Let c̄ϕ be the restriction of cϕ to Bϕ,0. Then the conjugate functional is c̄∗
ϕ(v) =

Fϕ(v + ϕ).

Proof. Let v ∈ B∗
ϕ , v(1) = 0. Then by (10),

Fϕ(v + ϕ) = sup
h∈Bϕ

{
v(h) + ϕ(h) − cϕ(h)

}

= sup
h∈Bϕ

{
v
(
h − ϕ(h)

) − c̄ϕ

(
h − ϕ(h)

)} = c̄∗
ϕ(v). �
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Let V be a Banach space and V ∗ its dual. For any subset D ⊂ V , let D◦ be the polar of D

in V ∗, that is, D◦ = {v ∈ V ∗, v(h) � 1, ∀h ∈ D}. We will need the following lemma.

Lemma 6.2. Let F :V → R+ be a convex functional such that F(0) = 0 and let F ∗ be its conju-
gate. Let D = {x ∈ V, F (x) � 1} and D∗ = {v ∈ V ∗, F ∗(v) � 1}. Then

1

2
D∗ ⊆ D◦ ⊆ D∗.

Proof. If v ∈ D∗, then v(x) � F(x) + F ∗(v) � 2 for all x ∈ D and therefore 1
2v ∈ D◦. Let now

v ∈ D◦, then

v(x) − 1 � 0 � F(x) for x ∈ D.

If F(x) > 1, then by continuity there is some t ∈ (0,1) such that F(tx) = 1. Since tx ∈ D,
v(tx) � 1, moreover, by convexity, 1 = F(tx) � tF (x). Consequently,

v(x) − 1 � 1

t
− 1 � F(x).

It follows that F ∗(v) � 1 and v ∈ D∗. �
Let us denote Kϕ,0 := {h ∈ Bϕ,0, Φϕ,0(h) � 1}. Then Kϕ,0 is the closed unit ball in Bϕ,0. Its

polar K◦
ϕ,0 is the closed unit ball in B∗

ϕ,0.

Proposition 5. Let v be an element in K◦
ϕ,0. Then there are states ω1, ω2, satisfying S(ω1, ϕ) +

S(ω2, ϕ) � 1, such that v = ω1 − ω2.

Proof. Since c̄ϕ is continuous on Bϕ,0, the set D := {h ∈ Bϕ,0, c̄ϕ(h) � 1} is closed. Let us en-
dow the dual pair Bϕ,0 and B∗

ϕ,0 with the σ(Bϕ,0,B
∗
ϕ,0) and σ(B∗

ϕ,0,Bϕ,0) topology, respectively.
As D is convex, it is closed also in this weaker topology. The set D ∩ −D is absolutely convex
and closed, moreover,

D ∩ −D ⊆ Kϕ,0 ⊆ 2(D ∩ −D), (17)

as can be easily checked. Then

1

2
(D ∩ −D)◦ ⊆ K◦

ϕ,0 ⊆ (D ∩ −D)◦.

By [14], (D ∩ −D)◦ is the closed convex cover of D◦ ∪ −D◦, which is the same as the closed
absolutely convex cover of D◦. Moreover, since D◦ is the polar of a neighborhood of 0, it is
compact [14]. Therefore its absolutely convex cover is also compact, hence closed. It follows
that (D ∩ −D)◦ is the absolutely convex cover of D◦.

By Lemmas 6.1 and 6.2,

1

2
(Sϕ,1 − ϕ) ⊆ D◦ ⊆ Sϕ,1 − ϕ
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and this implies

1

4
abs conv(Sϕ,1 − ϕ) ⊆ K◦

ϕ,0 ⊆ abs conv(Sϕ,1 − ϕ). (18)

Let now v ∈ abs conv(Sϕ,1 − ϕ), then there are elements ϕ1, . . . , ϕn ∈ Sϕ,1, and real numbers
λ1, . . . , λn,

∑
n |λn| = 1, such that v = ∑

n λn(ϕn − ϕ). Let m � n be such that λi > 0 for i � m

and λi < 0 for i > m. Then v = ω1 − ω2, with

ω1 =
m∑

i=1

λiϕi + (1 − λ)ϕ, ω2 =
n∑

i=m+1

|λi |ϕi + λϕ,

where λ = ∑m
i=1 λi . Moreover, S(ω1, ϕ) �

∑m
i λiS(ϕi, ϕ) � λ, and similarly, S(ω2, ϕ) �

1 − λ. �
Theorem 6.

(i) B∗
ϕ = Pϕ − Pϕ and B∗

ϕ ∩ M+∗ = Pϕ .
(ii) B∗

ϕ,0 = ⋃
n n(Sϕ,1 − Sϕ,1).

Proof. (i) Let ω ∈ B∗
ϕ and let v = ω − ω(1)ϕ. Then v can be seen as an element in B∗

ϕ,0. Let
‖v‖∗

ϕ,0 = t , then by Proposition 5, there are ω1,ω2 ∈ Sϕ,1, such that v/t = ω1 − ω2, that is, ω =
tω1 +ω(1)ϕ − tω2. Since ω1,ω2, ϕ ∈ Pϕ and Pϕ is a convex cone, it follows that B∗

ϕ ⊆ Pϕ −Pϕ .
On the other hand, we have already shown that if ω ∈ Sϕ , then ω ∈ B∗

ϕ and hence Pϕ −Pϕ ⊆ B∗
ϕ .

Let ω ∈ B∗
ϕ ∩ M+∗ , then we get ω + tω2 = tω1 + ω(1)ϕ. It follows that ω + tω2 ∈ Pϕ , and

identity (1) implies that ω must be in Pϕ .
(ii) By Proposition 5,

K◦
ϕ,0 ⊆ (Sϕ,1 − Sϕ,1) ⊆ 4K◦

ϕ,0.

The equality now follows from the fact that the closed unit ball is absorbing in B∗
ϕ,0. �

In the rest of this section, we find an equivalent norm on B∗
ϕ,0. We define a function f :S∗ ×

S∗ → R+ by

f (ω1,ω2) = S(ω1, ϕ) + S(ω2, ϕ).

Clearly, f is weakly lower semicontinuous and strictly convex. Further, let v ∈ S∗ − S∗ and let
Lv = {(ω1,ω2) ∈ S∗ × S∗, ω1 − ω2 = v}. Then Lv is a weakly closed subset in M∗ × M∗.

Lemma 6.3. Let v ∈ Sϕ −Sϕ . Then the function f attains its minimum over Lv at a unique point
(v+, v−) ∈ Lv .

Proof. By assumptions, v = ω1 − ω2 for some ω1,ω2 ∈ Sϕ . Let C > 0 be such that ω1,ω2 ∈
Sϕ,C , then the infimum is taken over the set Lv ∩ Sϕ,C × Sϕ,C . Since Lv is weakly closed and
Sϕ,C is weakly compact, the intersection is weakly compact and f attains its minimum on it.
Uniqueness follows by strict convexity of f . �

132
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Let us now define the functional Ψϕ,0 :M∗
s,0 → R+ by

Ψϕ,0(v) =
{

f (v+, v−) if v ∈ Sϕ − Sϕ,

∞ otherwise.

Lemma 6.4. Ψϕ,0 is a Young function.

Proof. It is easy to check that Ψϕ,0 is convex, positive, Ψϕ,0(v) = Ψϕ,0(−v) and that Ψϕ,0(v) = 0
if and only if v = 0. We will show that Ψϕ,0 is lower semicontinuous.

To do this, we have to prove that for any C > 0, the set of all v satisfying Ψϕ,0(v) � C is
closed. Let vn be a sequence of elements in this set, converging to some v. Let vn = vn+ − vn−
be the corresponding decompositions, then vn+, vn− ∈ Sϕ,C for all n, hence there are elements
v′+ and v′− in Sϕ,C and a subsequence vnk

= vnk+ − vnk− such that vnk+ → v′+ and vnk− → v′−
weakly. It follows that v = v′+ − v′− and Ψϕ,0(v) � S(v′+, ϕ) + S(v′−, ϕ) � lim infS(vnk+, ϕ) +
S(vnk−, ϕ) � C.

Suppose that v 	= 0, then Ψϕ,0(v) > 0. If t > 1, then by convexity, tΨϕ,0(v) � Ψϕ,0(tv), hence
limt→∞ Ψϕ,0(tv) = ∞. �

Let us find the corresponding Banach space. Note that

CΨϕ,0 = {
ω1 − ω2: ω1,ω2 ∈ S∗, S(ω1, ϕ) + S(ω2, ϕ) � 1

}
.

By Proposition 5, this implies that K◦
ϕ,0 ⊆ CΨϕ,0 ⊆ Sϕ,1 − Sϕ,1 and by Theorem 6(ii), B∗

ϕ,0 ⊆
LΨϕ,0 ⊆ B∗

ϕ,0.

Proposition 7. ‖ · ‖Ψϕ,0 defines an equivalent norm in B∗
ϕ,0.

Proof. Let Ψ ∗
ϕ,0 : Ms → R be the conjugate functional, then

Ψ ∗
ϕ,0(h) = sup

v∈M∗
s,0

v(h) − Ψϕ,0(v)

= sup
v∈Sϕ−Sϕ

sup
(ω1,ω2)∈Lv

ω1(h) − ω2(h) − f (ω1,ω2)

= sup
ω1,ω2∈Sϕ

ω1(h) − S(ω1, ϕ) + ω2(−h) − S(ω2, ϕ) = 2Φϕ,0(h).

It follows that Ψϕ,0(v) = Ψ ∗∗
ϕ,0(v) = 2Φ∗

ϕ,0(
1
2v). Since the norms ‖ · ‖∗

ϕ,0 and ‖ · ‖Φ∗
ϕ,0

are equiv-
alent, this finishes the proof. �
7. The chain rule

Proposition 8. Let h ∈ Bϕ , k ∈ Ms . Then [ϕh+k] = [[ϕh]k], cϕ(h + k) = c[ϕh](k) + cϕ(h) and
for all normal states ω the equality

ω(k) − S
(
ω,

[
ϕh

]) = cϕ(h + k) − cϕ(h) − S
(
ω,

[
ϕh+k

])
(19)

holds.
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Proof. Let hn ∈ Ms be such that hn → h in Bϕ . By the chain rule (7), we have [ϕhn+k] =
[[ϕhn ]k] and cϕ(hn + k) = c[ϕhn ](k) + cϕ(hn). By Theorem 4, cϕ(hn) → cϕ(h), cϕ(hn + k) →
cϕ(h + k) and [ϕhn ] → [ϕh], [ϕhn+k] → [ϕh+k] strongly. Now we can proceed exactly as in the
proof of [16, Theorem 12.10] to obtain (19). By putting ω = [ϕh+k] in this equality, we get

[
ϕh+k

]
(k) + S

([
ϕh+k

]
,
[
ϕh

]) = cϕ(h + k) − cϕ(h) � ω(k) − S
(
ω,

[
ϕh

])

for all ω, which implies the statement of the proposition. �
Theorem 9. Let h ∈ Bϕ . Then B[ϕh] = Bϕ and S[ϕh] = Sϕ .

Proof. Let k ∈ Ms and let ε > 0. By Proposition 8,

c[ϕh](k) = cϕ(h + k) − cϕ(h).

Since cϕ is continuous on Bϕ , there is a δ > 0 such that

∣∣cϕ(h + k) − cϕ(h)
∣∣ < log 2

if ‖k‖ϕ < δ. It follows that ‖k‖[ϕh] < ε whenever ‖k‖ϕ < δε and this implies Bϕ � B[ϕh]. In
particular, h ∈ B[ϕh].

Let hn be a sequence converging to h in Bϕ , then by (6)

ω(hn) − S(ω,ϕ) = cϕ(hn) − S
(
ω,

[
ϕhn

])
.

By Theorem 4, and lower semicontinuity,

ω(h) − S(ω,ϕ) � cϕ(h) − S
(
ω,

[
ϕh

])
.

This implies Sϕ ⊆ S[ϕh].
Further, hn converges to h in B[ϕh] and by Theorem 4 and Proposition 8,

[[
ϕh

]−h] = lim
n

[[
ϕh

]−hn
] = lim

n

[
ϕh−hn

] = ϕ.

By the first part of the proof, B[ϕh] = Bϕ and Sϕ = S[ϕh]. �
Theorem 10. Let h, k ∈ Bϕ . Then the chain rule cϕ(h + k) = c[ϕh](k) + cϕ(h), [[ϕh]k] = [ϕh+k]
holds.

Proof. Let kn ∈ Ms be a sequence converging to k in Bϕ = B[ϕh]. Then

[[
ϕh

]k] = lim
n

[[
ϕh

]kn
] = lim

n

[
ϕh+kn

] = [
ϕh+k

]

and by Proposition 8,

cϕ(h + k) = lim
n

c[ϕh](kn) + cϕ(h) = c[ϕh](k) + cϕ(h). �
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A. Jenčová / Journal of Functional Analysis 239 (2006) 1–20 17

Corollary 7.1. Let h ∈ Bϕ and let ω be a normal state. Then the equality

ω(h) − S(ω,ϕ) = cϕ(h) − S
(
ω,

[
ϕh

])

holds.

Proof. By (6) and lower semicontinuity, we have

ω(h) − S(ω,ϕ) � cϕ(h) − S
(
ω,

[
ϕh

])
.

Since, by the chain rule, ϕ = [[ϕh]−h] and c[ϕh](−h) = −cϕ(h), we also have

ω(−h) − S
(
ω,

[
ϕh

])
� c[ϕh](−h) − S(ω,ϕ) = −cϕ(h) − S(ω,ϕ)

which implies the opposite inequality. �
Corollary 7.2. Let [ϕh] = [ϕk] for some h, k ∈ Bϕ . Then h − k = ϕ(h − k).

Proof. Let us suppose that h ∈ Bϕ is such that [ϕh] = ϕ. Then [ϕnh] = ϕ for all n ∈ N. It follows
that cϕ(nh) = nϕ(h) = ncϕ(h) for all n and for 0 � t � 1, we have by (5) and convexity of cϕ

that

tcϕ(h) = ϕ(th) � cϕ(th) � tcϕ(h).

It follows that cϕ(th) = tcϕ(h) = tϕ(h) for all t � 0. Since also [ϕ−h] = [[ϕh]−h] = ϕ, we have
cϕ(−th) = tcϕ(−h) = −tϕ(h) for t � 0.

It is easy to see that cϕ(k − λ) = cϕ(k) − λ for all k ∈ Bϕ and λ ∈ R. Let λ = ϕ(h), then it
follows that

cϕ

(
t (h − λ)

) = 0 = cϕ

(
t (−h + λ)

)

for all t � 0. This implies ‖h − λ‖ϕ = 0 and hence h = λ.
Let now [ϕh] = [ϕk], then [[ϕk]−h] = [ϕk−h] = ϕ and h − k = λ = ϕ(h − k). �
Note that the function c̄ϕ :Bϕ,0 → R corresponds to the cumulant generating functional in the

commutative case. Let us list some of its properties.

Theorem 11. The function c̄ϕ has the following properties:

(i) c̄ϕ is positive, strictly convex and continuous, c̄ϕ(0) = 0.
(ii) c̄ϕ is Gateaux differentiable, with c̄′

ϕ(h) = [ϕh] − ϕ.
(iii) The map

Bϕ,0 � h → [
ϕh

] − ϕ ∈ B∗
ϕ,0

is one-to-one and norm to σ(B∗
ϕ,0,Bϕ,0)-continuous.
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Proof. (i) By Corollary 7.1, c̄ϕ(h) = S(ϕ, [ϕh]) � 0 and c̄ϕ(0) = 0 by definition. Let now h, k ∈
Bϕ,0 and 0 < λ < 1 be such that

c̄ϕ

(
λh + (1 − λ)k

) = λc̄ϕ(h) + (1 − λ)c̄ϕ(k).

Then

sup
Sϕ

λ
(
ω(h) − S(ω,ϕ)

) + (1 − λ)
(
ω(k) − S(ω,ϕ)

)

= λ sup
Sϕ

(
ω(h) − S(ω,ϕ)

) + (1 − λ) sup
Sϕ

(
ω(k) − S(ω,ϕ)

)
.

This implies that the maximum in both expressions on the right-hand side is attained at the same
point. Therefore [ϕh] = [ϕk], hence h − k = ϕ(h − k) = 0.

(ii) By Theorem 4, [ϕh] − ϕ is the unique element in B∗
ϕ,0, such that

([
ϕh

] − ϕ
)
(h) = c̄ϕ(h) + c̄∗

ϕ

([
ϕh

] − ϕ
)
.

By [6], this implies that c̄ϕ is Gateaux differentiable in h with derivative c̄′
ϕ(h) = [ϕh] − ϕ.

(iii) Let hn → h in Bϕ , then [ϕhn] converges strongly to [ϕh] and S([ϕhn ], ϕ) → S([ϕh], ϕ).
It follows that [ϕhn ](k) → [ϕh](k) for each k ∈ Ms and moreover, the set {[ϕhn], n ∈ N} is
equicontinuous in B∗

ϕ . This implies that [ϕhn](k) → [ϕh](k) for all k ∈ Bϕ . The map is one-to-
one by Corollary 7.2. �
8. A manifold structure on faithful states

Recall that a Cp-atlas on a set X is a family of pairs {(Ui, ei)}, such that

(i) Ui ⊂ X for all i and
⋃

Ui = X.
(ii) For all i, ei is a bijection of Ui onto an open subset ei(Ui) in some Banach space Bi , and

for i, j , ei(Ui ∩ Uj ) is open in Bi .
(iii) The map ej e

−1
i : ei(Ui ∩ Uj) → ej (Ui ∩ Uj ) is a Cp-isomorphism for all i, j .

Let F∗ be the set of faithful normal states on M. For ϕ ∈ F∗, let Vϕ be the open unit ball in
Bϕ,0 and let sϕ :Vϕ → F∗ be the map h → [ϕh]. By Corollary 7.2, sϕ is a bijection onto the set
sϕ(Vϕ) =: Uϕ ⊂ Sϕ . Let eϕ be the restriction of s−1

ϕ to Uϕ . Then we have

Theorem 12. {(Uϕ, eϕ),ϕ ∈ F∗} is a C∞-atlas on F∗.

Proof. The property (i) and the first part of (ii) of the definition of the Cp atlas are obviously
satisfied. Let ϕ1, ϕ2 ∈ F∗ be such that Uϕ1 ∩ Uϕ2 	= ∅. We prove that eϕ1(Uϕ1 ∩ Uϕ2) is open in
Bϕ1,0.

Let h1 ∈ eϕ1(Uϕ1 ∩ Uϕ2). Then there is some h2 ∈ Bϕ2,0, such that [ϕh1
1 ] = [ϕh2

2 ]. By The-
orem 9, Bϕ1 = B[ϕh1

1 ] = B[ϕh2
2 ] = Bϕ2 and by the chain rule, ϕ1 = [ϕk

2 ], where k = h2 − h1 +
ϕ2(h1) ∈ Bϕ2,0. Clearly, the map Bϕ1,0 → Bϕ2,0, given by h → h − ϕ2(h) is continuous.
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Let ε > 0 be such that h2 + h′
2 ∈ Vϕ2 whenever ‖h′

2‖ϕ2 < ε and let us choose δ > 0 such that
h1 + h′

1 ∈ Vϕ1 and ‖h′
1 − ϕ2(h

′
1)‖ϕ2 < ε for ‖h′

1‖ϕ1 < δ. For such h′
1, we have

sϕ1(h1 + h′
1) = [

ϕ
h1+h′

1
1

] = [
ϕ

k+h1+h′
1−ϕ2(h

′
1)

2

] = [
ϕ

h2+h′
1−ϕ2(h

′
1)

2

] ∈ Uϕ1 ∩ Uϕ2 .

This proves that s−1
ϕ1

(Uϕ1 ∩ Uϕ2) is open in Bϕ1,0. It is also clear that the map

s−1
ϕ2

sϕ1 : s−1
ϕ1

(Uϕ1 ∩ Uϕ2) → s−1
ϕ2

(Uϕ1 ∩ Uϕ2)

h → k + h − ϕ2(h)

is C∞, which proves (iii). �
It is not difficult to see that for ϕ ∈ F∗, the set Fϕ := {[ϕh], h ∈ Bϕ,0} is a connected compo-

nent of the manifold. Let us now define a family of mappings

U(e)
ϕ1,ϕ2

:Bϕ1,0 � h → h − ϕ2(h) ∈ Bϕ2,0, ϕ1, ϕ2 ∈ Fϕ.

It is clear that this defines a parallel transport on the tangent bundle of Fϕ and the associated
globally flat affine connection is the exponential connection [7].

Let us recall that the dual connection is defined on the cotangent bundle T ∗Fϕ by means of

the parallel transport {(U(e)
ϕ2,ϕ1)

∗, ϕ1, ϕ2 ∈ Fϕ}, where

〈(
U(e)

ϕ2,ϕ1

)∗
v,h

〉 = 〈
v,U(e)

ϕ1,ϕ2
h
〉
, v ∈ B∗

ϕ2,0, h ∈ Bϕ1,0,

and the duality is given by 〈v,h〉 = v(h). Since v(h − ϕ1(h)) = v(h) for all ϕ1, the dual parallel
transport is

U(m)
ϕ1,ϕ2

:B∗
ϕ1,0 � v → v ∈ B∗

ϕ2,0, ϕ1, ϕ2 ∈ Fϕ,

which corresponds to the mixture connection.
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16

On quantum information manifolds
Anna Jenčová

16.1 Introduction

The aim of information geometry is to introduce a suitable geometrical structure on

families of probability distributions or quantum states. For parametrised statistical

models, such structure is based on two fundamental notions: the Fisher information

and the exponential family with its dual mixed parametrisation, see for example

(Amari 1985, Amari and Nagaoka 2000).

For the non-parametric situation, the solution was given by Pistone and Sempi

(Pistone and Sempi 1995, Pistone and Rogantin 1999), who introduced a Banach

manifold structure on the set P of probability distributions, equivalent to a given

one. For each µ ∈ P, the authors considered the non-parametric exponential family

at µ. As it turned out, this provides a C∞-atlas on P, with the exponential Orlicz

spaces LΦ(µ) as the underlying Banach spaces, here Φ is the Young function of the

form Φ(x) = cosh(x)− 1.

The present contribution deals with the case of quantum states: we want to

introduce a similar manifold structure on the set of faithful normal states of a von

Neumann algebra M. Since there is no suitable definition of a non-commutative

Orlicz space with respect to a state ϕ, it is not clear how to choose the Banach space

for the manifold. Of course, there is a natural Banach space structure, inherited from

the predual M∗. But, as it was already pointed out in (Streater 2004), this structure

is not suitable to define the geometry of states: for example, any neighbourhood of

a state ϕ contains states such that the relative entropy with respect to ϕ is infinite.

In (Jenčová 2006), we suggest the following construction. We define a Luxem-

burg norm using a quantum Young function, similar to that in (Streater 2004) but

restricted to the space of self-adjoint operators in M. Then we take the comple-

tion under this norm. In the classical case, this norm coincides with the norm of

Pistone and Sempi, restricted to bounded measurable functions. This is described

in Section 16.2. In Section 16.3, we show that an equivalent Banach space can be

obtained in a more natural and easier way, using some results of convex analysis.

In the following sections, we use the results in (Jenčová 2006) to introduce the

manifold, and discuss possible extensions.

Algebraic and Geometric Methods in Statistics, ed. Paolo Gibilisco, Eva Riccomagno, Maria
Piera Rogantin and Henry P. Wynn. Published by Cambridge University Press. c© Cambridge
University Press 2010.
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Section 16.6 is devoted to channels, that is, completely positive unital maps

between the algebras. We show that the structures we introduced are closely related

to sufficiency of channels and a new characterisation of sufficiency is given. As it

turns out, the new definition of the spaces provides a convenient way to deal with

these problems.

16.2 The quantum Orlicz space

We recall the definition and some properties of the quantum exponential Orlicz

space, as given in (Jenčová 2006).

16.2.1 Young functions and associated norms

Let V be a real Banach space and let V ∗ be its dual. We say that a function

Φ : V → R ∪ {∞} is a Young function, if it satisfies:

(i) Φ is convex and lower semicontinuous;

(ii) Φ(x) ≥ 0 for all x ∈ V and Φ(0) = 0,

(iii) Φ(x) = Φ(−x) for all x ∈ V ,

(iv) if x �= 0, then limt→∞ Φ(tx) = ∞.

Since Φ is convex, its effective domain

dom(Φ) := {x ∈ V, Φ(x) < ∞}
is a convex set. Let us define the sets

CΦ := {x ∈ V,Φ(x) ≤ 1},
LΦ := {x ∈ V,∃s > 0, such that Φ(sx) < ∞}.

Then LΦ is the smallest vector space, containing dom(Φ). Moreover, the Minkowski

functional of CΦ ,

‖x‖Φ := inf{ρ > 0, x ∈ ρCΦ} = inf{ρ > 0,Φ(ρ−1x) ≤ 1}
defines a norm in LΦ .

Let BΦ be the completion of LΦ under ‖ · ‖Φ . If the function Φ is finite valued,

Φ : V → R, (or, more generally, 0 ∈ int dom(Φ)), then Lφ = V and the norm ‖ · ‖Φ

is continuous with respect to the original norm in V , so that we have the continuous

inclusion V ⊑ BΦ .

Let now Φ : V → R be a Young function and let the function Φ∗ : V ∗ → R∪{∞}
be the conjugate of Φ,

Φ∗(v) = sup
x∈V

v(x)− Φ(x)

then Φ∗ is a Young function as well. The associated norm satisfies

|v(x)| ≤ 2‖x‖Φ‖v‖Φ∗ x ∈ BΦ , v ∈ BΦ∗

(the Hölder inequality), so that each v ∈ BΦ∗ defines a continuous linear functional

on BΦ , in fact, it can be shown that

LΦ∗ = BΦ∗ = B∗
Φ ⊑ V ∗
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in the sense that the norm ‖·‖φ∗ is equivalent with the usual norm in B∗
Φ . Similarly,

we have LΦ = V ⊑ BΦ ⊆ B∗
Φ∗ .

16.2.2 Relative entropy

Let M be a von Neumann algebra in standard form. Let M+
∗ be the set of normal

positive linear functionals and S∗ be the set of normal states on M. For ω and ϕ

in M+
∗ , the relative entropy is defined as

S(ω, ϕ) =





−〈log(∆ϕ,ξω )ξω , ξω 〉 if suppω ≤ suppϕ

∞ otherwise

where ξω is the representing vector of ω in a natural positive cone and ∆ϕ,ξω is the

relative modular operator. Then S is jointly convex and weakly lower semicontin-

uous. We will also need the following identity

S(ψλ , ϕ) + λS(ψ1 , ψλ ) + (1 − λ)S(ψ2 , ψλ ) = λS(ψ1 , ϕ) + (1− λ)S(ψ2 , ϕ) (16.1)

where ψ1 , ψ2 are normal states and ψλ = λψ1 + (1− λ)ψ2 , 0 ≤ λ ≤ 1. This implies

that S is strictly convex in the first variable.

Let us denote

Pϕ := {ω ∈ M+
∗ , S(ω, ϕ) < ∞}

Sϕ := {ω ∈ S∗, S(ω, ϕ) < ∞}
Kϕ,C := {ω ∈ S∗, S(ω, ϕ) ≤ C}, C > 0.

Then Pϕ is a convex cone dense in M+
∗ and Sϕ is a convex set generating Pϕ . By

(16.1), Sϕ is a face in S∗. For any C > 0, the set Kϕ,C separates the elements in

M and it is convex and compact in the σ(M∗,M)-topology.

16.2.3 The quantum exponential Orlicz space and its dual

Let Ms be the real Banach subspace of self-adjoint elements in M, then the dual

M∗
s is the subspace of Hermitian (not necessarily normal) functionals in M∗. We

define the functional Fϕ : M∗
s → R ∪ {∞} by

Fϕ (ω) =

{
S(ω, ϕ) if ω ∈ S∗
∞ otherwise.

Then Fϕ is strictly convex and lower semicontinuous; with dom(Fϕ ) = Sϕ . Its

conjugate

F ∗
ϕ (h) = sup

ω∈S∗
ω(h) − S(ω, ϕ)

is convex and lower semicontinuous; in fact, being finite valued, it is continuous on

Ms . We have F ∗∗
ϕ = Fϕ on M∗

s .

We define the function Φϕ : Ms → R by

Φϕ (h) =
exp(F ∗

ϕ (h)) + exp(F ∗
ϕ (−h))

2
− 1.
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Then Φϕ is a Young function. Let us denote ‖h‖ϕ := ‖h‖Φϕ
and Bϕ := BΦϕ

, then

we call Bϕ the quantum exponential Orlicz space.

Let h ∈ Ms , ‖h‖ϕ ≤ 1. Then

cosh(ω(h)) ≤ 2eS (ω,ϕ) .

It follows that each ω ∈ Sϕ defines a continuous linear functional on Bϕ . We denote

by Bϕ,0 the Banach subspace of centred elements in Bϕ , that is, h ∈ Bϕ with

ϕ(h) = 0. Then

Φϕ,0(h) =
F ∗
ϕ (h) + F ∗

ϕ (−h)

2

is a Young function on Ms,0 := {h ∈ Ms , ϕ(h) = 0} and it defines an equivalent

norm in Bϕ,0 .

Remark 16.1 Let M be commutative, then M = L∞(X,Σ, µ) for some measure

space (X,Σ, µ) with σ-finite measure µ. Then ϕ is a probability measure on Σ,

with the density p := dϕ/dµ ∈ L1(X,Σ, µ). For any Hermitian element u ∈ M,

F ∗
ϕ (u) = log

∫
exp(u)pdµ, so that

Φϕ (u) =

∫
cosh(u)pdµ− 1.

It follows that in this case, our space Bϕ coincides with the closure MΦ(ϕ) of

L∞(X,Σ, ϕ) in LΦ(ϕ).

Let us now describe the dual space B∗
ϕ,0 . It was proved that B∗

ϕ = Pϕ −Pϕ and

B∗
ϕ,0 = ∪nn(Kϕ,1 −Kϕ,1). If we denote by Cϕ,0 the closed unit ball in B∗

ϕ,0 , then

Cϕ,0 ⊆ Kϕ,1 −Kϕ,1 ⊆ 4Cϕ,0 (16.2)

so that any element in Cϕ,0 can be written as a difference of two states in Kϕ,1 .

For v in Sϕ − Sϕ , let Lv := {ω1 , ω2 ∈ Sϕ , v = ω1 − ω2}. We define the function

Ψϕ,0 : M∗
s,0 → R+ by

Ψϕ,0(v) =





infLv
S(ω1 , ϕ) + S(ω2 , ϕ) if v ∈ Sϕ − Sϕ

∞ otherwise.

Then Ψϕ,0 is a Young function and it was proved that

Φ∗
ϕ,0(v) = 1/2Ψϕ,0(2v)

for v ∈ M∗
s,0 . It follows that the norm in B∗

ϕ,0 is equivalent with ‖ · ‖Ψϕ , 0
.

16.3 The spaces A(Kϕ ) and A(Kϕ )∗∗

In this section, we use a well-known representation of compact convex sets, see for

example (Asimow and Ellis 1980) for details. We obtain a Banach space, which

turns out to be equivalent to Bϕ,0 .
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Let K ⊂ S∗ be a convex set, compact in the σ(M∗,M)-topology and separating

the points in Ms . In particular, let Kϕ := Kϕ,1 . Let A(K) be the Banach space

of continuous affine functions f : K → R, with the supremum norm. Then K can

be identified with the set of states on A(K), where each element ω ∈ K acts on

A(K) by evaluation f �→ f(ω). Moreover, the topology of K coincides with the

weak*-topology of the state space.

It is clear that any self-adjoint element in M belongs to A(K), moreover, Ms

is a linear subspace in A(K), separating the points in K and containing all the

constant functions. It follows that Ms is norm-dense in A(K).

The dual space A(K)∗ is the set of all elements of the form

p : f �→ a1f(ω1) − a2f(ω2)

for some ω1 , ω2 ∈ K, a1 , a2 ∈ R+ , so that A(K)∗ is a real linear subspace in M∗.
The embedding of A(K)∗ to M∗ is continuous and the weak*-topology on A(K)∗

coincides with σ(M∗,M) on bounded subsets. It is also easy to see that the second

dual A(K)∗∗ is the set of all bounded affine functionals on K.

Let L ⊆ K be convex and compact. For f ∈ A(K)∗∗, the restriction to L is in

A(L)∗∗, continuous if f ∈ A(K) and such that ‖f |L‖L ≤ ‖f‖K .

Lemma 16.1 Let a, b > 0, then A(Kϕ,a) = A(Kϕ,b) and A(Kϕ,a)
∗∗ = A(Kϕ,b)

∗∗,
in the sense that the corresponding norms are equivalent.

Proof Suppose that a ≥ b. Since Kϕ,b ⊆ Kϕ,a , it follows that A(Kϕ,a) ⊆ A(Kϕ,b)

and A(Kϕ,a)
∗∗ ⊆ A(Kϕ,b)

∗∗ with ‖f‖ϕ,b ≤ ‖f‖ϕ,a for f ∈ A(Kϕ,a)
∗∗. On the other

hand, let ω ∈ Kϕ,a , then ωt := tω + (1 − t)ϕ ∈ Kϕ,b whenever t ≤ b/a. Then

ω = a/bωb/a − (a/b− 1)ϕ

so that Kϕ,a is contained in the closed ball with radius (2a − b)/b in A(Kϕ,b)
∗.

It follows that any f ∈ A(Kϕ,b)
∗∗ defines a bounded affine functional over Kϕ,a ,

continuous if f ∈ A(Kϕ,b) and

‖f‖ϕ,a = sup
ω∈Kϕ , a

|f(ω)| ≤ ‖f‖ϕ,b(2a− b)/b.

We see from the above proof that Sϕ ⊂ A(Kϕ,b)
∗ and each Kϕ,a is weak*-compact

in A(Kϕ,b)
∗. It follows that dom (Fϕ ) ⊂ A(Kϕ,b)

∗ and Fϕ is a convex weak*-lower

semicontinuous functional on A(Kϕ,b)
∗.

Let us denote by A0(K) the subspace of elements f ∈ A(K), such that f(ϕ) = 0.

Then we have

Theorem 16.1 A0(Kϕ ) = Bϕ,0 , with equivalent norms.

Proof We have by (16.2) that the norms are equivalent on Ms . The statement

follows from the fact that Ms is dense in both spaces.
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16.4 The perturbed states

As we have seen, Fϕ (ω) = S(ω, ϕ) defines a convex lower semicontinuous functional

A(Kϕ )∗ → R. Let f ∈ A(Kϕ )∗∗. We denote

cϕ (f) := inf
ω∈Sϕ

f(ω) + S(ω, ϕ).

Then −cϕ (−f) is the conjugate functional F ∗
ϕ (f), so that cϕ is concave and upper

semicontinuous, with values in R ∪ {−∞}.
Suppose that cϕ (f) is finite and that there is a state ψ ∈ Sϕ , such that

cϕ (f) = f(ψ) + S(ψ,ϕ).

Then this state is unique, this follows from the fact that S is strictly convex in the

first variable. Let us denote this state by ϕf . Note that if f ∈ Ms , then ϕf exists

and it is the perturbed state (Ohya and Petz 1993), so that we can see the mapping

f �→ ϕf as an extension of state perturbation.

In (Jenčová 2006), we defined the perturbed state for elements in Bϕ,0 ; we remark

that there we used the notation cϕ = F ∗
ϕ and the state was denoted by [ϕh ], h ∈ Bϕ .

It was shown that [ϕh ] is defined for all h ∈ Bϕ and that the map

Bϕ,0 ∈ h �→ [ϕh ]

can be used to define a C∞-atlas on the set of faithful states on M. By Theo-

rem 16.1, we have the same for A0(Kϕ ). We will recall the construction below, but

before that, we give some results obtained for f ∈ A(Kϕ )∗∗.
First of all, it is clear that cϕ (f + c) = cϕ (f) + c for any real c and ϕf = ϕf+c if

ϕf is defined. We may therefore suppose that f ∈ A0(Kϕ )∗∗.

Lemma 16.2 Let f ∈ A(Kϕ )∗∗ be such that ϕf exists. Then for all ω ∈ Sϕ ,

S(ω, ϕ) + f(ω) ≥ S(ω, ϕf ) + cϕ (f).

Equality is attained on the face in Sϕ , generated by ϕf .

Proof The statement is proved using the identity (16.1), the same way as Lemmas

12.1 and 12.2 in (Ohya and Petz 1993).

The previous lemma has several consequences. For example, it follows that

cϕ (f) ≤ −S(ϕ,ϕf ) ≤ 0 if f ∈ A0(Kϕ )∗∗. Further, S(ω, ϕf ) is bounded on Kϕ ,

so that Kϕ ⊆ Kϕf ,C for some C > 0. It also follows that Sϕ ⊆ Sϕf . In particular,

S(ϕ,ϕf ) < ∞ and since also S(ϕf , ϕ) < ∞, the states ϕ and ϕf have the same

support.

Lemma 16.3 Let ψ = ϕf for some f ∈ A(Kϕ )∗∗. Then we have the continuous

embeddings A(Kψ ) ⊑ A(Kϕ ) and A(Kψ )∗∗ ⊑ A(Kϕ )∗∗.

Proof Follows from Kϕ ⊆ Kψ ,C and Lemma 16.1.
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We will now consider the set of all states ϕf , with some f ∈ A(Kϕ )∗∗. Let ψ be

a normal state, such that ϕ ∈ Sψ . We denote

fψ (ω) := S(ω, ψ) − S(ω, ϕ) − S(ϕ,ψ).

By identity (16.1), fψ is an affine functional Kϕ → R ∪ {∞}, such that fψ (ϕ) = 0.

Theorem 16.2 Let ψ be a normal state. Then ψ = ϕf for some f ∈ A(Kϕ )∗∗ if

and only if ψ ∈ Sϕ and Kϕ ⊆ Kψ ,C for some C > 0.

Proof It is clear that ψ ∈ Sϕ if ψ = ϕf and we have seen that also Kϕ ⊆ Kψ ,C .

Conversely, if Kϕ ⊆ Kψ ,C , then fψ ∈ A0(Kϕ )∗∗ and

fψ (ω) + S(ω, ϕ) = S(ω, ψ) − S(ϕ,ψ) ≥ −S(ϕ,ψ)

for all ω ∈ Sϕ . Since equality is attained for ω = ψ, ψ = ϕfψ .

Note also that, by the above proof, cϕ (fψ ) = −S(ϕ,ψ).

16.4.1 The subdifferential

Let ψ ∈ Sϕ . The subdifferential at ψ is the set of elements f ∈ A0(Kϕ )∗∗, such

that ψ = ϕf . Let us denote the subdifferential by ∂ϕ (ψ). By Theorem 16.2, the

subdifferential at ψ is non-empty if and only if Kϕ ⊆ Kψ ,C .

Lemma 16.4 If ∂ϕ (ψ) �= ∅, then it is a closed convex subset in A0(Kϕ )∗∗. More-

over, cϕ is affine over ∂ϕ (ψ).

Proof Let f, g ∈ ∂ϕ (ψ) and let gλ = λg + (1 − λ)f , λ ∈ (0, 1). Then

gλ (ψ) + S(ψ,ϕ) = λcϕ (g) + (1 − λ)cϕ (f).

Since cϕ is concave, this implies that ψ = ϕgλ and that cϕ (gλ ) = λcϕ (g) + (1 −
λ)cϕ (f). Moreover, we can write

∂ϕ (ψ) = {g ∈ A(Kϕ )∗∗, cϕ (g) − g(ψ) ≥ S(ψ,ϕ)}

and this set is closed, since cϕ is upper semicontinuous.

Lemma 16.5 Let ψ ∈ Sϕ , ∂ϕ (ψ) �= ∅ and let g ∈ A0(Kϕ )∗∗. Then g ∈ ∂ϕ (ψ) if

and only if there is some k ∈ R, such that

g(ω)− fψ (ω) ≥ k, ω ∈ Sϕ and g(ψ) − f(ψ) = k. (16.3)

In this case, k = cϕ (g) − cϕ (fψ ) ≤ 0.

Proof If g ∈ ∂ϕ (ψ), then (16.3) follows from Lemma 16.2 and k ≤ 0 is obtained by

putting ω = ϕ. Conversely, suppose that (16.3) is true, then we have for ω ∈ Sϕ

g(ω) + S(ω, ϕ) = g(ω)− fψ (ω) + fψ (ω) + S(ω, ϕ) ≥ k + cϕ (fψ )
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and g(ψ) +S(ψ, ω) = k+ cϕ (fψ ), this implies that ψ = ϕg and cϕ (g) = k+ cϕ (fψ ).

16.4.2 The chain rule

Let Cϕ := {ψ ∈ Sϕ , Kϕ ⊆ Kψ ,C , Kψ ⊆ Kϕ,A for some A,C > 0}.

Theorem 16.3 Let ψ ∈ Cϕ . Then
(i) Sϕ = Sψ ,

(ii) A(Kϕ ) = A(Kψ ), A(Kϕ )∗∗ = A(Kψ )∗∗, with equivalent norms,

(iii) ϕ ∈ Cψ .

Proof Let ψ ∈ Cϕ . By Theorem 16.2, ψ = ϕf , f ∈ A(Kϕ )∗∗ and also ϕ = ψg for

some g ∈ A(Kψ )∗∗. Now we have (i) by Lemma 16.2 and (ii) by Lemma 16.3, (iii)

is obvious.

We also have the following chain rule.

Theorem 16.4 Let ψ ∈ Cϕ and let g ∈ A(Kϕ )∗∗ be such that ψg exists. Then

cψ (g) = cϕ (g + f)− cϕ (f), ψg = ϕf+g (16.4)

holds for f = fψ .

Proof Suppose that ψg exists, then

g(ω) + fψ (ω) + S(ω, ϕ) = g(ω) + S(ω, ψ) + cϕ (fψ ) ≥ cψ (g) + cϕ (fψ )

for all ω ∈ Sϕ = Sψ and equality is attained at ω = ψg . This implies cψ (g) =

cϕ (g + f) − cϕ (f) and ψg = ϕf+g .

16.5 The manifold structure

Let F be the set of faithful normal states on M. Let ϕ ∈ F . In this section we show

that we can use the map f �→ ϕf to define the manifold structure on F . So far, it

is not clear if this map is well-defined or one-to-one on A0(Kϕ )∗∗. The situation is

better if we restrict to A0(Kϕ ), as Theorem 16.5 shows.

Theorem 16.5 Let f ∈ A(Kϕ ). Then

(i) ϕf exists and ϕf ∈ Cϕ .
(ii) If g ∈ A(Kϕ ) is such that ϕg = ϕf , then f − g = ϕ(f − g).

(iii) In Lemma 16.2, equality is attained for all ω ∈ Sϕ , in particular,

f − f(ϕ) = fϕf .

(iv) The chain rule (16.4) holds for all f, g ∈ A(Kϕ ).
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Proof We may suppose that f ∈ A0(Kϕ ). By the results in (Jenčová 2006) and

Theorem 16.1, if f ∈ A0(Kϕ ) = Bϕ,0 , then ψ = ϕf exists, f − f(ψ) ∈ A0(Kψ ) =

Bψ ,0 and ϕ = ψ−f . By Theorem 16.2, ψ ∈ Cϕ and (i) is proved. (ii),(iii) and (iv)

were proved in (Jenčová 2006).

Proposition 16.1 is not needed in our construction. It shows that each ψ ∈ Cϕ is

faithful on A(Kϕ ).

Proposition 16.1 Let ψ ∈ Cϕ and let g ∈ A(Kϕ ) be positive. Then g(ψ) = 0

implies g = 0.

Proof Let g be a positive element in A(Kϕ ) = A(Kψ ), with g(ψ) = 0, then by

Lemma 16.5, fψ + g ∈ ∂ϕ (ψ). Since ψg exists, we have by the chain rule that

ψg = ϕfψ +g = ψ. Since g ∈ A0(Kψ ), g = 0.

Let us recall that a Cp -atlas on a set X is a family of pairs {(Ui , ei)}, such that

(i) Ui ⊂ X for all i and ∪Ui = X;

(ii) for all i, ei is a bijection of Ui onto an open subset ei(Ui) in some Banach

space Bi , and for all i, j, ei(Ui ∩ Uj ) is open in Bi ;

(iii) the map eje
−1
i : ei(Ui ∩ Uj ) → ej (Ui ∩ Uj ) is a Cp -isomorphism for all i, j.

Let now X = F . For ϕ ∈ F , let Vϕ be the open unit ball in A0(Kϕ ) and let

sϕ : Vϕ → F be the map f �→ ϕf . By Theorem 16.5, sϕ is a bijection onto the set

Uϕ := sϕ (Vϕ ). Let eϕ be the map Uϕ ∋ ψ �→ fψ ∈ Vϕ . Then we have

Theorem 16.6 (Jenčová 2006) {(Uϕ , eϕ ), ϕ ∈ F} is a C∞-atlas on F .

In the commutative case, the space corresponding to A(Kϕ ) is not the exponen-

tial Orlicz space LΦ , but the subspace MΦ , see Remark 16.1. The corresponding

commutative information manifold structure was considered in (Grasselli 2009). It

follows from the theory of Orlicz spaces that (under some reasonable conditions on

the base measure µ)

MΦ(µ)∗ = LΦ∗(µ), LΦ∗(µ)∗ = LΦ(µ).

By comparing A(Kϕ ) with these results, it seems that the quantum exponential

Orlicz space should be the second dual A(Kϕ )∗∗, rather than A(Kϕ ).

To get the counterpart of the Pistone and Sempi manifold, we would need to

extend the map sϕ to the unit ball V ∗∗
ϕ in A0(Kϕ )∗∗ and show that it is one-to-one.

At present, it is not clear how to prove this. At least, we can prove that cϕ is finite

on V ∗∗
ϕ .

Lemma 16.6 Let f ∈ A0(Kϕ )∗∗, ‖f‖ ≤ 1. Then 0 ≥ cϕ (f) ≥ −1 and the infimum

can be taken over Kϕ .

Proof Let ω ∈ Sϕ be such that S(ω, ϕ) > 1. Since the function t �→ S(ωt , ϕ)

is convex and lower semicontinuous in (0, 1), it is continuous and there is some
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t ∈ (0, 1) such that S(ωt , ϕ) = 1, recall that ωt = tω+(1− t)ϕ. By strict convexity,

it follows that 1 = S(ωt , ϕ) < tS(ω, ϕ) and S(ω, ϕ) > 1/t. On the other hand,

ωt ∈ Kϕ and therefore −1 ≤ f(ωt) = tf(ω). It follows that

f(ω) + S(ω, ϕ) > −1/t + 1/t = 0 = f(ϕ) + S(ϕ,ϕ) ≥ cϕ (f).

From this, cϕ (f) = infω∈Kϕ
f(ω) + S(ω, ϕ) ≥ −1.

16.6 Channels and sufficiency

Let N be another von Neumann algebra. A channel from N to M is a completely

positive, unital map α : N → M. We will also require that a channel is normal,

then its dual α∗ : ϕ �→ ϕ ◦ α maps normal states on M to normal states on N .

An important property of such channels is that the relative entropy is monotone

under these maps:

S(ω ◦ α,ϕ ◦ α) ≤ S(ω, ϕ), ω, ϕ ∈ S∗.

This implies that α∗ defines a continuous affine map Kϕ → Kϕ◦α . If f0 ∈
A(Kϕ◦α )∗∗, then composition with α∗ defines a bounded affine functional over Kϕ ,

which we denote by α(f0). Then α(f0) is continuous if f0 ∈ A(Kϕ◦α ) and

‖α(f0)‖ = sup
ω∈Kϕ

|f0(ω ◦ α)| ≤ sup
ω0 ∈Kϕ ◦α

|f0(ω0)| = ‖f0‖

so that α is a contraction A(Kϕ◦α )∗∗ → A(Kϕ )∗∗ and A(Kϕ◦α ) → A(Kϕ ).

Lemma 16.7 Let α : N → M be a channel and let g0 ∈ A(Kϕ◦α )∗∗. Then

cϕ◦α (g0) ≤ cϕ (α(g0)).

Proof We compute

cϕ (α(g0)) = inf
ω∈Sϕ

g0(ω ◦α) + S(ω, ϕ) ≥ inf
ω∈Sϕ

g0(ω ◦α) + S(ω ◦α,ϕ ◦α) ≥ cϕ◦α (g0).

Let S be a set of states in S∗(M). We say that the channel α : N → M is

sufficient for S if there is a channel β : M → N , such that

ω ◦ α ◦ β = ω, ω ∈ S.

This definition of sufficient channels was introduced in (Petz 1986), see also (Jenčová

and Petz 2006a), and several characterisations of sufficiency were given. Here we

are interested in the following two characterisations. For simplicity, we will assume

that the states, as well as the channel, are faithful.

Theorem 16.7 (Petz 1986) Let ψ ∈ Sϕ . The channel α is sufficient for the pair

{ψ,ϕ} if and only if S(ψ,ϕ) = S(ψ ◦ α,ϕ ◦ α).
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Theorem 16.8 (Jenčová and Petz 2006b) Let ψ = ϕf for some f ∈ Ms . Then α is

sufficient for {ψ,ϕ} if and only if there is some g0 ∈ Ns , such that ψ ◦α = (ϕ◦α)g0

and f = α(g0).

In this section we show how Theorem 16.8 can be extended to pairs {ψ,ϕ} such

that ∂ϕ (ψ) �= ∅.
So let ψ = ϕf for some f ∈ A(Kϕ )∗∗ and suppose that α : N → M is a sufficient

channel for the set {ψ,ϕ}. Let us denote ϕ0 := ϕ ◦ α, ψ0 := ψ ◦ α. Let β : M → N
be the channel such that ϕ0 ◦ β = ϕ, ψ0 ◦ β = ψ. We will show that ψ0 = ϕ

β (fψ )
0 .

To see this, note that for ω0 ∈ Sϕ0
,

β(fψ )(ω0) = fψ (ω0 ◦ β) = S(ω0 ◦ β, ψ) − S(ω0 ◦ β, ϕ) − S(ψ,ϕ).

Then

β(fψ )(ω0) + S(ω0 , ϕ0)

= S(ω0 ◦ β, ψ) + S(ω0 , ϕ0) − S(ω0 ◦ β, ϕ0 ◦ β) − S(ψ,ϕ) ≥ −S(ψ,ϕ) = cϕ (fψ )

by positivity and monotonicity of the relative entropy, and

β(fψ )(ψ0) + S(ψ0 , ϕ0) = −S(ψ,ϕ)

so that cϕ0
(β(fψ )) = cϕ (fψ ) and ψ0 = ϕ

β (fψ )
0 .

On the other hand, this implies by Theorem 16.2 that fψ0
∈ A(Kϕ0

)∗∗ and we

obtain in the same way that ψ = ϕα(fψ 0
) and cϕ (α(fψ0

)) = cϕ0
(fψ0

).

Theorem 16.9 Let ψ be such that ∂ϕ (ψ) �= ∅ and let α : N → M be a channel.

Let ϕ0 = ϕ ◦ α, ψ0 = ψ ◦ α The following are equivalent

(i) α is sufficient for the pair {ϕ,ψ},
(ii) fψ0

∈ A(Kϕ0
)∗∗ and ψ = ϕα(fψ 0

),

(iii) cϕ0
(fψ0

) = cϕ (fψ ).

Proof The implication (i) → (ii) was already proved above. Suppose (ii) holds, then

cϕ (α(fψ0
)) = α(fψ0

)(ψ) + S(ψ,ϕ) =

= −S(ψ0 , ϕ0)− S(ϕ0 , ψ0) + S(ψ,ϕ).

By putting ω = ϕ in Lemma 16.2, we obtain cϕ (α(fψ0
)) ≤ −S(ϕ,ψ). Then

0 ≤ S(ψ,ϕ) − S(ψ0 , ϕ0) ≤ S(ϕ0 , ψ0)− S(ϕ,ψ) ≤ 0.

It follows that cϕ (fψ ) = −S(ϕ,ψ) = −S(ϕ0 , ψ0) = cϕ0
(fψ0

), hence (iii) holds. The

implication (iii) → (i) follows from Theorem 16.7.

In particular, if ψ = ϕf for f ∈ A(Kϕ ), the above theorem can be formulated as

follows.

Theorem 16.10 Let ψ = ϕf , f ∈ A(Kϕ ) and α : N → M be a channel. Then α is

sufficient for {ψ,ϕ} if and only if there is some g0 ∈ A(Kϕ0
), such that ψ0 = ϕg0

0

and f = α(g0).
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Proof The statement follows from Theorem 16.9 and the fact that if ψ = ϕf for

f ∈ A0(Kϕ ), then we must have f = fψ , by Theorem 16.5.
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1. Introduction

In order to motivate our results, let us consider the following problem of classical
statistics. Suppose that P0 and P1 are two probability distributions and the task
is to discriminate between them by an n-dimensional observation vector X . The
problem is, if there is a function (statistic) T : X →Y , such that the vector Y =T (X)
(usually of lower dimension) contains all information needed for the discrimina-
tion.

In the setting of hypothesis testing, the null hypothesis H0 = P0 is tested against
the alternative H1 = P1. In the most general formulation, a test is a measurable
function ϕ : X →[0,1], which can be interpreted as the probability of rejecting the
hypothesis if x ∈ X occurs. There are two kinds of errors appearing in hypoth-
esis testing: it may happen that H0 is rejected, although it is true (error of the
first kind), or that it is not rejected when H1 is true (error of the second kind).

Supported by the Slovak Research and Development Agency under the contract No. APVV 0071-06,
grant VEGA 2/0032/09, Center of Excellence SAS-Quantum Technologies and ERDF OP R&D Project
CE QUTE ITMS 26240120009.
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16 ANNA JENČOVÁ

For a given test ϕ, the error probabilities are

α(ϕ)=
∫
ϕ(x)P0(dx) first kind

β(ϕ)=
∫
(1−ϕ(x))P1(dx) second kind

The two kinds of errors are in some sense complementary and it is usually
not possible to minimize both error probabilities simultaneously. In the Bayesian
approach, we choose a prior probability distribution {λ,1−λ}, λ∈[0,1] on the two
hypotheses and then minimize the average (Bayes) error probability

∫
ϕ(x)λP0(dx)+

∫
(1−ϕ(x))(1−λ)P1(dx)=λα(ϕ)+ (1−λ)β(ϕ).

Suppose now that T is a sufficient statistic for {P0, P1}. Roughly speaking, this
means that there exists a common version of the conditional expectation E[·|T ]=
EP0[·|T ], P0- a.s. and E[·|T ] = EP1[·|T ], P1- a.s. If ϕ is any test, then E[ϕ|T ] is
another test having the same error probabilities. It follows that we can always have
an optimal test that is a function of T , so that only values of T (X) are needed for
optimal discrimination between P0 and P1.

The following theorem states that this can happen if and only if T is suffi-
cient, so that the above property characterizes sufficient statistics. The theorem was
proved by Pfanzagl, see also [16].

THEOREM 1. [15] Let T : X →Y be a statistic. The following are equivalent.

1. For any λ∈ (0,1) and any test ϕ : X → [0,1], there exists a test ψ : Y → [0,1],
such that

λα(ψ ◦ T )+ (1−λ)β(ψ ◦ T )≤λα(ϕ)+ (1−λ)β(ϕ)
2. T is a sufficient statistic for {P0, P1}.

The problem of hypothesis testing can be considered also in the quantum set-
ting. Here we deal with a pair of density operators ρ0, ρ1 ∈ B(H), where H is
a finite dimensional Hilbert space and all tests are given by operators 0 ≤ M ≤
1, M ∈ B(H). The problem of finding the optimal tests (the quantum Neyman–
Pearson tests) and average error probabilities was solved by Helstrom and
Holevo [6,8].

Here a question arises, if it is possible to discriminate the states optimally by
measuring on a given subsystem. Then we can gain some information only on the
restricted densities, which, in general, can be distinguished with less precision.

Let M0 ⊆ B(H) be the subalgebra describing the subsystem we have access to.
The average error probabilities for tests in M0 are usually higher than the optimal
ones. We will consider the situation that this does not happen and M0 contains
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QUANTUM HYPOTHESIS TESTING AND SUFFICIENT SUBALGEBRAS 17

some optimal tests for all prior probabilities. In agreement with classical terminol-
ogy (see [16]), such a subalgebra will be called sufficient with respect to testing
problems, or 2-sufficient, for {ρ0, ρ1}.

The quantum counterpart of sufficiency was introduced and studied by Petz,
see Chap. 9. in [13], in a more general context. According to this definition, the
subalgebra M0 is sufficient for {ρ0, ρ1}, if there exists a completely positive, trace
preserving map M0 → B(H), that maps both restricted densities to the original
ones. Then the restriction to M0 preserves all information needed for discrimina-
tion between the states and it is quite easy to see that a sufficient subalgebra must
be 2-sufficient.

The conditions for sufficiency seem to be quite restrictive (see for example the
factorization conditions in [9]) and might be too strong, if only hypothesis testing
is considered. It is therefore natural to ask if there is a quantum version of Theo-
rem 1, that is, if every 2-sufficient subalgebra must be sufficient.

In this paper, we give a partial answer to this question. We show that
2-sufficiency and sufficiency are equivalent under each of the following conditions:
(1) the subalgebra M0 is invariant under the modular group of one of the states,
(2) M0 is commutative, (3) ρ0 and ρ1 commute. Moreover, we show that if the
2-sufficiency condition is strengthened to hold for n independent copies of the den-
sities for all n, then the two notions become equivalent.

The organization of the paper is as follows. In Section 2, some basic notions
are introduced and several characterizations of a sufficient subalgebra are given.
A new characterization, based on a version of the Radon–Nikodym derivative,
is found, this will be needed for the main results. Section 3 gives the quantum
Neyman–Pearson lemma and quantum Chernoff bound. Section 4 contains the
main results: a convenient necessary condition for 2-sufficiency is found and it is
shown that it implies sufficiency in the three above described cases. Finally, the
quantum Chernoff bound is utilized to treat the case when 2-sufficiency holds for
n independent copies of the states, for all n.

2. Some Basic Definitions and Facts

2.1. GENERALIZED CONDITIONAL EXPECTATION

Let H be a finite-dimensional Hilbert space and let ρ be an invertible density
matrix. Let M0 ⊆ B(H) be a subalgebra and let E : B(H)→ M0 be the trace pre-
serving conditional expectation. Then E(ρ) is the restricted density of the state ρ.

As we have seen, the classical sufficient statistic is defined by certain property of
the conditional expectations. It is well known that in the quantum case, a state pre-
serving conditional expectation does not always exist. Therefore we need the gener-
alized conditional expectation, defined by Accardi and Cecchini [1]. In our setting,
it can be given as follows.
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18 ANNA JENČOVÁ

Let us introduce the inner product 〈X,Y 〉ρ =Tr X∗ρ1/2Yρ1/2 in B(H). Then the
generalized conditional expectation Eρ is a map B(H)→ M0, defined by

〈X0,Y 〉ρ =〈X0, Eρ(Y )〉E(ρ), X0 ∈ M0, Y ∈ B(H)

It is easy to see that we have

Eρ(X)= E(ρ)−1/2 E
(
ρ1/2 Xρ1/2

)
E(ρ)−1/2 (1)

It is known that Eρ is completely positive and unital and that it is a conditional
expectation if and only if ρi t M0ρ

−i t ⊆ M0, for all t ∈R. It is also easy to see that
Eρ preserves the state ρ, that is, E∗

ρ ◦ E(ρ)=ρ.
Next we introduce two subalgebras, related to Eρ . Let Fρ be the set of fixed

points of Eρ and let Nρ ⊆ B(H) be the multiplicative domain of Eρ ,

Nρ ={
X ∈ B(H), Eρ(X

∗ X)= Eρ(X)
∗Eρ(X), Eρ(X X∗)= Eρ(X)Eρ(X)

∗}

Then both Fρ and Nρ are subalgebras in B(H). It is clear that Fρ ⊆ M0 ∩ Nρ ,
moreover, X ∈ Fρ if and only if ρi t Xρ−i t ∈ M0 for all t ∈ R. As for Nρ , we have
the following result.

LEMMA 1. Nρ =ρ1/2 M0ρ
−1/2 ∩ρ−1/2 M0ρ

1/2

Proof. It is clear from (1) that X ∈ Nρ if and only if

E
(
ρ1/2 X∗ Xρ1/2

)
= E

(
ρ1/2 X∗ρ1/2

)
E(ρ)−1 E

(
ρ1/2 Xρ1/2

)

E
(
ρ1/2 X X∗ρ1/2

)
= E

(
ρ1/2 Xρ1/2

)
E(ρ)−1 E

(
ρ1/2 X∗ρ1/2

)

Let A = Xρ1/2, B = ρ1/2. Similarly as in [11], we put M = A − B�, with � =
E(ρ)−1 E(ρ1/2 Xρ1/2). Then from E(M∗M)≥0, we obtain

E(A∗ A)≥ E(A∗B)E(ρ)−1 E(B∗ A),

with equality if and only if M =0, this implies

ρ−1/2 Xρ1/2 = E(ρ)−1 E
(
ρ1/2 Xρ1/2

)
∈ M0.

Conversely, let X0 =ρ−1/2 Xρ1/2 ∈ M0, then E(ρ1/2 Xρ1/2)= E(ρ)X0, this implies
that M =0.

Similarly, we get that ρ−1/2 X∗ρ1/2 ∈ M0 is equivalent with the second equality.

It is also known that Eρ(XY )= Eρ(X)Eρ(Y ), Eρ(Y X)= Eρ(Y )Eρ(X) for all X ∈
Nρ , Y ∈ B(H), this can be also shown from the above Lemma. Note that in the
case that Eρ is a conditional expectation, Fρ = Nρ = M0.
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2.2. A RADON–NIKODYM DERIVATIVE AND RELATIVE ENTROPIES

Let ρ0, ρ1 be invertible density matrices in B(H). We will use the quantum version
of the Radon–Nikodym derivative introduced in [5]. In our setting, the derivative
dρ0,ρ1 of ρ1 with respect to ρ0 is defined as the unique element in B(H), such that
Trρ1 X =〈X∗,dρ0,ρ1〉ρ0 . Then clearly

dρ0,ρ1 =ρ−1/2
0 ρ1ρ

−1/2
0

so that dρ0,ρ1 is positive, and ‖dρ0,ρ1‖ ≤ λ for any λ> 0, such that ρ1 ≤ λρ0. It is
also easy to see that

Eρ0(dρ0,ρ1)=dE(ρ0),E(ρ1)

Let us recall that the Belavkin–Staszewski relative entropy is defined as [5]

SBS(ρ1, ρ0)=−Trρ0η
(
ρ

−1/2
0 ρ1ρ

−1/2
0

)
=−Trρ0η(dρ0,ρ1)

where η(x)=−x log(x). Let S be the Umegaki relative entropy

S(ρ1, ρ0)=Trρ1(logρ1 − logρ0)

then S(ρ1, ρ0)≤ SBS(ρ1, ρ0), [7] and S(ρ1, ρ0)= SBS(ρ1, ρ0) if ρ0 and ρ1 commute.
Both relative entropies are monotone in the sense that

S(ρ1, ρ0)≥ S(E(ρ1), E(ρ0)), SBS(ρ1, ρ0)≥ SBS(E(ρ1), E(ρ0))

holds for any subalgebra M0. As we will see in the next section, equality in the
monotonicity for S is equivalent with sufficiency of the subalgebra M0 with respect
to {ρ0, ρ1}. For SSB , we have the following result.

LEMMA 2. The following are equivalent.

(i) SBS(ρ1, ρ0)= SBS(E(ρ1), E(ρ0))

(ii) dρ0,ρ1 ∈ Nρ0

(iii) ρ1ρ
−1
0 ∈ M0

(iv) ρ1ρ
−1
0 = E(ρ1)E(ρ0)

−1

Proof. Since the function −η(x)= x log(x) is operator convex,

η
(
dE(ρ0),E(ρ1)

)=η (
Eρ0(dρ0,ρ1)

)≤ Eρ0

(
η(dρ0,ρ1)

)
(2)

by Jensen’s inequality. We have

Trρ0(Eρ0(η(dρ0,ρ1))−η(Eρ0(dρ0,ρ1)))= SBS(ρ1, ρ0)− SBS(E(ρ1), E(ρ0))

and since ρ0 is invertible, equality in the monotonicity of SBS is equivalent with
equality in (2). As it was proved in [14], this happens if and only if dρ0,ρ1 ∈ Nρ0 .
This shows the equivalence (i) ↔ (ii). The equivalence of (ii) and (iii) follows by
Lemma 1, (iii) ⇐⇒ (iv) is rather obvious.
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20 ANNA JENČOVÁ

2.3. SUFFICIENT SUBALGEBRAS

We say that the subalgebra M0 ⊆ B(H) is sufficient for {ρ0, ρ1} if there is a com-
pletely positive trace preserving map T : M0 → B(H), such that T ◦ E(ρ0)=ρ0 and
T ◦ E(ρ1) = ρ1. The following characterizations of sufficiency were obtained by
Petz.

THEOREM 2. [10,13] The following are equivalent.

(i) M0 ⊆ B(H) is sufficient for {ρ0, ρ1}
(ii) S(ρ1, ρ0)= S(E(ρ1), E(ρ0))

(iii) Trρs
0ρ

1−s
1 =Tr E(ρ0)

s E(ρ1)
1−s for some s ∈ (0,1)

(iv) Tr Eρ0(X)ρ1 =Tr Xρ1 for all X ∈ B(H)
(v) Eρ0 = Eρ1 .

The next characterization is based on the Radon–Nikodym derivative.

THEOREM 3. The subalgebra M0 ⊆ B(H) is sufficient for {ρ0, ρ1} if and only if
dρ0,ρ1 ∈ Fρ0 .

Proof. Let us denote d = dρ0,ρ1 and d0 = dE(ρ0),E(ρ1). Since d0 ∈ M0, we have by
definition that

Trρ1 Eρ0(X)=〈d0, Eρ0(X)〉E(ρ0)=〈d0, X〉ρ0

so that Trρ1 Eρ0(X)=Trρ1 X if and only if 〈d0, X〉ρ0 =〈d, X〉ρ0 . It follows that d =
d0 is equivalent with sufficiency of M0, by Theorem 2 (iv). Since Eρ0(d)=d0, this
is equivalent with dρ0,ρ1 ∈ Fρ0 .

3. Quantum Hypothesis Testing

Let us now turn to the problem of hypothesis testing. Any test of the hypothe-
sis H0 =ρ0 against the alternative H1 =ρ1 is represented by an operator 0≤ M ≤1,
which corresponds to rejecting the hypothesis. Then we have the error probabilities

α(M)=Trρ0 M first kind

β(M)=Trρ1(1− M) second kind

For λ∈ (0,1), we define the Bayes optimal test to be a minimizer of the expression

λα(M)+ (1−λ)β(M) (3)

It is clear that minimizing (3) is the same as maximizing

Tr (ρ1 − tρ0)M, t = λ

1−λ
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3.1. THE QUANTUM NEYMAN–PEARSON LEMMA

The following is the quantum version of the Neyman–Pearson lemma. The obtained
optimal tests are called the (quantum) Neyman–Pearson tests. We give a simple
proof for completeness.

LEMMA 3. Let t ≥ 0 and let us denote Pt,+ := supp (ρ1 − tρ0)+, Pt,− := supp (ρ1 −
tρ0)− and Pt,0 := 1 − Pt,+ − Pt,−. Then the operator 0 ≤ Mt ≤ 1 is a Bayes optimal
test of ρ0 against ρ1 if and only if

Mt = Pt,+ + Xt

where 0≤ Xt ≤ Pt,0.

Proof. Let 0≤ M ≤1, then

Tr (ρ1 − tρ0)M =Tr (ρ1 − tρ0)+M −Tr (ρ1 − tρ0)−M ≤Tr (ρ1 − tρ0)+M

≤ Tr (ρ1 − tρ0)+ =Tr (ρ1 − tρ0)Pt,+ (4)

It follows that Mt = Pt,+ + Xt , Xt ≤ Pt,0 is a Bayes optimal test. Conversely, let Mt

be some Bayes optimal test, then we must have

Tr (ρ1 − tρ0)Mt =Tr (ρ1 − tρ0)+Mt =Tr (ρ1 − tρ0)Pt,+

so that Tr (ρ1 − tρ0)−Mt =0. By positivity, this implies that Pt,−Mt = Mt Pt,− =0, so
that

Mt (Pt,+ + Pt,0)= (Pt,+ + Pt,0)Mt = Mt

which is equivalent with Mt ≤ Pt,+ + Pt,0. Furthermore, from

Tr (ρ1 − tρ0)+(Pt,+ + Pt,0 − Mt )=0

we obtain Pt,+ − Pt,+Mt Pt,+ = Pt,+(1 − Mt )Pt,+ = 0, hence (1 − Mt )Pt,+ = 0. We
obtain Pt,+ ≤ Mt and by putting Xt := Mt − Pt,+, we get the result.

Let us denote by 
e,λ the minimum Bayes error probability. Then


e,λ=λα(Mλ/(1−λ))+ (1−λ)β(Mλ/(1−λ))

= 1
2
(1−‖(1−λ)ρ1 −λρ0‖1) (5)

where the last equality follows from

1− t =Tr (ρ1 − tρ0)=Tr (ρ1 − tρ0)+ −Tr (ρ2 − tρ0)−

and

‖ρ1 − tρ0‖1 =Tr |ρ1 − tρ0|=Tr (ρ1 − tρ0)+ +Tr (ρ2 − tρ0)−
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3.2. THE QUANTUM CHERNOFF BOUND

Suppose now that we have n copies of the states ρ0 and ρ1, so that we test the
hypothesis ρ⊗n

0 against ρ⊗n
1 by means of an operator 0 ≤ Mn ≤ 1, Mn ∈ B(H⊗n).

Again, we may use the Neyman–Pearson lemma to find the minimum Bayes error
probability


e,λ,n = 1
2

(
1−‖(1−λ)ρ⊗n

1 −λρ⊗n
0 ‖1

)

The following important result, obtained in [3] and [12] (see also [4]), is the quan-
tum version of the classical Chernoff bound:

lim
n

(
−1

n
log
e,λ,n

)
=− log

(
inf

0≤s≤1
Trρ1−s

0 ρs
1

)
=: ξQC B(ρ0, ρ1) (6)

The expression ξQC B has a number of interesting properties. For example, it was
proved that it is always nonnegative and equal to 0 if and only if ρ0 =ρ1, more-
over, it is monotone in the sense that

ξQC B(ρ0, ρ1)≥ ξQC B(E(ρ0), E(ρ1))

Therefore, although it is not symmetric, ξQC B provides a reasonable distance mea-
sure on density matrices, called the quantum Chernoff distance. Note also that in
the case that the matrices are invertible, the infimum is always attained in some
s∗ ∈ [0,1].

4. 2-Sufficiency

We say that M0 is sufficient with respect to testing problems, or 2-sufficient, for
{ρ0, ρ1} if for any test M and any λ∈ (0,1), there is some test Nλ∈ M0, such that

λα(Nλ)+ (1−λ)β(Nλ)≤λα(M)+ (1−λ)β(M)
It is quite clear that M0 is 2-sufficient if and only if for all t ≥ 0, we can find a
Neyman–Pearson test Mt ∈ M0. Moreover, suppose that M0 is a sufficient subal-
gebra for {ρ0, ρ1} and let T = Eρ0 = Eρ1 . Then, if Mt is a Neyman–Pearson test,
then T (Mt )∈ M0 is a Neyman–Pearson test as well. Hence, a sufficient subalgebra
is always 2-sufficient. In this section, we find the opposite implication in some spe-
cial cases.

LEMMA 4. Pt,0 �= 0 if and only if t is an eigenvalue of d := dρ0,ρ1 . Moreover, the
rank of Pt,0 is equal to multiplicity of t .

Proof. By definition,

(ρ1 − tρ0)Pt,0 =ρ1/2
0 (d − t)ρ1/2

0 Pt,0 =0
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so that (d − t)ρ1/2
0 Pt,0ρ

1/2
0 = 0. Suppose Pt,0 �= 0, then t is an eigenvalue of d and

any vector in the range of ρ1/2
0 Pt,0ρ

1/2
0 is an eigenvector. This implies that r(Pt,0)=

r(ρ1/2 Pt,0ρ
1/2)≤ r(F), where F is the eigenprojection of t .

Conversely, let t be an eigenvalue of d with the eigenprojection F , then

(ρ1 − tρ0)ρ
−1/2
0 Fρ−1/2

0 =ρ1/2
0 (d − t)Fρ−1/2

0 =0,

so that the range of ρ−1/2 Fρ−1/2 is in the kernel of ρ1 − tρ0, this implies r(F)≤
r(Pt,0).

Let us denote Qt,+ = supp (E(ρ1)− t E(ρ0))+, Qt,0 =ker (E(ρ1)− t E(ρ0)) and let

0

e,λ be the minimal Bayes error probability for the restricted densities


0
e,λ := inf

M∈M0
λα(M)+ (1−λ)β(M)= 1

2
(1−‖(1−λ)E(ρ1)−λE(ρ0)‖1)

LEMMA 5. The following are equivalent.

(i) The subalgebra M0 is 2-sufficient for {ρ0, ρ1}.
(ii) 
0

e,λ=
e,λ for all λ∈ (0,1).
(iii) Qt,0 = Pt,0 and Qt,+ = Pt,+ for all t ≥0.

Proof. It is obvious that (i) implies (ii). Suppose (ii) and let us denote f (t) :=
max0≤M≤1 Tr (ρ1 − tρ0)M . If Nt is any Neyman–Pearson test for {E(ρ0), E(ρ1)},
then

Tr (ρ1 − tρ0)Nt =Tr (E(ρ1)− t E(ρ0))Nt = f (t),

so that Nt is a Neyman–Pearson test for {ρ0, ρ1} as well. Putting Nt = Qt,+ and
Nt = Qt,+ + Qt,0, we get by Lemma 3 that

Qt,+ = Pt,+ + Xt , Qt,+ + Qt,0 = Pt,+ +Yt ,

with Xt ,Yt ≤ Pt,0. This implies that Qt,0 ≤ Pt,0 and Qt,+ = Pt,+ if Pt,0 =0.
Let t be an eigenvalue of d0, then Pt,0 ≥ Qt,0 �= 0, hence t is also an eigenvalue

of d, and its multiplicity in d0 is not greater that its multiplicity in d. Since the
sum of multiplicities must equal to m =dim(H), we must have r(Qt,0)=r(Pt,0), so
that Qt,0 = Pt,0. This implies that Xt ≤ Qt,0, hence Xt =0 and Pt,+ = Qt,+ for all t .

The implication (iii) → (i) is again obvious.

Note that the condition (ii) is equivalent with

‖E(ρ1)− t E(ρ0)‖1 ≥‖ρ1 − tρ0‖1, for all t ≥0

This condition, with E(ρ0) and E(ρ1) replaced by arbitrary densities σ0 and σ1

was studied in [2]. It was shown that for 2×2 matrices, this is equivalent with the
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existence of a completely positive trace preserving map T , such that T (ρ0)=σ0 and
T (ρ1)= σ1. In our case, this means that 2-sufficiency implies sufficiency for 2 × 2
matrices. Since any nontrivial subalgebra in M(C2) is commutative, this agrees
with our results below.

The above Lemma gives characterizations of 2-sufficiency, but the conditions are
not easy to check. The next Theorem gives a simple necessary condition.

THEOREM 4. Let M0 be 2-sufficient for {ρ1, ρ0}. Then dρ1,ρ0 ∈ Nρ0 .

Proof. By the previous Lemma, we have Pt,0 = Qt,0 ∈ M0 for all t . Let t1, . . . , tk
be the eigenvalues of d and denote Pi = Pti ,0. Then from (d − ti )ρ

1/2
0 Pi =0 we get

dρ1/2
0

∑

i

Pi =ρ1/2
0

∑

i

ti Pi

By Lemma 4 and its proof, supp (ρ1/2
0 Piρ

1/2
0 )≤ Fi and r(Pi )= r(Fi ), with Fi the

eigenprojection of ti . It follows that
∑

i ρ
1/2
0 Piρ

1/2
0 , and hence also

∑
i Pi , is invert-

ible. Therefore,

dρ1/2
0 =ρ1/2

0 c, c :=
∑

i

ti Pi

⎛
⎝∑

j

Pj

⎞
⎠

−1

that is, d = ρ
1/2
0 cρ−1/2

0 , with c ∈ M0. Moreover, d = d∗ = ρ
−1/2
0 c∗ρ1/2

0 , so that d ∈
ρ

1/2
0 M0ρ

−1/2
0 ∩ρ−1/2

0 M0ρ
1/2
0 . By Lemma 1, this entails that d ∈ Nρ0 .

THEOREM 5. Let the subalgebra M0 be 2-sufficient for {ρ0, ρ1}. Then M0 is suffi-
cient for {ρ0, ρ1} in each of the following cases.

(1) ρi t
0 M0ρ

−i t
0 ⊆ M0 for all t ∈R

(2) M0 is commutative
(3) ρ0 and ρ1 commute

Proof. (1) By Theorem 4, we have d ∈ Nρ0 . Since ρi t
0 M0ρ

−i t
0 ⊆ M0, we have d ∈

Nρ0 = Fρ0 . By Theorem 3, this implies that M0 is sufficient.
(2) Since d ∈ Nρ0 , we have SBS(ρ1, ρ0)= SBS(E(ρ1), E(ρ0)), by Lemma 2. Since

M0 is commutative,

S(E(ρ1), E(ρ0))= SBS(E(ρ1), E(ρ0))= SBS(ρ1, ρ0)≥ S(ρ1, ρ0)

By monotonicity of the relative entropy, this implies S(ρ1, ρ0)= S(E(ρ1), E(ρ0)), so
that M0 is sufficient for {ρ0, ρ1}, by Theorem 2 (ii).

(3) Let M1 be the subalgebra generated by all Pt,+, t ∈ R. Then M1 is com-
mutative and 2-sufficient for {ρ0, ρ1}, hence sufficient by (2). If M0 is 2-sufficient,

161



QUANTUM HYPOTHESIS TESTING AND SUFFICIENT SUBALGEBRAS 25

we must have M1 ⊆ M0 by Lemma 5, so that M0 must be sufficient for {ρ0, ρ1}
as well.

It is clear from the proof of (1) that 2-sufficiency implies sufficiency whenever
Nρ0 = Fρ0 (or, equivalently, Nρ1 = Fρ1 ). In fact, it can be shown that Nρ0 = Fρ0

whenever M0 is commutative, which gives an alternative proof of (2). Next we give
a further example of this situation.

EXAMPLE 1. Let H=C4 and let M0 =M(C2)⊗ I ⊂ B(H). Let ρ be a block-diag-

onal density matrix ρ =
(
ρ1 0
0 ρ2

)
, where ρ1, ρ2 are positive invertible matrices in

M(C2), and let σ be any density matrix. Suppose that M0 is 2-sufficient for {ρ,σ }.
By Theorem 4, dσ,ρ ∈ Nρ , which by Lemma 2 is equivalent with σρ−1 ∈ M0. This

implies that σ must be block-diagonal as well, σ =
(
σ1 0
0 σ2

)
.

By Lemma 5, Pt,+ ∈ M0 for all t ≥ 0, so that Pt,+ =
(

pt 0
0 pt

)
, where pt =

supp (σ1 − tρ1)+ = supp (σ2 − tρ2)+. Since pt is a projection in M(C2), we have he
following two possibilities: either pt = I for t< t0 and pt =0 for t ≥ t0, or pt is one-
dimensional for t in some interval (t0, t1). Since ρ=σ in the first case, we may sup-
pose that the latter is true, so that pt is a common eigenprojection of σ1 − tρ1 and
σ2 − tρ2 for t ∈ (t0, t1). It follows that σ1 − tρ1 commutes with σ2 − tρ2 for t ∈ (t0, t1),
which implies that ρ1 commutes with ρ2.

Let X ∈ Nρ , then X = ρ1/2 X0ρ
−1/2, where both X0, ρX0ρ

−1 ∈ M0. Let X0 =
Y ⊗ I ∈ M0, then ρX0ρ

−1 ∈ M0 if and only if ρ1Yρ−1
1 = ρ2Yρ−1

2 , that is, Y com-
mutes with ρ−1

2 ρ1. If ρ−1
2 ρ1 is a constant, then ρi t M0ρ

−i t ⊆ M0, so that Fρ =
M0 = Nρ . Otherwise, Y must commute with both ρ1 and ρ2 and in this case, X =
ρ1/2 X0ρ

−1/2 = X0 ∈ Fρ .
In conclusion, if M0 is 2-sufficient for {ρ,σ }, we must have Nρ = Fρ , so that M0

must be a sufficient subalgebra.

Let us now suppose that we have n independent copies of the states, ρ⊗n
0 and

ρ⊗n
1 . An optimal test for H1 :ρ⊗n

0 against H1 :ρ⊗n
1 usually cannot be obtained as

the product of optimal tests, but we may ask if there is some optimal test in M⊗n
0 .

If this is the case for all λ, we say that M0 is (2,n)-sufficient for {ρ0, ρ1}.
THEOREM 6. The following conditions are equivalent.

(i) M0 is (2,n)-sufficient for {ρ0, ρ1}, for all n.
(ii) M0 is a sufficient subalgebra for {ρ0, ρ1}.

Proof. Let us denote


0
e,λ,n := 1

2

(
1−‖(1−λ)E(ρ1)

⊗n −λE(ρ0)
⊗n‖1

)
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By Lemma 5 (ii), the condition (i) implies that 
e,λ,n =
0
e,λ,n for all n, hence also

lim
n

(
−1

n
log
e,λ,n

)
= lim

n

(
−1

n
log
0

e,λ,n

)

By (6), this entails that

inf
0≤s≤1

Trρ1−s
0 ρs

1 = inf
0≤s≤1

Tr E(ρ0)
1−s E(ρ1)

s

By monotonicity, we have Trρ1−s
0 ρs

1 ≤Tr E(ρ0)
1−s E(ρ1)

s for all s ∈[0,1]. Suppose
that the infimum on the RHS is attained in some s0 ∈[0,1]. Then

Tr E(ρ0)
1−s0 E(ρ1)

s0 = inf
0≤s≤1

Trρ1−s
0 ρs

1 ≤Trρ1−s0
0 ρ

s0
1 .

If s0 = 0 or 1, then the quantum Chernoff distance is equal to 0, so that ρ0 =ρ1

and the subalgebra M0 is trivially sufficient. Otherwise, we must have Tr E(ρ0)
1−s0

E(ρ1)
s0 =Trρ1−s0

0 ρ
s0
1 for s0 ∈ (0,1), which implies that M0 is sufficient for {ρ0, ρ1},

by Theorem 2 (iii).
Conversely, let Eρ⊗n be the generalized conditional expectation B(H⊗n)→ M⊗n

0 .
It is easy to see that for any invertible density matrix ρ, Eρ⊗n = E⊗n

ρ , so that if
Eρ0 = Eρ1 , then Eρ⊗n

0
= Eρ⊗n

1
for all n. Hence if M0 is sufficient for {ρ0, ρ1}, then

M⊗n
0 is sufficient for {ρ⊗n

0 , ρ⊗n
1 } for all n, this implies (i).
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10. Jenčová, A., Petz, D.: Sufficiency in quantum statistical inference. A survey with
examples. IDAQP 9, 331–351 (2006)

11. Lieb, E.H., Ruskai, M.B.: Some operator inequalities of the Schwarz type. Adv.
Math. 12, 269–273 (1974)

163



QUANTUM HYPOTHESIS TESTING AND SUFFICIENT SUBALGEBRAS 27

12. Nussbaum, M., Szkola, A.: The Chernoff lower bound for symmetric quantum hypoth-
esis testing. Ann. Stat. 37(2), 1040–1057 (2009)

13. Ohya, M., Petz, D.: Quantum Entropy and its Use, 2nd edn. Springer, Heidelberg
(2004)

14. Petz, D.: On the equality in Jensen’s inequality for operator convex functions. Integral
Equ. Oper. Theory 9, 744–747 (1986)

15. Pfanzagl, J.: A characterization of sufficiency by power functions. Metrika 21, 197–199
(1974)

16. Strasser, H.: Mathematical Theory of Statistics. Statistical Experiments and Asymptotic
Decision Theory. Walter de Gruyter, Berlin (1985)

164



July 17, 2012 9:36 WSPC/S0129-055X 148-RMP J070-1250016

Reviews in Mathematical Physics
Vol. 24, No. 7 (2012) 1250016 (26 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129055X1250016X

REVERSIBILITY CONDITIONS

FOR QUANTUM OPERATIONS

ANNA JENČOVÁ
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1. Introduction

In the mathematical description of quantum mechanics, a quantum mechanical sys-

tem is represented by a C∗-algebra A ⊆ B(H) of bounded operators on a Hilbert

space H. In the case that H is finite-dimensional, the physical states of the system

are represented by density operators, that is, positive operators with unit trace.

The evolution of the system is described, in the Schrödinger picture, by a trans-

formation T on the states. Here T is usually required to be a completely positive

trace preserving map on the algebra.

Let S be a set of states, then S can be seen as carrying some information.

If S undergoes a quantum operation T , then some information can be lost. If S
represents a code which is sent through a noisy channel T : A → B, then the resulting

code T (S) might contain less information than S. In the framework of quantum

statistics, S represents a prior knowledge on the state of the system and the task of
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the statistician is to make some inference on the true state. But if, say, S is a family

of states on the bipartite system A ⊗ B and only the system A is accessible, then

the statistician has to work with the restricted states which might be distinguished

with less precision. However, it might happen in some situations that the original

information can be recovered, in the sense that there is a quantum operation S

such that S ◦ T (σ) = σ for all σ ∈ S. In this case we say that T is reversible for S.

Such maps are also called sufficient for S, which comes from the well-known notion

of sufficiency in classical statistics.

The information loss under quantum operations is expressed in the monotonic-

ity property of distinguishability measures: quantum f -divergences [28] like relative

entropy, the L1-distance, quantum Chernoff and Hoeffding distances [2], etc., which

means that these measures are non-increasing under quantum operations. It is quite

clear that if T is reversible for S, then T must preserve all of these measures on S.

It was an important observation in [27] that preservation of the relative entropy,

along with other equivalent conditions, is equivalent to reversibility. These results

were then extended in the papers [29, 15, 16]; see also [24]. The very recent paper

[13] extends the monotonicity results to the case that T is the adjoint of a subunital

Schwarz map and proves that reversibility is equivalent to preservation of a large

class of quantum f -divergences, as well as distinguishability measures related to

quantum hypothesis testing: the quantum Chernoff and Hoeffding distances. In the

present paper, we find conditions for reversibility in terms of the L1-distance and

complete the results for the Chernoff and Hoeffding distances and L1-distance for

n copies of the states, giving an answer to some of the questions left open in [13].

Moreover, we find a class of quantum Fisher informations, such that preservation of

elements in this class is equivalent to reversibility. We also prove reversibility con-

ditions in terms of a quantum Radon–Nikodym derivative, and a quantum version

of the factorization theorem of classical statistics.

The various equivalent reversibility conditions are interesting also from the

opposite point of view, when we are interested in the equality conditions for the

divergences in the first place. This was used, for example, for a characterization of

the quantum Markov property [10, 15, 19, 20], conditions for nullity of the quantum

discord [8, Lemma 8.12], [6], conditions for strict decrease of Holevo quantity [31]

and the equality conditions in certain Minkowski type quantum inequalities and

related quantities, [18].

In a preliminary section, we deal with the properties of positive maps, 2-positive

maps and Schwarz maps, and their duals with respect to a state. In particular, we

find a new characterization of 2-positivity in terms of generalized Schwarz inequality

and we show that a unital positive map has the property that its duals with respect

to all states are Schwarz maps, if and only if it is 2-positive. Then we proceed to

the various reversibility conditions: we list the already known conditions related to

f -divergences and give an example of a (non-quadratic and strictly convex) oper-

ator convex function f , such that preservation of the corresponding f -divergence

does not imply reversibility. Further, we prove reversibility conditions in terms of

1250016-2166
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a quantum Radon–Nikodym derivative and certain factorization conditions on the

states. In Secs. 3.4 and 3.5, we deal with the L1-distance, quantum Chernoff and

Hoeffding distances. In the last section, we give the reversibility conditions in terms

of the quantum Fisher information.

2. Preliminaries

Let H be a finite-dimensional Hilbert space and let A ⊆ B(H) be a C∗-algebra.

We denote by A+ the positive cone in A and by S(A) the set of states on A. For

a ∈ A+, we denote by supp a the projection onto the support of a, that is, supp a

is the smallest projection p satisfying ap = a.

A positive linear functional τ on A such that τ(ab) = τ(ba) for all a, b ∈ A
(equivalently, τ(a∗a) = τ(aa∗) for all a ∈ A) is called a trace. We will also require

that τ is faithful, then any linear functional ϕ on A has the form

ϕ(a) = τ(aρϕ), a ∈ A
for a unique operator ρϕ ∈ A, and ϕ is a state if and only if ρϕ ≥ 0 and τ(ρϕ) = 1.

In this case, ρϕ is called the density operator of ϕ with respect to τ . Conversely, any

operator ρ ∈ A+ with τ(ρ) = 1 defines a state ϕρ on A with density ρ. Moreover,

if τ is faithful, then

〈a, b〉τ = τ(a∗b), a, b ∈ A
defines an inner product in A.

Clearly, A inherits the trace Tr = TrH from B(H), but in general, there exists

different faithful traces on A even if we require τ(I) = Tr(I). We will consider

general traces only in Sec. 2.4, in the rest of the paper we always assume that τ =

Tr = TrH for a fixed representation A ⊆ B(H). Accordingly, the density operators

with respect to Tr will be referred to simply as density operators and we will

identify S(A) with the set {ρ ∈ A+,Tr ρ = 1}. We will also denote 〈a, b〉 := 〈a, b〉Tr
the restriction of the Hilbert–Schmidt inner product in B(H).

2.1. Positive maps

Let B ⊆ B(K) be a finite-dimensional C∗ algebra and let T : A → B be a positive

map. Let T ∗ be the adjoint of T , with respect to the Hilbert–Schmidt inner product.

We will say that T is faithful if T (a) = 0 for a ≥ 0 implies a = 0.

Lemma 1. Suppose that T : A → B is a positive map. The following are equivalent.

(i) T (ρ) is invertible for any positive invertible ρ.

(ii) T (ρ) is invertible for some positive invertible ρ.

(iii) T ∗ is faithful.

Proof. The implication (i) ⇒ (ii) is trivial. Suppose (ii) and let a ≥ 0 be such that

T ∗(a) = 0. Then 0 = TrT ∗(a)ρ = Tr aT (ρ), hence a = 0.
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Suppose (iii) and let ρ be any positive invertible element. Let q := suppT (ρ).

Then 0 = TrT (ρ)(I − q) = Tr ρT ∗(I − q), this implies I − q = 0, hence (i)

holds.

Lemma 2. Let T : A → B be a positive map, such that T ∗(I) ≤ I. Let ρ and σ

be positive operators and let p = supp ρ, p0 = suppT (ρ), q = suppσ and q0 =

suppT (σ). Then

(i) T ∗(I − p0) ≤ I − p.

(ii) if q ≤ p then q0 ≤ p0.

(iii) T (pAp) ⊆ p0Bp0.
(iv) if T ∗ is unital, then T ∗(p0) ≥ p.

Proof. Note that for 0 ≤ a ≤ I and any positive ω, a ≤ I − suppω if and only if

Tr aω = 0. We have

Tr ρT ∗(I − p0) = TrT (ρ)(I − p0) = 0

which implies (i). Moreover, suppose q ≤ p, then by (i),

0 ≤ TrT (σ)(I − p0) = TrσT ∗(I − p0) ≤ Tr σ(I − p) = 0

this proves (ii). Let a be a positive element in pAp, then supp a ≤ p, hence by (ii),

suppT (a) ≤ p0, so that T (a) ∈ p0Bp0. Since pAp is generated by its positive cone,

this implies (iii).

Finally, (iv) follows directly from (i) if T ∗ is unital.

We say that T is n-positive if the map

T(n) := idn ⊗ T :Mn(C) ⊗ A → Mn(C) ⊗ B

is positive, and T is completely positive if it is n-positive for all n. The adjoint T ∗

is n-positive if and only if T is n-positive.

2.2. 2-positive maps and Schwarz maps

We say that T is a Schwarz map if it satisfies the Schwarz inequality

T (a∗a) ≥ T (a)∗T (a), a ∈ A. (1)

This implies that T is positive and subunital, that is, T (I) ≤ I. It is well-known

that a unital 2-positive map is a Schwarz map [25, Proposition 3.3].

Let c ∈ A+ and a ∈ A. We define a∗c−1a := limε→0 a
∗(c + εI)−1a, if the limit

exists. Note that this is the case if and only if the range of a is contained in the

range of c and then a∗c−1a = ac−a, where c− denotes the generalized inverse of c.

Lemma 3. Let a, b, c ∈ A. Then the block matrix M =
(
a b
b∗ c

)
is positive if and

only if c ≥ 0, bc−1b∗ is defined and satisfies a ≥ bc−1b∗.
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Proof. The proof for the case that c is invertible can be found in [4]. For the

general case, note that M ≥ 0 if and only if
( a b
b∗ c+ εI

)
is positive for all ε > 0. By

the first part of the proof, this is equivalent to c ≥ 0 and a ≥ b(c + εI)−1b∗ for all

ε > 0. Since b(c+ εI)−1b∗ is an increasing net of positive operators, the limit exists

if and only if it is bounded from above, this proves the lemma.

Let c ∈ A be a positive invertible element. Then we say that T satisfies the

generalized Schwarz inequality for c if for all a ∈ A, T (a)∗T (c)−1T (a) is defined

and satisfies [21]

T (a∗c−1a) ≥ T (a)∗T (c)−1T (a), a ∈ A. (2)

Note that the condition that T (a)∗T (c)−1T (a) is defined is satisfied if T ∗ is sub-

unital, by Lemma 2(iii).

The next proposition gives a characterization of 2-positivity of maps in terms

of the generalized Schwarz inequality, which might be interesting in its own right:

Proposition 1. Let T :A → B be a positive map. Then T is 2-positive if and only

if T satisfies the generalized Schwarz inequality for every positive invertible c ∈ A.

Proof. Let M =
( a b
b∗ c

)
be a positive element in M2(A). Let ε > 0 and denote

Mε :=
( a b
b∗ c + εI

)
. Then Mε ≥ 0 and it is clear that T(2)(M) ≥ 0 if and only if

T(2)(Mε) ≥ 0 for all ε > 0. Hence we may suppose that c is invertible. In this case,

M ≥ 0 if and only if c ≥ 0 and a − bc−1b∗ ≥ 0, by Lemma 3. Then

M =

(
a − bc−1b∗ 0

0 0

)
+

(
bc−1b∗ b

b∗ c

)

where both summands are positive. Since T is positive, this implies that T is 2-

positive if and only if for all b ∈ A and invertible c ∈ A+,

T(2)

(
bc−1b∗ b

b∗ c

)
=

(
T (bc−1b∗) T (b)

T (b∗) T (c)

)
≥ 0.

Again by Lemma 3, this is equivalent to the generalized Schwarz inequality

for c.

2.3. The map Tρ

Let ρ ∈ S(A). We define a sesquilinear form in A by

〈a, b〉ρ = Tr a∗ρ1/2bρ1/2, a, b ∈ A.

Then 〈·, ·〉ρ defines an inner product in pAp, where p = supp ρ.

Let T : A → B be a positive and trace preserving map, so that T (ρ) is a density

operator in B. Let p0 = suppT (ρ), then by Lemma 2(iii), T (pAp) ⊆ p0Bp0.
The map Tρ : pAp → p0Bp0 is defined by

Tρ(b) = T (ρ)−1/2T (ρ1/2bρ1/2)T (ρ)−1/2, b ∈ pAp.
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Note that Tρ(a) is the unique element in p0Bp0 satisfying

〈T ∗(b), a〉ρ = 〈b, Tρ(a)〉T (ρ), b ∈ B, (3)

so that Tρ is the dual of the unital map T ∗, defined in [26]. Note also that Tρ is

positive and unital and its adjoint T ∗
ρ : p0Bp0 → pAp,

T ∗
ρ (b) = ρ1/2T ∗(T (ρ)−1/2bT (ρ)−1/2)ρ1/2

satisfies

T ∗
ρ ◦ T (ρ) = ρ (4)

by Lemma 2(iv).

It can be shown that T is n-positive if and only if Tρ is n-positive. We will now

investigate the case when Tρ is a Schwarz map.

Lemma 4. Let T : A → B be a positive trace preserving map and suppose that ρ is

an invertible density operator. Then Tρ is a Schwarz map if and only if T satisfies

the generalized Schwarz inequality for c = ρ.

Proof. Tρ satisfies the Schwarz inequality (1) if and only if

T (ρ1/2b∗bρ1/2) ≥ T (ρ1/2b∗ρ1/2)T (ρ)−1T (ρ1/2bρ1/2), b ∈ A.

Putting a = ρ1/2bρ1/2, we see that this is equivalent to

T (a∗ρ−1a) ≥ T (a)∗T (ρ)−1T (a), a ∈ A.

The above lemma, together with Proposition 1, implies the following result. Its

importance will become clear at the beginning of Sec. 3.

Proposition 2. Let T : A → B be a positive trace preserving map. Then Tρ is a

Schwarz map for any invertible density operator ρ if and only if T is 2-positive.

2.4. Multiplicative domain and fixed points

This section contains some known results on the multiplicative domains and sets

of fixed points of unital Schwarz maps and related decompositions of the density

operators. We include the proofs partly for the convenience of the reader, and partly

because we need a particular form of some of the results (mainly Theorem 2(v) and

2(vi)) which might be difficult to find explicitly in the literature.

Let B ⊂ A ⊆ B(H) be a C∗-subalgebra. We will denote by A′ the commutant

of A, that is the set of all elements in B(H), commuting with A. Then A′ is a C∗-
subalgebra in B(H). The relative commutant of B in A is the subalgebra B′ ∩ A.

A conditional expectation E :A → B is a positive linear map, such that E(bac) =

bE(a)c for all a ∈ A, b, c ∈ B. Such a map is always completely positive. There

exists a unique trace preserving conditional expectation E : A → B, determined by
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Tr(ab) = Tr(E(a)b) for a ∈ A, b ∈ B (that is, E is the adjoint of the embedding

B ↪→ A with respect to 〈·, ·〉).
Let Φ : A → B be a unital Schwarz map. Let us denote

MΦ := {a ∈ A, Φ(a∗a) = Φ(a)∗Φ(a), Φ(aa∗) = Φ(a)Φ(a)∗}.

It is known that [13, Lemma 3.9]

MΦ = {a ∈ A, Φ(ab) = Φ(a)Φ(b), Φ(ba) = Φ(b)Φ(a), ∀ b ∈ A}.

This implies that MΦ is a subalgebra in A, called the multiplicative domain of Φ.

The restriction of Φ to MΦ is a *-homomorphism.

Let now Φ : A → A be a unital Schwarz map and suppose that there is an

invertible density operator ρ ∈ S(A), such that Φ∗(ρ) = ρ. Let us denote by FΦ

the set of fixed points of Φ, that is,

FΦ := {a ∈ A, Φ(a) = a}

and let ϕρ denote the state ϕρ(a) = Tr ρa for a ∈ A.

Theorem 1. (i) FΦ is a subalgebra in MΦ.

(ii) There exists a conditional expectation EΦ : A → FΦ, such that E∗
Φ(ρ) = ρ.

(iii) ρitFΦρ
−it ⊆ FΦ for all t ∈ R.

(iv) Let us fix a faithful trace τ in FΦ. Then we have a decomposition

ρ = ρAρB,

where ρA ∈ FΦ is the density operator with respect to τ of the restriction of ϕρ

to FΦ and ρB ∈ F ′
Φ∩A is a positive invertible element such that Φ∗(ρB) = ρB.

Proof. (i) Let a ∈ FΦ, then since Φ is a Schwarz map, Φ(a∗a) ≥ Φ(a)∗Φ(a) = a∗a.
But we have Tr ρ(Φ(a∗a)−a∗a) = 0, so that Φ(a∗a) = a∗a, similarly Φ(aa∗) =

aa∗, hence a ∈ MΦ. Let now a, b ∈ FΦ, then Φ(ab) = Φ(a)Φ(b) = ab and

obviously Φ(a + b) = a + b, Φ(I) = I, so that FΦ is a subalgebra.

(ii) Let EΦ := limn→∞ 1
n

∑n−1
k=0 Φk, then by the ergodic theorem, EΦ is a con-

ditional expectation onto the fixed point subalgebra FΦ. It is obvious that

E∗
Φ(ρ) = ρ.

(iii) Is equivalent to (ii) by Takesaki’s theorem [34].

(iv) It was shown in [15] that for any subalgebra satisfying (iii), there is a decom-

position ρ = ρAρB, where ρA is the density of the restriction of ϕρ to FΦ with

respect to τ and ρB is a positive invertible element in the relative commutant

F ′
Φ ∩ A. For any a ∈ A,

TrΦ(a)ρ = Tr Φ(a)ρAρB = TrΦ(aρA)ρB = Tr aρAΦ∗(ρB)

so that ρAρB = ρ = Φ∗(ρ) = ρAΦ∗(ρB), this implies ρB = Φ∗(ρB).
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Theorem 2. Let ρ ∈ A be an invertible density operator and let T : A → B be a

trace preserving map, such that both T ∗ and Tρ are Schwarz maps and ρ0 := T (ρ)

is invertible. Denote Φ := T ∗ ◦ Tρ and Φ̃ := Tρ ◦ T ∗. Then

(i) FΦ̃ is a subalgebra in MT∗ and FΦ is a subalgebra in MTρ .

(ii) The restriction of T ∗ is a *-isomorphism from FΦ̃ onto FΦ, and its inverse is

the restriction of Tρ.

(iii) FΦ is a subalgebra in T ∗(MT∗).

(iv) ρitFΦρ
−it ⊆ FΦ and ρit0 FΦ̃ρ

−it
0 ⊆ FΦ̃, for all t ∈ R.

(v) T (F ′
Φ ∩ A) ⊆ F ′

Φ̃
∩ B

(vi) There are decompositions

ρ = T ∗(ρA0 )ρB, ρ0 = ρA0 T (ρB)

where ρA0 ∈ F+

Φ̃
and ρB ∈ F ′

Φ ∩ A+ is such that Φ∗(ρB) = ρB.

Proof. Note that we have Φ∗(ρ) = ρ and Φ̃∗(ρ0) = T ◦ Φ∗(ρ) = ρ0. Moreover,

since T ∗
ρ (ρ0) = ρ, Tρ is faithful by Lemma 1.

By Theorem 1(i), FΦ̃ is a subalgebra in MΦ̃. It is easy to see that, since Tρ is

faithful, MΦ̃ ⊆ MT∗ . The second inclusion in (i) is proved similarly.

By (i), the restriction of T ∗ is a *-homomorphism on FΦ̃. Since Φ ◦T ∗ = T ∗ ◦ Φ̃

and Φ̃ ◦ Tρ = Tρ ◦ Φ, we have T ∗(FΦ̃) ⊆ FΦ, Tρ(FΦ) ⊆ FΦ̃ and Tρ ◦ T ∗(a) = a for

a ∈ FΦ̃, this proves (ii).

(iii) Follows from (i) and (ii).

(iv) Follows from Theorem 1(iii).

To prove (v), let b ∈ FΦ̃, a ∈ F ′
Φ ∩ A and c ∈ B. Then

Tr cbT (a) = TrT ∗(cb)a = TrT ∗(c)T ∗(b)a = TrT ∗(c)aT ∗(b) = TrT ∗(b)T ∗(c)a

= TrT ∗(bc)a = Tr bcT (a) = Tr cT (a)b

so that T (a) ∈ F ′
Φ̃

∩ B, where we used the fact that b ∈ MT∗ , T ∗(b) ∈ FΦ and

cyclicity of the trace.

To prove (vi), let τ be the restriction of Tr to FΦ. By (ii), τ̃ := τ ◦ T ∗ defines a

faithful trace on FΦ̃. By Theorem 1(iv), we have the decompositions

ρ = ρAρB, ρ0 = ρA0 ρ
B
0

where ρA(ρA0 ) is the density of the restriction of ϕρ(ϕρ0 ) to FΦ(FΦ̃) with respect

to τ (τ̃ ). Let now a ∈ FΦ, then

τ(aT ∗(ρA0 )) = τ(Φ(a)T ∗(ρA0 )) = τ(T ∗(Tρ(a))T
∗(ρA0 )) = τ(T ∗(Tρ(a)ρ

A
0 ))

= τ̃ (Tρ(a)ρ
A
0 ) = TrTρ(a)ρ0 = Tr aρ = τ(aρA).

It follows that ρA = T ∗(ρA0 ). If b ∈ B, then

TrT ∗(b)ρ = TrT ∗(b)T ∗(ρA0 )ρB = TrT ∗(bρA0 )ρB = Tr bρA0 T (ρB)

so that ρ0 = ρA0 T (ρB).
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3. Conditions for Reversibility

Let A ⊆ B(H) and B ⊆ B(K) be finite-dimensional C∗-algebras. Let S ⊂ S(A) be

a set of density operators and let T : A → B be such that T ∗ is a unital Schwarz

map. We say that T is reversible (or sufficient) for S if there is a map S : B → A,

such that S∗ is a unital Schwarz map and

S ◦ T (σ) = σ, σ ∈ S. (5)

In this section, we study various conditions for reversibility. If not stated otherwise,

we assume that the following two conditions hold:

(1) S contains an invertible element ρ and T (ρ) is invertible as well.

(2) T : A → B is such that both T ∗ and Tρ are unital Schwarz maps.

In the original approach of [29], the map T and the recovery map S were both

required to be 2-positive. The possibility of weakening this assumption was dis-

cussed in [13, Remark 5.8], where the question was raised whether it is enough to

assume that T ∗ is a unital Schwarz map for the map Tρ to be a Schwarz map as

well. Proposition 2 above shows that this is not the case, in fact, it follows that if

Condition 2 holds for any density ρ, then T must be 2-positive. Moreover, as we

will see in Theorem 4, regarding reversibility of T , Condition 2 is not more general

than assuming that T is a completely positive map.

On the other hand, note that the Condition 1 is not restrictive. Indeed, for

S ⊂ S(A) there always exists a (finite) convex combination ρ of elements in S, such

that suppσ ≤ supp ρ =: p for all σ ∈ S. Moreover, T is reversible for S if and only

if it is reversible for the closed convex hull c̄o(S), therefore, we may always suppose

that ρ ∈ S. By Lemma 2, we also have p0 := suppT (ρ) ≥ suppT (σ) for all σ ∈ S.

Hence S ⊂ S(pAp) and T (S) ⊂ S(p0Bp0).
Let T̃ be the restriction of T to pAp, then T̃ maps pAp into p0Bp0, by Lemma 2.

We have T̃ (σ) = T (σ) for σ ∈ S. Again by Lemma 2,

T̃ ∗(p0) = pT ∗(p0)p = p,

so that T̃ ∗ is a unital Schwarz map. Note also that T̃ρ = Tρ. It follows that if

T satisfies Condition 2, then T̃ satisfies both 1 and 2. Moreover, T is reversible

for S ⊂ S(A) if and only if T̃ is reversible for S ⊂ S(pAp). Indeed, let S̃ be

the restriction of S to p0Bp0, where S : B → A is the adjoint of a unital Schwarz

map satisfying (5). Then S̃ maps p0Bp0 into pAp, S̃∗ is a unital Schwarz map and

S̃ ◦ T̃ (σ) = S ◦ T (σ) = σ for all σ ∈ S. Conversely, let S̃ : p0Bp0 → pAp be the

adjoint of a unital Schwarz map, such that S̃ ◦ T̃ (σ) = σ for σ ∈ S, then we extend

S̃ to a map S : B → A by

S(b) = S̃(p0bp0) + [Tr b(1 − p0)]ρ b ∈ B.

Then S∗ is a unital Schwarz map and S ◦ T (σ) = S̃ ◦ T̃ (σ) = σ for every σ ∈ S.

Moreover, S is n-positive whenever S̃ is n-positive.
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The above constructions can be easily illustrated in the trivial case when

S = {ρ}. Then both T and T̃ are always reversible, the recovery map being T ∗
ρ

for T̃ , and an extension of T ∗
ρ for T .

3.1. Quantum f-divergences

Let f : [0,∞) → R be a function. Recall that f is operator convex if f(λA + (1 −
λ)B) ≤ λf(A)+(1−λ)f(B) for any λ ∈ [0, 1] and any positive matrices A,B of any

dimension. It was proved in [13] that any operator convex function has an integral

representation of the form

f(x) = f(0) + ax + bx2 +

∫

(0,∞)

(
x

1 + t
− x

x + t

)
dµf (t), x ∈ [0,∞)

where a ∈ R, b ≥ 0 and µf is a non-negative measure on (0,∞) satisfying
∫

(1 +

t)−2dµf (t) < ∞.

Let now σ and ρ be two density operators and suppose that suppσ ≤ supp ρ.

Let ∆σ,ρ = LσR
−1
ρ be the relative modular operator, note that ∆σ,ρ(a) = σaρ−1

for any a ∈ A. Let f : [0,∞) → R be an operator convex function. The f -divergence

of σ with respect to ρ is defined by

Sf (σ, ρ) = 〈ρ1/2, f(∆σ,ρ)ρ
1/2〉

see [13] also for the case of arbitrary pairs of density operators. A well-known

example is the relative entropy S(σ, ρ) = Tr σ(log σ − log ρ), which corresponds to

the operator convex function f(x) = x log x. Another example is given by Ss(σ, ρ) =

1 − Tr σsρ1−s, this corresponds to the function fs(x) = 1 − xs, which is operator

convex for s ∈ [0, 1].

Let T ∗ :B → A be a unital Schwarz map. Then any f -divergence is monotone

under T [13], in the sense that

Sf (T (σ), T (ρ)) ≤ Sf(σ, ρ).

Theorem 3 ([13]). Under the Conditions 1 and 2, the following are equivalent.

(i) T is reversible for S.
(ii) S(T (σ), T (ρ)) = S(σ, ρ) for all σ ∈ S.
(iii) T ∗(T (σ)itT (ρ)−it) = σitρ−it for σ ∈ S, t ∈ R.

(iv) TrT (σ)sT (ρ)1−s = Trσsρ1−s for all σ ∈ S and some s ∈ (0, 1).

(v) Sf (T (σ), T (ρ)) = Sf (σ, ρ) for all σ ∈ S and some operator convex function

f with |suppµf | ≥ dim(H)2 + dim(K)2, where |X | denotes the number of

elements in the set X.

(vi) Equality holds in (v) for all operator convex functions.

(vii) Equality holds in (iv) for all s ∈ [0, 1].

(viii) T ∗
ρ ◦ T (σ) = σ for all σ ∈ S.
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Remark 1. The equivalence of (i)–(iii) and (viii) was first proved in [27], for the

case when all states are faithful and T is the restriction to a subalgebra, and sub-

sequently for any unital 2-positive map in [29], in the more general setting of von

Neumann algebras, see also [15, 16], where Conditions (iv) and (vii) were proved.

The following example shows that, unlike the classical case, preservation of an f -

divergence with strictly operator convex f is in general not sufficient for reversibility.

This solves another open problem of [13], showing that the support condition in

Theorem 3(v) cannot be completely removed.

Example 1. The function f(x) = (1 + x)−1, x ≥ 0 is operator convex and the

corresponding measure µf is concentrated in the point t = 1, µf ({1}) = 1. We have

Sf (σ, ρ) = Tr ρ(Lσ + Rρ)
−1(ρ).

We will show that the equality Sf (T (σ), T (ρ)) = Sf (σ, ρ) does not imply reversibil-

ity of T .

Let A be a matrix algebra and let σ ∈ A be an invertible density matrix. Let

p ∈ A be a projection such that σp �= pσ and Tr pσ = λ �= 1/2. Let B ⊂ A be

the abelian subalgebra generated by p and let T : A → B be the trace preserving

conditional expectation, then T (σ) is the density of the restriction of σ to B. Put

x := (1 − λ)p + λ(I − p) ∈ B and ρ := (I − x)−1σx. Then

ρ = c−1xσx ≥ 0

where c = λ(1 − λ), and

Tr ρ = c−1 Trσx2 = 1

so that ρ is an invertible density matrix as well. Moreover, we also have T (ρ) =

(I − x)−1T (σ)x, so that

(Lσ + Rρ)
−1(ρ) = x = (LT (σ) + RT (ρ))

−1(T (ρ))

and the equality Sf (T (σ), T (ρ)) = Sf (σ, ρ) holds. On the other hand, we have from

Theorem 5(iv) below that T is reversible if and only if σ = σAρB and ρ = ρAρB

for some σA, ρA ∈ B+ and ρB ∈ A+. It follows that both σA and ρA commute with

ρB and, since B is abelian, this implies that σA and ρA commute with σ. But this

is possible only if ρA and σA are constants. It follows that we must have σ = ρ and

it is easy to see that this implies that σ commutes with x, which is not possible by

the construction of x.

3.2. The commutant Radon–Nikodym derivative

Let ρ, σ be density operators in A and suppose that suppσ ≤ supp ρ =: p. The

commutant Radon–Nikodym derivative of σ with respect to ρ is defined by

d(σ, ρ) = ρ−1/2σρ−1/2.
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Then d = d(σ, ρ) is the unique element in pAp, satisfying

Trσa = 〈I, a〉σ = 〈d, a〉ρ. (6)

Moreover, d ≥ 0 and ‖d‖ is the smallest number λ satisfying σ ≤ λρ, note that

‖d‖ ≥ 1 and ‖d‖ = 1 if and only if ρ = σ.

Lemma 5. Let suppσ ≤ supp ρ. Let T :A → B be a trace preserving positive map.

Then

d(T (σ), T (ρ)) = Tρ(d(σ, ρ)).

Proof. Directly by definition of Tρ and d(σ, ρ).

The following simple lemma provides a useful tool for the analysis of reversibility.

Note also that it gives a reversibility condition also for the case when both T and

the reverse map S are only required to be positive and trace preserving.

Lemma 6. Let ρ be invertible and let T : A → B be a trace preserving positive map.

Then T ∗
ρ ◦ T (σ) = σ if and only if T ∗(d(T (σ), T (ρ))) = d(σ, ρ).

Proof. For a ∈ A, we have by (3) and (6) that

〈T ∗(d(T (σ), T (ρ))), a〉ρ = 〈d(T (σ), T (ρ)), Tρ(a)〉T (ρ) = TrTρ(a)T (σ)

= Tr aT ∗
ρ ◦ T (σ).

It follows that T ∗(d(T (σ), T (ρ))) = d(σ, ρ) if and only if Tr aT ∗
ρ ◦ T (σ) = Tr aσ for

all a ∈ A.

Now we are able to characterize reversibility in terms of the Radon–Nikodym

derivative. While (ii) or (iii) give easy conditions for reversibility, Condition (iv)

will be necessary for the proof of Theorem 6 below. The last two conditions are not

really new, but will be useful in proving Theorem 7.

Theorem 4. Suppose the Conditions 1 and 2 hold. Let us denote Φ = T ∗ ◦ Tρ.

Then the following are equivalent.

(i) T is reversible for S.
(ii) T ∗(d(T (σ), T (ρ))) = d(σ, ρ), for all σ ∈ S.
(iii) d(σ, ρ) ∈ FΦ, for all σ ∈ S.
(iv) ρitd(σ, ρ)ρ−it ∈ T ∗(MT∗), for all σ ∈ S and t ∈ R.

(v) There is a trace preserving completely positive map Ŝ : B → A, such that Ŝ ◦
T (σ) = σ, σ ∈ S.

(vi) There are trace preserving completely positive maps T̂ : A → B and Ŝ : B → A,

such that T̂ (σ) = T (σ), Ŝ ◦ T (σ) = σ, σ ∈ S.
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Proof. By Lemma 6, (ii) is equivalent to T ∗
ρ ◦ T (σ) = σ for σ ∈ S, which is

equivalent to (i) by Theorem 3(viii). (iii) is the same as (ii), by Lemma 5. Since by

Theorem 2(iii), FΦ is a subalgebra in T ∗(MT∗) and ρitFΦρ
−it ⊆ FΦ for all t ∈ R,

(iii) implies (iv).

Suppose (iv) and let A1 be the subalgebra generated by {ρitd(σ, ρ)ρ−it, t ∈
R, σ ∈ S}. Then A1 ⊆ T ∗(MT∗). Let E : A → A1 be the trace preserving con-

ditional expectation. Then its adjoint is the embedding E∗ : A1 ↪→ A and since

ρitA1ρ
−it ⊆ A1 for all t ∈ R, the map Eρ is the ρ-preserving conditional expecta-

tion, [1]. Hence

E∗(d(E(σ), E(ρ))) = d(E(σ), E(ρ)) = Eρ(d(σ, ρ)) = d(σ, ρ).

By the equivalence of (ii) and (i) and Theorem 3(viii) (for the map E), E∗
ρ ◦E(σ) =

σ for all σ ∈ S.

Let F ∗ denote the embedding MT∗ ↪→ B, then, as above, its adjoint F =

F ∗∗ : B → MT∗ is the trace preserving conditional expectation. Let us define the

map T̄ : MT∗ → T ∗(MT∗) by T̄ := T ∗ ◦F ∗. Then since T ∗ is faithful by Lemma 1,

T̄ is injective, so that T̄ is a *-isomorphism and there is an inverse map R =

(T̄ )−1 :T ∗(MT∗) → MT∗ . Define the map Ŝ : B → A by Ŝ := E∗
ρ ◦R∗ ◦ F . Then Ŝ

is completely positive and trace preserving. Moreover, T ∗ ◦ Ŝ∗ = T ∗ ◦F ∗ ◦R ◦Eρ =

T̄ ◦ R ◦ Eρ = E∗ ◦ Eρ, so that Ŝ ◦ T (σ) = (E∗ ◦ Eρ)
∗(σ) = σ and (v) holds.

Suppose (v). Let S0 := T (S) and let σ0 = T (σ) for σ ∈ S. Then since Ŝ(σ0) = σ

and T ◦ Ŝ(σ0) = T (σ) = σ0, the map Ŝ is reversible for S0. Hence by Theorem

3(viii), the map T̂ := Ŝ∗
ρ0

is completely positive and satisfies T̂ (σ) = σ0, this proves

(vi). The implication (vi) → (i) is clear.

Remark 2. Note that by the proof of (v), the completely positive maps T̂ and Ŝ

can always be given as adjoints of a composition of a conditional expectation and

a *-isomorphism.

Corollary 1. Under the Conditions 1 and 2, T is reversible for S if and only if T

is reversible for S̃ :=
⋃{ρisSρ−is, s ∈ R}.

Proof. Suppose T is reversible for S. Let σ ∈ S and let d = d(σ, ρ). Then d ∈ FΦ

and therefore also d(ρisσρ−is, ρ) = ρisdρ−is ∈ FΦ, for all s ∈ R.

3.3. Factorization

In this section, we give a characterization of reversibility in terms of the structure of

states in S. More precisely, we show that the elements in S must have the form of a

product of two positive operators, such that T ∗ is multiplicative on one of them and

the other does not depend on σ. This can be viewed as a quantum version of the

classical factorization theorem for sufficient statistics, see, e.g., [33]. The first such

1250016-13 177



July 17, 2012 9:36 WSPC/S0129-055X 148-RMP J070-1250016

A. Jenčová

factorization result was proved in [22], see also [13, Theorem 6.1]. Similar conditions

for the infinite dimensional case are proved in [15, Theorem 6].

Theorem 5. Assume Conditions 1 and 2. Let Φ = T ∗ ◦Tρ and Φ̃ = Tρ ◦T ∗. Then
the following are equivalent.

(i) T is reversible for S.
(ii) There is a positive invertible element ρB ∈ F ′

Φ ∩ A, such that for each σ ∈ S,

σ = T ∗(σA
0 )ρB, T (σ) = σA

0 T (ρB),

with some σA
0 ∈ F+

Φ̃
.

(iii) There is an element ρB ∈ A+, such that for each σ ∈ S,
σ = T ∗(σA

0 )ρB, T (σ) = σA
0 T (ρB),

with some σA
0 ∈ B+.

(iv) There is an element ρB ∈ A+, such that each σ ∈ S has the form

σ = σAρB,

where σA is a positive element in T ∗(MT∗).

Proof. Let us denote σ0 := T (σ) for σ ∈ S. Suppose (i) and let

ρ = T ∗(ρA0 )ρB, ρ0 = ρA0 T (ρB)

be the decomposition from Theorem 2(vi). Then, by Theorems 2 and 4, we have

for σ ∈ S,

σ = ρ1/2d(σ, ρ)ρ1/2 = ρ1/2T ∗(d(σ0, ρ0))ρ
1/2

= T ∗(ρA0 )1/2T ∗(d(σ0, ρ0))T
∗(ρA0 )1/2ρB

= T ∗((ρA0 )1/2d(σ0, ρ0)(ρ
A
0 )1/2)ρB = T ∗(σA

0 )ρB

where we put σA
0 := (ρA0 )1/2d(σ0, ρ0)(ρ

A
0 )1/2. Since d(σ0, ρ0) = Tρ(d(σ, ρ)) ∈ F+

Φ̃
,

σA
0 is a positive element in FΦ̃. Moreover, σA

0 = T (ρB)−1/2σ0T (ρB)−1/2, hence

σ0 = σA
0 T (ρB),

where we used Theorem 2(v). This proves (ii). It is clear that (ii) implies (iii).

Suppose (iii). Then for a ∈ B,

Tr aσ0 = Tr aσA
0 T (ρB) = TrT ∗(aσA

0 )ρB.

On the other hand,

Tr aσ0 = TrT ∗(a)σ = TrT ∗(a)T ∗(σA
0 )ρB.

Putting a = σA
0 , we obtain

TrT ∗((σA
0 )2)ρB = TrT ∗(σA

0 )2ρB.
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Since ρ is invertible, the decomposition implies that ρB must be invertible as well,

hence by Schwarz inequality, T ∗((σA
0 )2) = T ∗(σA

0 )2. This implies that σA
0 ∈ MT∗ ,

which proves (iv) with σA := T ∗(σA
0 ).

Finally, suppose (iv). Let σ ∈ S. Since both σA and ρB are positive and so is

their product σ, they must commute. It follows that

wt := σitρ−it = (σA)it(ρA)−it ∈ T ∗(MT∗)

for all t ∈ R, where ρ = ρAρB is the decomposition for ρ. We have ρiswtρ
−is =

w∗
swt+s ∈ T ∗(MT∗) for all t, s ∈ R. By analytic continuation for t = −i/2, we get

ρisσ1/2ρ−1/2ρ−is ∈ T ∗(MT∗), hence also ρisd(σ, ρ)ρ−is ∈ T ∗(MT∗) for all s. By

Theorem 4(v), this implies (i).

The next corollary shows that the recovery map Tρ does not depend on the

choice of ρ. For faithful states, this was proved already in [29].

Corollary 2. Suppose the Conditions 1 and 2 hold. Then T is reversible for S if

and only if Tσ = Tρ|suppσA suppσ for all σ ∈ S.

Proof. Let σ ∈ S, q := suppσ, q0 := suppT (σ) and suppose that T is reversible

for S. Let us denote w = σ1/2ρ−1/2, w0 = T (σ)1/2T (ρ)−1/2. By Theorem 5(ii) and

Theorem 2, we have

w0 = (σA
0 )1/2(ρA0 )−1/2 ∈ FΦ̃

and

w = T ∗(w0) ∈ FΦ, w0 = Tρ(w).

Then for a ∈ qAq,

Tσ(a) = T (σ)−1/2T (σ1/2aσ1/2)T (σ)−1/2

= (w−1
0 )∗Tρ(w

∗aw)w−1
0 = (w−1

0 )∗Tρ(w)∗Tρ(a)Tρ(w)w−1
0

= q0Tρ(a)q0.

Since ρB is invertible, we must have q0 = suppσA
0 ∈ FΦ̃ and q = suppT ∗(σA

0 ) =

T ∗(q0). Hence also Tρ(q) = q0 and q0Tρ(a)q0 = Tρ(qaq) = Tρ(a).

Conversely, since Tρ is unital, the equality Tσ = Tρ|qAq implies that T ∗
σ =

T ∗
ρ |q0Bq0 by Lemma 2, so that T ∗

ρ ◦ T (σ) = T ∗
σ ◦ T (σ) = σ and T is reversible

for S.

3.4. Quantum hypothesis testing

Let σ and ρ be density operators in A. Let us consider the problem of testing the

hypothesis H0 = ρ against the alternative H1 = σ. Any test is represented by an

operator 0 ≤ M ≤ I, which corresponds to rejecting the hypothesis. Then we have

the error probabilities

α(M) = Tr ρM, β(M) = Trσ(1 − M).
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For s ∈ [0, 1), we define the Bayes optimal test to be a minimizer of the expression

sα(M) + (1 − s)β(M) = (1 − s)(1 − Tr(σ − tρ)M), t =
s

1 − s
. (7)

Then the minimal Bayes error probability is

Πs := min
0≤M≤I

{sα(M) + (1 − s)β(M)} = sα(M s
1−s

) + (1 − s)β(M s
1−s

)

where Mt maximizes the expression Tr(σ − tρ)M over all 0 ≤ M ≤ I. Below we

formulate the quantum version of the Neyman–Pearson lemma. The obtained Bayes

optimal tests are called the (quantum) NP tests for (ρ, σ).

If a ∈ A is a self adjoint operator, we denote by a+ the positive part of a, that

is, a+ =
∑

i,λi>0 pi, where a =
∑

i λipi is the spectral decomposition of a.

Lemma 7 ([14, 11]). For t ≥ 0, let Pt,+ := supp(σ − tρ)+ and let Pt,0 be the

projection onto the kernel of σ − tρ. Then 0 ≤ Mt ≤ I is a Bayes optimal test if

and only if

Mt = Pt,+ + Xt

with 0 ≤ Xt ≤ Pt,0. The minimal Bayes error probability is

Πs =
1

2
(1 − ‖(1 − s)σ − sρ‖1).

Let now T : A → B be a trace preserving positive map. Let s ∈ (0, 1), t = s(1 −
s)−1 and let Π0

s be the minimal Bayes error probability for testing the hypothesis

H0 = T (ρ) against H1 = T (σ). For N ∈ B, 0 ≤ N ≤ I, we have

Tr(T (σ) − tT (ρ))N = Tr(σ − tρ)T ∗(N) ≤ max
0≤M≤I

Tr(σ − tρ)M

so that Π0
s ≥ Πs, this is equivalent to the fact that

‖T (σ − tρ)‖1 ≤ ‖σ − tρ‖1. (8)

In [17], equality in (8) was investigated for a pair of invertible density operators,

in the case when T is the restriction to a subalgebra. If equality holds for all t ≥ 0,

then the subalgebra must contain some Bayes optimal test for all s ∈ [0, 1], such

subalgebras are called 2-sufficient. It was shown that in some cases, 2-sufficiency is

equivalent to sufficiency, that is, reversibility of T for {σ, ρ}. From another point of

view, this condition was studied also in [5] and it was shown that for a completely

positive trace preserving map, the equality implies reversibility for certain sets S.

Since the L1-norm is one of the basic distance measures on states, equivalence

between equality in (8) and reversibility is an important open question. We will

show below (Theorem 6) that this equivalence holds if equality in (8) is required

for all σ in the extended family S̃ =
⋃{ρisSρ−is, s ∈ R}. Moreover, Theo-

rem 7 shows this equivalence if equality in (8) holds for n copies of the states,

for all n.
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We will suppose below that ρ is invertible.

Lemma 8 ([17, Lemma 4]). Pt,0 �= 0 if and only if t is an eigenvalue of d(σ, ρ).

Moreover, the rank of Pt,0 is equal to the multiplicity of t.

Lemma 9. The function t �→ Pt,+ is right-continuous. Moreover,

lim
s→t−

Ps,+ = Pt,+ + Pt,0, t ≥ 0.

Proof. Let ρ(t) := σ − tρ for t ∈ R. Let λ↓
1(t), . . . , λ

↓
N (t) denote the decreasingly

ordered eigenvalues of ρ(t) (with multiplicities). For t1, t2 ∈ R, we have ρ(t1) =

ρ(t2)+(t2− t1)ρ. By Weyl’s perturbation theorem [3, Corollary III.2.6], this implies

that

max
j

|λ↓
j (t1) − λ↓

j (t2)| ≤ |t1 − t2|‖ρ‖.

Moreover, since ρ is invertible, we obtain by [3, Corollary III.2.2] that

λ↓
j (t2) < λ↓

j (t2) + (t2 − t1)λ
↓
N (ρ) ≤ λ↓

j (t1)

when t1 < t2, where λ↓
N (ρ) denotes the smallest eigenvalue of ρ. Hence the functions

t �→ λ↓
j (t) are continuous and strictly decreasing.

It is clear that for t < 0 all λ↓
j (t) are strictly positive, and that λ↓

j (t) = 0 for some

index j if and only if Pt,0 �= 0. Let 0 ≤ t1 < · · · < tn be the eigenvalues of d(σ, ρ)

and put t0 := 0, tn+1 := ∞. Then there are indices ik ∈ {1, . . . , N}, k = 1, . . . , n,

such that N = i1 > i2 > · · · > in > in+1 := 0 and for every t ∈ [tk−1, tk) the

strictly positive eigenvalues of ρ(t) are given by λ↓
1(t), . . . , λ

↓
ik

(t).

Let t ∈ [tk−1, tk) and let γ(t) be a circle, contained entirely in the open half-

plane of complex numbers having strictly positive real parts and enclosing all

λ↓
1(t), . . . , λ

↓
ik

(t). By continuity of λ↓
j , there is some δ > 0 such that γ(t) encloses

λ↓
1(s), . . . , λ

↓
ik

(s) for all s ∈ (t − δ, t + δ) and [t, t + δ) ⊂ [tk−1, tk). Then

Ps,+ =
1

2iπ

∮

γ(t)

(zI − ρ(s))−1dz, s ∈ [t, t + δ).

This implies that t �→ Pt,+ is right-continuous. Let now t ∈ (tk−1, tk), then we can

find δ > 0 as above, but such that, moreover, (t− δ, t+ δ) ⊂ (tk−1, tk). In this case,

Ps,+ =
1

2iπ

∮

γ(t)

(zI − ρ(s))−1dz, s ∈ (t − δ, t + δ)

so that t �→ Pt,+ is continuous at t. Suppose t = tk−1, then by definition of ik and

tk−1, we must have

λ↓
j (tk−1)





> 0 j ≤ ik,

= 0 j = ik + 1, . . . , ik−1,

< 0 j > ik−1.
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Let γ′
k be a circle in the complex plane, enclosing λ↓

1(tk−1), . . . , λ
↓
ik

(tk−1) and 0,

but such that the closed disc encircled by γ′
k does not contain any other eigenvalue

of ρ(tk−1). Then there is some δ > 0 such that (tk−1 − δ, tk−1) ⊂ [tk−2, tk−1) and

Ps,+ =
1

2iπ

∮

γ′
k

(zI − ρ(s))−1dz, s ∈ (tk−1 − δ, tk−1).

It follows that lims→t−k−1
Ps,+ = Ptk−1,++Ptk−1,0. Since Pt,0 = 0 for t /∈ {t1, . . . , tn},

this proves the assertion.

Let us denote Qt,+ := supp(T (σ) − tT (ρ))+ and Qt,0 the projection onto the

kernel of T (σ) − tT (ρ).

Lemma 10. Let T : A → B be a trace preserving positive map and suppose that

both ρ and T (ρ) are invertible. The following are equivalent.

(i) ‖T (σ) − tT (ρ)‖1 = ‖σ − tρ‖1, for all t ∈ R.

(ii) Pt,+ = T ∗(Qt,+), Pt,0 = T ∗(Qt,0) for t ∈ R.

Proof. Since Qt,+ is an NP test for (T (ρ), T (σ)), (i) implies that

Tr(T (σ) − tT (ρ))Qt,+ = Tr(σ − tρ)T ∗(Qt,+) = max
0≤M≤I

Tr(σ − tρ)M

so that T ∗(Qt,+) is an NP test for (ρ, σ). By Lemma 7, there is some 0 ≤ Xt ≤ Pt,0,

such that T ∗(Qt,+) = Pt,++Xt. It follows that Pt,+ = T ∗(Qt,+) holds for all t such

that Pt,0 = 0, that is, for t ∈ R\{t1, . . . , tn}. Since t �→ Pt,+ and t �→ T ∗(Qt,+) are

right continuous, it follows that T ∗(Qt,+) = Pt,+ for all t. On the other hand, by

Lemma 9 we have for all t

Pt,+ + Pt,0 = lim
s→t−

Ps,+ = lim
s→t−

T ∗(Qs,+) = T ∗(Qt,+) + T ∗(Qt,0)

hence Pt,0 = T ∗(Qt,0) for all t. The converse is obvious.

Theorem 6. Assume the Conditions 1 and 2. Then

(i) T is reversible for S if and only if

‖σ − tρ‖1 = ‖T (σ) − tT (ρ)‖1, σ ∈ S̃, t ≥ 0. (9)

(ii) Suppose that ρisSρ−is ⊆ S for all s ∈ R. Then T is reversible for S if and

only if

‖σ − tρ‖1 = ‖T (σ) − tT (ρ)‖1, σ ∈ S, t ≥ 0. (10)

(iii) Suppose that B is abelian. Then T is reversible for S if and only if (10) holds.

Moreover, in this case all elements in S commute.

(iv) Suppose that all elements in S commute with ρ. Then T is reversible for S if

and only if (10) holds.
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Proof. (i) By Corollary 1, T is reversible for S if and only if it is reversible for S̃.

By monotonicity (8), we get (9).

For the converse, let σ ∈ S̃. Then by Lemma 10, (9) implies that Pt,0 =

T ∗(Qt,0) for the corresponding projections for σ and ρ. This implies that Qt,0 ∈
MT∗ and Pt,0 ∈ T ∗(MT∗).

Let t1, . . . , tn be the eigenvalues of d = d(σ, ρ) and let F1, . . . , Fn be the cor-

responding eigenprojections. Denote Pi := Pti,0. Then we have (d−ti)ρ
1/2Pi =

ρ−1/2(σ − tiρ)Pi = 0 and this implies

dρ1/2
∑

i

Pi = ρ1/2
∑

i

tiPi.

Moreover, any vector in the range of ρ1/2Piρ
1/2 is an eigenvector of d, so

that supp (ρ1/2Piρ
1/2) ≤ Fi and by Lemma 8, rank(Fi) = rank(Pi) =

rank(ρ1/2Piρ
1/2). It follows that

∑
i Pi is invertible, so that d(σ, ρ) =

ρ1/2cρ−1/2, with

c :=
∑

i

tiPi


∑

j

Pj




−1

∈ T ∗(MT∗).

It follows that for s ∈ R and σ ∈ S, ρis−1/2d(σ, ρ)ρ1/2−is ∈ T ∗(MT∗). By

analytic continuation, we get ρitd(σ, ρ)ρ−it ∈ T ∗(MT∗) for all t ∈ R, which

implies that T is reversible for S, by Theorem 4.

(ii) Clearly follows from (i).

(iii) Let σ ∈ S and let Pt,0 and Qt,0 be the corresponding projections. Note that

since B is commutative, Qt,0 must commute for all t. Suppose that (10) holds,

then Pt,0 = T ∗(Qt,0) and, since then Qt,0 ∈ MT∗ , this implies that all Pt,0

commute as well. As in the proof of (i), d(σ, ρ) = ρ1/2cρ−1/2, where we now

have c ≥ 0. This implies that d(σ, ρ)ρ = ρ1/2cρ1/2 ≥ 0, hence d(σ, ρ)ρ =

ρd(σ, ρ) and therefore also σρ = ρσ. This implies that ρisσρ−is = σ and the

statement follows by (ii). The converse implication is clear.

(iv) Follows from (ii).

3.5. Quantum Chernoff and Hoeffding distances

Let n ∈ N and suppose we are given n identical copies of the states ρ⊗n, σ⊗n ∈
S(A⊗n). Consider the problem of testing the hypothesis H0 = ρ⊗n against H1 =

σ⊗n. Then the minimum Bayes error probability is

Πs,n =
1

2
(1 − ‖(1 − s)σ⊗n − sρ⊗n‖1).

It is an important result of [2] that as n → ∞, the probabilities Πs,n decay expo-

nentially fast and the rate of convergence is given by

lim
n

− 1

n
log Πs,n = −log

(
inf

0≤u≤1
Trσuρ1−u

)
=: C(σ, ρ) (11)
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for any s ∈ [0, 1], where we put x0 = suppx for any positive x ∈ A. The quantity

C(σ, ρ) is called the quantum Chernoff distance. Note that C is related to the

convex quantum f -divergence Su(σ, ρ), but one can show that C itself is not an

f -divergence [13]. Nevertheless, if T is the adjoint of a unital Schwarz map, then C

satisfies monotonicity:

C(σ, ρ) ≥ C(T (σ), T (ρ))

and, moreover, C(σ, ρ) = 0 if and only if σ = ρ.

Let us consider again the problem of testing the hypothesis H0 = ρ against the

alternative H1 = σ. Let 0 ≤ M ≤ I be a test. Differently from the Bayesian

approach, in the asymmetric approach the error probability α(M) is bounded,

α(M) ≤ ε for some fixed ε > 0. The error probability β(M) is then minimalized

over all tests, under this constraint,

βε := inf{β(M), 0 ≤ M ≤ I, α(M) ≤ ε}.

Suppose we have n independent copies of the states σ⊗n and ρ⊗n and let Mn ∈ A⊗n.

Here we require that the probabilities α(Mn) decay exponentially as n → ∞. Let

r > 0 and put

βr,n := inf{β(Mn), 0 ≤ Mn ≤ I, α(Mn) ≤ e−nr}.

The following equality was proved in [9, 23]: For r > 0,

lim
n

− 1

n
log βr,n = sup

0≤u<1

−ur − log Tr ρuσ1−u

1 − u
=: Hr(ρ, σ).

The limit expression is called the quantum Hoeffding distance. Similarly as the

Chernoff distance, Hr is not an f -divergence [13], but it is related to Su. This

implies the monotonicity

Hr(T (σ), T (ρ)) ≤ Hr(σ, ρ)

for T the adjoint of a unital Schwarz map. Moreover, by [12], see also [13],

H0(σ, ρ) := lim
r→0

Hr(σ, ρ) = S(σ, ρ) = Trσ(log σ − log ρ)

holds if suppσ ≤ supp ρ.

Suppose that q := suppσ ≤ supp ρ, then the function [0,∞) � r �→ Hr(σ, ρ) has

the following properties [12], see also [2]:

The function is convex and lower semicontinuous, for r ∈ [0, Sσ(ρ, σ)] it is strictly

convex and decreasing, and for r ≥ Sσ(ρ, σ) it has a constant value Hr(σ, ρ) =

− log Tr qρ, here

Sσ(ρ, σ) = − log Tr qρ +
1

Tr qρ
Tr ρ(log ρ − log σ)q.

Note that if suppσ = supp ρ, then Sσ(ρ, σ) = S(ρ, σ).
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Proposition 3 ([13]). Let σ and ρ be two density operators in A such that

suppσ = supp ρ. Let T : A → B be the adjoint of a unital Schwarz map and suppose

that one of the following conditions holds:

(i) C(σ, ρ) = C(T (σ), T (ρ)).

(ii) Hr(σ, ρ) = Hr(T (σ), T (ρ)) for some r ∈ [0, S(T (ρ), T (σ))].

Then T ∗
ρ ◦ T (σ) = σ.

Theorem 7. Assume the Conditions 1 and 2. Then the following are equivalent.

(i) T is reversible for S.
(ii) C(σ, ρ) = C(T (σ), T (ρ)) for all σ ∈ co(S).

(iii) ‖σ⊗n − tρ⊗n‖1 = ‖T (σ)⊗n − tT (ρ)⊗n‖1 for all σ ∈ S, t ≥ 0 and n ∈ N.

(iv) Hr(σ, ρ) = Hr(T (σ), T (ρ)) for all σ ∈ S and r ≥ 0.

Suppose moreover that there is some S0 ⊂ S, such that S ⊆ co(S0 ∪ {ρ}) and

T (ρ) /∈ T (S0). Then there exists some r0 > 0 such that (i)–(iv) are equivalent to

(v) Hr(σ, ρ) = Hr(T (σ), T (ρ)) for all σ ∈ co(S) and some r ∈ [0, r0].

Proof. Since T is reversible for S if and only if it is reversible for co(S), (i) implies

(ii) by monotonicity of C. Conversely, suppose (ii) and let σ ∈ S, then σ1 := 1
2 (σ+ρ)

is an invertible element in co(S). Proposition 3 now implies that T ∗
ρ ◦ T (σ1) = σ1

and by (4), we have also T ∗
ρ ◦ T (σ) = σ.

Further, suppose (i), then by Theorem 4(vi), there are trace preserving com-

pletely positive maps T̂ :A → B and Ŝ :B → A, such that T̂ (σ) = T (σ),

Ŝ ◦ T (σ) = σ, σ ∈ S. It follows that T (σ)⊗n = T̂ (σ)⊗n = T̂⊗n(σ⊗n) and

σ⊗n = Ŝ⊗n(T (σ)⊗n), for all σ ∈ S, where T̂⊗n and Ŝ⊗n are completely posi-

tive and trace preserving. By monotonicity of the L1-norm, this implies (iii). The

implications (iii) ⇒ (iv) ⇒ (i) were already proved in [13].

Suppose now that the additional condition holds. Let us choose some ε ∈ (0, 1)

and put

r0 := inf
σ∈S0

S(T (ρ), T (ερ+ (1 − ε)σ)).

Then if r0 = 0, there exists a sequence σn ∈ S0, such that S(T (ρ), T (ερ + (1 −
ε)σn)) → 0. This implies that T (σn) → T (ρ), so that T (ρ) ∈ T (S0), which is not

possible. Hence r0 > 0.

Suppose (v) holds and let σ ∈ S0. Denote σε = ερ + (1 − ε)σ. Then 0 ≤
r ≤ S(T (ρ), T (σε)). Since σε is invertible, we can apply Proposition 3, which

implies that T ∗
ρ ◦ T (σε) = σε and therefore also T ∗

ρ ◦ T (σ) = σ for all σ ∈ S0.

Since S ⊆ co(S0 ∪ {ρ}), this implies (i). The implication (i) ⇒ (v) follows by

monotonicity.

Remark 3. Note that if all elements in S are invertible, then we may replace co(S)

by S in (ii) and by S0 in (v), where we put r0 := infσ∈S0 S(T (ρ), T (σ)).
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3.6. Quantum Fisher information and χ2-divergence

Let us denote by D the set of invertible density operators in A. Then D is a

differentiable manifold, where the tangent space at each point ρ ∈ D is the vector

space Tρ of traceless self-adjoint elements in A.

A monotone metric on D is a Riemannian metric λρ, satisfying

λρ(x, x) ≥ λT (ρ)(T (x), T (x)), x ∈ Tρ, ρ ∈ D (12)

for any completely positive trace preserving map T : A → B.

It was proved by Petz in [30] that any monotone metric has the form

λρ(x, y) = Tr(Jf
ρ )−1(x)y

with Jf
ρ = f(∆ρ)Rρ, where ∆ρ := ∆ρ,ρ = LρR

−1
ρ , and f : (0,∞) → (0,∞) an

operator monotone function satisfying the symmetry f(t) = tf(t−1). Under the

normalization condition f(1) = 1, the restriction of λρ to the submanifold of diag-

onal elements in D coincides with the classical Fisher information for probability

measures on a finite set, moreover, the monotonicity condition (12) characterizes

the classical Fisher information up to multiplication by a constant. Accordingly,

any monotone metric with the above normalization is called a quantum Fisher

information.

The operator Jf
ρ satisfies [28, 24]

Jf
T (ρ) ≥ TJf

ρ T
∗

for any operator monotone (not necessarily symmetric or normalized) function f

and T : A → B the adjoint of a unital Schwarz map. This is equivalent to [30]

(Jf
ρ )−1 ≥ T ∗(Jf

T (ρ))
−1T, (13)

which implies that the monotonicity (12) holds for all such f and T .

A related quantity is the quantum version of the χ2-divergence, which was intro-

duced in [32] as

χ2
1/f (σ, ρ) = λf

ρ(σ − ρ, σ − ρ)

where λf
ρ is a monotone metric.

Let now f : (0,∞) → (0,∞) be operator monotone. Then t �→ f(t)−1 is a non-

negative operator monotone decreasing function on (0,∞). By [7], for each such

function there is a positive Borel measure νf with support in [0,∞) and
∫∞
0

(1 +

s2)−1dνf (s) < ∞,
∫∞
0

s(1 + s2)−1dνf (s) < ∞, such that

f(t)−1 =

∫ ∞

0

1

s + t
dνf (s) =

∫ ∞

0

fs(t)
−1dνf (s)
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where fs(t) = s + t, t ∈ R+. Then it follows that

(Jf
ρ )−1 = f(LρR

−1
ρ )−1R−1

ρ =

∫ ∞

0

(sRρ + Lρ)
−1dνf (s) =

∫ ∞

0

(Js
ρ)−1dνf (s) (14)

where Js
ρ := Jfs

ρ = sRρ + Lρ.

Lemma 11. Let T : A → B be the adjoint of a unital Schwarz map. Let x ∈ A.

Then for s ≥ 0,

Trx∗(sRρ + Lρ)
−1(x) ≥ TrT (x)∗(sRT (ρ) + LT (ρ))

−1(T (x)) (15)

and equality holds if and only if

(sRρ + Lρ)
−1(x) = T ∗[(sRT (ρ) + LT (ρ))

−1(T (x))]. (16)

Proof. Since the function fs is operator monotone, the inequality (15) follows from

(13) for f = fs. If equality holds for some x ∈ A, then

〈x, ((Js
ρ)−1 − T ∗(Js

T (ρ))
−1T )(x)〉 = 0

which again by (13) is equivalent to ((Js
ρ)−1 − T ∗(Js

T (ρ))
−1T )(x) = 0.

It follows from the above lemma and the integral representation (14) that

λf
ρ(x, x) = λf

T (ρ)(T (x), T (x)) if and only if (16) holds for all s ∈ supp νf , that is,

(s + ∆ρ)
−1(xρ−1) = T ∗[(s + ∆T (ρ))

−1(T (x)T (ρ)−1)], s ∈ supp νf . (17)

Let now x ∈ Tρ. Then since ρ is invertible, there exists some interval I � 0 such

that σu := ρ+ ux ∈ S(A) for u ∈ I. Let us denote by Iρ,x the largest such interval

and let Sρ,x := {σu, u ∈ Iρ,x}.

Proposition 4. Let ρ ∈ D, x ∈ Tρ and T : A → B be such that T and Sρ,x satisfy

the Conditions 1 and 2. Then the following are equivalent.

(i) λf
ρ(x, x) = λf

T (ρ)(T (x), T (x)) for a monotone metric such that |supp νf | ≥
|spec(∆ρ) ∪ spec(∆T (ρ))|.

(ii) ρitxρ−it−1 = T ∗(T (ρ)itT (x)T (ρ)−it−1), t ∈ R.

(iii) ρ−1/2xρ−1/2 = T ∗(T (ρ)−1/2T (x)T (ρ)−1/2).

(iv) T is reversible for Sρ,x.

(v) λf
ρ(x, x) = λf

T (ρ)(T (x), T (x)) for any monotone metric λf
ρ .

Proof. Note that by the assumptions, T (ρ) must be invertible. Suppose (i), then

(17) holds and by [13, Lemma 5.2], this implies that

h(∆ρ)xρ
−1 = h(∆T (ρ))T (x)T (ρ)−1
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for any complex-valued function h on spec(∆ρ) ∪ spec(∆T (ρ)). In particular, for

h(λ) = λit, we get (ii). We have (ii) ⇒ (iii) by analytic continuation for t = i/2.

Suppose (iii) and let σu ∈ Sρ,x. Then

T ∗(d(T (σu), T (ρ))) = T ∗(I + uT (ρ)−1/2T (x)T (ρ)−1/2)

= I + uρ−1/2xρ−1/2 = d(σu, ρ)

and by Theorem 4, this implies (iv). (iv) implies (v) by monotonicity of Fisher

information. The implication (v) ⇒ (i) is trivial.

Let S ⊂ S(A) and let Lin(S) = span {σ1 − σ2 :σ1, σ2 ∈ S}. Then Lin(S) is a

vector subspace in the real vector space of self-adjoint traceless operators.

Theorem 8. Suppose that the Conditions 1 and 2 hold. Then the following are

equivalent.

(i) T is reversible for S.
(ii) λf

ρ(x, x) = λf
T (ρ)(T (x), T (x)) for all x ∈ Lin(S) and all monotone metrics.

(iii) χ2
1/f (σ, ρ) = χ2

1/f (T (σ), T (ρ)) for all σ ∈ S and all χ2-divergences.

(iv) The equality in (ii) holds for some symmetric positive operator monotone func-

tion f such that |suppµf | ≥ dim(H)2 + dim(K)2.

(v) The equality in (iii) holds for some f as in (iv).

Proof. (i) implies (ii) by monotonicity of Fisher information and the implication

(ii) ⇒ (iii) is clear. We also have (ii) ⇒ (iv) and both (iv) and (iii) imply (v). It is

therefore enough to prove (v) ⇒ (i). So suppose (v) and let σ ∈ S. Put x = σ−ρ in

Proposition 4(iii), then it follows that T ∗(d(T (σ), T (ρ))) = d(σ, ρ) for σ ∈ S which

implies (i) by Theorem 4.

Remark 4. An important example of a quantum Fisher information, respectively

χ2-divergence, is given by f(t) = 1
2f1(t) = 1

2 (1 + t). In this case, νf is concentrated

in t = 1 and λf
ρ(x, y) = 2Tr y(Lρ + Rρ)

−1(x) is called the Bures metric. It is the

smallest element in the family of quantum Fisher informations. The simple example

below shows that preservation of the Bures metric does not imply reversibility, so

that, once again, the support condition in (iv) respectively (v) of the above theorem

cannot be dropped.

So let y = y∗ ∈ A be such that ρy �= yρ and Tr ρy = 0, and let C ⊂ A be the

commutative subalgebra generated by y. Then z := ρy + yρ ∈ Tρ and, by replacing

y by ty for some t > 0 if necessary, we may suppose that σ := ρ + z ∈ D. Let

T : A → C be the trace preserving conditional expectation, then T (σ) = T (ρ) +

T (z) = T (ρ) + T (ρ)y + yT (ρ). This implies that

(Lρ + Rρ)
−1(σ − ρ) = y = (LT (ρ) + RT (ρ))

−1(T (σ) − T (ρ))

which implies that χ2
1/f (σ, ρ) = χ2

1/f (T (σ), T (ρ)).
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On the other hand, if T is reversible, then by Theorem 5(iv), ρ and σ must

commute. But we have [σ, ρ] = [ρ2, y] �= 0.
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A quantum binary experiment consists of a pair of density operators on a finite-dimensional
Hilbert space. An experiment E is called ε-deficient with respect to another experiment F if, up
to ε, its risk functions are not worse than the risk functions of F , with respect to all statistical
decision problems. It is known in the theory of classical statistical experiments that (1) for
pairs of probability distributions, one can restrict oneself to testing problems in the definition
of deficiency and (2) that 0-deficiency is a necessary and sufficient condition for existence of
a stochastic mapping that maps one pair onto another. We show that in the quantum case, the
property (1) holds precisely if E consist of commuting densities. As for property (2), we show
that if E is 0-deficient with respect to F , then there exists a completely positive mapping that
maps E onto F , but it is not necessarily trace preserving.

Keywords: comparison of statistical experiments, quantum binary experiments, deficiency, sta-
tistical morphisms.

1. Introduction

In classical statistics, a statistical experiment is a parametrized family of probability
distributions on a sample space (X,�). The theory of experiments and their
comparison was introduced by Blackwell [2] and further developed by many authors,
e.g. Torgersen, [17, 18]. Most of the results needed here can be found in [16].

For our purposes, a classical statistical experiment E = (X, {pθ, θ ∈ �}) is
a parametrized set of probability distributions pθ, θ ∈ �, over a finite set X, where
� is a finite set of parameters. This can be interpreted as follows: X is a set of
possible outcomes x ∈ X of some experiment, each occurring with probability p(x),
where p is a member of a parametrized family {pθ }, but the value of the parameter
is not known. After observing x, a decision d is chosen from a finite set D of
possible decisions, with some probability μ(x, d). The function μ : X×D→ [0, 1]
is called the decision function. It is clear that a decision function is a Markov
kernel (or a stochastic matrix), that is, d �→ μ(x, d) is a probability distribution for
all x ∈ X.

*Supported by the grants VEGA 2/0032/09 and meta-QUTE ITMS 26240120022.
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A loss function W : � × D → R+ represents the loss suffered if d ∈ D is
chosen and the true value of the parameter is θ . The risk, or the average loss of
the decision procedure μ when the true value is θ is computed as

RE(θ,W,μ) =
∑
x,d

Wθ(d)μ(x, d)pθ (x).

The couple (D,W) is called a decision problem. If D consists of two points, then
the decision problems (D,W) are precisely the problems of hypothesis testing.

Let F be another experiment with the same set of parameters, then its “informative
value” can be compared to that of E by comparing their risk functions for all
decision problems. This leads to the definitions of (k, ε)-deficiency and ε-deficiency,
see Section 2. One of the most important results of the theory is the following
randomization criterion.

THEOREM 1. Let E = (X, {pθ, θ ∈ �}) and F = (Y, {qθ , θ ∈ �}) be two
experiments. Then E is ε-deficient with respect to F if and only if there is
a Markov kernel λ : X × Y → [0, 1] such that

‖λ(pθ)− qθ‖1 ≤ 2ε,

where λ(p) =
∑

x λ(x, y)p(x).

For ε = 0, this is the Blackwell–Sherman–Stein theorem [2, 13, 15]. For a general
ε it was proved in [17].

If � consists of two points, then the experiment is called binary. In this
case, ε-deficiency is equivalent to (2, ε)-deficiency [17], which means that such
experiments can be compared by considering only the risk functions of hypothesis
testing problems.

The development of the quantum version of comparison of statistical experiments
was started recently by several authors [14, 3, 8]. A quantum statistical experiment
is a set of density operators on a Hilbert space, mostly of finite dimension. Some
versions of the randomization criterion, resp. the Blackwell–Sherman–Stein theorem
were obtained, in particular, conditions were found for the existence of a trace
preserving completely positive map that maps one experiment onto the other. It
was conjectured in [14] that the existence of such positive (but not necessarily
completely positive) trace preserving map is equivalent to 0-deficiency. A weaker
form of this was obtained in [3], where the notion of a statistical morphism was
introduced. The (even weaker) notion of a k-statistical morphism was considered
in [8].

The present paper reviews some of the results of [3] and [8], with focus on the
problem of comparison of binary experiments. As an extension of [8], we prove
that (2, ε)-deficiency and ε-deficiency of a quantum experiment E with respect to
another quantum experiment F are equivalent for any F precisely if the experiment
E is abelian, that is, all density matrices ρθ commute. Moreover, we use the results
in [12] to show that any k-statistical morphism can be extended to a map that is
completely positive, but not trace preserving in general.
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2. Quantum statistical experiments
Let H be a finite-dimensional Hilbert space and let A ⊆ B(H) be a C∗-

algebra. Let S(A) denote the set of density operators in A. A (quantum) statistical
experiment E consists of A and a family {ρθ , θ ∈ �} ⊂ S(A), which is written as
E = (A, {ρθ , θ ∈ �}). Throughout the paper, we suppose that � is a finite set.

The family {ρθ, θ ∈ �} represents our knowledge of the state of the quantum
system represented by A: it is known that this family contains the state of the
system but the true value of θ is not known.

Let (D,W) be a decision problem. The decision is made by a measurement on
A with values in D. Any such measurement is given by a positive operator-valued
measure (POVM) M : D → A, that is, a collection of operators M = {Md, d ∈

D} ⊂ A+ such that
∑

d Md = I . If all Md are projections, we say that M is
a projection-valued measure (PVM). We will denote the set of all measurements by
M(D, E).

Note that any POVM defines a positive trace preserving map M : A → F(D),
where F(D) is the C∗-algebra of all functions D→ C. The map is given by

M(a)(d) = TrMda, a ∈ A, d ∈ D,
and any positive trace preserving map A→ F(D) is obtained in this way. Moreover,
we define the map M̂ : F(D)→ A by

M̂(f ) =
∑
d

f (d)(TrMd)
−1Md, f ∈ F(D).

Then M̂ is again positive and trace preserving. Since F(D) is abelian, both M and
M̂ are also completely positive [10].

As it was pointed out in [3], the set of quantum experiments contains the set
of classical experiments and these correspond precisely to abelian experiments, that
is, experiments such that all densities in the family {ρθ, θ ∈ �} commute. Indeed,
let E be abelian and let C be the subalgebra generated by {ρθ , θ ∈ �}. Then
C is generated by a PVM P concentrated on a finite set X and we have the
classical experiment (X, {pθ := P (ρθ), θ ∈ �}). Conversely, let (Y, {qθ , θ ∈ �}) be
any classical experiment with |Y | ≤ dim(H) and let Q : Y → A be any PVM,
then (A, {Q̂(qθ ), θ ∈ �}) defines an abelian quantum experiment. It is clear that
pθ = P (ρθ) and ρθ = P̂ (pθ ), θ ∈ �, so that E and (X, {pθ }) are mapped onto each
other by completely positive trace preserving maps. In particular, the experiments
are equivalent in the sense defined below.

3. Deficiency
Let E be an experiment and let (D,W) be a decision problem. The risk of the

decision procedure M ∈M(D, E) at θ is computed as [5]

RE(θ,W,M) =
∑
d∈D

M(ρθ)(d)Wθ(d) =
∑
d

Wθ(d)Tr ρθMd.
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Let now F = (B, {σθ , θ ∈ �}) be another experiment, with B ⊂ B(K) for
a finite-dimensional Hilbert space K and with the same parameter set. Let k ∈ N,
Dk := {0, . . . , k − 1} and let ε ≥ 0. We say that E is (k, ε)-deficient with respect
to F , in notation E ≥k,ε F , if for every decision problem (Dk,W) (equivalently,
for all decision problems (D,W) with |D| = k) and every N ∈ M(Dk,F), there
is some M ∈M(Dk, E) such that

RE(θ,W,M) ≤ RF (θ,W,N)+ ε‖Wθ‖, θ ∈ �,

where ‖Wθ‖ = supx∈Dk Wθ(x). We say that E is ε-deficient with respect to F ,
E ≥ε F , if it is (k, ε)-deficient for all k ∈ N.

The relation ≤0 defines a preorder on the set of all experiments. If we have
E ≥0 F and simultaneously F ≥0 E , then we say that E and F are equivalent,
E ∼ F . The equivalence relation E ∼k F is defined similarly, and E and F are
called k-equivalent.

The Theorem 2 below (apart from (iii)) was proved in [8, Theorem 5] in a more
general setting. We give the proof in our simpler case, just for the convenience of
the reader.

The most important ingredient of the proof is the minimax theorem, which can
be found in [16].

THEOREM 2. Let E = (A, {ρθ , θ ∈ �}) and F = (B, {σθ , θ ∈ �}) be two
experiments with the same parameter set �, |�| < ∞. Let k ∈ N, ε ≥ 0. The
following are equivalent.

(i) E ≥k,ε F
(ii) For every loss function W : �×Dk → R+,

min
M∈M(Dk,E)

∑
θ

RE(θ,W,M) ≤ min
N∈M(Dk,F)

∑
θ

RF (θ,W,N)+ ε‖W‖

where ‖W‖ =
∑

θ ‖Wθ‖.
(iii) For every loss function W : �×Dk → R+,

max
M∈M(Dk,E)

∑
θ

RE(θ,W,M) ≥ max
N∈M(Dk,F)

∑
θ

RF (θ,W,N)− ε‖W‖.

(iv) For every N ∈M(Dk,F) there is some M ∈M(Dk, E) such that

‖M(ρθ)−N(σθ)‖1 ≤ 2ε, ∀θ ∈ �.

Proof : Suppose (i), then for any N ∈M(Dk,F), there is some M ∈M(Dk, E)
such that ∑

θ

RE(θ,W,M) ≤
∑
θ

RF (θ,W,N)+ ε‖W‖,

this implies (ii).
Suppose (ii) and let W : �×Dk → R+ be a loss function. Then W̃ : �×Dk → R+

given by W̃θ = ‖Wθ‖−Wθ is a loss function with ‖W̃‖ ≤ ‖W‖. Since RE(θ, W̃ ,M) =
‖Wθ‖ − RE(θ,W,M) and similarly for RF , we have (ii) implies (iii).
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Suppose (iii), and let N ∈M(Dk,F). Then for every loss function W , we have

max
M∈M(Dk,E)

∑
θ

RE(θ,W,M) ≥
∑
θ

RF (θ,W,N)− ε‖W‖,

and this implies that

sup
W,‖W‖≤1

min
M∈M(Dk,E)

∑
θ

(RF (θ,W,N)− RE(θ,W,M)) ≤ ε.

The set M = M(Dk, E) is compact and obviously convex and the set W of
all loss functions W with ‖W‖ ≤ 1 is convex as well. Moreover, the function
(M,W) �→

∑
θ (RF (θ,W,N)−RE(θ,W,M)) is linear in both arguments, hence the

minimax theorem applies and we get

ε ≥ min
M∈M

sup
W∈W

∑
θ

(RF (θ,W,N)− RE(θ,W,M))

= min
M∈M

sup
W∈W

∑
θ,d

Wθ(d)(N(σθ )(d)−M(ρθ)(d)).

Let P(�) be the set of all probability measures on � and let p ∈ P(�). For
M ∈M fixed, let W be given by

Wθ(x) =

⎧⎨
⎩p(θ) if N(σθ)(x)−M(ρθ)(x) > 0,

0 otherwise.

Then W ∈W , so that we get

ε ≥ min
M∈M

∑
θ

∑
x∈Dk

Wθ(x)(N(σθ )(x)−M(ρθ)(x))

= min
M∈M

∑
θ

p(θ)
1
2
‖N(σθ)−M(ρθ)‖1.

Since this holds for any p ∈ P(�), we have obtained

sup
p∈P(�)

min
M∈M

∑
θ

p(θ)‖M(ρθ)−N(σθ)‖1 ≤ 2ε.

The set P(�) is convex and the function M × P(�) → R, given by (M, p) �→∑
θ p(θ)‖M(ρθ) − N(σθ)‖1 is convex in M and concave (linear) in p. Hence the

minimax theorem applies again and we have

min
M

sup
p

‖M(ρθ)−N(σθ)‖1 = sup
p

min
M

∑
θ

p(θ)‖M(ρθ)−N(σθ)‖1 ≤ 2ε

which clearly implies (iv), by taking the probability measures concentrated in θ ∈ �.
Suppose (iv) and let N ∈ M(Dk,F). Let M ∈ M(Dk, E) be chosen for N by
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(iv). Then for any loss function W ,

RE(θ,W,M)− RF (θ,W,N)=
∑
x∈Dk

Wθ(x)(M(ρθ )(x)−N(σθ)(x))

≤
‖Wθ‖

2
‖M(ρθ)−N(σθ)‖1 ≤ ε‖Wθ‖.

so that E ≥k,ε F . �

The following corollary is a generalization of the classical randomization criterion
to the case when the experiment F is abelian. In the case when ε = 0, it was
proved in [3].

COROLLARY 1. Let E = (A, {ρθ , θ ∈ �}) and let F = (B, {σθ , θ ∈ �}) be
abelian. Then E ≥ε F if and only if there is a completely positive trace preserving
map T : A→ B such that

‖T (ρθ )− σθ‖1 ≤ 2ε, θ ∈ �.

Proof : Let (X, {pθ, θ ∈ �}) be a classical experiment equivalent to F and let
P = (P1, . . . , Pm) be the PVM such that P (σθ) = pθ , θ ∈ �. Suppose E ≥ε F ,
then P ∈M(X,F) and by Theorem 2 (iv), there is some M ∈M(X, E) such that

‖M(ρθ)− P (σθ)‖1 = ‖M(ρθ)− pθ‖1 ≤ 2ε.

Put T = P̂ ◦M , then T : A → B0 ⊆ B is positive and trace preserving, where
B0 is the abelian subalgebra generated by P . Hence T is also completely positive.
Moreover,

‖T (ρθ )− σθ‖1 = ‖P̂ (M(ρθ )− pθ)‖1 ≤ ‖M(ρθ)− pθ‖1 ≤ 2ε.

For the converse, let N ∈M(D,F) for any finite set D. Put Q = N ◦ T , then
Q ∈M(D, E) and

‖Q(ρθ)−N(σθ)‖1 = ‖N(T (ρθ )− σθ)‖1 ≤ 2ε.

By Theorem 2 (iv), this implies E ≥ε F . �

3.1. Deficiency with respect to testing problems

Let (D2,W) be a decision problem. Then any M ∈ M(D2, E) has the form
(M0, I −M0) for some 0 ≤ M0 ≤ I and the risk of M is

RE(θ,M,W) = Wθ(1)+ (Wθ(0)−Wθ(1))Tr ρθM0.

By Theorem 2 (iii), E ≥2,ε F if and only if

max
M0∈A,

0≤M0≤1

Tr
∑
θ

AθρθM0 ≥ max
N0∈B,

0≤N0≤1

Tr
∑
θ

AθσθN0 − ε‖W‖ (1)
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for all loss functions W , where we denote Aθ := Wθ(0)−Wθ(1). It is easy to see
that

max
0≤M0≤1

Tr
∑
θ

AθρθM0 = Tr
[∑
θ

Aθρθ

]+
=

1
2

(∑
θ

Aθ +

∥∥∥∑
θ

Aθρθ

∥∥∥
1

)
, (2)

here we have used the equality Tr a+ = 1
2(Tr a + Tr |a|) for a self-adjoint element

a ∈ A.

THEOREM 3. E ≥2,ε F if and only if∥∥∥∑
θ

Aθρθ

∥∥∥
1
≥

∥∥∥∑
θ

Aθσθ

∥∥∥
1
− 2ε

∑
θ

|Aθ |

for any coefficients Aθ ∈ R.

Proof : Follows from (1) and (2). For the ‘if’ part, put Aθ = Wθ(0)−Wθ(1), we then
have

∑
θ |Aθ | ≤ ‖W‖. For the converse, let F+ := {θ, Aθ > 0}, F− := {θ, Aθ ≤ 0}

and put

Wθ(0) =

⎧⎨
⎩Aθ if θ ∈ F+

0 otherwise
,

Wθ(1) =

⎧⎨
⎩−Aθ if θ ∈ F−

0 otherwise
.

Then W is a loss function with ‖W‖ =
∑

θ |Aθ |. �

3.2. Deficiency and sufficiency

Let T : A → B be a completely positive trace preserving map. The experiment
F = (B, {T (ρθ), θ ∈ �}) is called a randomization of E . If N ∈ M(D,F), then
T ∗(N) ∈ M(D, E) and it is clear that T ∗(N) has the same risks as N , hence E
is 0-deficient with respect to F .

Suppose that in this setting, F is (k, 0)-deficient with respect to E , then we
say that T is k-sufficient for E . If also E is a randomization of F , then we say
that T is sufficient for E , this definition of sufficiency was introduced in [11]. If
T is a restriction to a subalgebra A0 ⊂ A, then we say that A0 is k-sufficient,
resp. sufficient for E , if T is. If the experiments are abelian, then it follows by
the randomization criterion that T is sufficient if and only if it is k-sufficient
for every k ∈ N. Moreover, for abelian binary experiments, T is sufficient if and
only if it is 2-sufficient. (In fact, the last statement hold for all classical statistical
experiments [16].)

It is not clear if any of the above two statements holds for quantum experiments.
The latter condition for binary experiments was investigated in [6], for a subalgebra
A0. It was shown that A0 is 2-sufficient if and only if it contains all projections
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Pt,+, t ≥ 0 (see Lemma 1) and that this is equivalent to sufficiency in some cases.
In particular:

THEOREM 4. Let E = (A, {ρ1, ρ2}) be an experiment and let A0 ⊆ A be an
abelian subalgebra. Then the following are equivalent:

(i) A0 is 2-sufficient,
(ii) A0 is sufficient,

(iii) A0 is sufficient and E is abelian.

Proof : The equivalence of (i) and (ii) was proved in [6, Theorem 5(2)], (ii)
�⇒ (iii) follows from [9, Theorem 9.10]. (iii) �⇒ (i) is obvious. �

4. Binary experiments
Let E = (A, {ρ1, ρ2}) be a binary experiment. Note that we may suppose that

ρ1 + ρ2 is invertible, since E can be replaced by the experiment (PAP, {ρ1, ρ2}),
where P = supp (ρ1 + ρ2) is the support projection of ρ1 + ρ2.

Let us denote

fE(t) := max
M∈A,

0≤M≤I

Tr (ρ1 − tρ2)M, t ∈ R.

Then by (2),
fE (t) = Tr (ρ1 − tρ2)+ =

1
2
(‖ρ1 − tρ2‖1 + 1− t). (3)

It is easy to see that Theorem 3 for binary experiments has the following form.

THEOREM 5. Let E = {A, {ρ1, ρ2}) and F = (B, {σ1, σ2}). Then the following
are equivalent:

(i) E ≥2,ε F ,
(ii) ‖ρ1 − tρ2‖1 ≥ ‖σ1 − tσ2‖1 − 2(1+ t)ε for all t ≥ 0,

(iii) fE(t) ≥ fF (t)− (1+ t)ε for all t ≥ 0.

We will need some properties of the function fE . First, we state the quantum
version of the Neyman–Pearson lemma [4, 5]. For this, let us denote Pt,+ :=

supp (ρ1 − tρ2)+ and Pt,0 = ker (ρ1 − tρ2) for t ≥ 0.

LEMMA 1. We have fE(t) = Tr (ρ1 − tρ2)M for some M ∈ A, 0 ≤ M ≤ I , if
and only if

M = Pt,+ +X, 0 ≤ X ≤ Pt,0.

The proof of the following lemma can be found in Appendix.

LEMMA 2.
(i) fE is continuous, convex and fE(t) ≥ max{1− t, 0}, t ∈ R.

(ii) fE is nonincreasing in R. Moreover, fE is analytic in R except of some
points 0 ≤ t1 < · · · < tl , l ≤ dim(H), where fE is not differentiable. These
are exactly the points where Pt,0 �= 0.

We will denote by TE := {t1, . . . , tl} the set of points defined in (ii).
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4.1. Deficiency and 2-deficiency for binary experiments

For classical binary experiments, it was proved in [17] that E ≥2,ε F is equivalent
with E ≥ε F , so that for comparison of such experiments it is enough to consider
all testing problems. We prove below that this equivalence remains true if only E
is abelian, and that this property characterizes abelian binary experiments.

We will need the following lemma.

LEMMA 3. Let s1, s2 /∈ TE , 0 < s1 < s2. Then there is a classical experiment
F = (X = {1, 2, 3}, {p, q}), such that fE(t) ≥ fF (t) for all t and fE (si) = fF (si),
i = 1, 2.

Proof : Let us define linear functions gi(t) := ai − tbi , i = 0, . . . , 3, where
a0 = b0 = 1, a3 = b3 = 0 and ai = fE(si)− sif ′E (si), bi = −f

′
E(si), i = 1, 2, so that

gi(t) = fE(si)+ (t − si)f ′E (si)

is tangent to fE at si , i = 0, 1, 2, where we put s0 = 0. Since fE is convex and
fE(t) ≥ max{1 − t, 0}, gi(t) ≤ f (t), for all i and t . Moreover, since fE is also
nonincreasing, we have for any t < 0, −1 = f ′E(t) ≤ f ′E(s1) ≤ f ′E(s2) ≤ 0 so that
b0 ≥ b1 ≥ b2 ≥ b3. Convexity and fE(0) = 1 also imply that

1− a1= 1− fE(s1)+ s1f ′E (s1) ≥ 0,
a1 − a2= fE(s1)− fE(s2)− f ′E (s2)(s1 − s2)+ s1(b1 − b2) ≥ 0,

a2= fE(s2)+ s2b2 ≥ 0,

so that a0 ≥ a1 ≥ a2 ≥ a3. Put pi := ai−1− ai , qi := bi−1− bi , i = 1, 2, 3, then p =

(p1, p2, p3) and q = (q1, q2, q3) are probability measures. Let F := ({1, 2, 3}, {p, q}),
then

fF (t) =
∑

i,pi−tqi>0

pi − tqi =
∑

i,gi−1(t)>gi (t)

gi−1(t)− gi(t).

Let us now define the points t ′0, . . . , t
′
3 as follows. Put t ′0 := 0 and for i = 1, 2, 3,

let t ′i := t ′i−1 if gi = gi−1, otherwise let t ′i be such that gi(t) < gi−1(t) for
t < t ′i and gi(t

′
i ) = gi−1(t

′
i ). Note that t ′i ≥ 0, since gi(0) ≤ gi−1(0). Moreover, since

gi(si) = fE (si) ≥ gi−1(si), we have t ′i ≤ si for i = 0, 1, 2. In fact, t ′i < si for i = 1, 2,
since gi−1(si) = gi(si) = fE(si) implies fE = gi = gi−1 in some interval containing si ,
so that t ′i = t

′
i−1 ≤ si−1 < si . Similarly, for i = 2, 3, gi(si−1) ≤ fE(si−1) = gi−1(si−1),

so that we either have t ′i = t ′i−1 or t ′i > si−1. In the case that g2(t) > 0 for all t ,
we put t ′3 = ∞. Putting all together, we have 0 = t ′0 ≤ t

′
1 < s1 < t ′2 < s2 < t ′3 ≤ ∞

and

fF (t)=
3∑
j=i

gj−1(t)− gj (t) = gi−1(t), t ∈ 〈t
′
i−1, t

′
i 〉, i = 1, 2, 3,

fF (t)= 0, t ∈ 〈t ′3,∞).

It follows that fF (t) ≤ fE(t) for all t and fF (si) = fE(si), i = 1, 2. �
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We will now state the main result of this section.

THEOREM 6. Let E = {A, {ρ1, ρ2}) be a binary experiment. Then the following
are equivalent:

(i) E ≥2,ε F ⇐⇒ E ≥ε F for any ε ≥ 0 and any abelian binary experiment F ,
(ii) E ≥2,ε F ⇐⇒ E ≥ε F for any ε ≥ 0 and any binary experiment F ,

(iii) E ≥2,0 F ⇐⇒ E ≥0 F for any abelian binary experiment F ,
(iv) E is abelian.

Proof : Suppose (i) and let F = (B, {σ1, σ2}) be any binary experiment such that
E ≥2,ε F . Let D be a finite set and let N ∈ M(D,F). Put pi := N(σi), i = 1, 2,
and let FN := (D, {p1, p2}). Then by Theorem 5, we have for each t ≥ 0,

‖ρ1 − tρ2‖1 ≥ ‖σ1 − tσ2‖1 − 2(1+ t)ε ≥ ‖p1 − tp2‖1 − 2(1+ t)ε.

Hence E ≥2,ε FN and (i) implies that E ≥ε FN . By Corollary 1, there is some
M ∈M(D, E) such that

‖M(ρi)−N(σi)‖1 = ‖M(ρi)− pi‖1 ≤ 2ε, i = 1, 2.

By Theorem 2, E ≥ε F and this implies (ii). (ii) trivially implies (iii).
Suppose (iii). Choose any points s1, s2 /∈ TE , 0 < s1 < s2, then by Lemma 3,

there is a classical experiment F = ({1, 2, 3}, {p1, p2}) such that fE(t) ≥ fF (t) for
t ≥ 0 and fE (si) = fF (si), i = 1, 2. By Theorem 5, this implies that E ≥2,0 F and
by (iii), E ≥0 F . By Corollary 1, there is a POVM M : {1, 2, 3} → A such that
pk = M(ρk), k = 1, 2. For i = 1, 2, put Ji := {j ∈ {1, 2, 3}, p1(j) − sip2(j) > 0},
then we have

fE (si)= fF (si) =
∑
j∈Ji

p1(j)− sip2(j)

=
∑
j∈Ji

Tr (ρ1Mj)− siTr (ρ2Mj) = Tr (ρ1 − siρ2)
∑
j∈Ji

Mj .

Since si /∈ TE , we have Psi ,0 = 0 and Lemma 1 implies that
∑

j∈Ji
Mj = Psi ,+.

Hence the projection Psi,+ is in the range of M . Since for all j ∈ {1, 2, 3} we
either have Mj ≤ Psi ,+ or Mj ≤ I − Psi,+, Psi,+ must commute with all Mj . In
particular, Ps1,+ and Ps2,+ commute.

Since this can be done for any such s1, s2, it follows that all {Pt,+, t /∈ TE} are
mutually commuting projections. Since t �→ Pt,+ is right-continuous, it follows that
Ptj ,+ commutes with all Ps,+ for s /∈ TE , and by repeating this argument, Pt,+ are
mutually commuting projections for all t ≥ 0.

Let now A0 be the subalgebra generated by {Pt,+, t ≥ 0}. Then A0 is an abelian
subalgebra which is 2-sufficient for E . Hence E must be abelian by Theorem 4.

The implication (iv) �⇒ (i) was proved by Torgersen [17]. �
REMARK 1. If dim(H) = dim(K) = 2, it was proved in [1] that E ≥2,0 F if

and only if F is a randomization of E . The above proof shows that if dim(K) ≥ 3
this is no longer true unless E is abelian.
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5. Statistical morphisms
Let SE := span{ρθ, θ ∈ �}. A k-statistical morphism [3, 8] is a linear map

L : SE → B such that
(i) L(ρθ) ∈ S(B) for all θ ,

(ii) for each POVM N : Dk → B there is some M ∈M(Dk, E) satisfying

TrL(ρ)Ni = Tr ρMi, i ∈ Dk, ρ ∈ SE .

The map L is a statistical morphism if it is a k-statistical morphism for any k.
It is clear that any positive trace preserving map L : A → B defines a statistical
morphism. The proof of the following proposition appears also in [8].

PROPOSITION 1. E ≥k,0 F if and only if there is a k-statistical morphism
L : SE → B such that L(ρθ) = σθ .

Proof : Suppose that E ≥k,0 F for some k, then we also have E ≥2,0 F , and
by Theorem 3, this implies ‖

∑
θ Aθρθ‖1 ≥ ‖

∑
θ Aθσθ‖1 for any Aθ ∈ R. Put

L : ρθ �→ σθ and extend to SE by L(
∑

θ Aθρθ ) =
∑

θ AθL(ρθ ), then ‖L(x)‖1 ≤ ‖x‖1
for x ∈ SE , so that L is a well-defined linear map on SE . Theorem 2 (iv) now
implies that L is a k-statistical morphism. The converse is obvious. �

In [14] and [3], a question was raised whether 0-deficiency is equivalent with
the existence of a trace preserving positive map that maps one experiment onto
another. It is clear that this question is equivalent with the question if any statistical
morphism can be extended to a trace preserving positive map. We show below
that if E and F are binary experiments, then any k-statistical morphism such that
L(ρi) = σi , i = 1, 2 can be extended to even a completely positive map, but
Theorem 6 implies that such an extension is not trace preserving in general. This
shows that the condition that the map preserves trace cannot be omitted.

Let t1 be as in Lemma 2. Note that

t1 = max{t ≥ 0, fE(t) = 1− t} = max{t ≥ 0, ρ1 − tρ2 ≥ 0} (4)

and t1 = 0 if and only if supp ρ2 �≤ supp ρ1. Let us denote

tmax := min{t ≥ 0, fE (t) = 0} = min{t ≥ 0, ρ1 − tρ2 ≤ 0}. (5)

Then we have either tmax = tl or tmax = ∞, and the latter happens if and only if
supp ρ1 �≤ supp ρ2. We have

t1ρ2 ≤ ρ1 ≤ tmaxρ2 (6)

and t1, tmax are extremal values for which the inequality occurs. Equivalently,

t−1
maxρ1 ≤ ρ2 ≤ t

−1
1 ρ1 (7)

with t−1
max and t−1

1 extremal. We also remark that t1 = sup(ρ1/ρ2) and tmax = inf(ρ1/ρ2)

as defined in [12].

THEOREM 7. Let E = (A, {ρ1, ρ2}), F = (B, {σ1, σ2}) be binary experiments. If
E ≥2,0 F , then there is a completely positive map T : A→ B such that T (ρi) = σi ,
i = 1, 2.
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Proof : Let E ≥0,2 F , then there is a 2-statistical morphism L : SE → B,
L(ρi) = σi , i = 1, 2. Moreover, fE(t) ≥ fF (t) for all t . Let t ′1 and t ′max be as in (4)
and (5) for F . Since fF (t) ≥ max{0, 1− t}, we must have t1 ≤ t ′1 and t ′max ≤ tmax.
The rest of the proof is the same as the proof of [12, Theorem 21]:

Let u, v ∈ SE be positive elements such that ker(u) �≤ ker(v) and ker(v) �≤ ker(u).
Then there are some ϕ,ψ ∈ H such that uϕ = vψ = 0, but uψ �= 0, vϕ �= 0. Put

T (a) =
〈ψ, aψ〉

〈ψ, uψ〉
L(u)+

〈ϕ, aϕ〉

〈ϕ, vϕ〉
L(v), a ∈ A,

then T is a completely positive extension of L. We show that such u and v exist.
Suppose tmax <∞ so that supp ρ1 ≤ supp ρ2, then u := tmaxρ2−ρ1, v := ρ1− t1ρ2.

Then u, v ≥ 0 and the condition on the kernels follows by extremality of t1 and
tmax. If tmax = ∞ but t1 > 0, then we put u := t−1

1 ρ1 − ρ2 and v := ρ2. Finally, if
tmax = ∞ and t1 = 0, then we put u := ρ1, v := ρ2. �

REMARK 1. One can see that the extension obtained in the above proof cannot
be trace preserving unless dim H = 2 and E is abelian.

Appendix: Proof of Lemma 2

The statement (i) follows easily by definition and (3).
Let ρ(t) := ρ1− tρ2. It can be shown ([7, Chap. II]) that the eigenvalues of ρ(t)

are analytic functions t �→ λi(t) for all t ∈ R. It follows that ρ(t) has a constant
number N of distinct eigenvalues λ1(t), . . . , λN(t), apart from some exceptional
points where some of these eigenvalues are equal, and there is a finite number
of such points in any finite interval. Moreover, let Pi(t) be the eigenprojection
corresponding to λi(t) for a non-exceptional point t , then t �→ Pi(t) can be extended
to an analytic function for all t such that, if s is an exceptional point, then the
projection corresponding to λi(s) is given by

∑
j,λj (s)=λi (s)

Pj (s). By continuity,
TrPi(t) is a constant, we denote it by mi . If s is not an exceptional point, mi is
the multiplicity of λi(s).

By differentiating the equation Tr ρ(s)Pi(s) = miλi(s) one obtains

λ′i (s) = −
1
mi

Tr ρ2Pi(s). (8)

It follows that λi(s) is nonincreasing for all s, moreover, λ′i (s) = 0 implies that
ρ2Pi(s) = 0, so that ρ(t)Pi(s) = ρ(s)Pi(s) = λi(s)Pi(s) for all t and λi(s) is an
eigenvalue of ρ(t) for all t . Hence λi is either strictly decreasing or a constant,
which must be nonzero, since we assumed that ρ1+ ρ2 is invertible. It follows that
each λi hits 0 at most once, so that there is only l ≤ N points where λi(t) = 0
for some i. Let us denote the points by 0 ≤ t1 < · · · < tl , it is clear that these
are exactly the points where Pt,0 �= 0. Let Jj := {i, λi(tj ) > 0}, j = 1, . . . , l. Then
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Jj ⊂ Jj−1 and

fE(t) =
∑
i∈Jj

miλi(t), t ∈ 〈tj−1, tj 〉, j = 1, . . . , l.

This implies (ii). �
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Abstract—For a pair of quantum channels with the same
input space, we show that the possibility of approximation of
one channel by post-processings of the other channel can be
characterized by comparing the success probabilities for the two
ensembles obtained as outputs for any ensemble on the input
space coupled with an ancilla. This provides an operational
interpretation to a natural extension of Le Cam’s deficiency
to quantum channels. In particular, we obtain a version of the
randomization criterion for quantum statistical experiments. The
proofs are based on some properties of the diamond norm and
its dual, which are of independent interest.

I. INTRODUCTION

The theory of comparison of statistical experiments started
in the work of Blackwell [1], who introduced a natural order-
ing of experiments in terms of the risks of optimal decision
rules. This ordering was extended by Le Cam [2] into a
deficiency measure on statistical experiments, expressing how
well an experiment S can be approximated by randomizations
of another experiment T . Le Cam’s randomization criterion
shows that deficiency also gives the maximal loss in the
average payoffs of decision procedures, experienced when the
experiment S is replaced by T . For an account on comparison
of statistical experiments, see e.g. [3, 4].

An extension of Blackwell’s results for quantum experi-
ments was first obtained by Shmaya [5] in the framework of
quantum information structures. In [6], a theory of comparison
for both classical and quantum experiments is developed in
terms of statistical morphisms. In both works, either additional
entanglement or composition of the experiment with a com-
plete set of states is required. Quantum versions of Le Cam’s
randomization criterion were studied in [7, 8]. In particular,
Matsumoto in [8] introduced a natural generalization of classi-
cal decision problems to quantum ones and proved a quantum
randomization criterion in this setting. The main drawback
of this approach is the lack of operational interpretation for
quantum decision problems.

Comparison of channels can be obtained as an extension
of the theory of comparison of experiments. A natural idea
is the following: given two channels with the same input
space, compare the two experiments emerging as outputs for
a single input experiment. If the output experiment of the
channel 	 is always more informative than the output of the

This work was supported by the grants VEGA 2/0069/16 and by Science
and Technology Assistance Agency under the contract no. APVV-0178-11.

channel �, we say that 	 is less noisy than �. An ordering of
classical channels was first introduced in the work by Shannon
[9], where a coding/decoding criterion was applied. Similar
orderings were studied in e.g. [10, 11]. For some more recent
works see e.g. [12, 13].

In the quantum setting, it is possible to use a stronger
ordering, namely to consider experiments on the input space
coupled with an ancilla. As it turns out, for quantum channels,
	 is less noisy in this stronger sense if and only if � is
a post-processing of 	. In fact, it is enough to compare
guessing probabilities for ensembles of states. This remarkable
result was first obtained by Chefles in [14], based on [5]. It
was extended and refined in [6], in particular it was proved
that no entanglement in the input ensemble is needed. Some
applications were already found in [13, 15–17].

The aim of the present work is to establish an approximate
version of these results, which may be called the randomiza-
tion criterion for quantum channels. More precisely, we study
an extension of Le Cam’s deficiency for quantum channels,
based on the diamond norm. Such definitions appear naturally
in quantum information theory, for example the approximate
(anti)degradable channels, [18]. We show that deficiency can
be characterized by comparing success probabilities for output
ensembles, with respect to the success probability of the
input ensemble. These results are then applied to statistical
experiments and a quantum randomization criterion is proved
in terms of success probabilities.

The diamond norm appears as a distinguishability norm for
quantum channels [19]. As it was observed in [20], this norm
can be defined using the order structure given by the cone of
completely positive maps. We also show that the dual norm
on positive elements can be expressed as the optimal success
probability for a certain ensemble. These properties provide
a convenient framework for proving our results and are of
independent interest.

II. NOTATIONS AND PRELIMINARIES

If not stated otherwise, the full proofs can be found in [21].
Throughout the paper, all Hilbert spaces are finite dimen-

sional. If H is a Hilbert space, we fix an orthonormal basis
fjeii; i = 1; : : : ;dim(H)g in H. We will denote the algebra of
linear operators on H by B(H), the set of positive operators
by B(H)+ and the real vector space of self-adjoint elements
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by Bh(H). The set of states, or density operators, on H will
be denoted by S(H) := f� 2 B(H)+; Tr� = 1g.

Let L(H;K) denote the real vector space of Hermitian
linear maps B(H)! B(K). The set L(H;K)+ of completely
positive maps forms a closed convex cone in L(H;K) which is
pointed and generating. With this cone, L(H;K) becomes an
ordered vector space. We will denote the corresponding order
by �. An element of L(H;K)+ that preserves trace is usually
called a channel. We will denote the set of all channels by
C(H;K).

For � 2 L(H;H), we define

s(�) =
X
i;j

hei; �(jeiihej j)eji:

It is easy to see that s defines a linear functional L(H;H)! R

and for all � 2 L(H;K),  2 L(K;H), s( � �) = s(� �  ).
We now identify the dual space of L(H;K) with L(K;H),

where duality is given by

h ; �i = s( � �); � 2 L(H;K);  2 L(K;H):

Note that the tracelike property of s implies that we have
h�;  i = h ; �i and

h�; � �  i = h� � �;  i = h � �; �i:

The dual cone of positive functionals satisfies

(L(H;K)+)� := f 2 L(K;H); h ; �i � 0;8� 2 L(H;K)+g

= L(K;H)+;

so that the cone of completely positive maps is self-dual.

Remark 1. Let us denote

XH :=
X
i;j

jeiihej j 
 jeiihej j 2 B(H
H)+:

The Choi representation C : � 7! (� 
 idH)(XH) provides
an order isomorphism of L(H;K) onto Bh(K 
H) with the
cone of positive operators B(K
H)+. Note also that for any
� 2 L(H;H), s(�) = TrC(�)XH, so that

h ; �i = s( � �) = Tr [C( � �)XH] = Tr [C(�)C( �)]:

It is of course possible to use the Choi representation with this
duality, but for our purposes it is mostly more convenient to
work with the spaces of mappings.

III. THE DIAMOND NORM AND ITS DUAL

The diamond norm in L(H;K) is defined by

k�k� = sup
�2S(H
H)

k(�
 id)(�)k1; (1)

where k�k1 denotes the trace norm in B(K
H). It was proved
in [20] that this norm is obtained from the set of channels and
the order structure in L(H;K). Namely, for � 2 L(H;K),

k�k� = inf
�2C(H;K)

inff� > 0;��� � � � ��g: (2)

It was also shown that the dual norm in L(K;H), which we
will denote by k � k�, is similarly obtained from the set of
erasure channels f�� : B(K) 3 A 7! Tr [A]�; � 2 S(H)g:

k k� = inf
�2S(H)

inff� > 0;���� �  � ���g: (3)

We list some useful properties of these norms.

Proposition 1. (i) If � 2 L(H;K)+, then

k�k� = sup
�2S(H)

Tr [�(�)]; k�k� = sup
�2C(K;H)

h�; �i:

(ii) If �;  2 C(H;K), then

k��  k� = 2 sup
�0;kk��1

h; ��  i

(iii) If � 2 C(K;K0) and � 2 C(H0;H), then the maps � 7!
� � � and � 7! � � � are contractions with respect to
both k � k� and k � k�.

An important property of the dual norm is its relation to
success probabilities for ensembles of quantum states. Let
E = f�i; �ig

k
i=1 be and ensemble on H, here �i 2 S(H) and

�1; : : : ; �k are prior probabilities. In the setting of multiple
hypothesis testing, the task is to guess which one is the true
state. Any procedure to obtain such a guess can be identified
with some POVM M = fM1; : : : ;Mkg, Mi 2 B(H)+,P

iMi = I . Here Tr�iMj is interpreted as the probability
that �j is chosen while the true state is �i, so that the average
success probability for the procedure M is

P
i �iTrMi�i. One

can show that the maximum probability of a successful guess
for this ensemble has the form Psucc(E) = k�Ek

�, where
�E 2 L(Cn;K) is the map A 7!

P
iAii�i�i. More generally,

we have

Proposition 2. Let  2 L(K;H)+. Then there is an (equiprob-
able) ensemble E on H
K such that

kk� = dim(K)Tr [(I)]Psucc(E):

Moreover, for any � 2 L(H;H0)+, we have

E�� = (�
 id)(E):

IV. THE MAIN RESULT

Let � 2 C(H;K) and 	 2 C(H;K0). Similarly to Le
Cam’s deficiency for statistical experiments, we may define
the deficiency of � with respect to 	 by

�(�;	) = inf
�2C(K0;K)

k�� � �	k�:

Since C(K0;K) is convex and compact, the infimum is attained,
in particular, �(�;	) = 0 if and only if � = � �	 for some
� 2 C(K0;K). In this case, we write � � 	 We also define
Le Cam distance by

�(�;	) = maxf�(�;	); �(	;�)g:

This defines a preorder on the set of channels with the same
input space. The following data processing inequalities for �
are obvious consequences of their definition and Proposition
1 (iii).
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Proposition 3. Let �1;�2;�, 	1;	2;	 be channels with the
same input space.

(i) If �1 � �2, then �(�1;	) � �(�2;	).
(ii) If 	1 � 	2, then �(�;	1) � �(�;	2).

Let now �(�;	) = 0. Then for any ensemble E on the
tensor product H 
 H0 with an ancillary Hilbert space H0,
we have

Psucc((�
 idH0)(E)) � Psucc((	
 idH0)(E)): (4)

The converse was proved in [6, 14]. Our aim is to prove an
�-version of this result.

Theorem 1. Let � 2 C(H;K), 	 2 C(H;K0), � � 0. Then
�(�;	) � � if and only for any finite dimensional Hilbert
space K0 and any ensemble E on H
K0,

Psucc((�
 idK0)(E)) � Psucc((	
 idK0)(E)) +
�

2
Psucc(E)

Moreover, one can restrict to K0 = K and equiprobable
ensembles with k = dim(K)2 elements.

Proof. Assume that � 2 C(K0;K) is a channel such that

k�� � �	k� � �:

Then for any  2 L(K0;H)+ and � 2 C(K;K0), we have by
positivity and Proposition 1 (ii), (iii) that

h; � � �i � h; � � � �	i+ jh; � � (�� � �	)ij

� h; � � � �	i+
1

2
kk�k� � (� �	� �)k�

� h; � � � �	i+
1

2
�kk�

From this, we obtain by Proposition 1 (i) and properties of s
that

k� � k� = sup
�2C(K;K0)

h�;� � i = sup
�2C(K;K0)

h; � � �i

� sup
�2C(K;K0)

h; � � � �	i+
1

2
�kk�

= sup
�2C(K;K0)

h� � �;	 � i+
1

2
�kk�

� k	 � k� +
1

2
�kk�:

Hence we have proved that �(�;	) � � implies

k� � k� � k	 � k� +
1

2
�kk�; 8 2 L(K0;H)+: (5)

Since by (1) we have k�k� = k� 
 idK0k� for any K0, we
also have �(�
 idK0 ;	
 idK0) � �. Hence we obtain

k(�
 idK0) � k
� � k(	
 idK0) � k

� +
�

2
kk� (6)

for all  2 L(K1;H
K0) and any K1. If E is any ensemble
on H
K0, then

Psucc((�
 id)(E)) = k�(�
id)(E)k
� = k(�
 id) � �Ek

�

and similarly for 	. Putting  = �E in (6) implies the desired
inequality.

For the converse, note that by Proposition 1 (ii), we have

�(�;	) = 2 min
�2C(K0;K)

8><
>: max

2L(K;H)+;
kk��1

h;�� � �	i

9>=
>;

Since the sets C(K0;K) and f 2 L(K;H)+; kk� � 1g are
both convex and compact and the map (�; ) 7! h;����	i
is linear in both variables, we may apply the minimax theorem,
see e.g. [3]. It follows that

�(�;	) = 2max


min
�
h;�� � �	i

= 2max


fh;�i � k	 � k�g

� 2max


fk� � k� � k	 � k�g :

Proposition 2 and the assumption now imply that the last
expression is less that �.

In the case � = 0, we obtain a stronger condition. Similar
results were proved in [6].

Theorem 2. Let � 2 C(H;K), 	 2 C(H;K0) and let � 2
C(K0;K) be a surjective channel. Then �(�;	) = 0 if and
only if for any ensemble E on H
K0,

Psucc((�
 �)(E)) � Psucc((	
 �)(E)):

In particular, by choosing � as a classical-to-quantum chan-
nel of the form A 7!

P
iAii�i for a set of states f�ig

that spans B(K), we see that for � = 0 we may restrict to
ensembles of separable states.

V. THE RANDOMIZATION CRITERION FOR QUANTUM
EXPERIMENTS

A quantum statistical experiment is a pair T = (H; f��; � 2
�g), where �� 2 S(H) for all � 2 � and � is an arbitrary
set of parameters. Any experiment can be viewed as the set of
possible states of some physical system, determined by some
prior information on the true state. Note that this definition
contains also classical statistical experiments on finite sample
spaces, which can be identified with diagonal density matrices.

Based on the outcome of a measurement on the system,
a decision j is chosen from a (finite) set D of decisions.
This procedure, or a decision rule, is represented by a POVM
fMj ; j 2 Dg on H. The performance of a decision rule is
assessed by a payoff function, which in our case is a map
g : � �D ! R+, representing the payoff obtained if j 2 D
is chosen while the true state is ��. The average payoff of the
decision rule M at � 2 � is computed as

PT (�;M; g) =
X
j2D

g�;jTr ��Mj :

The next theorem is the celebrated Le Cam’s randomization
criterion for classical statistical experiments. Note that our
setting contains only experiments on finite sample spaces, but
the theorem holds in a much more general case.
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Theorem 3. [2] Let T and S be classical statistical experi-
ments. Then the following are equivalent.

(i) Tor any decision space (D; g) and any decision rule M
for S, there is some decision rule N for T such that

sup
�2�

�
PS(�;M; g)� PT (�;N; g)� �max

d
jg(�; d)j

�
� 0:

(ii) There is some channel � such that

sup
�

k�� � �(��)k1 � 2�

Remark 2. One can show that the condition (i) of the above
theorem is equivalent to

Psucc(f�j ;
X
�2�0

�j���g) � Psucc(f�j ;
X
�2�0

�j���g)+�Psucc(E)

for any ensemble of the form E = f�j ;
P

�2�0
�j�je�ihe�jg

and any finite subset �0 � �.
As it was proved in [22], Theorem 3 does not hold for

quantum experiments. The quantum randomization criterion
proved in [8] is based on an extension of the classical decision
spaces to quantum ones, but an operational interpretation of
the quantum decision problems is not clear. The aim of the
present section is to apply Theorem 1 to prove a quantum ran-
domization criterion, formulated in terms of optimal guessing
probabilities of some ensembles. In view of Remark 2, this
gives a quantum extension of Le Cam’s theorem. In the case
� = 0, a similar result was obtained in [6].

Theorem 4. Let S = (K; f��; � 2 �g) and T =
(H; f��; � 2 �g) be quantum statistical experiments and let
� � 0. Then the following are equivalent.

(i) There is some � 2 C(H;K) such that

sup
�2�

k�� � �(��)k1 � 2�

(ii) Let f�1; : : : ; �ng be any finite subset of � and let E =
f�i; �ig

k
i=1 be any ensemble on Cn 
 K, consisting of

block-diagonal states �i =
Pn

j=1 je
n
j ihe

n
j j 
 � ji , � ji 2

B(K)+,
P

j Tr �
j
i = 1. Then

Psucc(f�i;

nX
j=1

��j 
 � ji g) �

� Psucc(f�i;

nX
j=1

��j 
 � ji g) + �Psucc(E)

Moreover, in (ii) we may restrict to equiprobable ensembles
with k = dim(K)2.

Proof. Let f�1; : : : ; �ng � � and let �S 2 L(Cn;K) be given
by A 7!

Pn

j=1Ajj��j . It is easy to see that �S is a channel.
Moreover, by [21, Lemma 2], we have for any � 2 C(H;K),

k�S � � � �T k� = max
j

k��j � �(��j )k1;

where �T is defined analogically. By Theorem 1, the restric-
tion of (i) to f�1; : : : ; �ng is equivalent to

Psucc((�S 
 id)(E)) � Psucc((�T 
 id)(E)) + �Psucc(E)

for any ensemble E on Cn
K. It is now clear that (i) implies
(ii). Since for any state � 2 S(Cn 
K),

(�S 
 id)(�) =
X
j

��j 
 � j = (�S 
 id)(�)

(�T 
 id)(�) =
X
j

��j 
 � j = (�T 
 id)(�)

where � =
P

j je
n
j ihe

n
j j
 �

j is a block diagonal state, we see
that (ii) implies that

inf
�2C(H;K)

sup
�2�0

k�� � �(��)k1 � 2�

for any finite subset �0 � �. Let P� denote the set of
probability measures over � with finite support, then we
clearly have

sup
p2P�

min
�2C(H;K)

X
�2�

p(�)k�� � �(��)k1 � 2�:

Now we use the minimax theorem once more. For this, note
that P� is a convex set, C(H;K) is compact and convex, the
map (p; �) 7!

P
�2� p(�)k�� � �(��)k1 is linear in p and

continuous and convex in �. The minimax theorem can be
applied and we obtain

sup
p2P�

min
�2C(H;K)

X
�2�

p(�)k�� � �(��)k1

= min
�2C(H;K)

sup
p2P�

X
�2�

p(�)k�� � �(��)k1

= min
�2C(H;K)

sup
�2�

k�� � �(��)k1:

Hence (ii) implies (i).

We will say that an experiment S0 = (K; f��; � 2 �0g)
is complete if the set f��; � 2 �0g spans B(H). If �0 is a
finite set, then �S0 is a surjective channel in C(Cj�0j;K). By
an application of Theorem 2 we obtain

Corollary 1. Let S = (K; f��; � 2 �g) and T =
(H; f��; � 2 �g) be quantum statistical experiments. Let
S0 = (K; f�1; : : : ; �Ng) be a complete experiment. Then
�� = �(��) for some �(H;K) if and only if for any
f�1; : : : ; �ng � � and any collection f�i

j;lg, i = 1; : : : ; k,
j = 1; : : : ; N , l = 1; : : : ; n of nonnegative numbers such thatP

j;l �
i
j;l = 1 for all i, we have

Psucc(f1=k;
X
j;l

�i
j;l��l
�jg) � Psucc(f1=k;

X
j;l

�i
j;l��l
�jg):

Corollary 2. Let � 2 C(H;K), 	 2 C(H;K0) and let
T0 = (H; f�H1 ; : : : ; �

H
Mg), S0 = (K; f�K1 ; : : : ; �

K
Ng) be com-

plete experiments. Then �(�;	) = 0 if and only if

Psucc((�
 idK0)(E)) � Psucc((	
 idK0)(E))

holds for all ensembles of states of the form

E = f�i;
X
j;l

�i
j;l�

H
l 
 �Kj g:
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VI. CONCLUDING REMARKS

We proved a version of the randomization criterion for
quantum channels and applied it to obtain a randomization
criterion for quantum statistical experiments. The deficiency
�(�;	) in some special cases already appeared in quantum
information theory and our results can be further used to
obtain an operational definition e.g. for the approximately
(anti)degradable channels [18], similarly as it was done for
antidegradable channels in [15]. Another possible application
is to �-private and �-correctable channels [23].

We used some properties of the diamond norm and its dual
that can be obtained solely from the order structure given by
completely positive maps and the trace preserving condition.
This suggests the possibility to apply similar methods to
more general situations. For example, one may assume some
structure in the channels, obtaining similar results for more
specific quantum protocols, such as quantum combs, [24]. It is
also possible to define deficiency in terms of pre-processings.
In the special case of POVMs regarded as a special kind of
channels, this leads to an approximate version of the ordering
of POVMs by cleanness, [25]. More generally, the processing
can consist of a combination of pre- and post-processing,
also allowing some correlations between input and output
systems, either classical or quantum. This would be closer
to the original definition by Shannon, [9]. It seems that all
these situations can be treated within the suggested framework.
Another challenging problem is the extension of these results
to infinite dimensional Hilbert spaces. Some partial results in
this direction were obtained in [26]. Although the methods
used in [20] rely on finite dimensions, it seems plausible that
the useful properties of the norms can be extended also to this
case. All these problems are left for future work.
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Let K be a convex subset of the state space of a finite-dimensional C*-algebra. We
study the properties of channels on K, which are defined as affine maps from K into the
state space of another algebra, extending to completely positive maps on the subspace
generated by K. We show that each such map is the restriction of a completely positive
map on the whole algebra, called a generalized channel. We characterize the set of
generalized channels and also the equivalence classes of generalized channels having
the same value on K. Moreover, if K contains the tracial state, the set of generalized
channels forms again a convex subset of a multipartite state space, this leads to a
definition of a generalized supermap, which is a generalized channel with respect
to this subset. We prove a decomposition theorem for generalized supermaps and
describe the equivalence classes. The set of generalized supermaps having the same
value on equivalent generalized channels is also characterized. Special cases include
quantum combs and process positive operator valued measures (POVMs). C© 2012
American Institute of Physics. [doi:10.1063/1.3676294]

I. INTRODUCTION

The first motivation for this paper comes from the problem of measurement of a quantum
channel. A mathematical framework for such measurements, or more generally, for measurements
on quantum networks, was introduced in Ref. 4, in terms of testers.5 For quantum channels, these
were called process POVMs or PPOVMs in Ref. 16. Similar to POVMs, a PPOVM is a collection of
positive operators (F1, . . . , Fm) in the tensor product of the input and output spaces, but summing
up to an operator IH1 ⊗ ω for some state ω on the input space. The output probabilities of the
corresponding channel measurement with values in {1, . . . , m} are then given by

pi (E) = Tr (Mi XE ), i = 1, . . . , m,

where XE is the Choi matrix of the channel E . Via the Choi isomorphism, the set of channels
C(H0,H1) can be viewed as (a multiple of) an intersection of the set of states in B(H1 ⊗ H0) with a
self-adjoint vector subspace J. This is a convex set, and a measurement on channels can be naturally
defined as an affine map from this set to the set of probability measures on the set of outcomes.

A natural question arising in this context is the following: Are all such affine maps given by
PPOVMs? And if so, is this correspondence one-to-one?

Further, the concept of a quantum supermap was introduced in Ref. 6, which is a map B(H1

⊗ H0) → B(H3 ⊗ H2) sending channels to channels. It was argued that such a map should be
linear and completely positive. But it is clear that it is enough to consider completely positive maps
J → B(H3 ⊗ H2) sending channels to channels. We may then ask whether all such maps extend to
a completely positive map on B(H1 ⊗ H0), and if this extension is unique.

Supermaps on supermaps were defined similarly, these are the so-called quantum combs, which
are used in description of quantum networks.4, 8 It was proved that all quantum combs can be

a)Electronic mail: jenca@mat.savba.sk.

0022-2488/2012/53(1)/012201/23/$30.00 C© 2012 American Institute of Physics53, 012201-1
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represented by memory channels, which are given by a sequence of channels connected by an
ancilla, these form the “teeth” of the comb. The theory of quantum combs was subsequently used
for optimal cloning7 and learning2 of unitary transformations and measurements.3 As it turns out,
the set of all N-combs forms again (a multiple of) an intersection of the set of multipartite states by
a vector subspace.

To deal with these questions in full generality, we introduce the notion of a channel on a convex
subset K of the state space, which is an affine map from K into another state space, extending to a
completely positive map on the vector subspace generated by K. In order to include all channels,
POVMs and instruments, and other similar objects, we work with finite-dimensional C*-algebras
rather than matrix algebras. We show that each such map can be extended to a completely positive
map on the whole algebra, these maps are called generalized channels (with respect to K). Further, a
measurement on K is defined as an affine map from K into the set of probability distributions and it
is shown that each such measurement is given by a (completely) positive map on the whole algebra
if and only if K is a section of the state space, that is, an intersection of the set of states by a linear
subspace. This special kind of a generalized channel is called a generalized POVM.

We describe the equivalence class of generalized channels restricting to the same channel on
K. Moreover, we show that if K contains the tracial state, the set of generalized channels, via Choi
representation, is again (a multiple of) a section of some state space, so that we may apply our results
on the set of generalized channels themselves and repeat the process infinitely. This leads to the
definition of a generalized supermap. We show that the quantum combs and testers are particular
cases of generalized supermaps, other examples treated here include channels and measurements
on POVMs and PPOVMs, and supermaps on instruments. We also describe channels on the set of
states having the same output probabilities for a POVM or a finite number of POVMs.

The outline of the paper is as follows: After Sec. II, we consider extensions of completely
positive maps on subspaces of the algebra and of positive affine functions on K. If the subspace
is self-adjoint and generated by its positive elements, then a consequence of Arveson’s extension
theorem shows that any completely positive map can be extended to the whole algebra. For positive
functionals on K, we show that these extend to positive linear functionals on the whole algebra if
and only if K is a section of the state space. These results are used in Sect. IV for extension theorems
for channels and measurements on K. We characterize the generalized channels with respect to K
and their equivalence classes. We show that a generalized channel can be decomposed to a so-called
simple generalized channel and a channel.

In Sec. V, we prove that the set of generalized channels is again a section of a state space
and introduce the generalized supermaps. We give a characterization of generalized supermaps as
sections of a multipartite state space and show that the quantum combs are a particular case. We
prove a decomposition theorem for the generalized supermaps, similar to the realization of quantum
combs by memory channels proved in Ref. 8. In particular, we show that a generalized comb can
be decomposed as a simple generalized channel and a comb. Finally, we describe the equivalence
classes for generalized supermaps and consider the set of supermaps having the same value on
equivalence classes.

II. PRELIMINARIES

Let A be a finite-dimensional C*-algebra. Then A is isomorphic to a direct sum of matrix
algebras, that is, there are finite-dimensional Hilbert spaces H1, . . . Hn , such that

A ≡
⊕

j

B(H j ).

Below we always assume that A has this form, so that A is a subalgebra of block-diagonal elements
in the matrix algebra B(H), with H = ⊕ jH j . The identity in A will be denoted by IA. We fix a
trace TrA on A to be the restriction of the trace in B(H), we omit the subscript A if no confusion
is possible. If A = B(H) is a matrix algebra, then we write IH and TrH instead of IB(H) and TrB(H).
We will sometimes use the notation HA, HB , etc., for the Hilbert spaces, and HAB = HA ⊗ HB ,
TrA = TrHA , IA = IHA .
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If B is another C*-algebra, then TrA⊗B
A will denote the partial trace on the tensor product A ⊗ B,

TrA(a ⊗ b) = Tr (a)b. If the input space is clear, we will sometimes denote the partial trace just by
TrA.

For a ∈ A, we denote by aT the transpose of a. Note that TrA⊗B
A (xT ) = (TrA⊗B

A x)T for x
∈ A ⊗ B. If A ⊂ A, then AT = {aT, a ∈ A}.

We denote by Ah the set of all self-adjoint elements in A, A+ the convex cone of positive
elements in A and S(A) the set of states on A, which will be identified with the set of density
operators in A, that is, elements ρ ∈ A+ with Tr ρ = 1. If ρ ∈ S(A) is invertible, then we say that
ρ is a faithful state. The projection onto the support of ρ will be denoted by supp (ρ). If A = B(H),
then we denote the set of states by S(H). Let τA denote the tracial state t−1

A IA, here tA = Tr (IA).
Later on, we will also need the set Sc(A) = {a ∈ A+, Tr (ca) = 1} for a positive invertible element
c ∈ A, note that SIA (A) = S(A).

The trace defines an inner product in A by 〈a, b〉 = Tr (a*b), with this A becomes a Hilbert
space. If A ⊂ A is any subset, then A⊥ will denote the orthogonal complement of A. Then A⊥⊥

=: [A] is the linear subspace, spanned by A. The subspace spanned by a single element a will be
denoted by [a].

Let now L ⊆ A be a (complex) linear subspace. We denote by Lh the set of self-adjoint elements
in L, then Lh is a real vector subspace in Ah . The subspace L is self-adjoint if a* ∈ L whenever a
∈ L. In this case L = Lh⊕iLh. If also IA ∈ L , then L is called an operator system.15 If L is generated
by positive elements, then we say that L is positively generated. If L1 and L2 are subspaces in A,
then L1∨L2 denotes the smallest subspace containing both L1 and L2, and L1 ∧ L2 = L1 ∩ L2.

A. Channels, instruments, and POVMs

Let H, K be finite-dimensional Hilbert spaces. For any linear map T : B(H) → B(K), there is
an element XT ∈ B(K ⊗ H), given by

XT := (T ⊗ idH)(�H), �H =
∑
i, j

|i〉〈 j | ⊗ |i〉〈 j | (1)

for |i〉 a canonical basis in H. Conversely, each operator X in B(K ⊗ H) defines a linear map
TX : B(H) → B(K) by

TX (a) = TrH[(IK ⊗ aT )X ], a ∈ B(H). (2)

It is easy to see that TXT = T and XTX = X , so that the two maps are each other’s inverses. The
matrix XT is called the Choi matrix of T. We have the following:

(i) T is completely positive (cp) if and only if XT ≥ 0.11

(ii) T is trace-preserving if and only if TrK XT = IH.

Let now A = ⊕i B(Hi ) and B = ⊕ j B(K j ) be finite-dimensional C*-algebras. For any linear
map T : A → B there are linear maps Ti j : B(Hi ) → B(K j ) such that T(ai) = ⊕jTij(ai), ai ∈ B(Hi ).
It is clear that T is a cp map if and only if all Tij are cp maps. Put

XT := ⊕i, j XTi j ∈ B ⊗ A. (3)

Then it is easy to see that Eq. (2) and both (i) and (ii) hold with H = ⊕iHi and K = ⊕ jK j (hence,
we may replace TrH and TrK by TrA and TrB, similarly for IH and IK). The matrix XT is again called
the Choi matrix of T.

Next we describe instruments and POVMs as special kinds of channels. Let K j ≡ K for all
j = 1, . . . , m, so that B = Cm ⊗ B(K). Then a channel T : A → B is called an instrument A
→ B(K), with values in {1, . . . , m}.14 Note that T is a channel if and only if Tij are cp maps, such
that for each i, Ti := ∑

jTij is a channel B(Hi ) → B(K). The Choi matrix of an instrument has the
form XT = ⊕i

∑m
j=1 | j〉〈 j | ⊗ Xi j , with

TrB XT = ⊕i

∑
j

TrK Xi j = ⊕i IHi = IH = IA.
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Let us now suppose that K = C, then B is the commutative C*-algebra B = Cm . A channel T :
A → B maps states onto probability distributions, hence it is given by a POVM M1, . . . , Mm ∈ A+,∑

k Mk = IA as

T (a) = (Tr M1a, . . . , Tr Mma). (4)

The Choi matrix is XT = ∑
k |k〉〈k| ⊗ MT

k , with TrB XT = ∑
j MT

j = IA.

1. The link product

Let Hi be Hilbert spaces, for i = 1, 2, . . . and let M ⊂ N be a finite set of indices. We denote
HM := ⊗

i∈M Hi . Let N ⊆ N be another finite set and let X ∈ HM, Y ∈ HN be any operators.
The link product of X and Y was defined in Ref. 8 as the operator X ∗ Y ∈ B(HM\N ⊗ HN \M),
given by

X ∗ Y = TrM∩N [(IM\N ⊗ Y TM∩N )(X ⊗ IN \M)], (5)

where TM∩N is the partial transpose on the space HM∩N . In particular, X ∗ Y = X ⊗ Y, if M ∩ N =
∅ and X ∗ Y = Tr (YTX), if M = N .

Proposition 1 (Ref. 8): The link product has the following properties.

1. (Associativity): Let Mi , i = 1, 2, 3 be sets of indices, such that M1 ∩ M2 ∩ M3 = ∅. Then
for Xi ∈ HMi ,

(X1 ∗ X2) ∗ X3 = X1 ∗ (X2 ∗ X3).

2. (Commutativity): Let X ∈ HM, Y ∈ HN , then

Y ∗ X = E(X ∗ Y )E,

where E is the unitary swap on HM\N ⊗ HN \M.
3. (Positivity): If X and Y are positive, then X ∗ Y is positive.

The interpretation of the link product is the following: If X ∈ B(H1 ⊗ H0) and Y ∈ B(H2 ⊗ H1)
are the Choi matrices of maps TX : B(H0) → B(H1) and TY : B(H1) → B(H2), then X ∗ Y is the
Choi matrix of their composition TY ◦ TX. For X ∈ B(H1), we have

Y ∗ X = TY (X ). (6)

Let now X ∈ HM be a multipartite operator and let I ∪ O = M be a partition of M, then X
defines a linear map �X ;I,O : HI → HO, by

�X ;I,O(aI ) = TrHI (IHO ⊗ aT
I )X, aI ∈ HI . (7)

As it was emphasized in Ref. 8, X is the Choi matrix of many different maps, depending on how
we choose the input and output spaces I and O. The flexibility of the link product is in that it
accounts for these possibilities. For example, let M = M1 ∪ M2 ∪ M0 and N = N1 ∪ N2 ∪ M0

be partitions of M and N . Put �X := �X ;M1,M0∪M2 and �Y := �Y ;N1∪M0,N2 . Then X ∗ Y is the
Choi matrix of the map B(HM1∪N1 ) → B(HM2∪N2 ), given by

�Y∗X ;M1∪N1,M2∪N2 = (�Y ⊗ idM2 ) ◦ (idN1 ⊗ �X ).

In the case when the input and output spaces are fixed, we will often treat a cp map and its Choi
matrix as one and the same object, to shorten the discussion.

III. EXTENSIONS OF CP MAPS AND POSITIVE FUNCTIONALS

The main goal of this paper is to study cp maps and channels from a convex subset K of the state
space into another C*-algebra. To characterize such maps, it is crucial to know whether or when
these can be extended to cp maps on the whole algebra. This section contains an extension theorem

213



012201-5 Generalized channels J. Math. Phys. 53, 012201 (2012)

for cp maps on a vector subspace. We also prove that positive affine functionals on K have positive
extensions if and only if K is a section, that is an intersection of the state space by a vector subspace.

A. An extension theorem for cp maps

Let J ⊆ A be a subspace and let K be a finite-dimensional Hilbert space. Let B ⊆ B(K) be a
C*-algebra.

A map � : J → B is positive, if it maps J ∩ A+ into the positive cone B+ and � is completely
positive, if the map

idK0 ⊗ � : B(K0) ⊗ J → B(K0) ⊗ B

is positive, for every finite-dimensional Hilbert space K0. If J is an operator system, that is a self-
adjoint subspace containing the unit, then Arveson’s extension theorem1, 15 states that any completely
positive map � : J → B(K) can be extended to a cp map A → B(K).

The following is a consequence of this theorem in finite dimensions.

Theorem 1: Let J ⊆ A be a self-adjoint positively generated subspace. Then any cp map
J → B can be extended to a cp map A → B.

Proof: Let J+ = J ∩ A+, so that J is generated by J+ . There is some ρ ∈ J+ such that the
support of ρ contains the supports of all other elements in J+ . Let us denote p := supp (ρ), then J
is a subspace in the algebra Ap := pAp. Denote

� : Ap → Ap, �(a) = ρ1/2aρ1/2.

Then J′ := �− 1(J) is an operator system in Ap. Moreover, � : J → B is a cp map if and only if �′

:= �◦� is a cp map J ′ → B ⊆ B(K). By Arveson’s extension theorem, �
′
can be extended to a cp

map �′ : Ap → B(K). Let EB : B(K) → B be the trace preserving conditional expectation, then
� := EB ◦ �′ ◦ �−1 is a cp map Ap → B extending �. This can be obviously extended to A �.

B. Sections of the state space

Let f be an affine function S(A) → R+. Then, since S(A) generates the positive cone A+, f can
be extended to a positive linear functional on A. Below we discuss the possibility of such extension
if f is defined on some convex subset K ⊂ S(A). Let us first describe a special type of such subset.

Let K ⊆ S(A) be a convex subset and let Q be the convex cone generated by K, then
Q = {λK , λ ≥ 0} ⊆ A+. The vector subspace [K] generated by K is self-adjoint and [K] = Q
− Q + i(Q − Q).

We say that K is a section of S(A), if

K = [K ] ∩ S(A). (8)

It is clear that a section of S(A) is convex and compact. It is also clear that (8) is equivalent with

Q = [K ] ∩ A+. (9)

Sections of the state space can be characterized as follows.

Proposition 2: Let K ⊂ S(A) be a compact convex subset and let Q = {λK, λ ≥ 0}. Then K is
the section of S(A) if and only if a, b ∈ Q, and b ≤ a implies a − b ∈ Q.

Proof: Since we always have Q ⊆ [K ] ∩ A+, it is enough consider the inclusion [K ] ∩ A+ ⊆ Q.
But [K ] ∩ A+ = (Q − Q) ∩ A+ and hence any element y ∈ [K ] ∩ A+ has the form y = a − b
with a, b ∈ Q, and b ≤ a. �
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Proposition 3: Let K ⊆ S(A). Then K is a section of S(A) if and only if there is a subspace
J ⊆ A, such that K = J ∩ S(A).

Proof: If K is a section of S(A), then we can put J = [K]. Conversely, let K = J ∩ S(A) for
some subspace J ⊆ A. Then Q = J ∩ A+ and if a, b ∈ Q with b ≤ a, then obviously a − b ∈
J ∩ A+ = Q. By Proposition 2, K is a section of S(A). �

Note that if K = J ∩ S(A) for some subspace J, we do not necessarily have J = [K], even if J
is self-adjoint. The next proposition clarifies this situation.

Proposition 4: Let J ⊆ A be a self-adjoint subspace and let K = J ∩ S(A) �= ∅. Then there is
a projection p ∈ A, such that [K ] = J ∩ Ap. In particular, J = [K] if J contains a positive invertible
element.

Proof: Suppose first that J contains a positive invertible element ρ and let K = J ∩ S(A),
equivalently, Q = J ∩ A+. Since A is finite-dimensional, for any a ∈ Jh, there is some M > 0, such
that a ≤ Mρ, and then

a = Mρ − (Mρ − a) ∈ Q − Q.

This implies Jh = Q − Q and since J is self-adjoint, J = [K].
For the general case, choose some state ρ ∈ K such that its support contains the supports of all

σ ∈ K, so that K ⊆ Ap, where p := supp (ρ). Then Jp := J ∩ Ap is a subspace in Ap, containing
the positive invertible element ρ and K = Jp ∩ S(Ap). Hence, by the first part of the proof, [K]
= Jp. �

C. Positive affine functions on K

Let A(K) be the vector space of real affine functions and A(K)+ the convex cone of positive
affine functions over K. In this paragraph, we study elements in A(K)+ that can be extended to a
positive affine functional on S(A), hence, are given by positive elements in A.

Any element in A(K) extends to a (unique) real linear functional on [K]h and conversely, any
linear functional on [K]h defines an element in A(K), so that

A(K ) ≡ ([K ]h)∗ ≡ Ah |K ⊥ := {a + K ⊥, a ∈ Ah}.
In other words, any element φ ∈ A(K) has the form φ(σ ) = Tr aσ for some a ∈ Ah and two elements
a1, a2 ∈ Ah define the same φ ∈ A(K) if and only if a1 = a2 + x for some x ∈ K⊥.

Let πK ⊥ : a �→ a + K ⊥ be the quotient map. Then it is clear that πK ⊥ (A+) ⊆ A(K )+. We are
interested in the converse. Note that if K̄ is the closure of K, then K̄ is convex and K ⊥ = K̄ ⊥,
[K ] = [K̄ ] and A(K ) = A(K̄ ), A(K )+ = A(K̄ )+.

Theorem 2: Let K ⊆ S(A) be a nonempty convex subset. Then A(K )+ = πK ⊥ (A+) if and only
if K̄ is a section of S(A).

Proof: It is clear by the remark preceding the theorem that we may suppose that K is closed.

Let K be a section of S(A), then any positive affine function on K extends to a positive linear
functional on [K]. Since positive functionals are completely positive and [K] is positively generated,
the assertion follows by Theorem 1.

Conversely, suppose that K is not a section of S(A). Then there is some x ∈ [K ] ∩ A+, such
that x �∈ Q. Since Q is closed and convex, by Hahn-Banach separation theorem there is a linear
functional f on Ah , such that f(x) < s < inf{f(a), a ∈ Q}, for some s ∈ R. This implies that s < f(0)
= 0 and, moreover, λf(σ ) > s for all λ ≥ 0, σ ∈ K, hence f(σ ) ≥ 0 and f defines an element φ ∈
A(K)+ . But φ has a unique extension to [K], namely, f and f(x) < s < 0, so that φ cannot be given
by an element in A+. �
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IV. GENERALIZED CHANNELS

Let K ⊆ S(A) be a convex set and let � : K → B+ be an affine map. Then � extends to a
linear map [K ] → B. (Note that in general, this extension does not need to be positive.) We will
say that � is a cp map on K, if this extension of � is completely positive. If � also preserves trace
(equivalently, �(K ) ⊆ S(B)), then � will be called a channel on K.

Remark 1: Note that by this definition, � is a cp map (resp. channel) on K if and only if (the
extension of) � is a cp map (resp. channel) on K̃ := [K ] ∩ S(A), the smallest section of S(A)
containing K. Therefore, without any loss of generality we may suppose that K is a section of S(A).

Theorem 3: Let K ⊆ S(A) be a convex subset. Then any cp map on K has a cp extension to
A. If � : A → B is a cp map, then � defines a channel on K if and only if its Choi matrix satisfies

TrB X� ∈ IA + (K T )⊥. (10)

Two cp maps �1,�2 : A → B define the same cp map on K if and only if

X�1 − X�2 ∈ B ⊗ (K T )⊥. (11)

Proof: Since [K] is positively generated, the first statement follows from Theorem 1. The map
� defines a channel on K if and only if Tr (�(a)) = 1 for all a ∈ K, that is,

Tr (aT ) = 1 = Tr (�(a)) = Tr ((IB ⊗ aT )X�) = Tr (aT TrB X�), a ∈ K ,

equivalently, TrB X� ∈ IA + (K T )⊥. Furthermore, �1 and �2 have the same value on K if and only
if

Tr (b(�1(a) − �2(a))) = Tr (b ⊗ aT )(X�1 − X�2 ) = 0, ∀a ∈ K , b ∈ B,

that is, X�1 − X�2 ∈ (B ⊗ K T )⊥ = B ⊗ (K T )⊥. �
Any cp map � : A → B, satisfying (10) will be called a generalized channel. Two generalized

channels having the same value on K will be called equivalent. If we want to stress the set K (or the
subspace [K]), we will say that � is a generalized channel with respect to K (or [K]).

We will next introduce an example that will be used repeatedly throughout the paper. Let A0

be a finite-dimensional C*-algebra and let S : A → A0, T : A0 → A be completely positive maps.
Let J0 ⊆ A0 be a self-adjoint vector subspace. Then S−1(J0) = {a ∈ A, S(a) ∈ J0}, and T(J0) are
self-adjoint subspaces in A. In particular, if J0 = [S(ρ)] is the one-dimensional subspace generated
by S(ρ) for some ρ ∈ S(A), then S−1(J0) ∩ S(A) is the equivalence class containing ρ for the
equivalence relation on S(A) induced by S.

Lemma 1: Let S : A → A0 be a cp map and let J0 be a subspace in A0. Then S−1(J0)⊥

= S∗(J⊥
0 ), where S∗ : A0 → A is the adjoint of S with respect to 〈a, b〉 = Tr (a*b).

Proof: Let a ∈ A, then Tr (a*S*(b)) = Tr (S(a*)b) = Tr (S(a)*b) = 0 for all b ∈ J⊥
0 if and only

if S(a) ∈ J0, this implies that S∗(J⊥
0 )⊥ = S−1(J0), so that S−1(J0)⊥ = S∗(J⊥

0 ). �
We denote by ST the linear map A → A0, defined by ST(a) = [S(aT)]T. Note that the Choi

matrix of ST satisfies X ST = X T
S , so that S is a channel if and only if ST is a channel.

Lemma 2: Let S : A → A0 be a channel and let J0 ⊆ A0 be a subspace. Let J = S− 1(J0). Then

(i) (J T )⊥ = (ST )∗((J T
0 )⊥),

(ii) IA + (J T )⊥ = (ST )∗(IA0 + (J T
0 )⊥).

Proof: We have

S−1(J0)T = {a, S(aT ) ∈ J0} = {a, ST (a) ∈ J T
0 } = (ST )−1(J T

0 ),
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(i) now follows by Lemma 1 and (ii) follows from the fact that ST is a channel, so that (ST)* is
unital. �

Example 1 (Channels on channels): Let A = B1 ⊗ B0, A0 = B0 and let S : B1 ⊗ B0 → B0 be
the partial trace TrB1 . Let J0 = [IB0 ] = C IB0 . The set

C(B0,B1) := Tr−1
B1

([IB0 ]) ∩ tB0S(B1 ⊗ B0) (12)

is the set of all Choi matrices of channels B0 → B1. Denote J := Tr−1
B1

([IB0 ]) and K = J ∩ S(B1 ⊗
B0), then K is a section of the state space and C(B0,B1) = tB0 K . It follows that � is a channel on K
if and only if t−1

B0
� is a channel on C(B0,B1). Hence, any channel C(B0,B1) → S(B) is given by a

cp map � : B1 ⊗ B0 → B, such that TrB X� ∈ t−1
B0

IB1⊗B2 + (K T )⊥.
Since IB1⊗B0 ∈ J , we have J = [K] by Proposition 4, so that (KT)⊥ = (JT)⊥. Note also that ST

= S and S∗(a) = IB1 ⊗ a for a ∈ B0. By Lemma 2,

(K T )⊥ = IB1 ⊗ [IB0 ]⊥

and taking into account that X� ≥ 0, we get

TrB X� ∈ [IB1 ⊗ (τB0 + [IB0 ]⊥)] ∩ (B1 ⊗ B0)+ = IB1 ⊗ S(B0). (13)

Moreover, �1 and �2 are equivalent if and only if

X�1 − X�2 = IB1 ⊗ Y, Y ∈ B ⊗ B0, TrB0 Y = 0.
�

Example 2 (Channels on POVMs): Put B1 = Cm in example 1, then C(B0,Cm) is the set of all
POVMs on B0, with values in {1, . . . , m}. If � : B1 ⊗ B0 → B is a cp map, then the Choi matrix
has the form X� = ∑m

j=1 | j〉〈 j | ⊗ X j , X j ∈ (B ⊗ B0)+. The condition (13) becomes

X� =
m∑

j=1

| j〉〈 j | ⊗ X j , TrB X j = ω ∀ j, ω ∈ S(B0), (14)

and �1 and �2 are equivalent if and only if X�i = ∑
j | j〉〈 j | ⊗ Xi j , i = 1, 2, with

X1 j − X2 j = Y ∀ j, Y ∈ B ⊗ B0, TrB0 Y = 0.
�

Example 3: Let A = B(H) and let E = (E1, . . . , Ek) be a POVM on B(H). Then E defines a
channel SE : B(H) → Ck by a �→ (Tr (E1a), . . . , Tr (Eka)). Let ρ be a faithful state and let SE(ρ)
= λ = (λ1, . . . , λk). Let J = S−1

E ([λ]) and let

K = J ∩ S(A) = {σ ∈ S(H), Tr (σ Ei ) = λi , i = 1, . . . , k}.
We have ST

E = SE T and (ST
E )∗(x) = ∑

i xi E T
i for x ∈ Ck , and since ρ ∈ J is invertible, (K T )⊥

= (J T )⊥ = S∗
E T ([λ]⊥), by Lemma 2. It follows that channels K → S(B) are given by cp maps

� : B(H) → B, such that

TrB X� =
∑

i

ci E T
i ,

∑
i

ciλi = 1.

Note that if E is a projection valued measure, then ET is a PVM as well and positivity of X� implies
that we must have ci ≥ 0 for all i. Moreover, �1 and �2 are equivalent if and only if

X�1 − X�2 =
∑

j

y j ⊗ E T
j , y j ∈ B,

∑
j

λ j y j = 0.

More generally, let Ei = (Ei
1, . . . , Ei

ki
), i = 1, . . . , n be POVMs. Put J =∩iJi, for Ji = S−1

Ei ([λi ]),
with λi

j = Tr (Ei
jρ), j = 1, . . . , ki, i = 1, . . . , n, and

K = J ∩ S(A) = {σ ∈ S(A), Tr (σ Ei
j ) = λi

j , j = 1, . . . , ki , i = 1, . . . , n}.
Again, ρ ∈ J, so that

(K T )⊥ = (J T )⊥ = (∩i J T
i )⊥ = ∨i (J T

i )⊥ = ∨i S∗
E T

i
([λi ]⊥).
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It follows that channels K → S(B) are given by cp maps � : B(H) → B, satisfying

TrB X� =
n∑

i=1

ki∑
j=1

di
j (Ei

j )
T ,

∑
i, j

di
jλ

i
j = 1,

and �1, �2 are equivalent if and only if

X�1 − X�2 =
∑

i j

yi j ⊗ (Ei
j )

T , yi j ∈ B,
∑

j

yi jλ
i
j = 0, ∀i. �

A. Measurements and instruments on K

Let B = Cm ⊗ B(K1) and let � : A → B be a generalized channel with respect to K. Then
there are cp maps � j : A → B(K1), j = 1, . . . , m, such that �(a) = ∑

j|j〉〈j| ⊗ �j(a). Since

1 = Tr (�(a)) =
∑

j

Tr (� j (a)), a ∈ K ,

∑
j�j is a generalized channel with respect to K. In this case, we will say that � is a generalized

instrument with respect to K.
In particular, let B = Cm , then any cp map � : A → B has the form (4) with some positive

elements M j ∈ A and the Choi matrix is X� = ∑
j | j〉〈 j | ⊗ MT

j . Then � is a generalized channel
with respect to K if and only if ∑

j

M j = TrB X T
� ∈ IA + K ⊥. (15)

Any such collection of positive operators will be called a generalized POVM (with respect to K). If
M and N are generalized POVMs, then they are equivalent if and only if

M j − N j ∈ K ⊥, ∀ j. (16)

Now let K be any convex subset of S(A). A measurement on K with values in a finite set X is
naturally defined as an affine map from K to the set of probability measures on X. It is clear that any
generalized POVM with respect to K defines a measurement on K by

p j (a) = Tr (M j a), j ∈ X, a ∈ K .

Conversely, any measurement on K is given by a collection of functions λi ∈ A(K)+ , i ∈ X, such that∑
iλi = 1 (here 1 is the function identically 1 on K). Each λi is given by some element Mi ∈ Ah , such

that
∑

i Mi ∈ IA + K ⊥. By Theorem 2, all Mi can be chosen positive, and hence form a generalized
POVM, if and only if λ extends to a measurement on the section K̃ , see Remark 1. If K is a section
of S(A), then measurements on K are precisely the equivalence classes of generalized POVMs. If
K is not a section, then Theorem 2 implies that there are measurements on K that cannot be obtained
by a generalized POVM.

Example 4 (PPOVMs): Let B0 = B(H0), B1 = B(H1), and B = Ck in example 1. Let us
denote C(H0,H1) := C(B0,B1) in this case. Since this is (a multiple of) a section of S(H1 ⊗ H0),
measurements on C(H0,H1) are given by generalized POVMs. A collection (M1, . . . , Mm) of
operators Mi ∈ B(H1 ⊗ H0)+ is a generalized POVM with respect to C(H0,H1) if and only if∑

j

M j = IH1 ⊗ ω, ω ∈ S(H0).

Note that these are exactly the quantum 1-testers,5 also called process POVMs, or PPOVMs, in
Ref. 16. Moreover, two PPOVMs, M and N, are equivalent if and only if

M j − N j = IH1 ⊗ y j , Tr (y j ) = 0, ∀ j.
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Similarly, if we put B0 = B(H0), B1 = Cm , and B = Ck , we get that any measurement on the set
C(B(H0),Cm) has the form (M1, . . . , Mk), with

M j =
m∑

i=1

|i〉〈i | ⊗ Mi j , Mi j ∈ B(H0)+,
∑

j

Mi j = ω ∈ S(H0), ∀i

and M and N define the same measurement if and only if

Mi j − Ni j = y j , ∀i, Tr (y j ) = 0, ∀ j. �

B. Decomposition of generalized channels

Let c ∈ A+. We denote χ c: a �→ c1/2ac1/2. Then χ c is a completely positive map A → A and
χ c defines a channel on K if and only if Tr (χ c(a)) = Tr (ac) = 1, that is, Tr ((IA − c)a) = 0 for all
a ∈ K. This shows that χ c is a generalized channel if and only if

c ∈
⋂
σ∈K

Sσ (A) = (IA + K ⊥) ∩ A+.

Such generalized channels with respect to K will be called simple.

Proposition 5: Let � : A → B be a generalized channel with respect to K. Then there is a pair
(χ , �), with χ = χ c a simple generalized channel with respect to K and � : A → B a channel, such
that

� = � ◦ χ.

Conversely, each such pair defines a generalized channel. If in each pair (χ , �) we take the restriction
�|Ap with p = supp (c), then the correspondence is one-to-one.

Proof: Let � : A → B be a generalized channel. Then TrB X� ∈ (IA + (K T )⊥) ∩ A+ or
equivalently,

�∗(IB) ∈ (IA + K ⊥) ∩ A+.

Put c = �∗(IB) and let p = supp (c). Then since b ≤ ‖b‖IB for b ∈ B+, we have �*(b) ≤ ‖b‖c ≤
‖b‖‖c‖p. This implies that p�*(b)p = �*(b)p = �*(b) for all b ∈ B+, and hence for all b ∈ B, so
that �* maps B into Ap. It follows that χc−1 ◦ �∗ is well defined and unital map B → Ap. Let �p

be the adjoint map, �p = � ◦ χc−1 , then �p is a channel Ap → B and � = �p◦χ c.
The channel �p can be extended to a channel � : A → B as

�(a) = �p(a) + ωTr a(1 − p), a ∈ A,

where ω ∈ B is any state, and � = �◦χ c. The converse is quite obvious.
Suppose now that there are (χ i, �i), i = 1, 2, such that �1 := �1 ◦ χ1 = �2◦χ2 =: �2. Let

χi = χci . Then since �∗
i (IB) = ci , we have c1 = c2 =: c and χ1 = χ2 =: χ . Let p := supp c. But

then it is clear that if �i are defined on Ap, then we must have �i = � ◦ χ−1
c . �

We apply this result to the set of channels on C(H0,H1), see example 1.

Theorem 4: For any channel � : C(H0,H1) → S(B), there exists an ancillary Hilbert space
HA, a pure state ρ ∈ B(H0 ⊗ HA) and a channel � : B(H1 ⊗ HA) → B, such that

�(XE ) = � ◦ (E ⊗ idHA )(ρ), E ∈ C(H0,H1). (17)

Conversely, let HA be an ancillary Hilbert space and let ρ ∈ B(H0 ⊗ HA) be a state. Let � :
B(H1 ⊗ HA) → B be a channel. Then (17) defines a channel C(H0,H1) → S(B).

Proof: By example 1 and Proposition 5,

� = � ◦ χIH1 ⊗ω
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with ω ∈ S(H0) and � : B(H1 ⊗ pH0) → B(K) a channel, p = supp ω. Let now E : B(H0) →
B(H1) be a channel. Then we have

χI⊗ω(XE ) = (IH1 ⊗ ω1/2)(E ⊗ idH0 )(�H0 )(IH1 ⊗ ω1/2) = (E ⊗ idpH0 )(ρ),

where ρ = (IH0 ⊗ ω1/2)�H0 (IH0 ⊗ ω1/2) is a pure state in B(H0 ⊗ pH0). Then (17) holds with
HA = pH0.

To prove the converse, let R : B(H0) → B(HA) be the cp map with Choi matrix ρ, then
ρ = (idH0 ⊗ R)(�H0 ). We have

(E ⊗ idHA )(ρ) = (E ⊗ idHA )(idH0 ⊗ R)(�H0 ) = (idH1 ⊗ R)(E ⊗ idH0 )(�H0 ).

Put � = � ◦ (idH1 ⊗ R), then � is a cp map B(H1 ⊗ H0) → B and

�∗(IB) = (idH1 ⊗ R∗)(IH1⊗HA ) = IH1 ⊗ ω,

where ω = R∗(IHA ) = TrHAρ
T is a state in B(H0). �

Note that the analog to the above theorem for PPOVMs was proved in Ref. 16.

V. GENERALIZED SUPERMAPS

Quantum supermaps were defined in Ref. 6 as completely positive map transforming a quantum
operation to another quantum operation. More generally, supermaps on supermaps, or quantum
combs, were introduced in Ref. 4. In this section, we define generalized supermaps as channels on
generalized channels and show the relation to quantum combs.

Let J ⊆ A be a self-adjoint subspace. Denote by J̃ the vector subspace generated by IA + (J T )⊥.
Then it is easy to see that J̃ is self-adjoint and

J̃ = [IA] ∨ (J T )⊥.

Lemma 3:

(i) If ρ ∈ J is any state, then

(IA + (J T )⊥) ∩ A+ = J̃ ∩ SρT (A).

(ii) If IA ∈ J , then ˜̃J = J .
(iii) If J = S− 1(J0) for a channel S : A → A0 and a self-adjoint subspace J0 ⊆ A0, then J̃ =

(ST )∗( J̃0).

Proof: (i) An element x ∈ J̃ has the form x = cIA + x0, where x0 ∈ (JT)⊥ and c = Tr ρTx for
any state ρ ∈ J, (ii) follows from the fact that if IA ∈ J , then

˜̃J = [IA] ∨ ( J̃ T )⊥ = [IA] ∨ ([IA]⊥ ∧ J ) = J,

(iii) follows from Lemma 2. �
Let K be a section of S(A) and let J = [K]. We denote by CK (A,B) or CJ (A,B) the set of

all generalized channels A → B with respect to J. In particular, if K = S(A), we get the set of all
channels C(A,B). An element � ∈ CJ (A,B) will be identified with its Choi matrix X� ∈ B ⊗ A.
In the next proposition, we characterize the set CJ (A,B).

Proposition 6: Let K be a section of S(A) and let J = [K]. Then

CJ (A,B) = Tr−1
B ( J̃ ) ∩ SIB⊗ρT (B ⊗ A),

where ρ is any element in K. In particular, if K contains the tracial state τA, then CJ (A,B) =
Tr−1

B ( J̃ ) ∩ tAS(B ⊗ A).
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Proof: An element X ∈ B ⊗ A is the Choi matrix of a generalized channel with respect to J if
and only if X is positive and

TrB X ∈ (IA + (J T )⊥) ∩ A+ = J̃ ∩ SρT (A),

by Lemma 3 (i), which is equivalent with TrB X ∈ J̃ and 1 = Tr ρT TrB X = Tr (IB ⊗ ρT )X .
If τA ∈ K , then SIB⊗τ T

A
(B ⊗ A) = tAS(B ⊗ A). �

This implies that if K contains the tracial state, then the set of generalized channels forms a
constant multiple of a section of the state space S(B ⊗ A). Then any cp map that maps CJ (A,B)
to another state space is a constant multiple of a generalized channel. Since the set Tr−1

B ( J̃ ) always
contains the unit, we can repeat the process infinitely. The generalized channels obtained in this way
will be called generalized supermaps.

Let B0,B1,B2, . . . be finite-dimensional C*-algebras and let K be a section of the state space
S(B0), such that τB0 ∈ K . Let J = [K]. We denote by CJ (B0,B1, . . . ,Bn) the set of all cp maps
that map CJ (B0,B1, . . . ,Bn−1) into S(Bn). We further introduce the following notations. Let
An := Bn ⊗ Bn−1 ⊗ · · · ⊗ B0, n = 0, 2, . . . . Let Sn : An → An−1 denote the partial trace Tr An

Bn
,

n = 1, 2, . . . .

Theorem 5: We have for n = 1, 2, . . . ,

CJ (B0, . . . ,Bn) = Jn ∩ cnS(An),

where

J2k−1 = J2k−1(J,B1, . . . ,B2k−1) := S−1
2k−1(S∗

2k−2(S−1
2k−3(. . . S−1

1 ( J̃ ) . . . ))),

J2k = J2k(J,B1, . . . ,B2k) := S−1
2k (S∗

2k−1(S−1
2k−2(. . . S∗

1 (J ) . . . ))),

and cn = cn(J,B1, . . . ,B2k−1) := �
� n−1

2 �
l=0 tBn−1−2l .

Proof: We will prove the statement by induction on n, together with the fact that Jn = S−1
n ( J̃n−1)

for n = 1, 2, . . . , where we put J0 := J.
For n = 1, the statement is proved in Proposition 6 and J1 = S−1

1 ( J̃ ) by definition. Suppose now
that this holds for some n. Note that since J̃n−1 contains the unit IAn−1 , Jn = S−1

n ( J̃n−1) contains the
unit as well. Then

CJ (B0, . . . ,Bn+1) = 1

cn
CJn (An,Bn+1) (18)

and by Proposition 6,

CJn (An,Bn+1) = S−1
n+1( J̃n) ∩ tAn S(An+1).

Since ST
n = Sn , we have by Lemma 3 (ii) and (iii) that

J̃n = S∗
n ( ˜̃Jn−1) = S∗

n (Jn−1), (19)

so that S−1
n+1( J̃n) = Jn+1. Finally, the proof follows from

tAn

cn
= �n

l=0tBl

�
� n−1

2 �
l=0 tBn−1−2l

= �
� n

2 �
l=0tBn−2l = cn+1.

�
The above theorem can be written in the following form.

Theorem 6: Let k := � n
2 �. Then X ∈ CJ (B0, . . . ,Bn) if and only if there are positive elements

Y (m) ∈ An−2m for m = 0, . . . , k, such that

TrBn−2m Y (m) = IBn−2m−1 ⊗ Y (m+1), m = 0, . . . , k − 1, (20)
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Y(0) := X, Y (k) ∈ CJ (B0,B1) if n = 2k + 1 and Y(k) ∈ K if n = 2k.

Example 5 (Channels on generalized POVMs): Let X ∈ CJ (A,Cm,B), then X defines a
channel on the set CJ (A,Cm) of generalized POVMs. Since X ∈ B ⊗ Cm ⊗ A, we must have
X = ∑m

j=1 | j〉〈 j | ⊗ X j , X j ∈ B ⊗ A. By Theorem 6, TrB X = ICm ⊗ X0 for some X0 ∈ K. It fol-
lows that if X is positive,

X ∈ CJ (A,Cm,B) ⇐⇒ X =
m∑

j=1

| j〉〈 j | ⊗ X j , TrB X j = X0 ∈ K , ∀ j. (21)

�
Note that example 2 is a special case of the above example. Another special case is the following:

Example 6 (Channels and measurements on PPOVMs): Let H0, H1 be finite-dimensional Hilbert
spaces. Then C(B(H0), B(H1),Cm) is the set of all measurements on C(H0,H1) with values in
{1, . . . , m}, that is, the set of all PPOVMs. By (18),

C(B(H0),B(H1),Cm) = 1

dim H0
CJ1 (B(H1 ⊗ H0),Cm),

so that

C(B(H0), B(H1),Cm,B) = (dim H0)CJ1 (B(H1 ⊗ H0),Cm,B),

here J1 = Tr−1
H1

([IH0 ]). By (21), X ∈ C(B(H0), B(H1),Cm,B) if and only if

X =
m∑

j=1

| j〉〈 j | ⊗ X j , TrB X j = X0 ∈ C(B(H0), B(H1)), ∀ j.

Note that by Theorem 7 below, this also describes all cp maps sending POVMs with values in
{1, . . . , m} to channels B(H0) → B.

In particular, by putting B = Ck , we get that measurements on PPOVMs are given by collec-
tions of instruments � j : B(H0) → B(H1) with values in {1, . . . , k}, such that their components
�1j, . . . , �kj sum to the same channel, for all j ∈ {1, . . . , m}.

Let now K = S(B0). Then J = B0 and J̃ = [IB0 ], so that Proposition 6 gives the usual char-
acterization of the set C(B0,B1) of all Choi matrices of channels B0 → B1. For n > 1, we have the
characterization in Theorem 6 with Y (k) ∈ S(B0) if n = 2k and TrB1 Y (k) = IB0 for n = 2k + 1.
Suppose that all B j , j = 0, 1, . . . , are matrix algebras, B j = B(H j ). Then, comparing Theorem 6
with the results in Ref. 8, we see that for n = 2k − 1, the set C(B(H0), . . . , B(Hn)) is precisely
the set of k -combs on (H0, . . . ,H2k−1). We give the definition below and also give an alternative
proof of the characterization of quantum combs. Note that a similar characterization was obtained in
Ref. 13 for Choi matrices of strategies and co-strategies of quantum games.

A. Quantum combs

Quantum N-combs were defined in Ref. 8 as a tool for description of quantum networks. A
quantum 1-comb on (H0,H1) is the Choi matrix of a channel B(H0) → B(H1). A quantum N-
comb on (H0,H1, . . . ,H2N−1) is the Choi matrix of a cp map, transforming (N − 1)-combs on
(H1, . . . ,H2N−2) to 1-combs on (H0,H2N−1). We use the definition of N-combs with the matrix
algebras B(H j ) replaced by finite-dimensional C*-algebras B j , j = 0, . . . , 2N − 1. This corresponds
to conditional combs introduced in Ref. 9, which describe quantum networks with classical inputs and
outputs. We show below that the N-combs are precisely the generalized supermaps C(B0, . . . ,B2N−1).

Let A,B, C be finite-dimensional C*-algebras and let K be a section of S(A), let J = [K]. We
will describe the set of all cp maps A → C ⊗ B that transform K into the set of all channels B → C,
this will be denoted by CombJ (A,B, C). It will be convenient to consider this set as a subset in
C ⊗ A ⊗ B.
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It is quite clear that if X ∈ (C ⊗ A ⊗ B)+, then X ∈ CombJ (A,B, C) if and only if X ∗ ρ ∈
CJ (A, C) for all ρ ∈ S(B), this follows from (6) and from

(X ∗ ρ) ∗ a = X ∗ (a ⊗ ρ) = (X ∗ a) ∗ ρ

for all ρ ∈ S(B) and a ∈ K.

Proposition 7: Suppose τA ∈ K . Then

CombJ (A,B, C) = CJ⊗B(A ⊗ B, C).

Proof: Let X be a positive element in C ⊗ A ⊗ B. As we already argued above, X ∈
CombJ (A,B, C) if and only in X ∗ ρ ∈ CJ (A, C) for all ρ ∈ S(B), in other words,

TrC(X ∗ ρ) = (TrC X ) ∗ ρ ∈ J̃ , ρ ∈ S(B) (22)

and, simultaneously,

Tr (X ∗ ρ) = Tr (ρT [TrC⊗A X ]) = tA, ρ ∈ S(B), (23)

which means that TrC⊗A X = tA IB. Moreover, we can write (22) as

0 = Tr [((TrC X ) ∗ ρ)a] = Tr [(TrC X )(a ⊗ ρT )]

for all ρ ∈ B and a ∈ J̃⊥, which is the same as TrC X ∈ ( J̃⊥ ⊗ B)⊥ = J̃ ⊗ B. Putting this together,
we get X ∈ CombJ (A,B, C) if and only if

TrC X ∈ [ J̃ ⊗ B] ∧ S−1
A ([IB]), Tr X = tA⊗B,

where SA := TrA⊗B
A .

Let Y ∈ J̃ ⊗ B, then Y = ∑
i (ti IA + xi ) ⊗ bi , with bi ∈ B and xi ∈ (JT)⊥. Since τA ∈ K , we

have TrAY = tA
∑

i ti bi , so that TrAY ∈ [IB] if and only if Y = cIA⊗B + ∑
i xi ⊗ bi for some c ∈ C,

this implies that

Y ∈ [IA⊗B] ∨ ((J T )⊥ ⊗ B) = (J ⊗ B) .̃

Conversely, let Y ∈ (J ⊗ B)˜ and let {bk}k be a basis in B, such that b1 = IB. Then there are xk ∈
(JT)⊥, such that Y = cIA⊗B + ∑

k xk ⊗ bk = ∑
k(tk IA + xk) ⊗ bk , with t1 = c and tk = 0 for k �= 1.

Hence Y ∈ J̃ ⊗ B and clearly, TrAY ∈ [IB]. This proves that [ J̃ ⊗ B] ∧ S−1
A ([IB]) = (J ⊗ B) ,̃ so

that by Proposition 6,

CombJ (A,B, C) = Tr−1
C ((J ⊗ B)˜) ∩ tA⊗BS(C ⊗ A ⊗ B) = CJ⊗B(A ⊗ B, C).

�
Let us now denote by Comb(B0, . . . ,B2N−1) the set of N-combs.

Theorem 7: Comb(B0, . . . ,B2N−1) = C(B0, . . . ,B2N−1).

Proof: For N = 1, the statement is trivial. Suppose that it is true for some N. Let Â2N−1 :=
B2N ⊗ · · · ⊗ B1 and let Ĵ2N−1 := J2N−1(B1, . . . ,B2N ) and ĉ2N−1 = c2N−1(B1, . . . ,B2N ), with the
notations from Theorem 5. Then

Comb(B1, . . . ,B2N ) = C(B1, . . . ,B2N ) = Ĵ2N−1 ∩ ĉ2N−1S(Â2N−1). (24)

Next, let A2N = Â2N−1 ⊗ B0, J2N = J2N (B0, . . . ,B2N ), and c2N = c2N (B0, . . . ,B2N ). Then it is
not difficult to see that J2N = Ĵ2N−1 ⊗ B0 and c2N = ĉ2N−1. By (24) and Proposition 7,

Comb(B0, . . . ,B2N+1) = 1

ĉ2N−1
Comb Ĵ2N−1

(Â2N−1,B0,B2N+1),

= 1

c2N
CJ2N (A2N ,B2N+1),

= C(B0, . . . ,B2N+1),
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the last equality follows from (18). �
In accordance with this result, the elements in CJ (B0, . . . ,B2N−1) will be called generalized

N-combs.
Note that an element X ∈ C(B0, . . . ,B2N−1) is the Choi matrix of a generalized supermap

B2N−2 ⊗ · · · ⊗ B0 → B2N−1, whereas the same operator as an element in Comb(B0, . . . ,B2N−1) is
viewed as the Choi matrix of a cp map B2N−2 ⊗ · · · ⊗ B1 → B2N−1 ⊗ B0. Note also that the set
C(B0, . . . ,B2N−1,Ck) is precisely the set of N-testers with k values,5 so that quantum testers are a
special class of generalized POVMs.

B. Decomposition of generalized supermaps

Let k = � n
2 �. Let us write the algebra An as

An = B′
2k ⊗ B′

2k−1 ⊗ · · · ⊗ B′
0, (25)

where B′
j = B j for j = 0, . . . , n if n = 2k, and B′

j = B j+1 for j = 1, . . . , 2k and B′
0 = B1 ⊗ B0 if n

= 2k + 1. Further, let us suppose that B′
j = ⊕n j

l=1 B(HB j
l
), with minimal central projections {q j

k j
}, j

= 0, 1, . . . , 2k. Let us denote

Ik := {I = (I2k, . . . , I0) ∈ N2k+1, I j ∈ {1, . . . , n j }, j = 0, . . . , 2k}
be the set of multi-indices. For I ∈ Ik and l ≤ k, we denote I l = (I2l , . . . , I0) ∈ Il . Let q(I ) :=
⊗2k

l=0q2k−l
I2k−l

and HB(I ) := HB2k
I2k

...B0
I0

, then

An =
⊕
I∈Ik

HB(I )

and q(I) are the minimal central projections in An .

Theorem 8: Let X ∈ CJ (B0, . . . ,Bn). Let k = � n
2 �. Then there are the following:

1. an ancillary Hilbert space HD = HD0 = HD1 = · · · = HDk ,
2. elements Xm(I m−1) ∈ C(B′

2m−1 ⊗ B(HDm−1 ), B(HDm ) ⊗ B′
2m) for m = 1, . . . , k and for every

multi-index I ∈ Ik ,
3. a state X0 ∈ B(HD0 ) ⊗ J , if n = 2k or a generalized channel X0 ∈ CJ (B0, B(HD0 ) ⊗ B1), if

n = 2k + 1

such that, for all I ∈ Ik ,

q(I )X = IDk ∗ Xk(I k) ∗ · · · ∗ X1(I 1) ∗ X0(I0), (26)

where

Xm(I m) := (IDm ⊗ q2m
I2m

⊗ q2m−1
I2m−1

⊗ IDm−1 )Xm(I m−1), m = 1, . . . , k (27)

and X0(I0) = (IHD0
⊗ q0

I0
)X0.

Proof: We proceed by induction on k. If k = 0, then we must have n = 1 and the statement is
trivial. Suppose now that the theorem holds for some k.

Let n be such that � n
2 � = k + 1. Then An = B′

2k+2 ⊗ B′
2k+1 ⊗ An−2 and by Theorem 6, X ∈

CJ (B0, . . . ,Bn) if and only if X is positive and there is some Y (1) ∈ CJ (B0, . . . ,Bn−2) such that

TrB′
2k+2

X = IB′
2k+1

⊗ Y (1).

Now by Theorem 11 from the Appendix, the last equation holds if and only if there is an ancillary
Hilbert space HD = HDk = HDk+1 and

X1(I2k+1,� j I k
j ) ∈ C(B(HB2k+1

I2k+1
Dk

),B′
2k+2), X0(� j I k

j ) ∈ B(HDk B(I k ))
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with

TrDk X0(� j I k
j ) = q(I k)Y (1) (28)

such that

(IB′
2k+2

⊗ q2k+1
I2k+1

⊗ q(I k))X = X1(I2k+1,� j I k
j ) ∗ X0(� j I k

j )

for any multi-index I ∈ Ik+1. Put

Xk+1(I k) := ωDk+1 ⊗
(

n2k+1⊕
i=1

X1(i,� j I k
j )

)

with an arbitrary state ωDk+1 ∈ B(HDk+1 ). Then Xk+1(I k) ∈ C(B′
2k+1 ⊗ B(HDk ), B(HDk+1 ) ⊗ B′

2k+2),
and

q(I )X = IDk+1 ∗ Xk+1(I k+1) ∗ X0(� j I k
j ),

where Xk + 1(Ik + 1) is given by (27). Let now X ′
k := ⊕

J∈Ik
X0(� j J j ) ∈ B(HDk ) ⊗ An−2. Then by

(28) and Y (1) ∈ CJ (B0, . . . ,Bn−2), we get

TrB(HDk )⊗Bn−2 X ′
k = TrBn−2 Y (1) = IBn−3 ⊗ Y (2), Y (2) ∈ CJ (B0, . . . ,Bn−4),

which is equivalent with X ′
k ∈ CJ (B0, . . . , B(HDk ) ⊗ Bn−2). Since � n−2

2 � = k, we may apply
the induction hypothesis to X ′

k . Hence there is some ancilla HE = HE0 = · · · = HEk , ele-
ments Xm(J m−1) ∈ C(B′

2m−1 ⊗ B(HEm−1 ), B(HEm ) ⊗ B′
2m) for m = 1, . . . , k − 1, an element

X ′′
k (I k−1) ∈ C(B′

2k−1 ⊗ B(HEk−1 ), B(HEk Dk ) ⊗ B′
2k), and X0 ∈ B0 satisfying 3, such that for every

J ∈ Ik ,

X0(� j J j ) = q(J )X ′
k = IEk ∗ X ′′

k (J ) ∗ · · · ∗ X0(I0).

Note also that we may suppose HE = HD , exactly as in the proof of Theorem 11. By putting
Xk(J ) = IEk ∗ X ′′

k (J ), we obtain the result. �
Theorem 8, together with Proposition 5, gives the following Corollary.

Corollary 1: For k ≥ 1 and for any generalized k-comb X ∈ CJ (B0, . . . ,B2k−1), there exists
a pair (χ , �), where χ : B0 → B0 is a simple generalized channel with respect to J and X� ∈
Comb(B0, . . . ,B2k−1), such that

�X = � ◦ (idB2k−1⊗···⊗B1 ⊗ χ ).

Conversely, each such pair defines an element in CJ (B0, . . . ,B2k+1). In particular, CJ (B0, . . . ,B2k+1)
is the set of cp maps sending C(B1, . . . ,B2k) to the set of generalized channels CJ (B0,B2k+1).

We will now describe how an element Y ∈ CJ (B0, . . . ,Bn+1) acts on X ∈ CJ (B0, . . . ,Bn). Let
�Y : CJ (B0, . . . ,Bn) → Bn+1 be the cp map with Choi matrix Y. By (6),

�Y (X ) = Y ∗ X = TrAn [(IBn+1 ⊗ X T )Y ],

= TrAn [(IBn+1 ⊗
⊕

I

q(I )X T )
⊕
i,J

(qn+1
i ⊗ q(J ))Y ],

= TrAn [
⊕
i,I

[(IBn+1 ⊗ q(I )X T )(qn+1
i ⊗ q(I ))Y ],

=
⊕

i

∑
I

TrB(I )[(IBn+1 ⊗ (q(I )X )T )(qn+1
i ⊗ q(I ))Y ],

=
⊕

i

∑
I

((qn+1
i ⊗ q(I ))Y ) ∗ (q(I )X ).
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Let now n = 2k, so that � n
2 � = � n+1

2 � = k. Then

q(I )X = IDk ∗ Xk(I k) ∗ · · · ∗ X1(I 1) ∗ X0(I0),

(qn+1
i ⊗ q(I ))Y = IEk ∗ Yk( Ī k) ∗ · · · ∗ Y1( Ī 1) ∗ Y0( Ī0).

Here, Ī is he multi-index in Ik , such that Ī2k = i , Ī j = I j+1, j = 1, . . . , 2k − 1, and Ī0 = I0 I1. Then

((qn+1
i ⊗ q(I ))Y ) ∗ (q(I )X ) = IDk Ek ∗ Yk( Ī k) ∗ Xk(I k) ∗ · · · ∗ Y0( Ī0) ∗ X0(I0),

this follows from Proposition 1 and 2. More explicitly, we first apply the components of the channel
Y0( Ī0) to the part of X0(I0) in B0, then on the part of the result in B1, we apply the components of
the channel X1(I1), etc., both ancillas are traced out at the end.

Similarly, if n = 2k + 1, then � n+1
2 � = k + 1 and

(qn+1
i ⊗ q(I ))Y = IEk+1 ∗ Yk+1( Î k+1) ∗ · · · ∗ Y1( Î 1) ∗ Y0( Î0),

where Î ∈ Ik+1 is such that Î2k+2 = i , Î j = I j−1 for j = 2, . . . 2k + 1 and I0 = Î1 Î0. Then

((qn+1
i ⊗ q(I ))Y ) ∗ (q(I )X ) = IDk Ek+1 ∗ Yk+1( Î k+1) ∗ Xk(I k) ∗ · · · ∗ Y1( Î1) ∗ X0(I0) ∗ Y0( Î0).

Note that here X0(I0) is a channel, which we apply to Y0( Î0), etc.

Example 7 (PPOVMs): Let Y ∈ C(B(H0), B(H1),Cm). By Theorem 8, there is some ancilla
HD , a POVM M(= ID1 ∗ Y1) ∈ C(B(H1 ⊗ HD),Cm) and a state ρ(= Y0) ∈ B(HD ⊗ H0), such that
Y = M*ρ. For any X ∈ C(H0,H1), we have

Y ∗ X = M ∗ X ∗ ρ =
m⊕

i=1

Tr Mi (idD ⊗ �X )(ρ),

where M = (M1, . . . , Mm), compare this to Theorem 4. We will write such decomposition as
Y = (HD, (M1, . . . , Mm), ρ).

Next, let Z ∈ C(B(H0), B(H1),Cm, B(H3) ⊗ Cl ), which is the set of all instruments from
PPOVMs to B(H3), with values in {1, . . . , l}. Then there is an ancilla HE a channel ξ ∈
C(B(H0), B(HE ⊗ H1)) and an instrument � ∈ C(Cm ⊗ B(HE ), B(H3) ⊗ Cl), such that

Z = � ∗ ξ.

Here � = ⊕m
j=1� j , where each � j : B(HE ) → B(H3) ⊗ Cl is an instrument, with components

(�1j, . . . , �lj). We write Z = (HE , (�1, . . . , �m), ξ ). Let now Y = (HD, (M1, . . . , Mm), ρ) be a
PPOVM. We have

Z ∗ Y =
⊕

i

∑
j

�i j (TrHD⊗H1 (IE ⊗ M j )(idD ⊗ ξ )(ρ)),

=
⊕

i

∑
j

TrHD⊗H1 (M j ⊗ IH3 )(idD ⊗ [(�i j ⊗ idH1 ) ◦ ξ ])(ρ),

=
⊕

i

∑
j

TrHD⊗H1 (M j ⊗ IH3 )(idD ⊗ �̂i j )(ρ),

where �̂ j := (� j ⊗ idH1 ) ◦ ξ is an instrument B(H0) → B(H3 ⊗ H1), with values in {1, . . . , l},
such that

∑
i TrH3 ◦ �̂i j = TrE ◦ ξ for all j, compare this with example 6.

Example 8 (Supermaps on instruments): We next describe the set Comb(B(H0),B(H1),Cm ⊗
B(H2), B(H3)), that is, the set of cp maps from instruments B(H1) → B(H2) to channels B(H0) →
B(H3). By Theorems 7 and 8, for any such map, there is an ancillary Hilbert space HD , channels
ξ j : B(HD ⊗ H2) → B(H3), j = 1, . . . , m and a channel ξ : B(H0) → B(HD ⊗ H1) such that the
map has the form

(�1, . . . , �m) �→
∑

j

ξ j ◦ (idD ⊗ � j ) ◦ ξ.
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This seems to be more general than the supermaps considered in Ref. 6, more precisely, this map
consists of m supermaps in the sense of Ref. 6, which have the first channel equal to the same ξ . �

The decomposition given in this section can be understood as a physical realization of general-
ized supermaps in CJ (B0, . . . ,Bn). It is not unique, indeed, for example, by Theorem 4, any state ρ

on H0 ⊗ HA and a POVM on B(H1 ⊗ HA) define a PPOVM, but (by the first part of this Theorem),
we can always have a decomposition where the state is pure. The elements in CJ (B0, . . . ,Bn+1) do
not distinguish between these different realizations, but only the generalized channels they define.
We may go a step further and consider maps which recognize only the channels on K, defined by
the generalized channels, that is, maps which give the same result on equivalent channels. This is
the content of the next paragraph.

C. Equivalence of generalized supermaps

By Theorems 3 and 5, two elements X1, X2 ∈ CJ (B0, . . . ,Bn) are equivalent if and only if

X1 − X2 ∈ Bn ⊗ (J T
n−1)⊥. (29)

Using Lemma 1, we get

(J T
n−1)⊥ = S∗

n−1(S−1
n−2(S∗

n−3(. . . (LT )⊥ . . . ))),

where (LT )⊥ = S∗
1 ([IA]⊥ ∩ J ) if n is even and (LT )⊥ = S−1

1 ((J T )⊥) if n is odd. From this, we get
the following proposition.

Proposition 8: Let k = � n
2 �. Two elements X1, X2 ∈ CJ (B0, . . . ,Bn) are equivalent if and only

if there are elements W (m) ∈ Bn ⊗ An−2m, m = 1, . . . k, such that

X1 − X2 = IBn−1 ⊗ W (1),

TrBn−2m W (m) = IBn−2m−1 ⊗ W (m+1), m = 1, . . . , k − 1,

W (k) ∈ Bn ⊗ J, TrB0 W (k) = 0 i f n = 2k,

TrB1 W (k) ∈ Bn ⊗ (J T )⊥ i f n = 2k + 1.

It is not clear in the present how to interpret this equivalence, in terms of the physical realizations
of the channels. The next theorem gives a characterization of elements in CJ (B0, . . . ,Bn+1) which
respect this equivalence.

Theorem 9: The set of all elements in CJ (B0, . . . ,Bn+1) having the same value on each
equivalence class of elements in CJ (B0, . . . ,Bn) is

Jn+1 ∩ (Bn+1 ⊗ Bn ⊗ Jn−1) ∩ cn+1S(An+1).

In particular, if K = S(B0), then this set has the form

C(B0, . . . ,Bn+1) ∩ C(B0,Bn,Bn+1,B1, . . . ,Bn−1), if n is odd,

C(B0, . . . ,Bn+1) ∩ C(Bn,Bn+1,B0, . . . ,Bn−1), if n is even.

Proof: Let X ∈ CJ (B0, . . . ,Bn+1), then it is clear from (29) that the corresponding map has the
same value on equivalent elements if and only if it is equal to 0 on Bn ⊗ (J T

n−1)⊥. Equivalently,

0 = Tr
(
bTrAn [(IBn+1 ⊗ Y T )X ]

) = Tr ((b ⊗ Y T )X )

for all b ∈ Bn+1 and Y ∈ Bn ⊗ (J T
n−1)⊥, that is, X ∈ (Bn+1 ⊗ Bn ⊗ J⊥

n−1)⊥ = Bn+1 ⊗ Bn ⊗ Jn−1.
Since X ∈ CJ (B0, . . . ,Bn+1), we get the result.

Suppose K = S(B0) and let k = � n+1
2 �. Since X ∈ Bn+1 ⊗ Bn ⊗ Jn−1, there are positive ele-

ments Z (m) ∈ Bn+1 ⊗ Bn ⊗ An−1−2m , such that

TrBn−1−2m Z (m) = IBn−2−2m ⊗ Z (m+1), m = 0, . . . , k − 2, (30)
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Z (k−1) ∈ Bn+1 ⊗ Bn ⊗ J if n is odd , (31)

Z (k−1) ∈ Bn+1 ⊗ Bn ⊗ S−1
1 ( J̃ ) if n is even (32)

and Z(0) = X. Suppose n is odd, then by Theorem 6, we get

TrBn+1 TrBn−1 . . . TrB2 X = IBn⊗Bn−2⊗···⊗B1 ⊗ Y (k)

with Y (k) ∈ S(B0), and from (30), we have

TrBn−1 TrBn−3 . . . TrB2 X = IBn−2⊗Bn−4⊗···⊗B1 ⊗ Z (k−1).

This implies TrBn+1 Z (k−1) = IBn ⊗ Y (k). If J = B0, this together with (30) and (31) is equivalent with
X ∈ C(B0,Bn,Bn+1,B1, . . . ,Bn−1). Similarly, if J = B0 and n is even, we have

TrBn+1 TrBn−1 . . . TrB1 X = IBn⊗Bn−2⊗···⊗B0

and by (32), there is some positive element Z (k) ∈ Bn+1 ⊗ Bn , such that

TrB1 Z (k−1) = IB0 ⊗ Z (k). (33)

Then

TrBn−1 TrBn−3 . . . TrB1 X = IBn−2⊗Bn−4⊗···⊗B0 ⊗ Z (k),

so that we must have TrBn+1 Z (k) = IBn . This, together with (30) and (33), is equivalent with X ∈
C(Bn,Bn+1,B0, . . . ,Bn−1). �

Example 9 (Equivalence on PPOVMs): Suppose that Z is a generalized POVM on the set of
PPOVMs, that is, Z ∈ C(B(H0), B(H1),Cm,Ck). Then by example 6, Z = ∑k

i=1

∑m
j=1 |i〉〈i | ⊗

| j〉〈 j | ⊗ Zi j and each Zij is the Choi matrix of a cp map �i j : B(H0) → B(H1), such that there
is a channel ξ with

∑
j�ij = ξ for all i. If Z attains the same value on equivalent elements, then

it defines a measurement on the set of equivalence classes of PPOVMs, that is, on the set of
measurements on channels B(H0) → B(H1). By Theorem 9, this happens if and only if Z is also
in C(Cm,Ck, B(H0), B(H1)). Using Theorem 6, we get that there are some numbers μij ≥ 0, with∑

jμij = 1 for all i, such that TrH1 Zi j = μi j IH0 . It follows that there are channels ξ ij, such that �ij

= μijξ ij. We have proved the following.
For any measurement on measurements on C(B(H0), B(H1)) with values in {1, . . . , m}, there

are ξi j ∈ C(B(H0), B(H1)) and numbers μij ≥ 0,
∑

jμij = 1, satisfying
∑

jμijξ ij = ξ for all i, such
that, if a measurement on C(B(H0), B(H1)) has an implementation (HD, (M1, . . . , Mm), ρ), then
the corresponding probabilities are given by

pi (HD, (M1, . . . , Mm), ρ) =
∑

j

μi j Tr (M j (ξi j ⊗ idD)(ρ)).

Conversely, any such ξ ij, μij define a measurement on measurements on C(B(H0), B(H1)). Note
that if (HD, M, ρ) and (HE , N , σ ) are implementations of PPOVMs, then these are equivalent if
and only if Tr (Mj(ξ ⊗ idD)(ρ) = Tr (Nj(ξ ⊗ idE)(σ ) for any channel ξ . �

D. Equivalence of combs

Any N-comb X ∈ Comb(B0, . . . ,B2N+1) is a cp map Comb(B1, . . . ,B2N ) → B2N+1 ⊗ B0. By
(24) and Theorem 3, two N-combs X1 and X2 are equivalent if and only if

X1 − X2 ∈ B2N+1 ⊗ ( Ĵ T
2N−1)⊥ ⊗ B0,

where Ĵ2N−1 := J2N−1(B1, . . . ,B2N ).
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Proposition 9: Two elements X1, X2 ∈ Comb(B0, . . . ,B2N−1) are equivalent if and only if there
are elements V (m) ∈ B2N+1 ⊗ A2m−1, m = 1, . . . , N, such that

X1 − X2 = IB2N ⊗ V (N ),

TrB2m−1 V (m) = IB2m−2 ⊗ V (m−1), m = 2, . . . , N ,

TrB1 V (1) = 0.

The proof of the next theorem is the same as of Theorem 9.

Theorem 10: The set elements in Comb(B0, . . . ,B2N+1) having the same value on equivalent
elements in Comb(B1, . . . ,B2N ) is equal to

Comb(B0, . . . ,B2N+1) ∩ Comb(B0,B1,B2N ,B2N+1,B2, . . . ,B2N−1).

VI. FINAL REMARKS

We have introduced the concept of a channel on a section of the state space of a finite-
dimensional C*-algebra. We proved that such channels are restrictions of completely positive maps,
called generalized channels. If the section K contains the tracial state, the Choi matrices of generalized
channels with respect to K form again a section of the state space of some C*-algebra. This allows
us to define generalized supermaps as completely positive maps sending generalized channels (or
generalized supermaps) to states. The set of generalized supermaps is characterized as an intersection
of the state space by a subspace. This might be useful, for example, in optimization problems with
respect to supermaps.

Although the condition τA ∈ K includes the most important examples of channels and combs, it
might be interesting to consider supermaps for arbitrary generalized channels. By Proposition 6, this
should be possible by extending our theory using the set Sρ(A) instead of S(A), with an invertible
element ρ ∈ A+. This can be done along similar lines.

Another possible extension of the theory is to look at the generalized channels sending a section
K1 to a given convex subset K2 of the target state space. The set CombJ (A,B, C) is a particular
example of this, but arbitrary convex subset can be considered, using similar tools as were used in
the present paper.

A natural question is an extension of these results to infinite dimension. For example, in the
setting of the algebras of bounded operators B(H) for infinite-dimensional Hilbert space H, quantum
supermaps were studied in Ref. 10. Channels and measurements on sections of the state space can
be studied also in this case and similar results can be expected. But the identification of the set of
channels with a section of a state space fails.
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APPENDIX: DECOMPOSITION OF SEMICAUSAL MAPS

Let A = ⊕n B(HAn ) be a finite-dimensional C*-algebra and let HA, HB , H′
B be finite-

dimensional Hilbert spaces. Let T : A ⊗ B(HB) → B(HAB ′) be a cp map. Then, we say that T
is semicausal if

T (IA ⊗ b) = IA ⊗ S(b) (A1)

for some cp map S : B(HB) → B(HB ′), and T is semilocalizable, if

T = (idA ⊗ G) ◦ (F ⊗ idB) (A2)
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for some unital cp map F : A → B(HAD) and a cp map G : B(HDB) → B(HB ′), where HD is
some (finite-dimensional) Hilbert space. The following statement was proved in Ref. 12, in the case
that A is a matrix algebra. For the convenience of the reader, we give the modification of the proof
in Ref. 12 for our slightly more general case.

Lemma 4: Let T : A ⊗ B(HB) → HAB ′ be a cp map. Then T is semicausal if and only if T is
semilocalizable.

Proof: Any representation of A ⊗ B(HB) has the form

�(a ⊗ b) = ⊕n IEn ⊗ an ⊗ b = (⊕n IEn ⊗ an) ⊗ b

for some Hilbert spaces HEn , where a = ⊕nan ∈ A and b ∈ B(HB). Hence by Stinespring repre-
sentation, T has the form

T (a ⊗ b) = V ∗((⊕n IEn ⊗ an) ⊗ b)V

for some linear map V : HAB ′ → ⊕nHEn An B . Let now

S(b) = W ∗(1D ⊗ b)W

be a minimal Stinespring representation of S. Then (A1) implies that

V ∗(I⊕nHEn An
⊗ b)V = (IA ⊗ W ∗)(IAD ⊗ b)(W ⊗ IB).

Exactly as in Ref. 12, we get by minimality of the Stinespring representation that there is some
isometry U : HAD → ⊕nHEn An , such that

V = (U ⊗ IB)(IA ⊗ W ).

Hence,

�(a ⊗ b) = (IA ⊗ W ∗)(U ∗(⊕n IEn ⊗ an)U ⊗ b)(IA ⊗ W ),

so that

� = (idA ⊗ G) ◦ (F ⊗ idB) (A3)

for the unital cp map F : A → B(HAD), given by F(a) = U ∗(⊕n IEn ⊗ an)U and the cp map
G : B(HDB) → B(H′

B), defined as G(d ⊗ b) = W*(d ⊗ b)W.
Conversely, if T is of the form (A3), then it is clear that T satisfies (A1), with

S(b) = G(1D ⊗ b). (A4)

�
Theorem 11: Let A = ⊕B(HAk ), B = ⊕B(HBm ), C = ⊕B(HCn ) be finite-dimensional C*-

algebras, with minimal central projections {pk}k, {qm}m, and {rn}n, respectively. Let X ∈ A ⊗ B ⊗
C be positive. Then the following are equivalent:

(i) There is some positive element Y ∈ C such that

TrA X = IB ⊗ Y.

(ii) There is an auxiliary Hilbert space HD, positive elements X0(n) ∈ B(HDCn ) and X1(m, n) ∈
C(B(HBm D),A) such that

Xm,n := (IA ⊗ qm ⊗ rn)X = X1(m, n) ∗ X0(n).

Moreover, we have

TrD X0(n) = Yn := rnY.
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Proof: Suppose first that B = B(HB) and C = B(HC ) are matrix algebras. We can always write
HC = HC1 ⊗ HC2 . Let us define the map � : B(HBC1 ) → A ⊗ B(HC2 ) by

�(a) = X ∗ a, a ∈ B(HBC1 ).

Then � is a cp map and

TrA�(a) = [TrA X ] ∗ a, a ∈ B(HBC1 ),

so that TrA X is the Choi matrix of TrA ◦ �. Similarly, if ξ : B(HC1 ) → B(HC2 ) is the cp map with
C-J matrix Y, then IA ⊗ Y is the C-J matrix of ξ ◦ TrA. It follows that the maps � and ξ satisfy

TrA ◦ � = ξ ◦ TrA.

For the adjoints, this condition has he form �∗(IA ⊗ c) = IB ⊗ ξ ∗(c), for all c ∈ B(HC2 ) which
means that the map �* is semicausal. By Lemma 4, (i) is equivalent with

� = (F∗ ⊗ idC2 ) ◦ (idB ⊗ G∗)

for a cp map G∗ : B(HC1 ) → B(HDC2 ) and a channel F∗ : B(HB D) → A, with some Hilbert space
HD . By putting X1 and X0 the Choi matrices of F and G, respectively, we get (ii). Finally, (A4)
implies TrDX0 = Y.

For the general case, note that Xm,n ∈ A ⊗ B(HBm Cn ) and

TrA Xm,n = (qm ⊗ rn)TrA X,

so that (i) is equivalent with

TrA Xm,n = IBm ⊗ Yn, ∀m, n,

where Yn = rnY ∈ B(HCn )+. By the first part of the proof, we get that (i) holds if and only if

Xm,n = X ′
1(m, n) ∗ X ′

0(m, n)

with positive elements X ′
0(m, n) ∈ B(HDm,nCn ), X ′

1(m, n) ∈ C(B(HBm Dm,n ),A) for some ancillary
Hilbert spaces HDm,n , and such that TrDm,n X ′

0(m, n) = Yn . Note further that in the proof of
Lemma 4, the cp map G and the ancilla HD are given by a minimal Stinespring representation
of S. Hence X ′

0(m, n) and the ancilla are determined by Yn, so that these depend only on n. More-
over, there are some HD′

n
and HD , such that HD = HDn D′

n
for all n. Choose some state ωn ∈ B(HD′

n
)

for all n and put

X0(n) := ωn ⊗ X ′
0(n), X1(m, n) := X ′

1(m, n) ⊗ ID′
n
.

Then X0(n) ∈ B(HDCn ), X1(m, n) ∈ C(B(HBm D),A), and

X1(m, n) ∗ X0(n) = X1(m, n) ∗ ID′
n
∗ ωn ∗ X ′

0(n) = X ′
1(m, n) ∗ X ′

0(n) = Xm,n.

Clearly, also

TrD X0(n) = TrDn X ′
0(n) = Yn.
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Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, Bratislava, Slovakia
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We introduce and study norms in the space of hermitian matrices, obtained from
base norms in positively generated subspaces. These norms are closely related to
discrimination of so-called generalized quantum channels, including quantum states,
channels, and networks. We further introduce generalized quantum decision problems
and show that the maximal average payoffs of decision procedures are again given by
these norms. We also study optimality of decision procedures, in particular, we obtain
a necessary and sufficient condition under which an optimal 1-tester for discrimina-
tion of quantum channels exists, such that the input state is maximally entangled.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863715]

I. INTRODUCTION AND PRELIMINARIES

It is well known that in the problem of discrimination of quantum states, the best possible
distinguishability of two states ρ0 and ρ1 is given by the trace norm ‖ρ0 − ρ1‖1.10, 11 The set of
states forms a base of the convex cone of positive operators and the restriction of the trace norm to
hermitian operators is the corresponding base norm. Similarly, it was shown in Ref. 20 that more
general distinguishability measures, obtained by specification of the allowed measurements, e.g.,
for bipartite states, are obtained from base norms associated with more general positive cones. This
correspondence is related to duality of the base norm and the order unit norm, with respect to a given
positive cone.

In a similar problem for quantum channels, and recently also quantum networks, the diamond
norm ‖ · ‖� for channels,14 resp. the strategy N-norm ‖ · ‖N�

9,3 for networks is obtained. Via the
Choi isomorphism, quantum networks are represented by certain positive operators on the tensor
product of the input and output spaces, so-called N-combs,2, 4 see also Ref. 8. The set of N-combs is
the intersection of the multipartite state space by a positively generated subspace of the real vector
space of hermitian operators. Since this subspace inherits the order structure and the set of N-combs
forms a base of its positive cone, it is natural to expect that the distinguishability norm ‖ · ‖N� is in
fact the corresponding base norm.

Motivated by this question, we study positively generated subspaces of the space of hermitian
operators Bh(H) acting on a finite dimensional Hilbert space H. For a given base B of the positive
cone, we define a distinguishability measure in terms of tests that are defined as affine maps
B → [0, 1] and show that this measure is given by the base norm. This, in fact, is easy to see for any
finite dimensional ordered vector space. We then study a natural extension of this norm to Bh(H)
and its dual norm. An example of such a base is the set of Choi matrices of so-called generalized
channels. The set of N-combs is a special case. For N-combs, the obtained norm coincides with
‖ · ‖N� and we recover some of the results of Ref. 9 concerning the dual norm. Moreover, we find a
suitable expression for this norm, closely related to the definition of ‖ · ‖�.

In Sec. IV, we introduce generalized quantum decision problems with respect to a base B. We
show that the maximal average payoff (or minimal average loss) of a generalized decision procedure
is again given by a base norm. We find optimality conditions for generalized decision procedures,
in particular, for quantum measurements and testers. In the case of multiple hypothesis testing for
states, we get the results obtained previously in Refs. 17, 7, and 12. In the case of discrimination
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of quantum channels, we find a necessary and sufficient condition for existence of an optimal tester
such that the input state is maximally entangled.

The rest of the present section contains some basic definitions and preliminary results on
discrimination of quantum devices, as well as convex cones, bases, and base norms.

A. Discrimination of quantum states, channels, and networks

Let H be a finite dimensional Hilbert space and let B(H) be the set of bounded operators on
H. We denote by Bh(H) the set of self-adjoint operators, B(H)+ the cone of positive operators and
S(H) := {ρ ≥ 0, Tr ρ = 1} the set of states in B(H). We will also use the notation B(H)++ for the
set of strictly positive elements in B(H). Let K be another finite dimensional Hilbert space. It is
well known that B(K ⊗ H) corresponds to the set of all linear maps B(H) → B(K), via the Choi
representation:1

X� = (� ⊗ idH)(�), �X (a) = Tr H[(IK ⊗ aT)X ], (1)

here � = |ψ〉〈ψ | and |ψ〉 = ∑
i|i〉 ⊗ |i〉 for an orthonormal basis (ONB) {|i〉, i = 1, . . . , dim(H)}

in H, aT denotes transpose of a with respect to this basis. In this correspondence, B(K ⊗ H)+ is
identified with the set of completely positive maps and Bh(K ⊗ H) with hermitian maps, that is,
maps satisfying �(a∗) = �(a)∗.

Consider the problem of quantum state discrimination: suppose the quantum system represented
by H is known to be in one of two given states ρ0 or ρ1 and the task is to decide which of them is the
true state. This is done by using a test, that is a binary positive operator valued measure (POVM).
This is given by an operator 0 ≤ M ≤ I, with the interpretation that Tr Mρ is the probability of
deciding for ρ0 if the true value of the state is ρ. Equivalently, a test can be defined as an affine map
S(H) → [0, 1].

Given an a priori probability 0 ≤ λ ≤ 1 that the true state is ρ0, we need to minimize the average
probability of error over all tests, that is to find the value of

�λ(ρ0, ρ1) := min
0≤M≤I

λTr (I − M)ρ0 + (1 − λ)Tr Mρ1,

this is the minimum Bayes error probability. Then10, 11

�λ(ρ0, ρ1) = 1

2
− 1

2
‖λρ0 − (1 − λ)ρ1‖1,

where ‖a‖1 := Tr |a|, a ∈ B(H) is the trace norm.
Let now H and K be two finite dimensional Hilbert spaces and consider the problem of

discrimination of channels. Here we have to decide between two channels �0 and �1 and this time
the tests are given by binary quantum 1-testers,3 or PPOVMs,21 which are positive operators T ∈
B(K ⊗ H)+, such that T ≤ IK ⊗ σ for some σ ∈ S(H). These correspond to triples (HA, ρ, M),
where HA is an ancillary Hilbert space, ρ ∈ S(H ⊗ HA) and 0 ≤ M ≤ I, M ∈ B(K ⊗ HA). The
probability of choosing �0 if the true value is � for a tester T is given by

p(T,�) := Tr T X� = Tr M(� ⊗ idA)(ρ).

The minimum Bayes error probability is now

�1
λ(�0,�1) := min

T
λ(1 − p(T,�0)) + (1 − λ)p(T,�) = 1

2
− 1

2
‖λ�0 − (1 − λ)�1‖�,

where the diamond norm ‖�‖� for a hermitian map � is defined as14, 19

‖�‖� = sup
dim(L′)<∞

sup
ρ∈S(H⊗L′)

‖� ⊗ idL′ (ρ)‖1

= sup
ρ∈S(H⊗L)

‖� ⊗ idL(ρ)‖1, dim(L) = dim(H).

By duality, this norm is related to the cb-norm for completely bounded linear maps, see Ref. 16.
Let now {H0, H1, . . . ,H2N−1} be finite dimensional Hilbert spaces. Consider a sequence of

channels �i : B(H2i−2 ⊗ HA) → B(H2i−1 ⊗ HA), i = 1, . . . , N, connected by the ancilla HA as
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H1H0 H2 H3 H2N−2 H2N−1

Φ1 Φ2
. . . ΦN

FIG. 1. A deterministic quantum N-comb.

indicated in Fig. 1 (the first and last ancilla are traced out). This defines a channel � : B(H0 ⊗
H2 ⊗ · · · ⊗ H2N−2) → B(H1 ⊗ H3 ⊗ · · · ⊗ H2N−1), such channels describe quantum networks.
The channels �1, . . . , �N are not unique, in fact, these can always be supposed to be isometries. A
(deterministic) quantum N-comb is defined as the Choi matrix X� of such a channel, see Ref. 4 for
more about quantum networks and N-combs. The same definition, called a (non-measuring) quantum
N-round strategy, was also introduced in Ref. 8. A (non-measuring) quantum N-round co-strategy
can be defined as an (N + 1)-strategy for the sequence of spaces {C,H0, . . . ,H2N−1,C}.

The tests for discrimination of two networks �0 and �1 are given by quantum N-testers, which
are obtained by an (N + 1)-comb such that the first channel has 1-dimensional input space (hence is
a state) and a (binary) POVM is applied to the ancilla,4,3 see Figs. 2 and 3. This can be represented
by a pair (T0, T1) of positive operators, such that T0 + T1 is an (N + 1)-round co-strategy.4, 8, 9

The minimal Bayes error probability now has the form

�N
λ (�0,�1) = 1

2
− 1

2
‖λ�0 − (1 − λ)�1‖N�,

where the norm ‖ · ‖N� was introduced in Ref. 3 as

‖�‖N� = sup
T

‖(T0 + T1)1/2 X�(T0 + T1)1/2]‖1, (2)

for any hermitian �. Another expression for this norm was found in Ref. 9:

‖�‖N� = sup
T

Tr X�(T0 − T1). (3)

In both cases, the supremum is taken over all N-testers. The dual norm was also obtained in Ref. 9
as

‖�‖∗
N� = sup

S
Tr X�(S1 − S0),

where the supremum is taken over the set of pairs of positive operators such that S0 + S1 is an
N-round strategy (N-comb).

B. Convex cones, bases, and base norms

Let V be a finite dimensional real vector space and let V∗ be the dual space, with duality 〈 · , · 〉.
A subset Q ⊂ V is a convex cone if λq1 + μq2 ∈ Q whenever q1, q2 ∈ Q and λ, μ ≥ 0. The cone
is pointed if Q ∩ − Q = {0} and generating if V = Q − Q. Closed pointed convex cones are in
one-to-one correspondence with partial orders in V , by x ≤Q y ⇔ y − x ∈ Q.

The dual cone of Q is defined as

Q∗ = { f ∈ V∗, 〈 f, q〉 ≥ 0, q ∈ Q}.

ρ

H0

Ψ1

H1 H2

. . .

H2N−3

ΨN−1

H2N−2 H2N−1

ΨN

M

FIG. 2. A quantum N-tester.
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022201-4 A. Jenčová J. Math. Phys. 55, 022201 (2014)

ρ

Φ1

Ψ1

Φ2

Ψ2

Φ3

Ψ3

M

FIG. 3. A 3-tester � applied to a 3-comb �.

This is a closed convex cone and Q∗∗ = Q if Q is closed. Moreover, a closed convex cone Q is
pointed if and only if Q∗ is generating . A closed pointed generating convex cone is called a proper
cone.

A base of the proper cone Q is a compact convex subset B ⊂ Q, such that each nonzero element
q ∈ Q has a unique representation in the form q = λb with b ∈ B and λ > 0. It is clear that any base
generates the cone Q, in the sense that Q = ⋃

λ≥0 λB. Then any element v ∈ V can be written as
v = λb1 − μb2, λ, μ ≥ 0, b1, b2 ∈ B.

For any base B, the map Q � q = λb �→ λ extends uniquely to a linear functional eB ∈ Q∗ and
we have B = {q ∈ Q, 〈eB, q〉 = 1}.

Lemma 1. Let f ∈ Q∗. Then f ∈ int(Q∗) if and only if

B f := {q ∈ Q, 〈 f, q〉 = 1}
is a base of Q.

Proof. It is quite clear that Bf is a base of Q if and only if 〈f, q〉 > 0 for any nonzero q ∈ Q. By
Theorem 11.6 of Ref. 18, this is equivalent with f ∈ int(Q∗). �

Let ≤ denote the order in V given by Q. An element e ∈ V is an order unit in V if for any v ∈ V ,
there is some r > 0 such that re ≥ v. It is easy to see that e is an order unit if and only if e ∈ int(Q).
Consequently,

Corollary 1. Any base B of Q defines an order unit eB in V∗ and, conversely, any order unit e in
V∗ defines a base Be of Q. We have eBe = e and BeB = B.

Let B be a base of Q. The corresponding base norm in V is defined by

‖v‖B = inf{λ + μ, v = λb1 − μb2, λ, μ ≥ 0, b1, b2 ∈ B}.
It is clear that ‖q‖B = 〈eB, q〉 for all q ∈ Q. Let V1 be the unit ball of ‖ · ‖B in V , then

V1 = {λb1 − μb2, b1, b2 ∈ B, λ, μ ≥ 0, λ + μ = 1} = co(B ∪ −B),

where co(A) denotes the convex hull of A ⊂ V . Let ‖ · ‖∗
B be the dual norm in V∗, then the unit ball

V∗
1 for ‖ · ‖∗

B is given by

V∗
1 = V◦

1 = (co(B ∪ −B))◦ = (B ∪ −B)◦ = B◦ ∩ (−B)◦,

where A◦ := { f ∈ V∗, 〈 f, a〉 ≤ 1,∀a ∈ A} is the polar of A ⊂ V , see Ref. 18. We have

V∗
1 = { f ∈ V∗,−1 ≤ 〈 f, b〉 ≤ 1,∀b ∈ B} = { f ∈ V∗,−eB ≤Q∗ f ≤Q∗ eB},

where eB is the order unit. Hence the dual norm is given by

‖ f ‖∗
B = inf{λ > 0,−λeB ≤Q∗ f ≤Q∗ λeB} =: ‖ f ‖eB .

In general, if e is an order unit, then ‖ · ‖e defines a norm called the order unit norm in V∗.
Since ‖ · ‖B is the dual norm for ‖ · ‖eB , we get for v ∈ V ,

‖v‖B = ‖v‖∗
eB

= sup
−eB≤Q∗ f ≤Q∗ eB

〈 f, v〉 = 2 sup
f ∈Q∗, f ≤Q∗ eB

〈 f, v〉 − 〈eB, v〉, (4)

where the last equality follows by replacing f by 1
2 ( f + eB).
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Example 1. Let V = Bh(H) and Q = B(H)+. We identify V∗ with V , with duality 〈a, b〉
= Tr ab, then Q is a self-dual proper cone and B = S(H) is a base of Q, with eB = I. The order unit
norm ‖ · ‖I is the operator norm ‖ · ‖ in B(H) and its dual ‖ · ‖B is the trace norm ‖ · ‖1.

We will finish this section by showing that the base norm is naturally related to a distinguisha-
bility measure for elements of the base. By analogy with the set of quantum states, let us define a test
on a base B as an affine map t : B → [0, 1]. It is easy to see that there is a one-to-one correspondence
between tests on B and elements f ≤Q∗ eB in Q∗. Let b0, b1 be two elements of B and let us interpret
the value t(b) = 〈 f, b〉 as the probability of choosing b0 if the “true value” is b. Then 〈f, b1〉 and 1
− 〈f, b0〉 are probabilities of making an error. Let λ ≥ 0, then we define the minimal average error
probability as

�B
λ (b0, b1) := min

0≤Q∗ f ≤Q∗ eB

λ(1 − 〈 f, b0〉) + (1 − λ)〈 f, b1〉.

We obtain by (4) that

�B
λ (b0, b1) = λ − max

0≤Q∗ f ≤Q∗ eB

〈 f, λb0 − (1 − λ)b1〉

= 1

2
(1 − ‖λb0 − (1 − λ)b1‖B).

II. BASE NORMS ON SUBSPACES OF Bh(H)

We now put V = Bh(H), with the self-dual proper cone B(H)+ as in Example 1. We will
describe all possible bases of this cone.

It is clear that int(B(H)+) = B(H)++, hence the strictly positive elements are the order units
in Bh(H). By Corollary 1, there is a one-to-one correspondence between strictly positive elements
and bases of B(H)+, given by

B(H)++ � b ↔ Sb := {a ∈ B(H)+, Tr ab = 1} = B(H)+ ∩ Tb, (5)

where Tb = {x ∈ Bh(H), Tr xb = 1}. By (4) and Example 1, the corresponding base norm is

‖x‖Sb = sup
−b≤a≤b

Tr ax = sup
−I≤a≤I

Tr ab1/2xb1/2 = ‖b1/2xb1/2‖1 (6)

and the dual order unit norm is

‖x‖b = inf{λ > 0,−λb ≤ x ≤ λb} = ‖b−1/2xb−1/2‖. (7)

If b ∈ B(H)+, we define

‖b−1/2xb−1/2‖ := lim
ε→0+

‖(b + ε)−1/2x(b + ε)−1/2‖.
Note that the expression on the RHS is bounded for all ε > 0 if and only if supp (x) ≤ supp (b) and
in this case the norm on the LHS is defined by restriction to the support of b. Otherwise, the limit is
infinite. Moreover, for a, b ∈ B(H)+, we define

Dmax (a‖b) := log inf{λ > 0, a ≤ λb} = inf{γ > 0, a ≤ 2γ b}.
For a pair of states ρ and σ , Dmax(ρ‖σ ) is the max-relative entropy of ρ and σ , introduced in
Ref. 6. (Note that Dmax was denoted by D∞ in Ref. 17.) If b ∈ B(H)++, then

Dmax (a‖b) = log(‖a‖b).

In general, if supp (a) ≤ supp (b), then we may restrict to the support of b and with this restriction
Dmax(a‖b) = log (‖a‖b), otherwise Dmax(a‖b) = ∞.

A. Sections of a base of B(H)+

Let J ⊂ Bh(H) be a subspace and let Q = J ∩ B(H)+ be the convex cone of positive elements
in J. It is obvious that Q is closed and pointed. We will suppose that J is positively generated, then J
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= Q − Q and Q is a proper cone in J. Let b ∈ Q be such that supp a ≤ supp b =: p for all a ∈ Q, then
J ⊆ Bh(pH) and by restricting to Bh(pH), we may suppose that b is strictly positive. Conversely,
if J contains a strictly positive element, then J is positively generated.

Let J⊥ = {y ∈ Bh(H), Tr xy = 0, x ∈ J }, let Bh(H)|J⊥ be the quotient space and let π :
Bh(H) → Bh(H)|J⊥ be the quotient map a �→ a + J⊥. We may identify the dual space J∗ with
Bh(H)|J⊥ , with duality

〈x, π (a)〉 = Tr xa, x ∈ J, a ∈ Bh(H).

It was shown in Theorem 2 of Ref. 13 that the dual cone of Q is Q∗ = π (B(H)+), moreover, since
π is a linear map, we have int(Q∗) = int(π (B(H)+)) = π (B(H)++) by Theorem 6.6 of Ref. 18. In
other words, any element f ∈ Q∗ has the form

f (x) = Tr ax, x ∈ J,

for some (in general non-unique) element a ∈ B(H)+ and f is an order unit in J∗ if and only if a may
be chosen strictly positive. Now we can use Corollary 1 to describe all bases of Q.

Lemma 2. A subset B ⊂ Q is a base of Q if and only if B = J ∩ Sb̃, where b̃ ∈ B(H++). In this
case, π (b̃) = eB .

Proof. Let B be a base of Q. Since eB ∈ int(Q∗), there is some b̃ ∈ B(H)++ such that eB = π (b̃)
and

B = {q ∈ Q, Tr qb̃ = 〈eB, q〉 = 1〉} = Q ∩ Tb̃ = J ∩ Sb̃

(see (5)). Conversely, it is quite clear that B = J ∩ Sb̃ is a base of Q and eB = π (b̃). �
A set of the form B = L ∩ Sb̃ where b̃ ∈ B(H)++ and L ⊆ Bh(H) is a subspace will be called

a section of a base of B(H)+, or simply a section. Let span(B) be the real linear span of B, then

B ⊆ span(B) ∩ Sb̃ ⊆ L ∩ Sb̃ = B,

so that B = span(B) ∩ Sb̃ and B is a base of span(B) ∩ B(H)+. If moreover B contains a positive
definite element, we say that B is a faithful section. In this case, we have B ∩ B(H)++ = ri(B),
where ri(B) denotes the relative interior of B, Section 6 of Ref. 18. Indeed, since B = Lb̃ ∩ B(H)+,
where Lb̃ =: L ∩ Tb̃ is an affine subspace containing an interior point of B(H)+, we have by
Corollary 6.5.1 of Ref. 18 that

ri(B) = ri(Lb̃ ∩ B(H)+) = Lb̃ ∩ B(H)++ = B ∩ B(H)++.

For example, note that if B = {b} for some b ∈ B(H)+, then B is a section and B is faithful if and
only if b is strictly positive. If a section B is not faithful, then there is some element b ∈ B such
that p = supp (b) and B ⊂ B(pH). Then B is a faithful section of a base of B(pH)+, in this case,
ri(B) = B ∩ ri(B(pH)+). From now on, we will suppose that B is a faithful section of a base of
B(H)+.

Note that in Lemma 2, the correspondence between the base B and the element b̃ such that
B = span(B) ∩ Sb̃ is not one-to-one, since the order unit eB = π (b̃) may contain more different
strictly positive elements. We will now look at the set of all such elements. Let

B̃ := {b̃ ∈ B(H)+, Tr bb̃ = 1,∀b ∈ B}.
Then

B̃ = π−1(eB) ∩ B(H)+ = (b̃ + B⊥) ∩ B(H)+, (8)

where b̃ is any element in B̃. Note that B̃ always contains a strictly positive element. Since by (8) B̃
is an intersection of B(H)+ by an affine subspace, we have

{b̃ ∈ B(H)++, B = span(B) ∩ Sb̃} = B̃ ∩ B(H)++ = ri(B̃).
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Lemma 3.

(i) B̃ is a faithful section of a base of B(H)+.
(ii) ˜̃B = B.
(iii) B = ⋂

b̃′∈ri(B̃) Sb̃′ .

Proof. (i) Let b ∈ ri(B). Since B̃ is convex, any element y ∈ span(B̃) has the form y = λb̃1 − μb̃2,
with b̃1, b̃2 ∈ B̃ and λ, μ ≥ 0. Hence by (8), y = (λ − μ)b̃ + z for some z ∈ B⊥. If y is also
in Sb, we must have 1 = Tr yb = λ − μ, so that y ∈ (b̃ + B⊥) ∩ B(H)+ = B̃. It follows that
B̃ = span(B̃) ∩ Sb.

(ii) It is clear that B ⊆ ˜̃B and ˜̃B = (b + B̃⊥) ∩ B(H)+. Let b̃ ∈ ri(B̃), then B̃ = (b̃ + B⊥) ∩
B(H)+. Since b̃ ∈ B(H)++, for each z ∈ B⊥ there is some t > 0 such that b̃ + t z ∈ B̃ and this implies
that B̃⊥ ⊆ (B⊥)⊥ = span(B), hence also ˜̃B ⊆ span(B). It follows that span(B) = span( ˜̃B), so that
B and ˜̃B are two bases of the same cone. This implies (ii).

(iii) Obviously B ⊆ ⋂
b̃′∈ri(B̃) Sb̃′ . If a ∈ ⋂

b̃′∈ri(B̃) Sb̃′ , then a is a positive element such that

Tr ab̃′ = 1 for all b̃′ ∈ cl(ri(B̃)) = B̃, hence a ∈ ˜̃B = B. �
We call B̃ the dual section of B. The section B defines a base norm ‖ · ‖B in span(B). Next we

show that this norm can be naturally extended to all Bh(H). For this, let us define

OB := {x ∈ Bh(H), x = x1 − x2, x1, x2 ∈ B(H)+, x1 + x2 ∈ B}. (9)

For b ∈ B(H)+, we define Ob := O{b}.

Lemma 4. We have

(i) OB = {x ∈ Bh(H), ∃b′ ∈ B, −b′ ≤ x ≤ b′} = ⋃
b′∈B Ob′ .

(ii) The unit ball of the base norm ‖ · ‖B is OB ∩ span(B).

Proof. (i) Let x = x1 − x2 with x1 + x2 = b′ ∈ B, then − b′ = − (x1 + x2) ≤ x ≤ x1 + x2

= b′. Conversely, let − b′ ≤ x ≤ b′ for some b′ ∈ B. Put x± = 1/2(b′ ± x), then x± ∈ B(H)+, x+
− x− = x, and x+ + x− = b′ ∈ B.

(ii) By definition, the unit ball of ‖ · ‖B is the set of elements of the form x = λb1 − (1 − λ)b2,
b1, b2 ∈ B, 0 ≤ λ ≤ 1. Then clearly x ∈ OB , by putting x1 = λb1 and x2 = (1 − λ)b2. Conversely,
let x ∈ span(B) be such that − b′ ≤ x ≤ b′ for some b′ ∈ B, then x± = 1/2(b′ ± x) are positive
elements in span(B) and we have x± = λ± b± , for λ± ≥ 0, b± ∈ B. By applying the order unit eB

to the equality b′ = x+ + x− , we see that we must have λ+ + λ− = 1, so that ‖x‖B ≤ 1. �
Theorem 1. Let B be a faithful section and let B̃ be the dual section. Then OB is the unit ball

of a norm in Bh(H). The unit ball of the dual norm is OB̃ .

We will denote this norm by ‖ · ‖B, note that Lemma 4 (ii) justifies this notation.

Proof. It is clear that OB is convex and symmetric, that is, −OB ⊆ OB . Since B is compact, OB

is closed. If x ∈ OB , then x = x1 − x2 with x1, x2 ≥ 0, x1 + x2 ∈ B and by (6),

‖x‖Sb̃
≤ ‖x1‖Sb̃

+ ‖x2‖Sb̃
= Tr (x1 + x2)b̃ = 1,

for any b̃ ∈ ri(B̃), hence OB is bounded. Moreover, since b ∈ ri(B) is an order unit, for every
x ∈ Bh(H) there is some t > 0 such that − tb ≤ x ≤ tb, so that x ∈ tOB (see Lemma 4 (i)). This
means that OB is absorbing . These facts imply that OB is the unit ball of a norm.

To show duality of the norms ‖ · ‖B and ‖ · ‖B̃ , let H2 = H ⊕ H and let � : Bh(H2) → Bh(H)
be the map defined by �(a ⊕ b) = a + b. Let J2 = �− 1(span(B)), then J2 is a subspace in Bh(H2)
and

J⊥
2 = �∗(B⊥) = {x ⊕ x, x ∈ B⊥},

see Ref. 13. Let π2 : B(H2) → J ∗
2 = B(H2)|J⊥

2
be the quotient map.
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022201-8 A. Jenčová J. Math. Phys. 55, 022201 (2014)

Let b̃ ∈ ri(B̃) and put B2 = J2 ∩ Sb̃⊕b̃. Then B2 is a base of Q2 = J2 ∩ B(H2)+ and it is clear
that for w1, w2 ∈ B(H)+, w1 ⊕ w2 ∈ B2 if and only if w1 + w2 ∈ B. Let now a ∈ Bh(H), then
a ∈ O◦

B if and only if Tr (a ⊕ −a)w ≤ 1 for all w ∈ B2. Equivalently,

π2(a ⊕ −a) ≤Q∗
2

eB2 = π2(b̃ ⊕ b̃),

that is, there is some v ∈ J⊥
2 such that a ⊕ −a ≤ b̃ ⊕ b̃ + v. Since v = x ⊕ x , x ∈ B⊥, we obtain

±a ≤ b̃ + x . Note that we must have b̃ + x ≥ 0: if c is any element in B(H)+, then we have ± Tr ca
≤ Tr c(b + x), so that Tr c(b + x) cannot be negative. Hence ±a ≤ b̃ + x ∈ B̃, so that a ∈ OB̃ ,
by Lemma 4 (i). This shows that O◦

B ⊆ OB̃ . Conversely, it is easy to see that if − b ≤ x ≤ b and
−b̃ ≤ y ≤ b̃ for b ∈ B, b̃ ∈ B̃, then Tr xy ≤ Tr bb̃ = 1, this implies the opposite inclusion. �

Corollary 2. Let x ∈ Bh(H). Then

(i) OB = ⋂
b̃∈ri(B̃) OSb̃

,
(ii) ‖x‖B = supb̃∈ri(B̃) ‖x‖Sb̃

= supb̃∈B̃ ‖b̃1/2xb̃1/2‖1,

(iii) ‖x‖B = ∈fb ∈ ri(B)‖x‖b = ∈fb ∈ B‖b− 1/2xb− 1/2‖.

Proof. (i) It is easy to see from Lemma 4 that

OB =
⋃
b∈B

Ob = cl(
⋃

b∈ri(B)

Ob). (10)

Indeed, let x ∈ Bh(H) be such that − b ≤ x ≤ b for some b ∈ B and let b′ ∈ ri(B), then bε := εb′

+ (1 − ε)b ∈ ri(B) for all 0 < ε < 1. Let x ′ ∈ Ob′ be any element, then xε := εx ′ + (1 − ε)x ∈ Obε

and x = limε→0+ xε ∈ cl(
⋃

b∈ri(B) Ob).
Since A◦ = (cl(conv(A)))◦ for any subset A ∈ Bh(H) containing 0, we obtain by Theorem 1

that

OB = O◦
B̃ = (

⋃
b̃∈ri(B̃)

Ob̃)◦ =
⋂

b̃∈ri(B̃)

O◦
b̃ =

⋂
b̃∈ri(B̃)

OSb̃
.

(ii) Since OB is the unit ball of ‖ · ‖B, we get from (i)

‖x‖B = inf{λ > 0, x ∈ λOB} = inf{λ > 0, x ∈ λOSb̃
,∀b̃ ∈ ri(B̃)}

= inf{λ > 0, λ ≥ ‖x‖Sb̃
,∀b̃ ∈ ri(B̃)} = sup

b̃∈ri(B̃)

‖x‖Sb̃
= sup

b̃∈B̃

‖b̃1/2xb̃1/2‖1,

the last equality follows from (6) and continuity of the norm ‖ · ‖1.
(iii) On the other hand, we get from Lemma 4 and (10)

‖x‖B = inf{λ > 0, x ∈ λOB} = inf{λ > 0, x ∈ λ ∪b∈ri(B) Ob}
= inf

b∈ri(B)
inf{λ > 0, x ∈ λOb} = inf

b∈ri(B)
‖x‖b = inf

b∈B
‖b−1/2xb−1/2‖,

where the last equality follows by (7). �
Corollary 3. For a ∈ B(H)+, we have

‖a‖B = sup
b̃∈B̃

Tr ab̃ = inf
b∈B

2Dmax (a‖b).

Proof. We have

‖a‖B = sup
x∈OB̃

Tr ax .

Let x ∈ OB̃ , then x = x1 − x2, x1, x2 ∈ B(H)+ and x1 + x2 =: b̃x ∈ B̃, so that

Tr ax ≤ Tr ax1 ≤ Tr ab̃x ≤ sup
b̃∈B̃

Tr ab̃ ≤ sup
y∈OB̃

Tr ay = ‖a‖B .
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Hence ‖a‖B = supb̃∈B̃ Tr ab̃. The second equality follows directly from Corollary 2 (iii) and the
definition of Dmax. �

We can also characterize the maximizer resp. minimizer in Corollary 3.

Corollary 4. Let a ∈ B(H)+.

(i) Let b̃0 ∈ B̃, then ‖a‖B = Tr ab̃0 if and only if there exists some q ∈ span(B), such that a ≤ q
and (q − a)b̃0 = 0. In this case, q = ‖a‖Bb0, b0 ∈ B, and ‖a‖B = 2Dmax (a‖b0).

(ii) Let b0 ∈ B, then ‖a‖B = 2Dmax (a‖b0) if and only if there exists some t > 0 and b̃0 ∈ B̃, such
that a ≤ tb0 and (tb0 − a)b̃0 = 0. In this case, t = ‖a‖B = Tr ab̃0.

Proof. (i) Let b̃0 ∈ B̃ be such that ‖a‖B = Tr ab̃0. Let b0 ∈ B be such that ‖a‖B = 2Dmax (a‖b0), in
particular, a ≤ ‖a‖Bb0. Put q = ‖a‖Bb0, then q − a ≥ 0 and Tr (q − a)b̃0 = 0. Since also b̃0 ≥ 0, it
follows that (q − a)b̃0 = 0.

Conversely, suppose q ∈ span(B) satisfies a ≤ q and (q − a)b̃0 = 0. Then q = sb0 for some b0

∈ B, s ≥ 0. Since a ≤ sb0, we have

‖a‖B ≤ s = Tr ab̃0 ≤ ‖a‖B,

so that Tr ab̃0 = ‖a‖B = s = 2Dmax (a‖b0).
(ii) is proved similarly. �

III. GENERALIZED CHANNELS

Let B be a section of a base of B(H)+. A generalized channel with respect to B (or a B-channel)
is a completely positive map � : B(H) → B(K) such that �(B) ⊆ S(K). Let X� be the Choi matrix
of �, then � is a generalized channel with respect to B if and only if X� ≥ 0 and

1 = Tr �(b) = Tr Tr H[(I ⊗ bT)X�] = Tr (I ⊗ bT)X� = Tr bTTr K X�,

for all b ∈ B. Let CB(H,K) denote the set of Choi matrices of all generalized channels with respect
to B, then

CB(H,K) = {X ∈ B(K ⊗ H)+, Tr K X ∈ B̃T}.
Let us remark that if B is a section, then BT := {bT, b ∈ B} is a section as well, here bT denotes the
transpose of b. Moreover, B̃T = B̃T. Note also that we have

CB(H,C) = B̃T, (11)

so that, in particular, CB(H,C) is a section.

Proposition 1. Let B be a faithful section of a base of B(H)+. Then CB(H,K) is a faithful section

of a base of B(K ⊗ H)+ and ˜CB(H,K) = {IK ⊗ bT, b ∈ B}.

Proof. It is easy to see that IK ⊗ BT = {IK ⊗ bT, b ∈ B} is a faithful section of a base of
B(K ⊗ H)+ and

CB(H,K) = {X ∈ B(K ⊗ H)+, Tr X (I ⊗ bT) = 1,∀b ∈ B} = ˜IK ⊗ BT.

The proof now follows by Lemma 3 (i) and (ii). �
Let now X ∈ Bh(K ⊗ H) and let � : B(H) → B(K) be the corresponding Hermitian map. By

Corollary 2 and Proposition 1,

‖X‖CB (H,K) = sup
b∈B

‖(I ⊗ (bT)1/2)X (I ⊗ (bT)1/2)‖1

and we have

(I ⊗ (bT)1/2)X (I ⊗ (bT)1/2) = (� ⊗ idH)(σb),
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where σ b = |ψb〉〈ψb|, with

|ψb〉 =
∑

i

|i〉 ⊗ (bT)1/2|i〉 =
∑

i

b1/2|i〉 ⊗ |i〉 ∈ H ⊗ H.

Hence σb ∈ B(H ⊗ H)+ and Tr 1σb = bT ∈ BT, so that σb ∈ CB̃(H,H). Conversely, if σ = |ϕ〉〈ϕ| ∈
CB̃(H,L) for some Hilbert space L, then there is some linear map R : H → L satisfying R∗R = b
∈ B and such that |ϕ〉 = ∑

iR|i〉 ⊗ |i〉. Let U : H → L be an isometry such that R = Ub1/2, then

|ϕ〉 =
∑

i

R|i〉 ⊗ |i〉 =
∑

i

Ub1/2|i〉 ⊗ |i〉 = (U ⊗ I )|ψb〉.

Theorem 2. Let X ∈ Bh(K ⊗ H) and let � be the corresponding Hermitian map B(H) → B(K).
Let L be any Hilbert space with dim(L) = dim(H). Then

‖X‖CB (H,K) = sup
dim(L′)<∞

sup
σ∈CB̃ (H,L′)

‖(� ⊗ idL′ )(σ )‖1

= sup
σ∈CB̃ (H,L)

‖(� ⊗ idL)(σ )‖1,

and the dual norm is ‖X‖∗
CB (H,K) = ‖X‖IK⊗BT . Moreover, if X ≥ 0 then

‖X‖CB (H,K) = sup
b∈B

Tr �(b) = inf
Y∈CB (H,K)

2Dmax (X‖Y )

and

‖X‖I⊗BT = inf
b∈B

2Dmax (X‖I⊗bT) = sup
Y∈CB (H,K)

Tr XY = sup
S

〈ψ |X S∗◦�|ψ〉,

where the last supremum is taken over the set of all B-channels B(H) → B(K).

Proof. From what was said above, it is easy to see that

‖X‖CB (H,K) = sup
|ϕ〉〈ϕ|∈CB̃ (H,L)

‖(� ⊗ idL)(|ϕ〉〈ϕ|)‖1,

with dim(L) = dim(H). We will show that

sup
|ϕ〉〈ϕ|∈CB̃ (H,L′)

‖(� ⊗ idL′ )(|ϕ〉〈ϕ|)‖1 ≤ sup
|ϕ〉〈ϕ|∈CB̃ (H,L)

‖(� ⊗ idL)(|ϕ〉〈ϕ|)‖1,

whenever dim(L′) ≥ dim(L). The proof is almost the same as the proof of Theorem 5 of Ref. 19,
we include it here for completeness.

So let dim(L′) ≥ dim(L) = dim(H), then there is some ϕ0 ∈ H ⊗ L′, with |ϕ0〉〈ϕ0| ∈ CB̃(H,L′)
such that

sup
|ϕ〉〈ϕ|∈CB̃ (H,L′)

‖� ⊗ idL′ (|ϕ〉〈ϕ|)‖1 = ‖� ⊗ idL′ (|ϕ0〉〈ϕ0|)‖1.

Let |ϕ0〉 = ∑m
i=1 si |ϕi 〉 ⊗ |ξi 〉 be the Schmidt decomposition of ϕ0, with {|ϕi〉} and {|ξ i〉} orthonor-

mal sets in H resp. L′ and m = dim(H). Then |ϕ0〉〈ϕ0| = ∑
i, j|ϕi〉〈ϕj| ⊗ |ξ i〉〈ξ j| and

(Tr L′ |ϕ0〉〈ϕ0|)T = (
∑

i

si |ϕi 〉〈ϕi |)T ∈ ˜̃B = B.

Let {|ei〉, i = 1, . . . , m} be an ONB in L. Define the linear map U : L′ → L by
U = ∑m

i=1 |ei 〉〈ξi |, then U∗U = ∑
i|ξ i〉〈ξ i| is the projection in L′ onto the subspace spanned by

the vectors |ξ i〉, i = 1, . . . , m, and (I ⊗ U∗U)|ϕ0〉 = |ϕ0〉. Put ϕU := (I ⊗ U)|ϕ0〉 = ∑
i|ϕi〉 ⊗ |ei〉,
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then it is easy to see that |ϕU 〉〈ϕU | ∈ CB̃(H,L). Now we have

sup
|ϕ〉〈ϕ|∈CB̃ (H,L)

‖� ⊗ idL(|ϕ〉〈ϕ|)‖1 ≥ ‖� ⊗ idL(|ϕU 〉〈ϕU |)‖1

≥ ‖(I ⊗ U ∗)(� ⊗ idL)(|ϕU 〉〈ϕU |)(I ⊗ U )‖1

= ‖� ⊗ idL′ ((I ⊗ U ∗)|ϕU 〉〈ϕU |(I ⊗ U ))‖1

= ‖� ⊗ idL′ (|ϕ0〉〈ϕ0|)‖1

= sup
|ϕ〉〈ϕ|∈CB̃ (H,L′)

‖� ⊗ idL′ (|ϕ〉〈ϕ|)‖1.

Next, let Y be any element in CB̃(H,L′), then the corresponding map ξ : B(H) → B(L′) has
the form

ξ (a) =
N∑

i=1

Vi aV ∗
i , a ∈ B(H),

where Vi : H → L′ are linear maps such that
∑

i V ∗
i Vi ∈ B. Let L′

0 be a Hilbert space with
dim(L′

0) = N and let {|fj〉, j = 1, . . . , N} be an ONB in L′
0. Define V = ∑N

j=1 Vj ⊗ | f j 〉, then
V is a linear map H → L′ ⊗ L′

0 with V ∗V = ∑
i V ∗

i Vi ∈ B. Let V(a) = V aV ∗ and let Z be the
Choi matrix of V , then Z is a rank one element in CB̃(H,L′ ⊗ L′

0). Moreover, ξ (a) = Tr L′
0
V aV ∗

and Y = Tr L′
0
Z . It follows that

‖(� ⊗ idL′ )(Y )‖1 = ‖(� ⊗ idL′ )(Tr L′
0
Z )‖1 = ‖Tr L′

0
(� ⊗ idL′⊗L′

0
)(Z )‖1

≤ ‖(� ⊗ idL′⊗L′
0
)(Z )‖1 ≤ ‖X‖CB (H,K).

We now have

‖X‖CB (H,K) = sup
|ϕ〉〈ϕ|∈CB̃ (H,L)

‖(� ⊗ idL)(|ϕ〉〈ϕ|)‖1 ≤ sup
σ∈CB̃ (H,L)

‖(� ⊗ idL)(σ )‖1

≤ sup
dim(L′)<∞

sup
σ∈CB̃ (H,L′)

‖(� ⊗ idL′ )(σ )‖1 ≤ ‖X‖CB (H,K).

The expression for the dual norm follows by Proposition 1. Suppose now that X ≥ 0, then by
Corollary 3

‖X‖CB (H,K) = sup
b∈B

Tr X (I ⊗ bT) = inf
Y∈CB (H,K)

2Dmax (X‖Y ),

‖X‖I⊗BT = sup
Y∈CB (H,K)

Tr XY = inf
b∈B

2Dmax (X‖I⊗bT).

By (1), Tr X (I ⊗ bT) = Tr Tr H X (I ⊗ bT) = Tr �(b). Moreover, let Y ∈ CB(H,K) and let S be the
corresponding B-channel, then

Tr XY = Tr X (S ⊗ id)(�) = Tr (S∗ ⊗ id)(X )� = 〈ψ, X S∗◦�ψ〉.
�

A. Channels

Let B = S(H), then generalized channels are the usual channels. In this case, we denote
CB(H,K) by C(H,K). Note that B̃ = {I } and CB̃(H,K) = S(K ⊗ H).

By Proposition 1, C(H,K) is a faithful section of a base of B(K ⊗ H)+ and

˜C(H,K) = {IK ⊗ ρ, ρ ∈ S(H)}.
Furthermore, let X ∈ Bh(K ⊗ H) and let � : B(H) → B(K) be the corresponding Hermitian map.
Then by Theorem 2,

‖X‖C(H,K) = sup
σ∈S(H⊗L)

‖(� ⊗ idL)(σ )‖1 = ‖�‖�,
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with dim(L) = dim(H). For the dual norm, we have

‖X‖I⊗S(H) = inf
ρ∈S(H)

inf{λ > 0, −λ(I ⊗ ρ) ≤ X ≤ λ(I ⊗ ρ)}.

If σ ∈ B(K ⊗ H)+, we obtain

‖σ‖I⊗S(H) = inf
ρ∈S(H)

2Dmax (σ‖I⊗ρ) = 2−Hmin (K|H)σ ,

where Hmin(K|H)σ is the conditional min-entropy, see Ref. 17.

B. Quantum supermaps

Let H0,H1, . . . be a sequence of finite dimensional Hilbert spaces. For each n ≥ 1, we define
the sets C(H0, . . . ,Hn) as follows: C(H0,H1) is, as before, the set of Choi matrices of channels
B(H0) → B(H1). For n > 1, we define C(H0, . . . ,Hn) as the set of Choi matrices of cp maps
B(Hn−1 ⊗ · · · ⊗ H0) → B(Hn) that map C(H0, . . . ,Hn−1) into S(Hn). Such maps were called
quantum supermaps in Ref. 13. (Note that this definition is slightly different from the notion
of supermap introduced in Ref. 5, which is a cp map that maps Choi matrices of channels to Choi
matrices of channels.) and it was proved that for n = 2N − 1 we get precisely the set of deterministic
quantum N-combs for the sequence {H0, . . . ,H2N−1}, Theorem 7 of Ref. 13. If n = 2N, we get the
set of N + 1-combs for {C,H0, . . . ,H2N }.

Let us fix the sequence H0,H1, . . . and for this, put Cn = C(H0, . . . ,Hn). By using repeatedly
Proposition 1, we see that Cn is a faithful section of a base of B(Hn ⊗ · · · ⊗ H0)+ and

Cn+1 = CCn (Hn ⊗ · · · ⊗ H0,Hn+1).

Moreover, by Proposition 1,

C̃n = IHn ⊗ Cn−1 = C(H0, . . . ,Hn,C)

(note that CT
n−1 = Cn−1, the last equality above follows from (11)). For n = 2N − 1, this corresponds

to the set of N-round nonmeasuring co-strategies of Refs. 8 and 9. Note also that for any finite
dimensional Hilbert space L′,

CC̃n
(Hn ⊗ · · · ⊗ H0,L′) = {Y ≥ 0, Tr L′Y ∈ Cn = CCn−1 (Hn−1 ⊗ · · · ⊗ H0,Hn)}

= {Y ≥ 0, Tr Hn (Tr L′Y ) ∈ C̃n−1}
= C(H0, . . . ,Hn ⊗ L′).

Now we obtain the following expressions for the corresponding norm and its dual.

Theorem 3. Let n ≥ 2. Let X ∈ Bh(Hn ⊗ · · · ⊗ H0) and let � : B(Hn−1 ⊗ · · · ⊗ H0) → B(Hn)
be the corresponding map. We have

‖X‖C(H0,...,Hn ) = sup
Y1,Y2≥0,Y1+Y2∈C(H0,...,Hn ,C)

Tr X (Y1 − Y2)

= sup
Y∈C(H0,...,Hn ,C)

‖Y 1/2 XY 1/2‖1

= inf
Y∈C(H0,...,Hn )

inf{λ > 0,−λY ≤ X ≤ λY }

= sup
dim(L′)<∞

sup
Y∈C(H0,...,Hn−2,Hn−1⊗L′)

‖(� ⊗ idL′ )(Y )‖1

= sup
Y∈C(H0,...,Hn−2,Hn−1⊗L)

‖(� ⊗ idL)(Y )‖1,

where dim(L) = dim(Hn−1 ⊗ · · · ⊗ H0). Moreover, the dual norm is

‖X‖IHn ⊗C(H0,...,Hn−1) = ‖X‖C(H0,...,Hn ,C).
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Proof. Duality of the norms is obtained from Theorem 2, this also implies the first equality. Next
two equalities follow by Corollary 2. The rest follows by Theorem 2. �

For n = 2N − 1, first two expressions are exactly the N�-norm as obtained in Refs. 9 and 3.
Duality of the norms corresponding to strategies and co-strategies was also obtained in Ref. 9.

IV. A GENERAL QUANTUM DECISION THEORY

As before, let B be a faithful section of a base of B(H)+. As we have seen, elements of B may
represent certain quantum devices and it is therefore reasonable to consider the following definitions.

Let {bθ , θ ∈ �} ⊂ B be a parametrized family, for simplicity, we will suppose that the set of
parameters � is finite. If B is the set of states, the pair E = (H, {bθ , θ ∈ �}) is called an experiment
and is interpreted as an a priori information on the true state of the system. Accordingly, for a section
B, we define a generalized experiment as a triple E = (H, B, {bθ , θ ∈ �}).

Another ingredient of decision theory is a (finite) set D, the set of possible decisions. A decision
procedure m is a procedure by which we pick some decision d ∈ D, with probability based on the
“true value” of b. That is, m is a map B → P(D), where P(D) is the set of probability measures on
D, such a map will be called a measurement on B, with values in D. The payoff obtained if d ∈ D is
chosen while the true value is θ ∈ � is given by the payoff function w : � × D → [0, 1], the pair
(D, w) is called a (classical) decision problem. Let λ be an a priori probability distribution on �.
The task is to maximize the average payoff, that is the value of

LE,λ,w(m) :=
∑
θ,d

λθw(θ, d)m(bθ )d (12)

over all measurements m : B → P(D).
It is quite clear that any measurement m on B is given by a collection {md , d ∈ D} of elements

in Q∗ such that m(b)d = 〈md , b〉 and that we must have
∑

d md = eB . Similarly as it was shown in
Ref. 13, any measurement is given by a collection {Md , d ∈ D} ⊂ B(H)+ such that md = π (Md )
and π (

∑
dMd) = eB, that is ∑

d

Md ∈ π−1(eB) ∩ B(H)+ = B̃.

Any such collection of positive operators will be called a generalized POVM (with respect to B), or
a B-POVM. It is also clear that any B-POVM defines a measurement on B (but it may happen that
different generalized POVMs define the same measurement, see Ref. 13). If B = S(H), we obtain
a (usual) POVM M = {Md , d ∈ D} ⊂ B(H)+,

∑
dMd = I.

Let us denote by MB(H, D) the set of all generalized POVMs with respect to B with values in
D and let {Md , d ∈ D} ∈ MB(H, D). Let us denote

M =
∑
d∈D

|d〉〈d| ⊗ MT
d ∈ B(HD ⊗ H)+, (13)

where HD is a Hilbert space with dim(HD) = |D| and {|d〉, d ∈ D} an ONB in HD . Then it is clear that
M is a block-diagonal element in CB(H,HD). Conversely, it is clear that if X = ∑

d |d〉〈d| ⊗ Xd ∈
CB(H,HD), then {XT

d , d ∈ D} ∈ MB(H, D). In this way, we identify MB(H, D) with the subset
of block-diagonal elements in CB(H,HD).

Let now (D, w) be a decision problem and let m be a decision procedure with corresponding
B-POVM M. Then the average payoff is computed as

LE,λ,w(m) = LE,λ,w(M) :=
∑
θ,d

λθw(θ, d)Tr Mdbθ = Tr ξE,λ,w MT,

where

ξE,λ,w =
∑

θ

∑
d

λθw(θ, d)|d〉〈d| ⊗ bθ =
∑

d

|d〉〈d| ⊗ b̄d ∈ B(HD ⊗ H)+,

where b̄d := ∑
θ λθw(θ, d)bθ .
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More generally, let D be a Hilbert space, dim(D) = k and let W be a function W : θ �→ Wθ ∈
B(D)+, with Wθ ≤ I . We call the pair (D, W ) a quantum decision problem.15 Mathematically, this
is a natural extension of classical decision problems, but at present its operational relevance is not
clear.

A decision procedure is now a B-channel � : B(H) → B(D) and the average payoff of � is
given by

LE,λ,W (�) =
∑

θ

λθTr �(bθ )Wθ .

If X ∈ CB(H,D) is the Choi matrix of �, then the average payoff has the form

LE,λ,W (�) = LE,λ,W (X ) :=
∑

θ

λθTr (WθTr H[(ID ⊗ bT
θ )X ])

=
∑

θ

Tr (λθ Wθ ⊗ bT
θ )X = Tr ξE,λ,W XT, (14)

where

ξE,λ,W =
∑

θ

λθ W T
θ ⊗ bθ ∈ B(D ⊗ H)+.

It is easy to see that the set of quantum decision problems contains also classical ones: Let
(D, w) be a classical decision problem and let HD be as before. Let Wθ := ∑

d∈D w(θ, d)|d〉〈d|,
then (HD, W ) is a quantum decision problem and ξE,λ,W = ξE,λ,w. Let X ∈ CB(H,HD) and
X = ∑

c, d ∈ D|c〉〈d| ⊗ Xcd Xcd ∈ B(H). Since ξE,λ,w is block-diagonal, we have

LE,λ,W (X ) = LE,λ,w(M),

where M = ∑
d|d〉〈d| ⊗ Xdd is a B-POVM. In other words, for a classical decision problem one

cannot get better results by considering quantum decision procedures. Conversely, let (D, W ) be a
quantum decision problem such that all the operators Wθ commute. Then there is a basis of D with
respect to which all the operators Wθ are given by diagonal matrices, and the problem is equivalent
to a classical problem, in the sense that we obtain the same average payoffs. Hence we can view the
set of classical decision problems as the subset of quantum decision problems such that the payoff
function W has commutative range.

Theorem 4. Let E = (H, B, {bθ , θ ∈ �}) be a generalized experiment and let (D, W ) be a
quantum decision problem. Then the maximal average payoff is given by

LE,λ,W := max
X∈CB (H,D)

LE,λ,W (X ) = ‖ξE,λ,W ‖ID⊗B .

If (D, W ) is classical, then

LE,λ,W = inf
b∈B

sup
d∈D

2Dmax(b̄d‖b).

Proof. By (14), the maximal average payoff is given by

LE,λ,W = max
X∈CB (H,D)

Tr ξE,λ,W XT = ‖ξE,λ,W ‖ID⊗B,

the last equality follows by Corollary 3 and Proposition 1. If (D, W ) is classical, then we may
suppose that the matrices Wθ are diagonal. Then ξE,λ,W = ∑

d |d〉〈d| ⊗ b̄d is block-diagonal. By
Corollary 3, and definition of Dmax,

‖ξE,λ,W ‖ID⊗B = inf
b∈B

2Dmax (ξE,λ,W ‖ID⊗b) = inf
b∈B

inf{γ > 0, b̄d ≤ 2γ b,∀d ∈ D}

= inf
b∈B

sup
d∈D

2Dmax (b̄d‖b).

�
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We can also use Corollary 4 to characterize decision procedures that maximize average payoff,
we will call such procedures optimal with respect to (E, λ, W ).

Corollary 5. Let (D, W ) be a decision problem and let X ∈ CB(H,D). Then X is optimal with
respect to (E, λ, W ) if and only if there is some element q ∈ span(B) such that ξE,λ,W ≤ ID ⊗ q and

((I ⊗ q) − ξE,λ,W )XT = 0. (15)

If (D, W ) is classical, then a B-POVM (M1, . . . , Mdim(D)) is optimal if and only if there is some q ∈
span(B) such that b̄d ≤ q for all d and

q
∑

d

Md =
∑

d

b̄d Md . (16)

Proof. The first part follows directly by Theorem 4 and Corollary 4. If (D, W ) is classical, then
ξE,λ,W is block-diagonal, so that ξE,λ,W ≤ I ⊗ q if and only if each block is majorized by q, that is,
b̄d ≤ q. Moreover, (16) implies that ∑

d

Tr (q − b̄d )Md = 0.

Since this is a sum of nonnegative elements, it is zero if and only if each summand is equal to zero.
Again by positivity, this is equivalent to (15). �

In particular, in the case B = S(H), we obtain the following optimality condition for POVMs.

Corollary 6. Let E = {σθ , θ ∈ �} be an experiment and let (D, w) be a classical decision
problem. Then a POVM {Md, d ∈ D} is optimal with respect to (E, λ, W ) if and only if q := ∑

d σ̄d Md

is hermitian and such that σ̄θ ≤ q for all d, here σ̄θ := ∑
θ λθσθw(θ, d).

Remark 1. Sometimes the function W is interpreted as loss rather than payoff, then LE,λ,W (�) is
the average loss of the procedure � which has to be minimized. Let W ′

θ = ID − Wθ , then θ �→ Wθ

is again a payoff (or loss) function and we have

min
�

LE,λ,W = min
�

∑
θ

λθTr �(bθ )Wθ = min
�

∑
θ

λθTr �(bθ )(I − W ′
θ )

= 1 − max
�

LE,λ,W ′ (�) = 1 − ‖ξE,λ,W ′ ‖ID⊗B .

Moreover, an optimal procedure � that minimizes the loss is a maximizer for LE,λ,W ′ , hence satisfies
the conditions of Corollary 5, with W replaced by W ′. Note that then the condition from Corollary 6
is the same as obtained in Ref. 12.

Let {Md, d ∈ D} be a B-POVM with
∑

d Md = c ∈ B̃. Then since 0 ≤ Md ≤ c for all d, we have

Md = c1/2�dc1/2, d ∈ D,

where �d := c− 1/2Mdc− 1/2 defines a (usual) POVM on the support supp c of c. It follows that Tr xMd

= Tr c1/2xc1/2�d, that is, we can decompose the measurement defined by {Md} into a cp map χ c:
x �→ c1/2xc1/2 followed by the usual measurement given by {�d}. Note that χc ∈ CB(H, supp c)
so that χ c maps a generalized experiment E = (H, B, {bθ , θ ∈ �}) onto an ordinary experiment
Ec := {supp c,S(supp c), {χc(bθ ), θ ∈ �}). We write this decomposition as M = � ◦ χ c. Such a
decomposition was also used in Ref. 3 in the case of testers and in Ref. 13 for generalized POVMs.
Using this decomposition, we obtain the following optimality condition for B-POVMs.

Corollary 7. Let (D, w) be a classical decision problem and let M ∈ MB(H, D) with decom-
position M = � ◦ χ c. Suppose c is invertible and let Ec := (H, {σθ := χc(bθ ), θ ∈ �}). Then M is
optimal for (E, λ,w) if and only if � is optimal for (Ec, λ,w) and∑

d

σ̄d�d ∈ span(χc(B)),

where σ̄d = ∑
θ λθw(θ, d)σθ .
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Proof. Directly by Corollaries 5 and 6. �
Example 2 (Multiple hypothesis testing). Suppose a family {b1, . . . , bk} of elements in B is given

and the task is to decide which is the true one, moreover, given some λ ∈ P({1, . . . k}), we want to
minimize the average probability of making an error. In this case, put E = (H, B, {b1, . . . , bk}), �

= D = {1, . . . , k} and the loss function is w(i, j) = 1 − δi j , where δ is the Kronecker symbol. A
decision procedure is a B-POVM {M1, . . . , Mk}, where Mi corresponds to the choice bi. Then the
average loss is the average error probability

LE,λ,w(M) =
∑
i, j

λi (1 − δi j )Tr bi M j =
∑
i �= j

λi Tr bi M j .

We can use Remark 1 to compute the minimal average error probability �B
λ (b1, . . . , bk) :=

minM LE,λ,w(M). We obtain ξE,λ,w′ = ∑
i |i〉〈i | ⊗ λi bi , so that the minimal average error proba-

bility is

�B
λ (b1, . . . , bk) = 1 − ‖ξλ,w′ ‖I⊗B = 1 − inf

b∈B
sup

1≤i≤k
2Dmax (λi bi ‖b).

For B = S(H), the last equality was obtained in Ref. 7, see also Ref. 17.
Let us now look at an optimal decision procedure. Let {Mi} be a B-POVM with decomposition

M = � ◦ χ c and let us suppose that c = ∑
iMi is strictly positive. Let σ i = χ c(bi) and Ec

= (H,S(H), {σ1, . . . , σk}). Suppose that {�i} is optimal for (Ec, λ,w), this is equivalent to the fact
that

∑
iλiσ i�i =: p is a hermitian element that majorizes λiσ i for all i. By Remark 1 and Corollary 7,

{Mi} is then optimal for (E, λ,w) if and only if p ∈ span(χ c(B)), note that σ i ∈ χ c(B) for all i.

Example 3 (Hypothesis testing). Let k = 2 in the previous example, then we obtain the hypothesis
testing or discrimination problem, considered at the end of Sec. I B. Here we have

‖|0〉〈0| ⊗ sb0 + |1〉〈1| ⊗ tb1‖I2⊗B = 1

2
(‖sb0 − tb1‖B + s + t),

for s, t > 0, so that indeed, 1 − ‖ξE,λ,w′ ‖I2⊗B = 1
2 (1 − ‖λb0 − (1 − λ)b1‖B) is the minimal Bayes

error probability. Let {M0, M1} be a B-POVM such that c = M0 + M1 is strictly positive and let σ i

= χ c(bi). Suppose λ = 1/2 and let �i = c− 1/2Mic− 1/2 be a POVM which is optimal for (Ec, λ,w),
then �0 is the projection onto the support of (σ 0 − σ 1)+ and

∑
i λiσi�i = 1

2 ((σ0 − σ1)+ + σ1).
From the previous example, it is clear that {M0, M1} is then an optimal test for (E, λ,w) if and only
if any of (and therefore all of) (σ 0 − σ 1)+ , (σ 0 − σ 1)− , |σ 0 − σ 1| is an element in span(χ c(B)).

In particular, let B = C(H,K). In this case, the B-POVMs are exactly the quantum 1-testers of
Refs. 3 and 21, see also Ref. 13. More precisely, the B-POVMs M = {Md , d ∈ D} ⊂ B(K ⊗ H)+

satisfy
∑

dMd = I ⊗ σ for some σ ∈ S(H). Let M = � ◦ χ I ⊗ σ be the decomposition of M, then
for X�,

Tr Md X� = Tr �dχI⊗σ (X�) = Tr �d (� ⊗ idA)(ρ),

where ρ = χ I ⊗ σ (�) is a pure state in S(H ⊗ HA) and HA = supp (σ ). This means that the tester M
is implemented by the triple (HA, ρ,�). If σ = dim(H)−1 I , then ρ = dim(H)−1� is the maximally
entangled state in H ⊗ H. By the results of Example 3, we have the following.

Corollary 8. Let bi = X�i be Choi matrices of the channels �0,�1 : B(H) → B(K). Consider
the problem of testing the hypothesis �0 against �1, with a priori probability λ ∈ [0, 1]. Then there
exists an optimal 1-tester implemented by a triple (H,�, ρ) with maximally entangled input state ρ

if and only if Tr K|λX�0 − (1 − λ)X�1 | is a multiple of IH.
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