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Preface

One of the fundamental features of quantum theory is its probabilistic nature. The theory pro-
vides predictions about probabilities rather than the events themselves and it is not possible to
explain this indeterminism by lack of knowledge or presence of hidden variables. The classical
probability theory cannot encompass the truly quantum properties. Mathematical description of
quantum mechanics has to incorporate features like uncertainty principle, incompatibility of ob-
servables, superposition principle and entanglement. These features became powerful resources
in quantum information science.

The difference between the classical and quantum state spaces is already well understood.
While the classical state space is a Choquet simplex, quantum states have a more complicated
structure. In the present thesis, we aim at the study of more specific properties of parametrized
families of states. In the classical case, these properties are fundamental in theoretical statistics
and asymptotic estimation theory, with applications also in other areas. The quantum case is
often quite different and the properties have to be reformulated in a nontrivial way to recapture
the classical results. The purpose of this work is to gain some understanding of the similarities
and differences between the classical and quantum structures.

A parametrized family of states is called a statistical model, or a a statistical experiment. It
represents a prior knowledge of the true state of some system, or the distribution from which
some data are sampled. The states may be labeled by some interesting parameter and our ability
to estimate this parameter depends on the geometry of the set of states and on the parametriza-
tion. This lead to introduction of a differential-geometrical structure on statistical models, stud-
ied by information geometry. In the framework of decision theory, the performance of available
decision rules for various statistical tasks is studied and an ordering and a distance-like measure
on statistical experiments can be defined by their comparison. Special families of states ap-
pear in quantum information theory, where quantum channels, or some more specific protocols,
can be identified with certain convex subsets of a multipartite quantum state space. Statistical
tasks, such as estimation or discrimination problems, appear naturally also in this context and

the geometric structure of the state space plays a decisive role.






Objectives of the thesis

The aim of this work is to find quantum versions of the results of two important theories, dealing
with parametrized families of probability distributions and their structure: information geome-
try and theory of comparison of statistical experiments. As a tool for one of these tasks, but also
as an interesting question in its own right, the convex structure of the set of quantum channels
and its role in statistical decision theory is investigated. The particular problems solved in the

thesis are the following:

e On the manifold of all positive definite complex matrices of a given dimension, we show
that the condition of dual flatness singles out a unique family of dualistic structures with a
monotone Riemannian metric.

e On the set of faithful states on a von Neumann algebra, we construct a Banach manifold
structure, corresponding to the classical Pistone-Sempi construction, and investigate its be-
haviour under quantum channels.

e We investigate affine connections on the state space of a von Neumann algebra, obtained by
embeddings into noncommutative L,,-spaces, their duality and the corresponding canonical
divergences.

e We find conditions for sufficiency of a quantum channel with respect to a set of states, given
in terms of some information-theoretical quantities such as error probabilities of hypothesis
testing or quantum Fisher information.

e Different forms of Blackwell’s informativity for quantum experiments are compared: in-
formativity with respect to all decision problems and informativity with respect to testing
problems.

e We find a fully quantum version of Le Cam’s randomization criterion with a clear operational
interpretation.

e Measurements and channels on convex subsets of the state space are studied, exploring their
convex structure, the corresponding base norms and their relation to the tasks of statistical

decision theory.

The thesis consists of twelve research papers, divided into three chapters according to their
main subject. In Part I below, we give an introduction to each subject, a brief overview of the
content of the corresponding works and a discussion of further research and open problems.

The papers can be found in Part II.
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Chapter 1
Basic definitions

The notion of a state is central to this work. For our purposes, it is a purely mathematical object.
A classical state is a probability distribution on some measurable space (£2, .A), we denote by
S(€2, A) the set of all states on (€2, A). If P € S(€2, A) is absolutely continuous with respect to

some o-finite measure y, it is represented by its density function
E£ € Li(Q,A ", /fduzl.
dp Q
The set of all density functions with respect to p will be denoted by S(€2, A, u).

A quantum state is a normal positive unital functional on some von Neumann algebra M
representing the observables of a quantum system. This definition contains classical states,
in the case when M is abelian. The set of all states on M will be denoted by S(M). If
M = B(H) is the algebra of bounded operators on a Hilbert space H, states are represented
by density operators, that is, positive trace class operators with unit trace. The set of all density
operators on ‘H will be denoted by S(H). We will often deal with finite dimensional Hilbert
spaces, in which case the states can be identified with density matrices.

Transformations of states are represented by stochastic maps, also called channels or coarse-
grainings. In the classical case, they can be defined simply as affine maps between state spaces.
It is easy to see that such a map S(€2, Ay, p1) — S(2a, Ag, o) extends to a positive map
Li(, A1, 1) — L1(Q2, As, o) preserving the norms of positive operators. In the quantum
case, the channels are defined as preduals of unital normal completely positive maps between
von Neumann algebras (but sometimes weaker positivity conditions are required). In finite
dimensions, channels are identified with completely positive trace preserving maps between
algebras of operators.

As special cases, we will encounter channels between quantum and classical state spaces.
The quantum-to-classical channels are interpreted as measurements, assigning to each quantum
state a corresponding probability distribution on the set of measurement outcomes. Any mea-
surement can be uniquely represented by a positive operator valued measure (POVM), [38] and
conversely any POVM defines a measurement. A POVM isamap A > A — M(A) € M,
which is o-additive and normalized, M (2) = I. We will only deal with the situation when (2
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is a finite set, in which case any POVM is a collection of positive operators M; € M such that
>, M; = I. Similarly, in this case, any classical-to-quantum channel, mapping classical states
to quantum ones, can be identified with a finite set of quantum states, parametrized by elements
of Q.

A divergence is an information-theoretic measure of difference of two states. Such a mea-
sure has to be a contrast functional, which means that it is nonnegative and equal to zero if
and only if the states are equal. Another natural assumption is that it is nonincreasing under
stochastic maps, since transformations of states cannot increase their distinguishability. For a
divergence D, the inequality

D(T(p), T(0)) < D(p,0),
for all pairs of states (o, p) and all channels 7' is referred to as the data processing inequality.
An essential example of a classical divergence measure is the relative entropy [48], also

called Kullback-Leibler divergence or I-divergence. For two probability distributions P < @),

it is defined as P
S(PIQ) = [ 1osle)aP

More generally, for any convex function f on R*, the f-divergence [18, 54] is defined as

S;(PIIQ) = / f(%)d@

Note that relative entropy is obtained for f = xlog(z). Another special case is the a-divergence

4 dP  i-a
5710 = (1- [ a0).  ara

For density operators, the Umegaki relative entropy [82] has the form

S(pllo) = Tr p(log(a) — log(p)),

if the support of p is included in the support of ¢ and is infinite otherwise. In the setting of von

Neumann algebras, quantum relative entropy was defined by Araki [4] using the relative mod-
ular operator. Quantum versions of f-divergences, also called quasi-entropies, were introduced
by Petz [63, 64]. For density matrices (with some conditions on their supports), these have the

form
Si(pllo) = Tro'2 f(A,0)(a?),

where A, , is a positive operator on the Hilbert space of matrices equipped with the Hilbert-
Schmidt inner product (X,Y) = Tr X*Y, defined as A, , : X — pXo~'. The quasi-entropies
satisfy data processing inequality if the function f is operator convex. In particular, the version

of the a-divergence for density operators is given by

4 l1-a lta
Salpllr) = 7= (1=Trp' 705",

but the requirement of monotonicity restricts the values of « to the interval [—3, 3]. The relative

entropy and a-divergences (or the closely related Rényi relative entropies), both classical and

quantum, are important distinguishability measures in information theory and statistics.



Chapter 2
The structures of information geometry

The aim of classical information geometry is the study of differential geometrical structures de-
rived from the properties of statistical models. These structures are already well understood and
the theory has a number of important applications e.g. in asymptotic estimation theory, infor-
mation theory, machine learning, statistical mechanics, biology and theory of neural networks.

Interested readers may refer to the monograph [3] by Amari and Nagaoka.

2.1 Information geometry for parametric models

A classical statistical model is a parametrized family
P = {py, 0 € O}, P € S(Q, A, ).

If © C R" is an open set and the parametrization 6 +— py is sufficiently regular, it introduces
a differentiable manifold structure in P. It was first observed in the works by Rao [71] and
Jeffreys [39] that such a manifold can be endowed with a Riemannian metric A, given by the

Fisher information

0
- 00;

AE(0) = E,, [0 log(pe); log(pe)], 6 :

The well-known Cramér-Rao inequality for the variance of unbiased estimators shows that this
metric expresses how precisely a point on the manifold can be distinguished from other points
in its neighborhood using statistical methods.

As it turned out, a Riemannian structure is not enough to capture the statistical properties of
the model. The importance of exponential families was pointed out by Efron [21], who defined
the statistical curvature for 1-dimensional models and shown its role in asymptotic estimation
theory. Based on this observation, Dawid [20] introduced the exponential affine connection V(¢
on the manifold and proved that the statistical curvature is precisely the embedding curvature
of the model with respect to V(¢). Amari [1] extended this work to a family of a-connections

parametrized by a € R, containing V(®) for the value o = 1. These connections are defined
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by a pullback of the natural affine structure on the set of measurable functions via the Amari

embeddings
ﬁxli, a#1
Po = Galpe),  galx) = 2.1
log(xz), a=1.
Another special element in this family is the mixture connection V™ := V(=1 arising from

the convex structure of the state space. The same class of connections is obtained as an affine

mixture

2 2

v, a e R.

These geometric structures on a statistical model can be also introduced using f-divergences
[22]. If f is normalized such that f”(1) = 1, then

(AT)i3(0) = X(0,0;)|o = 9:0,S (pollpor)lo=0, (2.2)
T{(0) = A (V500;,00)|o = 0:0;0}.S (psllper)lo—sr, (2.3)

with 0. := % and o = 2f"(1) + 3.

An imporltant feature of the family of a-connections is that V(®) and V(=) are dual with
respect to the Fisher metric \¥'. Manifolds with a dualistic structure (X, V, V*), consisting of
a Riemannian metric and a pair of dual connections, were investigated by Nagaoka and Amari
[62]. One of their deep results is that if the manifold is dually flat, a pair of dual coordinate
systems exists, connected by a strictly convex potential function ®. The corresponding Bregman

divergence defines a distance-like measure on the manifold, called a canonical divergence:
D(po,, po,) = Da(01,062) := @(61) — P(62) — 0P(02) (61 — b2).

For statistical manifolds, the relative entropy and the family of a-divergences can be derived in
this way. By construction, the canonical divergence satisfies a generalized Pythagorean relation
and certain projection theorems hold, which are important in optimization tasks.

A simple example of a flat statistical manifold is P,,, consisting of strictly positive probabil-
ity measures on n points. It is easy to see that P, is V(*Y-flat. For o # +1, the a-divergences
are obtained by restriction from the extended manifold P, of strictly positive functions, which
is V(®-flat for all a € R.

The family of connections {V®, o € R} was obtained independently by Cencov [12] in
a quite different approach. Cencov introduced a category of statistical models with stochastic
maps as morphisms and investigated geometric structures that are invariant with respect to iso-
morphisms in this category. He proved that up to multiplication by a scalar, A" is the unique

Riemannian metric and V@), o € R are the only affine connections with this property.
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2.2 Nonparametric information geometry

Nonparametric information geometry was introduced by Pistone and Sempi [69] and further
developed in [68]. Here the model consists of all elements in S(€2, .4, i) equivalent to a given
one. This manifold has to be modelled on a Banach space, but the embeddings into L, spaces,
used to define the connections in the parametric case, are not suitable for this, simply because
the positive cone in these spaces has an empty interior. Pistone a Sempi used the exponential

Orlicz space Lg(p), given by the Young function
®(z) = cosh(z) — 1.

The subspace of centered functions in Lg(p) then parametrizes the neighborhood of p on the
manifold of probability distributions equivalent to p as an exponential family. The exponential
Orlicz space is not even reflexive, so that the geometric structures introduced for parametric
models have no straightforward generalization. More precisely, there is no Riemannian struc-
ture and the Fisher information can be introduced as a continuous bilinear functional, defined
by differentiation of the cumulant generating functional. Affine connections on this manifold
were studied in [24, 25]. In this case, the a-connections live on separate fiber bundles and their

duality corresponds to the Banach space duality of Orlicz spaces.

2.3 Geometry of quantum states: the finite
dimensional case

The aim of quantum information geometry is the extension of the results of the classical theory
to families of quantum states. In the simplest case, the quantum system is represented on an
n-dimensional Hilbert space. It is then enough to study the geometry of the manifold D,, of
positive definite density matrices of dimension n, since any model of sufficient regularity can
be embedded into it. As an open subset of a finite dimensional real vector space, D,, has a
natural affine and manifold structure. But already in this simple case, we encounter problems
that do not appear in classical models.

The tangent space 7,(D,,) at p € D,, is isomorphic to the space of traceless Hermitian n x n

matrices. With this identification, any Riemannian metric on D,, has the form
(X Y) =Tr XJ,(Y), XY €eT,(D,), 2.4)

where J,, 18 a suitable operator on matrices. An important example is the symmetric logarithmic
derivative J ;?LD , defined by

SLD _ —
JSLD(Y)=H, 2V =pH + Hp.

This choice defines the SLD-metric AX5“P [38], which is usually considered as the quantum

Fisher information, since it satisfies an analog of the classical Cramér-Rao inequality. But, in
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contrast to the classical case, this inequality is typically not optimal and cannot be attained even
asymptotically.

Inspired by the uniqueness result in [12], Cencov and Morozova [13] studied Riemannian
metrics on D,, which are nonincreasing under quantum channels. Such metrics are called mono-
tone. It was proved that, unlike the classical case, there is a large family of such metrics. Later,
it was shown by Petz [67] that a Riemannian metric on D,, is monotone if and only if the

corresponding operator has the form
JI=RV(L,R7)™, LX) =pX, Ry(X) =Xp (2.5)

for some operator monotone function f : (0, 00) — (0, 00), which is symmetric, that is, f(t) =
tf(¢t1) forall ¢ > 0. With the normalization f(1) = 1, such a metric is called a quantum Fisher
information.

The family of quantum Fisher informations contains the SLD-metric as the smallest element.
Other important examples are given by the family of Wigner-Yanase-Dyson (WYD-) metrics
A*(= A™?), parametrized by o € [—3, 3] [32]. For a = £1, we obtain the Bogoljubov-Kubo-
Mori (BKM-) metric, which is given as an infinitesimal version of the quantum relative entropy.
The choice o = +3 yields the RLD-metric, which is the largest quantum Fisher information.
The SLD-metric is not contained in the WYD-family. In another approach, Lesniewski and
Ruskai [53] proved that any quantum Fisher information is obtained from a quasi-entropy as in
(2.2).

Classical constructions of the a-connections can be applied also in D,,. In particular, the
Amari embeddings

prrga(p), @€R

with g, as in (2.1) can be used to pull back the affine structure of Hermitian matrices. As in
the classical case, we will denote these connections by V@, o € R, and we put V) := V1)
and V™ = VD Ttis easy to see that both V(© and V™ are flat, however, they are not
dual with respect to the usual SLD-metric. Moreover, it was proved by Nagaoka that the dual to
V(™) with respect to a monotone metric ) is not torsion-free, hence not flat, unless A = A\BKM
[61]. As in the classical case, V(@ is not flat for o # +1, but the extension to the extended
manifold D,, of positive definite matrices is flat for all . This extension will be also denoted
by V@), Duality of V*®) with respect to a quantum Fisher information was studied also in
[31, 25, 27].

2.4 Nonparametric quantum information manifolds

The main obstacle in the construction of a nonparametric (infinite dimensional) quantum infor-
mation manifold was the lack of a suitable non-commutative counterpart of an Orlicz space.
For sets of density operators on a separable Hilbert space, some constructions were proposed

in [79, 26] using small perturbations of the Hamiltonian at each point of the manifold, or by
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a quantum Young function [78]. In [23], the a-connections for v € (—1,1) were defined on
manifolds of states on a semifinite von Neumann algebra by Amari embeddings, which map the
density operators into the non-commutative L,-space L,(M,7), p = ﬁ It was shown that
duality of the connections is in fact obtained from duality of the spaces L 2 and L 2 and it
was pointed out that uniform convexity of L,-spaces is crucial for projection of the L,-space

geometry onto the set of states.

2.5 The results

In the first three papers in this chapter, constructions of dually flat affine connections on D,, and
D,, are discussed. In the rest, properties of noncommutative L,, spaces and the quantum (Araki)
relative entropy are used for a construction of a Banach manifold structure on the set of normal

states of a von Neumann algebra.

2.5.1 Content of the papers [IG1-6]

[IG1] On the extended manifold f)n with a monotone Riemannian metric A\, we study dualistic
structures (A, V(@ V(@) where V(@) is defined as the dual connection to V@ with respect
to A. We compute the torsion of these connections and it is pointed out that the dual connections
V(@ are in general not torsion free. If \ = \* for some o € [—3, 3], we obtain the dually flat
structure (\*, V(@) V(=)

The dualistic structure is then projected onto the manifold of density matrices D,, and the em-
bedding curvature and Riemannian curvature tensors are computed. We also define divergence
functions on D,, considering the V(®*-geodesics connecting two points and using the fact that
one-dimensional submanifolds are always torsion-free. For o = +1, we do the same also
for D,. As examples, we obtain the quantum «-divergences and the Umegaki and Belavkin-

Staszevski [S] versions of the relative entropy.

[IG2] Here we investigate a different construction of a dualistic structure. Using the classical
results by Eguchi, see (2.2), (2.3), and the work by Lesniewski and Ruskai [53], we obtain a
monotone metric and a dual pair of torsion-free affine connections in D,, from a quasi-entropy.
These connections coincide with some V(@ on 75n, but the parameter « is restricted to the
interval [—3, 3]. Using the theory of statistical manifolds devised by Lauritzen [50], we compute
the Riemannian curvature tensor. In particular, using Umegaki relative entropy, we obtain the

BKM-metric and the family of connections

11—« 14+«
v(m)
2 + 2

ve, ael-1,1].

It is pointed out that the Riemannian curvature of these connections cannot be 0 unless v = +1,

so that these connections must be different from V(@) if o £ £1.
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[IG3] This paper finishes both previous works by proving that in either construction, the unique
dually flat structures with respect to a monotone metric are given by (\,, V@, V(%)) o €

[—3, 3]. For this, we apply the results of Lauritzen and some tools of matrix analysis.

[IG4] We use the natural bijective mapping of the predual of a von Neumann algebra onto the
noncommutative L,-space on M with respect to a faithful normal semifinite weight, defined
by Masuda [56]. Using duality and uniform convexity of the L,-spaces, we obtain a pair of
coordinate systems on the set of positive normal functionals, connected by norm-continuous
maps that are uniformly continuous when restricted to states. The coordinate systems are re-
lated by Legendre transforms. Uniform Fréchet differentiability of the L,-norms allows us to
define a divergence function, which turns out to be the quantum «-divergence S, a = 7%. A

generalized Pythagorean relation and projection theorems for .S, are derived.

[IGS] We define a version of the exponential Orlicz space with respect to a faithful normal state
© on M, using a Young function constructed from the convex conjugate of the Araki relative

entropy

coh) = swp w(h)—Sllg),  h=h €M
weS(M)

The quantum exponential Orlicz space with respect to ¢ is the completion of the space of self-
adjoint elements in M with respect to the corresponding Orlicz norm. It is proved that the dual
space is generated by positive normal functionals, such that the relative entropy with respect to
© 1s finite.

By the relative entropy approach to perturbation of states, the set of faithful normal states is
endowed with a manifold structure modeled on the subspace of centered elements in this space,
together with exponential and mixture connections, living on the tangent and cotangent space,

respectively.

[IG6] Here we provide another construction of an exponential Orlicz space as the space of

continuous affine functions on the compact convex set
Sip = {w e SM), S(wlly) < 1}.

We prove that this construction is equivalent to the previous one. It is shown that channels
between von Neumann algebras extend to morphisms of Banach manifolds and this construction
is functorial. Further, for a pair of faithful states ¢, » € S(M) contained in the same connected
component of the manifold, the adjoint of the channel extends to a mapping of the corresponding
coordinates if and only if the channel is sufficient (or reversible) with respect to {1, ¢} (see
Section 3.4).
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2.5.2 Conclusions and open problems

In the classical case, there is a unique 1-parameter class of dualistic structures, satisfying the
Cencov invariance condition [12]. Moreover, these structures are all flat on the simplest clas-
sical manifold P,. As we have seen, there is a variety of such structures in the quantum case
and classical constructions lead to different results. But the requirement that the structures
should be flat on the simplest quantum manifold D, singles out the unique 1-parameter class
(A%, V(@) V(=) where, in contrast to the classical case, all the metrics are different and the
value of the parameter is restricted to the interval [—3, 3].

We constructed a Banach manifold structure on the set of faithful states of a von Neumann
algebra M, derived from Araki relative entropy. Channels induce contractions on the corre-
sponding tangent spaces and the coordinates are preserved on subsets of states if and only if
the channel is sufficient with respect to them. We also proved that the quantum «-divergences
appear as canonical divergences for dually flat connections, obtained by embeddings in non-
commutative L,-spaces.

The relation of the constructed Orlicz spaces to known constructions of non-commutative
L,-spaces is not known. Related questions are whether the constructed a-embeddings are com-
patible with the exponential manifold structure, differentiability of the divergences and possi-
bility to introduce some form of Fisher information on the manifold. It was also pointed out in
[IG6] that the proper quantum counterpart of the exponential Orlicz space is not the constructed
space B, but rather its second dual.

After our works on the nonparametric version were published, a new definition of a quantum
Orlicz space was proposed by Labuschagne [49]. Based on this definition, a nonparametric
quantum information manifold was constructed by Labuschagne and Majewski [55], with an
interpretation in description of large regular statistical systems, both classical and quantum. It

is an interesting question how this is related to our construction.

For classical information manifolds, it was proved by Amari [2] that the classical a-divergences

are the unique f-divergences that are Bregman divergences at the same time. It seems plausible
that this is the case also for the quantum a-divergences, but a rigorous proof is left for future

work.

2.5.3 Further related works by the author

e A. JenCov4, Dualistic properties of the manifold of quantum states, In: Disordered and
complex systems, AIP Conference Proceedings, Melville, New York 2001

e A.Jencova, Quantum information geometry and standard purification, J. Math. Phys., 43
(2002), 2187-2201
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Chapter 3

Comparison of channels and statistical

experiments

3.1 Comparison of classical statistical experiments

In statistical decision theory, a statistical experiment is defined as a triple £ = (€2, A, P), where
P ={P, 0 € O} C S(, A) and O is a parameter set. In most cases, it is assumed that
the experiment is dominated, which means that we may assume that P C S(€2, A, u) for some
o-finite measure . If © = {61, 0}, the experiment is called binary.

The set P is interpreted as the set of possible probability distributions from which data are
sampled. Based on the sample, a decision d is chosen from the set of decisions . We will work
mostly with the situation when D is a finite set, but in general, D is a topological space. The
decision is evaluated according to a loss function W : © x D — R, where it is assumed that
the functions Wy := W (6, -) are continuous and bounded, with ||Wy| = sup,.p |Wp(t)|. The
triple (©, D, W) is called a decision problem. If D consists of two elements, then (0, D, W) is
called a testing problem.

A most general strategy for decision, or a decision rule, is given by a stochastic map M :
S(Q,A 1) — S(D,By(D)), where By(D) is the Baire field over D. The risk for the given

value of the parameter is computed as
Repwo(M) = / Wy dM (Pp).
D

The set of all decision rules will be denoted by R(E, D).

Let £ = (24, A1, P) and F = (9, A, Q) be dominated experiments with the same pa-
rameter set © and dominating measures e and . The following preorder on statistical ex-
periments was introduced by Blackwell [6]: the experiment £ is more informative than F, in
notation & = F, if for any decision problem (©, D, W) and any M € R(F, D) there is some
N € R(E, D), such that

Re pwo(N) < Rrpwe(M), Vo € O.
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If T : S(Q, Ay, pue) — S(Q2, Az, ur) is a channel such that @ = T(P), we say that F =:
T'(€) is a randomization of £. If (©, D, W) is any decision problem and M € R(F, D), then
MoT € R(€,D) and we have

Ry pws(M) = /D Wy dM(T(By)) = /D Wy d(M o T(P,)) = Re (M oT).

It follows that £ > T'(£). The following theorem is one of the basic results of the theory of

statistical experiments.

Theorem 1 (Blackwell-Sherman-Stein (BSS) [6, 73, 76]). £ is more informative than F if and
only if F is a randomization of &.

Le Cam [51] extended the above preorder on statistical experiments as follows. He defined

the deficiency of £ with respect to F as
0E,F) = ir%fsgp llpe — T(q0)]]1,
where the infimum is taken over all suitable channels. The Le Cam distance
A(E, F) :=max{d(E, F),0(F, &)}

is a pseudo-distance on the set of experiments with the same parameter set. Convergence with
respect to this distance is important in the theory of asymptotic statistics, [52]. The following

result is the celebrated Le Cam’s randomization criterion.

Theorem 2 (Le Cam’s randomization criterion [51]). Let £, F be statistical experiments, € > .
Then 6(E,F) < € if and only if for every (D, W) and M € R(F, D) there is a decision rule
N € R(E, D) such that

Repwo(M') < Rrpwe(M) + ¢/2||W].

Other variants of deficiency can be obtained by restricting to some special type of decision
problems. In particular, deficiency with respect to testing problems is denoted by d, and the
corresponding preorder by <,. In general, <5 is weaker than <, but for binary experiments the

two preorders are equivalent, [81], see also [77].

3.2 Comparison of quantum statistical experiments

A quantum statistical experiment is defined as a pair £ = (M, P), where, most generally, M
is a von Neumann algebra and P C S(M). This notion clearly contains (dominated) classi-
cal experiments, which correspond to quantum experiments on a commutative von Neumann
algebra M = L. (9, A, uie). Let us denote the set of all quantum statistical experiments with
parameter set © by £(O).
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Let £ € £(O) and let (©, D, W) be a decision problem. The decision rules in R(E, D)
are measurements (POVMs) with values in (D, By(D)). In this work, we will consider only
experiments on the algebra B(H) for a finite dimensional Hilbert space . In this case, it is
enough to consider decision problems with a finite decision set D. For M € R(E, D), the risk
is computed as

Repwo(M) = Z Wo(d)Tr pg M.

deD

Example 3. A special type of a decision problem is multiple hypothesis testing. In this case,
© =D ={l,....m} and W(i,j) = 1 — ¢;;. The task is to determine which of a given
set of states {p1,...,pm} C S(H) is the true state of the system. Decision rules are POVMs
M = {M,..., M,} and Tr p; M; is interpreted as the probability of choosing p;if the true state
is p;. If prior probabilities Ay, . . ., A, are given, we are looking for a POVM with optimal Bayes
risk, or equivalently with the maximum Bayes probability of success. Let E be the ensemble

E :={\;, p;}™,. The maximum Bayes success probability is defined as
Pouce( E) = max 3 \Tr i, (3.1)

where the maximization is over all POVMs with m elements. Conditions for optimal POVMs

were given in [36, 37], an explicit expression is not known in general.

Example 4. 1f we put © = D = {0, 1} in the previous example, we obtain the discrimination
problem for two states pg, p;. Decision rules are given by { M, I — M } for operators 0 < M < [
in B(H) and the maximal Bayes probability of success can be computed as [35, 38]

1
Psucc(E) = HA(PmPl) = 5(]— - ||)\PO - (1 - A)p1”1>7

where ||p||1 = Tr |p| is the trace norm on B(# ). The optimal decision rule is { P, [ — P}, where
P is the projection onto the support of the positive part of the operator Apy — (1 — A)p;.

The Blackwell preorder and deficiency can be extended to all experiments in £(©) in an
obvious way. If the experiment F is classical, the BSS theorem (Theorem 1) and Le Cam’s
randomization criterion (Theorem 2) hold [57, 40], but for arbitrary quantum experiments this
is no longer true [58].

A fully quantum version of the BSS theorem was first obtained by Shmaya [75] and Buscemi
[7]. In these works, either additional entanglement or composition of the experiment with a
complete set of states is required. A quantum version of the randomization criterion was proved
by Matsumoto [57], but the criterion is formulated in terms of quantum decision problems. This
generalization of classical decision problems is natural from a mathematical point of view, but

its operational significance is unclear.
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3.3 Comparison of channels

Comparison of statistical experiments is closely related to comparison of channels. For two
channels 7" and S with the same input space, we can say that 7" is less noisy than S if S is a
post-processing of T', that is, there is a channel R such that S = R o T. Assume that the input
space is a classical state space S(2, .A) with a finite set (2, then the channels can be interpreted as
statistical experiments parametrized by the elements of 2. In this interpretation, randomization
is the same as post-processing and the preorder < can be reformulated by comparing the optimal
success probabilities in multiple hypothesis testing (see Example 3) for the ensembles obtained

by applying S and 7 to any input ensemble.

Remark 5. For classical channels, a related ordering was introduced in a work by Shannon
[72], where error probabilities of channel coding schemes are compared. This ordering is
characterized by existence of channels P;, (); and probabilities )\;, ¢ = 1,...,k such that
S = ZZ A P; o T o ();. Other orderings of classical channels can be found in [46, 19, 70, 9].

For classical channels, we obtain an obvious version of the BSS theorem and randomization
criterion. However, as noted in the previous section, the BSS theorem in the classical formula-
tion does not hold for quantum channels even if the common input space is classical. A stronger
ordering is obtained if we consider ensembles on the input space coupled with an ancilla. As
it turns out, with this ordering, the BSS theorem can be recovered. This remarkable result was
first obtained by Chefles in [14] and was extended and refined in [7], in particular, it was proved
that no entanglement in the input ensemble is needed. Some applications were already found in
[11, 8, 10,9].

3.4 Classical and quantum sufficient statistics

Let T be a channel and let £ € £(O) be a statistical experiment in the input space of 7. Let
T'(€) be the corresponding randomization £. The channel T is called sufficient with respect to

& if also & is a randomization of T'(£), that is, there is some channel S such that
SoT(ps) =psy  0€O. (3.2)

If £ is classical, then by Theorem 1 and the paragraph below Example 4, such a channel exists
if and only if T'(€) = &, so that £ a T'(€) are equivalent in the sense of Blackwell’s preorder.
In fact, it is enough that we have T'(€) =5 &, since the equivalence classes with respect to >
and >, are the same, [77]. For quantum experiments, validity of the corresponding statements
is not known. A sufficient channel is also called a statistical isomorphism [77].

A special case of a sufficient classical channel is a sufficient statistic. This is a measurable
map f : (21, 41) — (€9, A2) such that the conditional probabilities Py[A|f] =: P[A|f],
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A € A, do not depend from 6. Let T denote the channel P +— P/ then
5:Q 5@, S@W) = [ PlAINQ,  Aea

is a channel satisfying S o T;(Ps) = S(P]) = Pj. This means that 7" is sufficient with respect

to&. Ifpy = %, sufficient statistics are characterized by the factorization criterion

po(w) = h(w)gs(f(w)), w—a.e.,

where gy and h are nonnegative measurable functions. This means that p, depends on 6 only
through f. If there is some 6, such that S(P|| Py, ) is finite for all 6, then f is sufficient with
respect to £ if and only if [48]

S(PJ||Fy,) = S(P, Fa,)-

This statement holds for all classical channels and all f-divergences with a strictly convex
function f [18, 54].

Sufficiency of quantum channels in the general form given by (3.2) was first investigated in
the works by Petz, [65, 66], who studied conditions under which the Umegaki relative entropy
and the transition probability .S; /; is preserved under a quantum channel ® for a pair of normal
states o, p on a von Neumann algebra M. It turned out that as in the classical case, this happens
if and only if ® is sufficient with respect to the experiment (M, {p,c}). Another equivalent
condition is given in terms of the Connes cocycle derivative [Dp, Dol;. In [66], the channels
are not necessarily completely positive, only 2-positivity is assumed.

A quantum version of the factorization criterion was proved in [59] for finite dimensional
algebras and in [42, 43] for all type I von Neumann algebras. In the paper [34], characteriza-
tions by preservation of other information quantities such as quantum f-divergences, Chernoff
and Hoeffding distances are given. In particular, a characterization in terms of quantum a-
divergences for a € (—3, 3) holds, see also [43]. Shirokov [74] studied sufficiency of bosonic
channels.

The factorization criterion shows that sufficiency of a channel has strong implications on its
structure and also on the structure of the involved states. For this reason, sufficiency is useful
for finding equality conditions in inequalities involving entropic quantities. Most notably, it was
used for characterization of Markov triples by equality in strong subadditivity of entropy, see
[33, 42].

3.5 The results

In the first two works, we study characterizations of sufficient quantum channels by preservation
of quantities related to hypothesis testing and quantum Fisher information. The rest is devoted

to comparison of quantum experiments and a quantum randomization criterion.
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3.5.1 Content of the papers [CE1-4]

[CE1] This paper focuses on the special case of channels given by restriction of the states to a
subalgebra A C B(H) for a finite dimensional Hilbert space . If such a channel is sufficient,
the subalgebra is called sufficient as well. For a pair of states {pg, p1 }, we study subalgebras
with the property that the optimal error probabilities for discrimination between the restrictions
of py and p; are the same as for discrimination of the original states. Such subalgebras are
called 2-sufficient. A necessary condition for 2-sufficiency is found and it is proved that it is
equivalent to sufficiency in the following special cases:

1. if pif Apl C Aforallt € R,
2. if A is commutative

3. if pg and p; commute.

Moreover, 2-sufficiency of A®™ with respect to {pg®, pi®} for all n is equivalent to sufficiency
of A with respect to {pg, p1 }. This extends a classical result [77], which says that 2-sufficiency

is equivalent to sufficiency for classical statistical experiments.

[CE2] We explore various reversibility (sufficiency) conditions for a 2-positive trace preserving
map. We give an example of a non-quadratic operator convex function f which is strictly
convex, but preservation of the corresponding f-divergence does not imply sufficiency. This
result shows a difference from the commutative case and complements the results of [34]. We
prove characterizations in terms of the operator d(p,c) = o~ /?ps~1/2, which is a quantum

version of the Radon-Nikodym derivative. We also obtain a factorization criterion of the form

po = P*(Sp)p, 0 e o,

2 and

where ®* is the adjoint of ®, Sy is a positive operator satisfying ®*(S7) = (®*(Sy))
p 1s a fixed density operator. We further show that preservation of the L,-distance, which is
equivalent to 2-sufficiency, characterizes sufficiency if the experiment is extended to contain all
orbits under the modular group of some dominating element. We also show that sufficiency is
characterized by preservation of the Chernoff and Hoeffding distances and of a large class of

quantum Fisher informations.

[CE3] In this paper, we investigate the quantum versions of the preorder <, and deficiency
0o with respect to testing problems. Characterizations of the two notions are found and it is
proved that for binary quantum experiments, the two preorders are equivalent if and only if the
more informative experiment £ is abelian. Moreover, F <5 £ implies existence of a completely

positive map & — F, but this map is not necessarily trace preserving.

[CE4] For two channels ® and ¥ with the same input space, we define deficiency of W with

respect to ¢ as the smallest distance between ® and post-processings of W, that is,

(U, ®) = inf[ja o ¥ — d].,
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where the infimum is taken over the set of all channels between the corresponding output spaces.
Using the results of Chapter 4 on the properties of channels and the diamond norm, we prove
that §(W, ®) < e if and only if for any ensemble {p;, p; }; of states on the input space coupled
with an ancilla, the optimal success probabilities of the output ensembles satisfy

As a consequence, we obtain a randomization criterion for arbitrary quantum statistical experi-
ments in terms of optimal success probabilities for certain ensembles. Over previously known

results, this has the advantage that the success probabilities have a clear operational meaning.

3.5.2 Conclusions and open problems

In this section, we proved various characterizations of the possibility of approximation of a
quantum statistical experiment by randomizations of another, along the lines of the classical
theory of statistical isomorphisms and comparison of statistical experiments. As it often hap-
pens, it is possible to obtain similar results as in the classical case, but the conditions are more
strict, and also the proofs are quite different. For example, while sufficient classical channels
are characterized by preservation of the f-divergence for an arbitrary strictly convex function f,
this is no longer true in the quantum case. Even if f is operator convex, the support of the rep-
resenting measure must be large enough. Further, while the factorization criterion looks similar
to the classical one, the fact that the two factors have to commute has some strong consequences
for the structure of the states. On the other hand, it is probably not so surprising that entangle-
ment (or some other form of additional information) is needed for the quantum randomization
criterion.

It is still not clear whether preservation of error probabilities in hypothesis testing, or 2-
sufficiency, is equivalent to sufficiency also in the quantum case. While it is true if this condition
is required for testing of n i.i.d. copies of the states for all n, the one shot condition seems to
be not enough. But quantum experiments invariant under the modular group of a dominating
element behave similarly to classical experiments in this respect.

As it was recently observed, Umegaki relative entropy for density operators on a separable
Hilbert space is monotone under positive maps, [60]. It is also an interesting question whether
an equality condition similar to sufficiency for positive maps can be proved.

The deficiency 0(®P, ¥) for some special cases of channels already appeared in quantum
information theory, for example in the definition of approximately (anti)degradable channels
[80]. Our results can be further used to obtain an operational definition, similarly as it was
done for antidegradable channels in [11]. Another possible application is to e-private and e-
correctable channels [47].

The suggested framework can be applied to more general situations, for example for com-
parison of more specific quantum protocols, such as quantum combs [16] and more general

kinds of processings. More precisely, the processing can consist of a combination of pre- and
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post-processing, also allowing some correlations between input and output systems, either clas-
sical or quantum. This would be closer to the original definition by Shannon, [72]. In is also
possible to treat different types of positive maps, some results in this direction can be found in
the preprint [41]. Although our methods rely on finite dimensions, it seems plausible that the
useful properties of the norms can be extended also for channels operating on infinite dimen-
sional Hilbert spaces.

The notion of strong and weak convergence and local asymptotic normality, related to Le
Cam distance for quantum experiments is also worth investigation, see the joint paper with M.
Guta [28].

3.5.3 Further related works by the author

e A.JenCova, D. Petz, Sufficiency in quantum statistical inference, Commun. Math. Phys.

263 (2006), 259-276

A. Jencova , D. Petz, Sufficiency in quantum statistical inference. A survey with exam-

ples, IDAQP 9 (2006), 331-351

M. Guta, A. JenCova, Local asymptotic normality in quantum statistics, Commun. Math.

Phys. 276 (2007), 341-379

A. Jencova, M.B. Ruskai, A unified treatment of convexity of relative entropy and related

trace functions, with conditions for equality, Rev. Math. Phys. 22 (2010), 1099-1121

e A. JenCova, D. Petz and J. Pitrik, Markov triplets on CCR-algebras, Acta Sci. Math.
(Szeged), 76 (2010), 27-50

e A. JenCova, The structure of strongly additive states and Markov triplets on the CAR
algebra, J. Math. Phys. 51 (2010), 112103

e A. JenCové, Preservation of a quantum Rényi relative entropy implies existence of a re-
covery map, J. Phys. A: Math. Theor., 50 (2017), 085303

e A. JenCova, Rényi relative entropies and noncommutative Lp-spaces, arxiv:1609.08462,
2016



Chapter 4

Generalized quantum channels and

measurements

In this chapter, we study measurements on quantum channels and other quantum devices, using
their convex structure. We will concentrate on quantum systems represented on finite dimen-
sional Hilbert spaces, where the sets of devices can be identified with convex subsets of quantum
state spaces. Moreover, we will discuss only measurements with a finite set of outcomes.

Let H and K be finite dimensional Hilbert spaces. Let £(#, K) denote the vector space of
linear maps B(H) — B(K) and let C(H, K) be the set of channels. For ® € L(H, K), the Choi

representation [17] is defined as

C(@) = 5 3" 0} (eg]) ®ler) e,
i.j
where d = dim(#H) and |e; ),. .., |eq) is some fixed orthonormal basis of H. The map ¢ —
C(®) is a linear isomorphism of L£(H,K) onto B(K ® H). Moreover, the map ¢ is com-
pletely positive if and only if C'(®) is positive and ® preserves trace if and only if Tr C(®) =
dim(#H)~*I. It follows that the Choi representation identifies the set C(#, K) with a compact
convex subset of the bipartite state space S(K @ H).

4.1 Quantum channel measurements

A natural implementation of a channel measurement is obtained by applying the channels on
an input state and measure the outcome by a POVM. A more general scheme can be described
by a triple (Ho, p, M), where H, is a (finite dimensional) ancilla, p € S(H ® H,y) and M is a
POVM on K ® H,. In fact, this is the most general form of a channel measurement considered
in the literature.

Let X be the (finite) set of outcomes. The outcome probabilities are given as
P2 (P) = Tr (P ®idy, ) (p) My, r e X. 4.1)
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Such measurements serve as decision rules in statistical decision problems for quantum chan-
nels. For example, the discrimination problem of Example 4 can be formulated for a pair
of channels ®,, ®; in an obvious way. Decision rules for this problem are given by triples
(Ho, p, M) with two-outcome POVMs {M, I — M}. Let A, 1 — X be prior probabilities, then
the Bayes error probability is given by

Pe(Ho, p, M) 1= ATr (@0 @ idy, ) (p) M + (1 — N)Tr (@1 @ idy, ) (p)({ — M)
=(1—=XN)+Tr((APy— (1 —=N)Py) ®id)(p) M.

Optimizing over all (Hy, p, M), we obtain

, 1
min Fe(Ho, p, M) = (1 = [[A®o — (1 = A)®4]o),

2
where || - || is the diamond norm, given by [45]
[@flo == sup [[(®@id)(p)l 4.2)
PES(HRH)

for any & € L(H, ). For more information on discrimination of channels and the diamond
norm, see [83].

The description of measurement by triples is not unique. It is easy to see that there are many
different triples with the same outcome probabilities. A different framework was introduced in
[84], where the process POVMs were introduced. Similarly to a POVM, a process POVM (with
a finite set of outcomes) is defined as a collection of positive operators on I ® H, summing up

to I ® o, where ¢ is some element in S(?). The outcome probabilities are given by
pe(®) = Tr C(@)(p)Fr, z€X.

For each triple (Hg, p, M), there is a unique process POVM with the same outcome probabilities
for all channels. Conversely, for each process POVM, there are many corresponding triples.
This description of measurements is again not one-to-one: one can see that there exist different

process POVMs describing the same channel measurement.

4.2 Quantum combs and testers

Process POVMs belong to a more general formalism of (probabilistic) quantum combs, see [16,
15] for details. Quantum combs are used in description of quantum networks. This formalism is
hierarchical and contains also admissible transformations between networks, these correspond
to networks of a higher rank.

A formal definition of a quantum comb is recursive: a (deterministic) 1-comb is a Choi ma-
trix of a channel, an N-comb is the Choi matrix of a completely positive map on a multipartite
tensor product that maps (/N — 1)-combs to 1-combs. A probabilistic N-comb is a positive oper-

ator majorized by a deterministic /N-comb. All quantum combs can be represented by memory
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Figure 4.2: Quantum N -tester

channels, which are given by a sequence of channels connected by an ancilla, these form the
“teeth” of the comb, see Fig. 4.1.

Quantum testers are a special case of probabilistic quantum combs. More precisely, a quan-
tum N-tester T = {T7,...,T,,} is a collection of positive operators summing up to a special
type of (/N + 1)-comb which maps all N-combs to 1. N-testers describe measurements on de-
terministic V-combs and can be represented as a deterministic comb with a measurement on the
ancilla, see Fig. 4.2. Similarly as for quantum channels, the optimal Bayes error probabilities
for discrimination of quantum N-combs =j and =; with prior probabilities A, 1 — A have the
form

min P.(T) = 3 (1~ [AZy — (1= )Ei]len),

where
[Ellon := sup [I(To + T)V2E(Ty + T) 2|

for any (Hermitian) matrix =. The supremum is taken over the set of all two-outcome N -testers

T = {Ty, T1}. See also [30, 29] for a similar framework of quantum games.

4.3 The results

The quantum devices described above have a natural convex structure which reflects the pos-
sibility to switch randomly between different devices of the same type. As it is in the case of
states, a measurement on any convex set /X can be defined as an affine map from K into some
classical state space, assigning to each element the corresponding outcome probabilities. In the
works below, we study the relation between this definition of measurements or, more generally,
affine maps into state spaces, and the framework of quantum combs and testers. We also show
that the distinguishability norms || - ||, arise naturally from the structure of quantum channels

and combs as convex subsets of multipartite state spaces.



34

Generalized quantum channels and measurements

4.3.1 Content of the papers [CS1], [CS2]

[CS1] In this paper, we study affine maps on a convex subset K of the state space S(.A) of a
finite dimensional C*-algebra A into the state space of another finite dimensional C*-algebra B.
If B is commutative, such a map corresponds to a measurement. We prove that all measurements

extend to positive affine maps on S(.A) if and only if K is a section of the state space, that is

K=KYNnS(A).

In this case, the measurements are defined by collections of positive operators satisfying certain
normalization condition. Such collections are called generalized POVMs with respect to K.
This is true for the sets of N-combs, since these sets are given by linear constraints. The cor-
responding generalized POVMs for the set of N-combs are exactly the N-testers, in particular,
for quantum channels we obtain the process POVMs. The relation between measurements and
generalized POVMs is not one-to-one, as different generalized POVMs may correspond to the
same measurement.

If B is not commutative, we also require that the affine map extends to a completely positive map
on the subspace generated by K. We show that each such map is the restriction of a completely
positive map on A, called a generalized channel. If the set K contains the tracial state, the set of
generalized channels forms a section of a multipartite state space. This leads to a definition of a
generalized supermap, special cases of which are quantum combs and testers. We also discuss

the equivalence relation on generalized channels and POVMs, given by restriction to K.

[CS2] We continue the study of sections of quantum state spaces or more general bases of
the cone of positive operators on a (finite dimensional) Hilbert space. It is shown that the
section defines a norm in the space of Hermitian operators, which is a distinguishability norm
for elements of the section. The dual norm is studied and it is shown that it again corresponds
to a base section. These norms are a generalization of both the base norms and the order unit
norms and have similar properties. It is proved that for the set of channels, the corresponding
norm is the diamond norm and (logarithm of) the dual norm is the conditional max-relative
entropy. Similarly, for N-combs, we obtain the norm || - ||,y and the dual norm also has a
similar form.

We further study statistical decision problems for elements of the section. It is shown that
average risks (or payoffs) of decision rules can be expressed in terms of the norm corresponding
to a related base section, in particular, the dual of the diamond norm can be used to express
optimal risks for decision rules for the set of quantum states. Optimality conditions for decision
rules are also given. As a corollary, a necessary and sufficient condition is obtained, under which
there is a triple with a maximally entangled input state which is optimal for discrimination of

two channels.
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4.3.2 Conclusions and open problems

We investigated affine maps on convex subsets of state spaces and proved that such maps repre-
sent certain quantum devices. Moreover, it was shown that some important norms on the set of
Hermitian linear maps can be obtained from the convex structure of sets of quantum channels
and that optimal risks of decision rules can be given in terms of similar norms. In particular,
we proved that the dual of the diamond norm gives the maximum success probability in mul-
tiple hypothesis testing problems, this was crucial for the proof of the quantum randomization
criterion in the previous chapter.

In the recent paper [44], optimality conditions for multiple hypothesis testing problems on
quantum channels were re-obtained, using semidefinite programming. Conditions for existence
of an optimal test with maximally entangled input states were again discussed and an upper
bound on error probability was given in the case that these conditions are not satisfied. One
can see that similar conditions and bounds can be found for more general quantum combs.
A specific example of a comb is an i.i.d. sequence of channels. It is a question whether the

mentioned results can be used to investigate asymptotic properties of channels.

4.3.3 Further related works by the author

e A.Jencova, Extremality conditions for generalized channels, J. Math. Phys. 53 (2012),
122203

e A. Jencovd, Extremal generalized quantum measurements, Linear Algebra Appl. 439
(2013), 4070-4079

e 7. Puchala, A. Jencova, M. Sedldk, M. Ziman, Exploring boundaries of quantum convex
structures: special role of unitary processes, Phys. Rev. A 92 (2015), 012304

e A. JenCovd, On the convex structure of process POVMs, J. Math. Phys. 57 (2016),
015207

e A.Jencova, M. Pldvala, Conditions for optimal input states for discrimination of quantum
channels, J. Math. Phys. 57 (2016), 122203
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In a finite quantum state space with a monotone metric, a family of torsion-free affine
conneciions is introduced, in analogy with the classical a-connections defined by Amari.
The dual connections with respect to the metric are found and it is shown that they are, in
general, not torsion-free. The torsion and the Riemannian curvature are computed and the
existence of efficient estimators is treated. Finally, geodesics are used to define a divergence
function.

1. The classical case

Let $ = {p(x,0) | 6 € ® C R™} be a smooth family of classical probability
distributions on a sample space X. Then S can naturally be viewed as a differen-
tiable manifold. The differential-geometrical aspects of a statistical manifold and their

statistical implications were studied by many authors. The Riemannian structure is
given by the Fisher information metric tensor

gii{0) = Eg[d; log p(x, 8)3; log p(x, 8)],

where 9; denotes 5%?. In 1972, Chentsov in [6] introduced a family of affine con-
nections in & and proved that the Fisher information and these connections were
unique (up to a constant factor) in the manifold of distributions on a finite number
of atoms, in the sense that these are invariant with respect to transformations of
the sample space. In [1], Amari defined a one-parameter family of a-connections in
S, which turned out to be the same as those defined by Chentsov. They may be
introduced using the following a-representations of the tangent space:
Let g, be a one-parameter family of functions, given by

2 1—a
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Let I,(x,8) =‘gu(p(x,6)). The vector space spanned by the functions 8l,(x, 6),
i=1,...,p, is called the «-representation of the tangent space. The metric tensor
8ij 1s then

8ij(0) = [ Bily (x, 0)3;1_o(x, 0)d P.

The a-connections are defined by

I (6) = f6iajla(X,6)3kl_a(x,9)dP.

From this, it is clear that these connections are torsion-free, i.e. S, =T~ =0,
Vi, j,k, V6. Let now V and V* be two covariant derivatives on S, then we say that
the covariant derivatives (the affine connections) are dual with respect to the metric
if
Xg(Y,Z) = g(VxY, Z) + g(¥, V3 Z)
or, in coefficients,
3,-gjk = I‘m + F?kj-

It is easy to see that the ¢ and —o connections are mutually duval.

Further, let  be another coordmate system in &. The natural basis of the tangent
space Tp at P € S is {9;}, 0; = -5 for the coordinate system 6 and {3}, & = an

for n. We say that 8 and n are mutually dual if their natural bases are biorthogonal,
ie. if .
g%, 8y =4,
The metric tensor in the basis {8’} is given by
g@, ) =¢", &)=

The next theorem (Theorem 3.4 in [1]) gives the necessary and sufficient condition
for existence of such pair of coordinate systems.

THEOREM 1.1. If a Riemannian manifold S has a pair of dual coordinate systems
(8, ), then there exist potential functions (8) and ¢(n) such that

g = %8y, g =20d¢(). (1)

Conversely, if either of the potential functions r or ¢ exist such that (1) holds, there
exists a pair of dual coordinate systems. The dual coordinate systems are related by
the Legendre transformations

6; = d'p(n), n = oy (0)

and the two potential functions satisfy the identity

VO + 0 — D 6m; =0. @)
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The most interesting results of [l] concern the case when the manifold § is
«-flat, i.e. the Riemannian curvature tensor of the w-connection vanishes. Then S is
also —a-flat. It is known that for flat manifolds, an affine coordinate system exists,
i.e. the coefficients of the connection vanish. The next theorem (Theorem 3.5 in [1])
reveals the dualistic structure of w-flat manifolds. '

THEOREM 1.2. When a Riemannian manifold S is flar with respect to a pair of
torsion-free dual affine connections V and V*, there exists a pair (6,n) of dual
coordinate systems such that 6 is a V-affine and n is a V*-affine coordinate system.

This result can be directly applied to the exponential and mixture families
p(x,8) =exp| D 6ici(n) — v(0)

and

P(x,8) =Y bicit0 +(1- Ze,-)c,,+1(x)

which are +1-flat, and the extended «-families

n+l

la(%,0) = ) 6ici(x)

which are +a-flat (note that the extended «-families are not normed to 1).

Let us consider an o-flat family § with the dual coordinate systems (6, n) and
let ¥ (#) and ¢(n) be the potential functions. In [1], a divergence is introduced in
8. It is called the «-divergence and it is given by

Do (6,0 =¥ (0) + (') — ) _ Oin).

The divergence is not a usuval distance, but it has some important properties:
(i) it is strictly positive, Dy(8,6") = 0 with D,(8,68)y =0 iff 6 = ¢,

(ii) it is jointly convex in € and &',

(iii) Dy(8,8") = D_o(¥, 6),

(iv) it satisfies the relation

1
Da(8,8 +d6) = Do(® +d6,8) = 5 D " 5:;(8)db:de);,
ij

hence it induces the Riemannian distance, given by the Fisher information.
Moreover, the divergences are shown to satisfy a generalized Pythagorean relation.
There were some attempts to introduce a similar family of affine structures in
the differentiable manifold of states of an n-level quantum system with a mono-
tone metric. The main difficulty here is that, as was first shown in [7], there is
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no unique quantum analogue of the Fisher information metric and, moreover, the
connections are in general not torsion-free. Hasegawa in [9] studied the case of
quantum exponential and mixture families with the Kubo-Mori metric. In [13], the
exponential and mixture connections (i.e. the case o = +1) were defined also for
arbitrary monotone metric and a divergence function was introduced. The aim of
this paper is to use a similar method to define the a-connections and divergence
functions for each o and to investigate the dualistic properties of the manifold.

2. The state space

Let M denote the differentiable manifold of all n-dimensional complex hermitian
matrices and let M* = {M € M | M > 0}. Let Ty be the tangent space at M,
then Ty can be identified with M considered as a vector space. We introduce a
Riemannian structure in M, defining an inner product in Ty by

An(X,Y) =Tr XJIu(Y),

where Jy is a suitable superoperator on matrices. The state space of an n-level
quantum system can be identified with the submanifold

—{DeM* | TtD =1).

The tangent space Tp C Tp is the real vector space of all self-adjoint traceless
matrices. If we consider the restriction of the Riemannian structure A onto D, it is
natural to require that A be monotone, in the sense that if 7 is a stochastic map,
then

ran(T(X), T(X)) < Am(X,X), YMeMH, XeM.

As it was proved in [14], this is true iff Jy is of the form

Iu = (R f(LMR‘l)R’-’)'1 (3)

where f: Rt — R is an operator monotone function such that f(t) = tf(t~!) for
every t > 0 and Ly (AY = MA and Ry (A) = AM, for each matrix A. We also
adopt a normalization condition f(1) = 1. Notice that we have JM(X ) = M-1X
whenever X and M commute, in particular, Jy (M) = 1.

Let T/ be the cotangent space of D at D, then T/ is the vector space of all
observables A with the zero mean at D (ie. TrDA = 0) It is easy to see that

Tp ={Jp(H) | H € Tp}. (4)
The metric A induces an inner product in 7}, namely,
P(A1, Az) = MJI51 (A, T3 (A) = Tr A1 05" (Ag).

It can be interpreted as a generalized covariance of the observables A; and Aj.
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EXAMPLE 2.1. Let the metric be determined by Jp(H) = G, where GD+ DG =
2H, then it is called the metric of the symmetric logarithmic derivative. This metric

is monotone, with the corresponding operator monotone function f(x) = lﬂj‘ see
[5, 11, 15].

EXAMPLE 2.2. Another important examplc of a monotone metric is the well-
known Kubo-Mori metric determined by Jp(H) = log(D-{—tH)l,_g The monotone
metric is given by

32
Ap(H,K) =Tr HIp(K) = Eh‘TsTr (D +tH)log(D + sK)|; s=0-

Note that this metric is induced by the relative entropy D(p, o) = Tr p(log p—logo)
when the density matrices p and ¢ are infinitesimally distant from each other.

ExaMPLE 2.3. [11, 16] Let Jp(H) = 3(D~'H + HD"'). The corresponding

metric is monotone, with f(x) = —2%, and it is called the metric of the right
logarithmic derivative.

x+

For more about monotone metrics and their use see [15, 16, 10].

3. The g-representation

Let g : R — R be a smooth (strictly) monotone function. We define an operator
L [M] TM —> Tg(M) by

d
L,IM|(H) = 58(54 + s H}ls=0.

The following Lemma was proved in [17]. As it is frequently used in the sequel,
we repeat the proof here.

LEMMA 3.1,

(i) Lg[M] is a linear map.

(ii) Lyog[M] = Lr[g(M)IL,[M). In particular, if g is invertible then L [M] is
invertible and Lg[M]_l = L,-1[g(M)].

(iiiy Lo[M] is self-adjoint, with respect to the inner product (A, B) = Tt AB in
M.

(iv) L[MIM) = g'(M)M, where g'(x) = %g(x).

(v) LIM17I(I) = (g (M) 7Y, [ is the identity matrix.

Proof: 1t is convenient to use the orthogonal (with respect to the inner product

(A, B) above) decomposition of the tangent space introduced in [9], Ty = C(M) &
C(M)L, where C(M)={XeM : XM =MX)} and CIM)* ={i[M,X] : X ¢
M}
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Let H e T, u be decomposed as H = H® + i[M, X], then, according to {4] (p.
124), Lo(M +sH)|;=0 = g'(M)H® +i[g(M), X]. The statements (i) and (ii) follow

easily from this equality. Let K € Ty, K = K¢+ i[M, Y1, then
Tr KL [MI(H)=Tr K°g'(M)H* — Tr[M, Y)[g(M), X]
=Tr g'(M)K°H® — Tt [g(M), Y1[M, X] = Tr L [M)(K)H.

which proves (iii).
(v) LglMIM) = £2((1 + 5)M)|s=0 = &' (M)M.
{(v) From (i1),

d
Le[M17'(I) = L-1[g(M))(J) = 78 @M +5Dlimo = ('(M)7'. O

In what follows, we omit the indication of the point in square brackets if no
confusion is possible. The vector space

TS = {L,(H) | H € Tp)
will be called the g-representation of the tangent space Tp. The corresponding inner
product in T3 is

M5(G1, G2) = Ap(L;(G1), L (G2)) = Tr G 1Ko (Go),

where K, = L;'JpL;!. Similarly as before, the g-representation of the cotangent
space is the space of all linear functionals on 75 and it is given by
TE" = {K,(G) |G € TE) = {L,(A) | AeT}.
The inner product
©5(B1, By) = A5 (K ;1 (By), Kg—l(Bz)) =Tr B,K; ' (By)

will be called the generalized g-covariance of B; and B,.
Clearly, if g is the identity function, we obtain the usual tangent and cotangent
spaces Tp and 7).

LEMMA 3.2.
GeT), & Tr(g'(D)'G =0,
BeT!" < Trg(D)DB =0.

Proof: Both statements follow easily from Tr H =0, H € Tp and Lemma 3.1(v)
and (iv), respectively. C
EXAMPLE 3.1. The quanfum analogue of Amari’s «-representations is obtained
if we put
8(x) = ga(x).

51



GEOMETRY OF QUANTUM STATES: DUAL CONNECTIONS 127

In the sequel, we use the letter @ to indicate the function g,, e.g. a-representation,
T§, ete. For a # %1, (g,(D)™! = 42g_,(D) and g, (D)D = 55%g,(D) and thus

GeTE & Trg_o(D)G =0,
BeTp* < Tig,(D)B =0.

An application of Lemma 3.2 also for o = +1 shows that T5* = T, for each
o, so that K, = L;'JpL;! is an isomorphism K, : T3 — T,°. This shows that
the - and —a-representations are in some sense dual, as in the classical case. In
particular, if we put Jp = Jy = L_,L,, then K, = L_,L>! and we see that in
this case X! = K_,. The corresponding family of metrics was studied in [10] and
it was shown that the metric is monotone for @ € [—3, 3]. Moreover, for ¢ = +1
we obtain the Kubo-Mori metric and o = +3 corresponds to the right logarithmic
derivative.

4. The affine connections, torsion and curvature

Let g : R — R be a smooth strictly monotone function and let M, M’ € M™.
Clearly, both 75 and T}, for each M can be identified with M, so that there is
a natural isomorphism T — Tf,, given by the identity mapping. This isomorphism
induces an affine connection on M™. Let us denote the corresponding covariant
derivative by V3. ' ‘

Let xi,...,xy4+1 be a coordinate system in M™*. Let us denote 3; = 2 and let

dx;
H=3M®x), Gi = L,(A)=8gM®x)), i =1,...,N +1. Then
Ly(VE Hi) = 8i8;8(M(x)).
Hence, the coefficients of the affine connection are
5 = A (VE H;, Hi) = Tr ;8,8 (M(x))K(Go),
i,J,k=1,...,N+ 1. From this, it follows that this connection is torsion-free.

If we use the functions g., we obtain a. one-parameter family of torsion-free
connections V¢, analogical to Amari’s family of w-connections. It is easy to see
that, vnlike in the classical case, the connections V® and V™% are not dual in
general. ‘ :

To obtain the dual connection, consider the affine connection on M induced
by a similar identification T} — T5,. The covariant derivative will be denoted by

V&*, this notation will be justified below. We have
L;IJM(t"rgﬁ,-) = 8K, (G;(x)).
The coefficients of this connection are

T = MVE Hy B = 8L, In(VEH), Kg(GR) = Tr Ko (GNGr. (5)
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PROPOSITION 4.1. V& and V& are dual.
Proof: For i,j,k=1,...,N+1, we have

KA(H;, Hy) = 8;28(G;, Gy) = 8, Tr G, K,(Gy)
=Tr3;G;K,(Gi) + Tr G, Ko(Gy) = T, + 5.

REMARK 4.1. Notice that for g = id, we obtain the mixture and exponential
v@™ and V© connections defined in [13].

The components of the torsion tensor are

Sg* — Fg*

& =15, — T4 = Tr (8 Ko (G; (1) — 8K, (Gi(x))}Gx,

so that this connection is torsion-free iff
0:K,(G)) = 8jK,(G)), Vi, j=1,...,N+1.
Obviously, this is not always the case.

EXAMPLE 4.1. Let us consider the connection V%, @ € [—3,3], and let the
metric tensor be determined by J,. Then we have K (GJI (x)) = Lﬂa(H (x)) =

3jg—a(M(x)), so that the connection is torsion-free. Moreover, L;'J, = L_, and
thus

Lo (Vi Hy) = 8880 (M(x)).

From this it follows that with this choice of the metric tensor one has V¥ = v~
as in the classical case. In particular, the exponential connection V~!* is torsion-
free and V*'* = V¥l with the Kubo-Mori metric. Similarly, V¥* = V#3 and the
connections are torsion-free, with the metric of the right logarithmic derivative.

Consider now D as an N-dimensional submanifold in M and let ¢;,...,¢y be
a coordinate system in D. As there is no danger of confusion, we use the symbol
d; also for Er_ Let H; = 3;D(t), G, = 3;g(D(), i =1,..., N. The affine structure

in D is obtained by projecting the above affine connections orthogonaly onto D.

Clearly, each density matrix D is orthogonal to the tangent space Ty in Tp. Indeed,
if He TD,

Ap(H D) =Tt HIp(D)=Tr H = 0.

Moreover, Ap(D, D) = 1. Using (iv) and (v) of Lemma 3.1, it follows that the
covariant derivative is given by

Lo (Vi H)=8:3;8(D,) — g'(D)D(Tx (¢'(D)))™8,3,8(Dy),
L' Ip(VE Hj) = 8 Ko(G;(1) — (2'(D) " Tr g'(D) D, 3: K (G (1)),
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and the coefficients are
.,k(t) =Tr K (G)9;0;2(D;),
Uk(t) =Tr G 9; K, (G;(1)).

And now some facts from differential geomeltry [1, 2]. Let R be the Riemannian

curvature tensor of an affine connection V on an m-dimensional manifold M and
let R* be the curvature tensor of the dual connection. Let X, ¥V, Z, W be vector
fields. Then we have (see Lauritzen in [2])

R(X,¥,Z,W)=-R*(X,Y, W, 2Z). (6)

In particular, R =0 iff R* = 0. Further, let A" be a p-dimensional submanifold in
M with a coordinate system x. Let X;,..., X, be the natural basis of the tangent
space, associated with x, and let Y¥y,..., ¥, , be orthonormal vector fields on M
normal to A. Recall that the Euler-Schouten imbedding curvature is given by

Hy=rVg,X;, ¥, ij=1,...,p, I=1L,...,m~p.
Let us denote
i§z=1(6§ixj,Yz), i,j=1,...,p, I=1,....,m—p.

The submanifold N is called autoparallel if its imbedding curvature vanishes, i.e.
the parallel shift of a vector in T,(A) along a curve p(s) in N stays in Ty (N).

Let V be the orthogonal projection of V onto A

PROPOSITION 4.2. Let R be the Riemannian curvature tensor of V and let V be
torsion-free. Then

Riju = Riju + Z(Hikv i — Hiw Hyp,) (7)
v

for i,jk,i=1,...,p.

Proof: The proof of this statement for the case of a metric connection, i.e.
V = V*, can be found in [12], the general case is obtained by an easy modification
of this proof.
Let us now return to the submamfold D in M™. The Euler-Schouten imbedding
curvature is
HS ="Tr(g'(D)'a8;8(D), i,j=1,...,N,

and
B =Trg(D)D8;Ky(Gp), i,j=1,...,N.

PROPOSITION 4.3. Let g = g,. Then

o |

1= T Tr H; Jo(Hj),
1 —a

Gl=—— 5 —Tr H; Jp(H)).
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Proof: Let o # x1. Compute, using Lemma 3.2,
l4+a

[ J—
ij1 =

Tr g-o(D)0;9;8+(D)

1
= 22 (3T g-a(D)38a(D) — Tr 18 o (D)3ige(D)}

1+a

Tr Lo (H) Lo (H;)

and

l—-«
H} = ~——Tr 8 (D)3 K(G))

14 | |
=—{oTr ga(D)L;  Ip(H;) — Tr3;2,(D)L Jp(H}))

2aTrHjJD(H,-).

The proof in the case o = =1 is almost the same. O

Let R% be the Riemannian curvature tensor of V% in M*. Clearly, M* can be
parametrized in such a way that

N+1

g(M(x) = > xGi. 8)
i=l

In this case, we will say that M* is parametrized as an extended g-family. We
have 9;d;g(M(x)) = 0, hence I‘Uk(x) =0, for i,j,k=1,...,N+1 and for each

x. It means that this parametrization is affine and therefore R® = 0. Thus also
R®* = (. From the identity (7), the curvature tensor Rf in D is equal to

14 — g 'g*_ £ g%
Rz’jkl - I{jkl Hi!l Hikl PIjIl‘

If g=gaa

2
—a
{Tr H; J,(Hy)Tx H; Jp(Hy) — Tr H; J (H)Tr H; Jp(H))}.

We see that R* =0 if o = 1. Tt is also clear that R®* = R™, Statistical manifolds
with this property are called conjugate symmetric and were studied by Lauritzen
(see [2]). Here we have to be aware that R~ # R®*. The curvature tensor R**
can be computed using the identity (6).

Let A’ be a submanifold in M™ such that the Riemannian curvature tensor of
the projection V¥ of V* onto M’ vanishes. Then M’ is flat so that there exists
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an affine coordinate system #. The dual connection is curvature-free and if it is
also torsion-free then it follows from Theorem 1.2 that there exists a dual V&™*-
affine coordinate system 7. This is the case if, for example, J = J, or if M’ is
one-dimensional, see Section 6. However, if the dual connection is not torsion-free,
there is no coordinate system dual to 9. Indeed, if # is a dual coordinate system,
then it follows from Amari’s proof of Theorem 1.2 that n is V**-affine, ie. the
components of the connection vanish, I"Uk(n) =0 Vn, Vi, j,k. But then we have
for the components of the torsion tensor 7} =77 —I'j; =

5. A statistical interpretation

Throughout this paragraph we suppose that o # 1. We will investigate a statis-
tical interpretation of the «-representations of the tangent and cotangent space and
the a-connections. | _

Let ' € D be a smooth p-dimensional submanifold and let 6;,...,6, be the
coordinate system in D’. Let T, be the tangent space of D' at 6, H/ = H%D(B),
G, = Ly (H!) and let V¢ and V'8* denote the orthogonal projections of the affine
connections onto D'. In [17], locally unbiased estimators were defined and a gen-
eralized Cramér—Rao inequality was proved for the generalized covariance. We give
an analogical definition of the w-expectation and «-unbiasedness.

DEerFINITION 5.1, Let B = (By,..., B,) be a collection of observables. We will
say that B is a locally a-unbiased estimator of 6 at 6y if
(i) Trgc,(Dgo)B =6y for i =1,...,p,
(id) %, B Tr g2(Ds) Bilg, =Tt G;B: =3 i, j,=1,...,p.
The value Tr g, (D)A will be called the a-expectation of the observable A.

As follows from Example 3.1, the a-representation of the cotangent space 75"
can be interpreted as the space of all observables with zero a-expectation at D
with inner product given by the generalized a-covariance ¢“. The fol]owmg lemma
is obvious.

LEMMA 5.1. Let A = (Ay,...,Ap) be a locally unbiased estimator of 8 at 6.
Then B=1L, 1A = (L, LAD, ..., L, 1(Ap)) is a locally c-unbiased estimator of
6 at By. Moreover, (A;, A;) =¢"(B;, B;) and TrH/A; =Tt G{B;, i,j=1,...,p

The generalized Cramér—Rao incquality from [17] can now be rewritten in the
following form.

THEOREM 5.1. Let A;; = A(H], H)) = A*(G[, G)) and let B=(B,..., B;) be a
locally a-unbiased estimator of 6 at 0. Then *

05(B) = ()~

in the sense of the order on positive deﬁmte matrices. Moreover, equality is attained
iff B is the biorthogonal basis of TO“*.
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An estimator B which is (a-)unbiased (at each point) and such that its variance
attains the Cramer-Rao bound is called (a-)efficient. Clearly, such estimator does
not always exist. The following necessary and sufficient condition is a generalization
of a result stated (without proof) in [13}].

THEOREM 5.2. The wa-efficient estimator exists iff D' is a V**-autoparallel sub-
manifold and the coordinate system Bi,...,0p is V' “_affine.

Proof: Let D' be V**-autoparallel and let the coordinate system be V'“.affine,
ie. V'I‘;:,Hj’ —0,ij=1,...,p. Let us choose a point in the parameter space
(6 =0) and let B = (By,..., B,) be the biorthogonal basis of T(;“‘*. We prove that
B is an a-efficient estimator.

Let X;(#) be a V*-parallel vector field such that L;‘JO(X,-(O)) = B;, i =
1,...,p 1e X, =_JB_1LO,{B,-—g_a(D(G))Trga(D(G))B.-}. As D' is V¥*-autoparallel,
X;(9) € Ty, ¥6. Compute

5Tt 2,(D@))B; = Tr G,(6)B; = Tr G} (9)L; " Jo(X;(8)) = M(H], X)),
here we have used the identity Tr G}(6)g_.(D(9)) = 0. Further,
BA(H], X;) = MV H, X)) + AH, VEX;). )

Since the parametrization is V'*.affine, we have v'e H! = 0, Vi, k. Moreover,
k

X;(@) € T, and X; is V“*-parallel, hence X; is V'**_parallel, so that V}'}‘;’X ;=0 It
follows that 8, Tr G;(6)B; = 0 for all 8. Since Tr G}(0)B; = §;;, we have Tr G;(0)B;
= §;; for each 8. We see that as Tr g.(D(0))B; = 0 and 3;Tr g (D(9))B; = éy; for
each 6, it follows that B is a-unbiased at each point . From Theorem 5.1, it now

suffices to prove that B; —6;g_o(D(8)) € T,**. But this follows easily from the fact
that X;(0) € Ty and Tr g,(D(8))B; = 6;.

Conversely, let B be the a-efficient estimator, then B is a-unbiased and the
matrices B; — 8ig_o(D(@)), i =1,..., p, form the biorthogonal basis of TG"'* vo.
Let X; = J;'L;1(B; — 6,8-a(D(6))), then X; is a V**-parallel vector field and
X; € T V0, hence X; is V'®*-parallel. Moreover,

J\.(HI-', Xj) =Tr G:Bj = 5,‘j.
From (9) it now follows that 1(v;‘;£H;, X;) = 0. But the matrices X;(8), j =

1,...,p, form a basis of 7. We may conclude that V'I‘;,HI.’ =0, ik=1,...,p,
&

so that the parametrization is V'-affine.
To see that D' is V**_autoparallel, it suffices to observe that the parallel vector
fields X;(8), i=1,..., p, form a basis of the tangent space Ty for each 6. O
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6. Geodesics and divergence functions

Let us consider a V%-autoparallel submanifold in D for ¢ = 1. Then it is
Vo-flat, hence there is an affine coordinate system 8. If o # +1, we will consider
the autoparallel submanifolds in M*. As it was said at the end of Section 4, in
general there is no hope for a dual coordinate system to exist, unless the dual
connection is torsion-free. It means that we cannot use Amari’s theory to define a
divergence. However, one-dimensional submanifolds are always torsion-free, so that

a divergence. function exists for each V*!* and Vo*.geodesic. As suggested in [13],
we use these functions to define a divergence function in D (M™).

Clearly, for each o, a V**-geodesic is a solution of
Ly o (0r) = A, (10)

where A € M, it means that each geodesic is determined by the observable A.
The V®*-geodesic is given by
(i) Jop(p)=A=TrpA, fora=-1,
(i) L7 () =A - pTrA, for a=1,
(ii)) L', (01) = A~ 1558 o(0)Tr ga(p) A, for a # £1.
Note that A can be replaced by A+c, in (i), A+c;p in (ii) and A+c,8—a(0r)
in (iii), ¢, € R, so that we may always suppose that A € T**.

The relation between V**- and V**-geodesics is clarified in the following propo-
sition.

PROPOSITION 6.1. Let p, be a solution of L;‘Jp,(jo,) = A. Then p, = Tré%_, is a
V**-geodesic.

Proof: From (3), J,, = Tr p:J;. Compute

. 5 Tr f?r 2 2
Jo () = T, (0;) — T = 5 (0,) — Tr p J5,(p,);
o,

here we used the fact that Jp(D) = I (twice) and that Jp is self-adjoint. Further,
L7, (p) = A — LA DT La(p) A
We use Lemma 3.1 (iv) and (v) to complete the proof. a

REMARK 6.1. Let p, be as in (i). For each r, the coefficient of the affine
connection is equal to

e ey d ... d ,
T = MV, P fr) = T = {Up (o)} = Te (A —Te prA}r = 0.

It follows that the parameter ¢ is V~'*-affine. Similarly, for p, as in (ii), t is
Vi*_affine. In the case a # +1, the V**-geodesic is not flat, hence we consider (as
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in the classical case) geodesics in M™. If p, is the solution of (10), ¢ is V**-affine.
Moreover, all affine coordinate systems are connected via affine transformations 7
at + b. This coordmate transformation changes the initial point and rescales the
observable A as -A :

LEMMA 6.1. Let a = ——1 and let p, and p, be as above. Then 111(1‘) = log Tr 5,
is a potential ﬁmcnon for p;.

* Proof: We have to prove that gTZw(r) = (P, pr). Compute

—W()— 7 = T AA.

Pz

Moreover,
. . . . d?
Ao 0) =Tr p I (1) =Tr A = E;i!f(r)- o
LEMMA 6.2. Let a =1, then yr(t) = Tr p,; log o is a potential function for p,.

Proof: We may assume that A € Ti“', 1..e. TrA = 0. We have Ll“l(log pr) =
pr log Prs hence

¥ (1) =Tr L7 (log pr) = Tt o1 J, L7  (log or)

and

d
ﬂw(r)-'rrp,ip, T log o) + Tr o — —Jaly 1(log or)

=Tr Alog oy + Tr p,L1(p:) = Tr Alog py;

here we have used the fact that Jp(A) = D'A whenever A commutes with D,
thus J,, (o log o) = logp:, and Ly(p;) = I. The rest of the proof is the same as
above. O

LEMMA 6.3. Let o # +1 and let p, = ,a,. Then yr (1) = (2Tt p, is the potential
SJunction .

Proof:
d . — o
ETI' Pr = Tr p;Jp, (p;) =Tr ptLa(A) = Trga (pt)A
and v
d - . |
—aTro = ——Tr La(p)A = ——1(6, b1). =

According to Theorem 1.2, p, is also V¢ (V9)-flat and there is a dual V¢

(V“) affine coordinate s. As we have seen in the proofs of the above lemmas, the
dual coordinate is given by s(7) = w(t) = Tr g,(p,)A for each a. Moreover, there
is a divergence function D9 : p x p — R. A divergence- measure in D (M™) can
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th:n be defined as follows. Let pp, o1 € D. Let p, be the unique V**-geodesic
connecting these two states. If o 3 x1, the a-divergence is Dy, (pg, p1) = DA(0, 1).
If o =21, we use the V**-geodesic p, = (Tr 3;)~14,.

PROPOSITION 6.2.
) Let @« = —1 and let py, py € D. Let p, be as above and let A be the unique
observable determining p,. Then

Dy (po, p1) = Tr ;mA.
(i) If « =1, then

Dy (po, p1) = Tr polog po + Tr (A — p1) log p1.
(id) Let a # £1, pg, ;1 € M*. Then

2
Do (po, pr) = 7 (Tr po = Tr 1) +Tr ga(p1) A

Proof: From the definition of the divergence function and the identity (2), we
ob:ain

DE(t1, 82) = (1)) — W (82) + (22 — t1)s2
The rest of the proof is easy. O

Let now p; be a geodesic connecting two states pp and p; and let oy, o, be two
states lying on p,. Using Remark 6.1, it is easy to see that D, (py, o) = D2(11, 12).
It JUso follows that for each p we may put D.(p, p) = 0. There are some properties
of the divergence D, which follow from the properties of D~.

(i) Positivity: Dy(p,0) >0 and D,(p,0) =0 iff p =0.
(ii) Let o = p+dtH. Let A= L 'Jp(H) and let p, be the geodesic determined
by A such that p,, = p. Then

Dy(p, p+dtH) = DE(tg, to + dt) = dt’A(H, H)
and
Dy (p+dtH, p) = DE(to 4 dt, tg) = DE(p, 2o + dt).
It means that the a-divergence induces the metric.

EXAMPLE 6.1. Let A be determined by J, = L_,L, for some & € (—3,3). As
we have seen, in this case V¥ = V~® and this connection is torsion-free. Hence
we have the same situation as in the classical case. Let @ = £1 and let us consider
the exponential family

p(0) = exp()_6;A; — ¥(9)).
i=l
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Then it is *1-flat and ¢ (8) = log Tr exp(6; A;) is the potential function. Hence the
coordinate systems (@, {n; = 8;¥(0)} are mutually dual, # is V*-affine and 7 is
V“-affine. The divergence is given by

D1 (po, ;1) = Tr ;1(log o1 — log po)
which is the relative entropy. Similarly, for the mixture family
pm) =po+ Y mAi,  TrA =0,
i=1

the function ¥ (n) = Trp(n)logpe(n) is the potential function, so that there is a
pair of dual affine coordinate systems (n,8), see also [9). The divergence is

D_y(po, 1) = D1(p1, po).
For o # +1, we consider the extended ¢-family
pO) =g, (D _BiA).
i+l
Let ¥ (8) = ﬁTrp(B). Then

d

d
— (0 = —
BBIW( ) 391'1—-0‘

2
Trgg'(Q_td) = 7T L'A; = Trg_o(p(O))A;
X il # 4
and

0 .0 -
—Trg_a(pONA:i= —Trg_.(g;' (Y _6:A)A;
36; 36; -

=TrL_oL; (Aj))Ar = X°(A;, A)),

hence () is the potential function. Thus there is a pair of dual affine coordinate
systems and a divergence

Dy (pg, p1) = Tr ga(01)(€—(01) ~ g—2{p0))-

This «-divergence was defined also in [8]. Tt is easy to see that the above divergence
functions are the same as those from Proposition 6.2.

ExXAaMPLE 6.2. ([5, 13]) Let @ = —1 and let A be the metric of the symmetric
logarithmic derivative. Then it is easy to see that

pr = exp{5(tA — Y()}poexp{L(tA — Y ()},
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where (1) = logTr ppexp(tA) is a solution of (i). Hence it is a V“l*-geodesic
and the coordinate ¢ is V**-affine. It follows that p, is also V~!-flat and there is
a V~l-affine coordinate system s(t) = Tr p,A. Further, the divergence is

1 1 1, _1
D_i(po, 1) = 2Tr prlog p, * (o5 P13 )2 *

Clearly, this divergence coincides with the relative entropy if oo and p; commute.
Moreover, p; has the Gibbs state exp(rA — ¥ (¢)) as a special case.

EXAMPLE 6.3. Let @« = —1 and let A be the metric of the right logarithmic
derivative. Then it is easy to see that

B = F1exp{t O (A)}F1,

where QF is a linear operator given by Q;l(A) = %(F_%AFé +F%AF‘%), 15 a
solution of (10). If pp and p; are two states,

1 1
p = pf exp{(t — 1)@, (A) — ¥ (D)o},
with ¥ (t) = log Tr py exp{(t — 1)Q,, (A)}, is a V~1*_geodesic. Choose A so that

P} exp(—= 0 (A)}pf = po.

p; is then the V~!*_geodesic connecting these two states. We see that the divergence
is given by

1 1
D™ (oo, p1) = Tr ;1A = Tr py log p{ p ' o}
This version of the relative entropy appeared also in [3].
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We use a class of generalized relative entropies on density matrices to obtain one-
parameter families of torsion-free affine connections.
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1. INTRODUCTION

The aim of quantum information geometry is to introduce the quantum coun-
terparts of the basic structures of the classical theory, namely Riemannian metrics
and families of affine connections. It is an important feature of the classical infor-
mation manifolds, that if invariancy with respect to bijective transformations of
the sample space is required, then these structures are unique (up to a multiplica-
tion factor): the Fisher metric and the family of Chentsov-Amari o-connections
(Amari, 1985; Chentsov, 1982).

Let /' = {p(-, 0)|0 € O} be amanifold of classical probability densities with
respect to a common measure P. To define the affine connections, Amari (1985)
used a family of functions

2 l—a
5 1
fo={T-a" " 7 ()

log(x) oa=1

Letl,(x,0) = fo(p(x, 0)). The coefficients of the Fisher information metric tensor
and the o-connections are given by

gij(G)=f3ila(x,9)8jl—a(x,9)dP, Vo
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re.(0) = / 301,(x, )0kl _o(x, 0) dP

These connection are torsion-free and the o and —« connections are dual with
respect to the Fisher metric, in the sense that if V*% are the covariant derivatives
and X, Y, Z are vector fields, then

Xg(V,Z)=g (VY. Z) +g (Y, Vx*Z)

There are more equivalent ways to introduce the Fisher metric and the affine
connections. In the present paper, we follow the approach of Eguchi (1983), who
used contrast functionals, see also Amari (1985).

A functional p over F x F is called a contrast functional if

(1) p(61,6,) >0 forall 6,,6, € ®
(1) p(B1,6,) = 0if and only if 6; = 6,

The Riemannian metric and Christoffel symbols of the affine connections are
defined by

2

£ (6) = — 6, 6")o—s 2
g;;(0) 80,60}'0( No=o (2)
p 9’

e, @) =— 0, 0)|g—o 3
ijk(0) 391'91'9,2'0( MNo=o 3)

Let f : (0, 00) — R be a convex function satisfying f (1) = 0, then

p(X, 62)
01,0, = E _—
Iof( 1 2) 61 |:f <p(X, 01)>j|

defines a contrast functional. It was shown that in this case, gi’;. = f"(1)gij, where
gij denotes the coefficients of the Fisher metric and the corresponding affine con-
nection coincides with the a-connection with @ = 2 f”'(1) + 3 f”(1).

As one would expect, the situation is different in noncommutative case. Here,
the equivalent of the Fisher metric would be a Riemannian metric, which is mono-
tone with respect to completely positive trace preserving maps. For manifolds
of n x n density matrices, it was proved by Chentsov and Morozova (1990) that
such metric is not unique. Later, Petz (1996) characterized the class of mono-
tone metrics in terms of operator monotone functions. Nagaoka (1994) defines
the affine o-connection for « = —1 (the mixture connection) using the natural flat
affine structure on density matrices. The exponential connection is defined as its
dual with respect to the given monotone metric. This approach was generalized in
JencCova (2001a), for all «. Unlike the classical case, the dual connections are not
torsion free in general. In Jencova (2001b), it was shown that the dual connection
to the a-connection is torsion-free only for a special monotone metric A“.
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Lesniewski and Ruskai (1999) used a class of generalized relative entropies,
defined in Petz (1986), as contrast functionals on (non-normalized) density ma-
trices. It was shown that each monotone metric can be obtained in the form
(2) for a certain convex subset of relative entropies. The aim of the following
paper is to use this subset to obtain a class of torsion free «-connections, such that
a and -o-connections are dual. We question the coincidence with the Fisher metric
and classical affine a-connections on commutative submanifolds, use the language
of statistical manifolds by Lauritzen (Amari et al., 1987), to give formulas for the
Riemannian curvature tensor. We also treat some important examples.

2. GENERALIZED RELATIVE ENTROPIES
AND MONOTONE METRICS

Let D denote the set of n x n complex Hermitian matrices and let D be the
subset of positive definite matrices. As an open subset in D, DV inherits a natural
affine parametrization and has the structure of a differentiable manifold. Let T, be
the tangent space at p and let A be the monotone Riemannian metric. Then A is of
the form (Petz, 1996)

MNX, ) =TeXJ,(Y), J;'=f(L,RDHR,

where f : (0, 00) — Risanoperator monotone function satisfying f(t) = tf(t~")
and a normalization condition f(1) = 1, L, and R, are the left and right multipli-
cation operator, respectively.

Let G be the set of operator convex functions g : (0, c0) — R, satisfying
¢(1) =0 and g”(1) = 1. It is known that each operator convex function with
g(1) = 0 can be written in the form

2 00
g =atw = +b0r — 1P+ [T 1 s @
w 0 w—+s
where b, ¢ > 0 and u is a positive finite measure on (0, 0o0). The value of a € R
does not influence any of the following structures and therefore two functions in
G that differ only in a will be treated as equal.

Let P be the set of positive finite measures p on [0, oo], such that f[O,oo] du =
%. Then (4) establishes a one-to-one correspondence between G and P, with ¢ =
pn({0}), b = pu({oo}).

If g is an operator convex function, we define its transpose g by g(w) =
wg(w 1. Itis clear that ¢ € G if g € G and that g > & induces the map P — P,
given by u — [1, where di(s) = du(s™).

If g = g, we say that g is symmetric. The subset of symmetric functions in
G will be denoted by Gyym. Let ~ be the equivalence relation on G

g1~ & = git&i=%0+5%.
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The quotient space G|~ is isomorphic to Ggym. Similarly, Psym denotes the subset
of measures symmetric with respect to the transform s — s~! and we have an
equivalence relation ~ on P. Let us denote by G, the equivalence class containing
%h, where %h € Gsym, and similarly P,,.

In Petz (1986), see also Lesniewski and Ruskai (1999), the following class
of generalized relative entropies on D was introduced.

Definition2.1. Letg € G. Therelative g-entropy H, : D x DT — Ris defined
by

1 (Lg 1
Hy(p,0)=Trp2g (R—> (p?)
0

Proposition 2.1. (Lesniewski and Ruskai, 1999).
Let g € G and let a, b, c and . be as above. Then

H,(p,0) =aTr(oc — p)

1
s dM(S)} ( — p)

o0
Tr(o — p) {bp~! + co! /7
+Tr(o ,0){ o +co o + L. TR,

=aTr(oc — p)+Tr(oc — p)R, 'k (;—“) (o — p)
0

where

_ 1+s _gw)—aw —1)
kow) = f[o,oo] T = S

The relative g-entropy can be used to define a Riemannian structure on D™
as follows. Let X, Y € T,, then

9’ -1 L,
)\p(X, Y)= _m g(p +5X, p+1Y)|s==0 = TrXRp ksym (R_p) &)
where
_ _ gw) + g(w)
kgymW) = k(w) +w ™~ k(w™") = w12

It was proved that this defines a monotone metric, where the corresponding operator

monotone function is f = 1/k. Conversely, for a given monotone metric, we may
—1yp . . . o

put g(w) = (V;( WI; . The condition g”(1) = 1 is equivalent to the normalization

condition f(1) = 1. Thus we have

Proposition 2.2. There is a one-to-one correspondence between monotone
Riemannian metrics and equivalence classes Gy,.
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3. AFFINE CONNECTIONS

Let € ® € RN be a smooth parameter in D1 and let 9; = %. Let us fix a

monotone Riemannian metric A on D and let G, be the corresponding equivalence
class. Let us choose a function g € Gj,. In correspondence with the classical theory,
we define the affine connections V#$ by

0
,Jk(9) = Ao(Vy,0;, 0k) = 80’ — H,(D(9), D(0"))lg—p
!

It is easy to show that this satisfies the transformation rules of an affine connection.

Proposition 3.1. Let g € G,. Then the connections V& and V& are dual with
respect to A. Moreover, the connections are torsion-free.

Proof: Consider the natural flat affine structure in D" and let X be a vector
field, parallel with respect to this affine structure, then X is constant over DT,
As there is no danger of confusion, we will denote its value X, € D at p by the
same letter. Let X, Y, Z be such vector fields. If g € G, then clearly ¢ € G, and
Hy(p,0) = H,(o, p), so that
s 93
A (V5Y, Z) = RFTEYD ———Hy(p+uZ, p+sX +1tY)|s—i—u=o

Using the previous section, we get

d
Xrp(Y, Z) = E)‘-p—HX(Ya Z)i=0

d 92
= — —H tX Y, tX Z)|s=u=
dt( Y dp+tX +sY, p+tX +uZ) o)

t=0
= (V3Y, Z) + 2, (Y, V5 Z)

so that the connections are dual. Torsion-freeness is obvious. O

Letc, : (0, 00) x (0, 00) — R be given by c,(x, y) = %k(f), where k is as in

Proposition 2.1. Note that ¢, (y, x) = c¢z(x, y) is obtained from w ~lk(w~!) and that

(X, y) = cg(x, y) + ey, x) =1 yksym(3) is the Morozova-Chentsov function.
From Proposition 2.1, we get

Hy(p,0) = aTr (0 — p) + Tr (0 — p)cy(Le. R0 — p) 5)

For o, p € DT, the operator c,(L,, R,) is positive on the space of n x n complex
matrices with Hilbert-Schmidt inner product (X, Y) = Tr X*Y.
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Proposition 3.2. Let

1 1
T,(X,Y,Z)=(1+4sTrX Y z
( )= +s5)Tr st+Lp( )Rp+st( )

and let Too = limg_, o Ts. Then

3o(VEY, Z) =2 f[o NTLZ, X ) i) =
,00

—2/ MT,(Y, X, Z) + RT(X, Y, Z2))du(s)
[0,00]

Proof: From (5), we get
d
)wo (v}g(Ya Z) = _ETI' {Xcg(Lp—i—sZ, Rp)(Y) + ch(Lp—l—sZ, R,o)(X)

— Xco(Lps Rprsy(Z) — Zcg(Lyp, Rpysy )(X)
—Yco(Lyp, Rprsx (Z) — Zcg(Lps Rptsx)(Y )} s=0
Further, for p,c € DT and X, Y € D,
TrYco(Lo, Rp)(X) = (Y, cg(Lo, Rp)(X)) = (cg(Ls, Rp)(Y), X)
= (X, ce(Lo, Ry))(Y))” =TrXco(Ly, Rp)(Y)™
It follows that

d
2o (VEY, Z) = —20Tr {X%cg(LpHZ, R,)(Y)

d d
— [chg(LP’ RP+SY)(Z) + YEcg(Lp’ RP+SX)(Z):| } |S=0
We have

* 1
co(x, y) = n{OHx~' + u({oo))y™ _|_/0 +

X+ sy

dju(s) (6)

Let us first suppose that «£({0}) = u({oc}) = 0. Then we compute
ey Rl == [ (49— Ly dn()
dtcg p+tZ> Np)l0 — 0 SLp+st ZLp+st MAS

d o0 1 1
—c,(R,, L = — 1 L d
d[cg( P p+tY)|0 /0 s(1+ S)Rp n SLp Y Rp n SLp u(s)

so that

d
_ETr Xcg(Lpyiz, Rp)X)o
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00 1 1
= /O (14 5)Tr R st(X)Zst I, (Y)du(s)
= /oo T(Z,Y, X)du(s)

0

and

d
_ETr Xcg(Rp, Lpyiy)( Do

> 1 1
= [ s(l+9)Tr———X)Y——(Z)du(s
/0 (I+s) st+Lp( ) Rp+st( )dju(s)

o 1 1
= 14+ s)Tr X)Y Z)dj(s
/0 ( ) Rp+st( ) st+Lp( )d(s)
o0

_ / T.(Y. Z, X)dji(s)
0

It follows that for each s € [0, 00),
291T€(Xa Ya Z) = T\‘(Xa Y, Z) + TS‘(X, Za Y)

so that T is a covariant 3-tensor, symmetric in last two variables. The statement
now follows easily.

Let 1 be concentrated in 0 and oo. It is clear that T, = 0 and we obtain by
a direct computation from (6) that

Ao (VY. Z) = un({ON(To(Z, Y, X) + To(Z, X, Y)) — p({oo)(To(Y, X, Z)
+T0(Y’Z’X)+T0(X’Y’Z)+TO(X’Z’Y)) O

3.1. Families of Connections

Let G), be the equivalence class corresponding to the monotone metric A. Let
g € G;. If g is symmetric, then the connection V¢ is self dual and torsion free,
hence it is the metric connection. If A is fixed, we denote the metric connection by
V.

Let g # 2. As Gy, is a convex set, it contains all the functions
l —« +1+aA

2 8T ¢

for o € [—1, 1]. If A and g are fixed, we denote the corresponding connection by
V¥. Then

8a =

1l -« 1+«
\Y4
2 + 2

V¢ = V*
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where V and V* are the covariant derivatives corresponding to g and g, respectively.
The connections V* and V™% are dual with respect to A, vl =v,Vv! =vVv*and
VY = V for all g. Clearly, such family of «-connections depends on the choice of
g € G, and is therefore not unique.

3.2. Commutative Submanifolds

Let p, X, Y, and Z be all mutually commuting. Then it is easy to see that
Ao(X,Y)=Trp 'XY and

*

o -2
Trp “XYZ

)‘p(viY’ Z) = _1

where o = 2¢"”'(1) + 3. This corresponds to the Fisher metric and the o*-
connection in the commutative case. It seems to be a natural question to ask if,
for each A, it is possible to obtain the «*-connections at least for o* € [—1, 1], if
restricted to commutative submanifolds. From the next proposition (and examples
below) it follows that this is not true.

Let the Riemannian metric A correspond to the equivalence class Gy, resp.
P Let pimax be a measure with supp n C [1, oo], such that ., coincides with
m on (1, oo] and umax({1}) = %m({l}). Then we have

Proposition 3.3.  Let [iax be as above and let gmax be the corresponding operator
convex function. Then gn.x € G, and for each g € G;,, we have

=3 < Zmax(D < 8" (1) < gip(D) < 0

max

Proof: First, it is easy to see that . 1S a positive finite measure and f[O,oo]
dihmax = % f[o, ool dm = % Moreover, [lmax 1S concentrated in [0, 1], fimax cOin-
cides with m on [0, 1) and fmax({1}) = %m({l}), so that fmax + Amax = m. It
follows that gn.x € Gy,. Let now g € G, and let u € P,, be the corresponding
measure. Then

1
"(1) = -6 d
g (D) /[O’Oo] s j(s)

and

1 s 1 1
du(s) = ——dus™H + —u{1 —|—/ —du(s
/[o,oo]lJrs n(s) f(l,oo]lJrs u(s™) + Fudlh o T s u(s)

1 1 1
> d + - 1}) = d maxZO
> /(Loo] o dm() + (1) /M ——du
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and similarly,

1 1 1
d §) = —dAmaxS S_
f[o’oo] s u( )_/[O,OO] s (s) 5 -

4. EXAMPLE 1: THE EXTREME BOUNDARY OF G
The extreme boundary of G consists of the functions

l+sw—1)>
gs(w) > wts ors >

_1 12
8oo(W) = E(W_ )

We have g; = g1 fors > 0 and gy = g~, g1 being the only symmetric one
of these functions. The corresponding measures are () = %8(3 —1).
Lets € [0, 1]. Denote h, = g; + g,, then

(1+S)2(W—1)2 w+ 1
2 w+s)sw+1)

Let A, be the corresponding monotone metric. It is easy to see that g . = &5
and that

hs(w) =

1l —« +1—|—a
2 ST

Gs =Gy, = {ga = g1t €1, 1]}

In particular, G; = {g}. It follows that for each A;, we have a unique family
of a-connections. If we consider commutative submanifolds, we obtain classical
a*-connections with o™ € [—3}%, 3}%]. Two important special cases, s = 1 and
s = 0 will be treated below.

4.1. The Metric of Bures
Let us consider the previous example with s = 1. Then

(w—1)

h =2
1(w) w1

and the corresponding monotone metric is given by

2
Mp(X,Y)=Tr X ———(
(X, Y) =Tr Lp+Rp()

It is the smallest metric in the class of monotone metrics. We have already seen
that the corresponding equivalence class consists of only one function g;. It means
that the only connection that we can obtain is the metric connection V.
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4.2. The Largest Monotone Metric

Lets = 0. Then
1 1
O
2 w
and A is given by
A XY—TXlR_l L~y
Op(,)—rz(p—i_p)()

It is the largest monotone metric. On commutative submanifolds, we obtain o*
-connections for o* in the largest possible interval o* € [—3, 3]. It is easy to see
from Proposition 3.3 that this is the only monotone metric with this property.

S. STATISTICAL MANIFOLDS

The manifold D+ with a monotone metric and a class of «-connections can
be regarded as a statistical manifold in the sense of Lauritzen (Amari et al., 1987).
A statistical manifold is a triple (M, g, D), where M 1s a differentiable manifold,
g ametric tensor and Da symmetric covariant 3-tensor, called the skewness of the
manifold. On M, a class of «-connections is introduced by

VeY = VyY — %D(X, Y), %)

where V is the metric connection and the tensor D is defined by DX,Y,Z2)=
g(D(X,Y), Z). These connections are torsion free, this is equivalent to symmetry
of D, resp. D. The Riemannian curvature tensor is defined as

RYX,Y,Z,W)=g(VYVyZ — VyVRZ — V& Z, W)

Statistical manifolds satisfying R* = R™* for all o are called conjugate sym-
metric. [tis proved that R™% — R* = «{F (X, Y, Z, W) - F({Y, X, Z, W)}, where
F(X,Y,Z, W)= (VxD)Y, Z, W), so that a statistical manifold is conjugate sym-
metric if and only if the tensor F is symmetric. It also follows that the condition

Jag 0, R% = R~

is sufficient for conjugate symmetry.

Let now A be a monotone metric on D and let G;, be the corresponding
equivalence class. Let g € G, such that g is not symmetric and let us consider the
corresponding family of connections. Let

D(X,Y)=VyY — ViY

Then the triple (D, A, D) is a statistical manifold, with D(X, Y, Z) = A(D(X, Y),
Z), and the family of connections has the form (7).
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Let K be a covariant k-tensor field, then its symmetrization K *¥™ is defined as
1
sym -
K¥™(X0, 0 Xi) = o zﬂ: K (Xr(ys -+ Xn)
where 7 runs over all permutations of the set {1, ..., k}.
Proposition 5.1. Let T,”™ be the symmetrization of RTy. Then D has the form

D(X, Y, Z)=6/ TP™(X, Y, Z)d(n — 1)(s)
[0,0¢]

Proof: Straightforward from Proposition 3.2. O

Let us now compute the Riemannian curvature tensor R* of the a-connection.

Proposition 5.2. Let X, Y, Z, W be vector fields on M™ and let R = R°. Then
R“(X,Y,Z,W):R(X,Y,Z,W)—l—%{F(Y,X,Z,W)—F(X,Y,Z,W)}
2

n %{)L(D(X, W), D(Y, Z)) — M(D(X, Z), D(Y, W))}

Proof: As we are going to establish a tensorial equality, we may suppose that
[X, Y] = 0. As the metric connection is symmetric, we have VyY —Vy X =0.
From (7) we obtain, using symmetry of D

2 (VEVEZ, W) = MTxVWZ, W) — %{A(VXD(Y, Z), W) + MD(X, Vy Z), W)}

0[2
+ ZA(D(X, W), DY, Z))

Subtracting the expression with interchanged X and Y and using self-duality and
symmetry of V completes the proof. O

Corollary 5.1. Let the manifold be conjugate symmetric. Then we have

RYX,Y,Z, W) = R(X, Y, Z, W)
2
n %{X(D(X, W), D(Y, Z)) — M(D(X, Z), D(Y, W))}

If 0 — p(0) is a smooth parametrization of D, then

2
_ o = = x o
RE(0) = Riju(6) + 7 > (DiupDjry — DixgD jy WY
By

where M = (A7),
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Corollary 5.2. If 3o # 0, such that R* = 0, then

. @ — o
RYX,Y,Z, W) =

{(MDX,W),D(Y, 2)) — DX, Z), D(Y, W))}

for Ya. Moreover, there exists a parametrization, 6 +— p(0), such that

0[2—062

—L Z(Filﬂrjky — Tyl APV

an
ikl 4o2
0 By

where Ujj = MV, “9;, ) are the Christoffel symbols of V.

Proof: The connections V* and V™% are mutually dual, therefore 0 = R* =
R~ It follows that the manifold is conjugate symmetric and we may use
Corollary 5.1.

Further, let us define

Dy (X, Y)= V"% — V™

then Dy, = apD and
- o
V=V - —D,

20(() 0

It follows that
2 2
2
o)

=MDy (X, Z), Do (Y, W))}

RYX,Y,Z, W)= {AM(Dy, (X, W), Do, (Y, Z))

As the manifold is +«-flat, there exists an «-affine parametrization 6 +— p(6),
i.e. such that V3°9; = 0 for all i, j. It follows that

D?]Ok :)\‘(Dao(alaaj)’ ak):Fljk9 VI7 J’k O
Corollary 5.3. If do; # *ay such that R*' = R*> =0, then R* =0 forall .

Proof: We may suppose that «; % 0 and use Corollary 5.2. O

6. EXAMPLE 2: a-DIVERGENCES
Let

1 —a? 2
§¢ =1 —logw a=-—1

4 (1+W 14e
wlogw a=1
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Then g, € G for @ € [—3, 3]. Moreover, g, = g_,. The corresponding family of
relative entropies and monotone metrics was defined by Hasegawa (1993). We have

82
ro(X,Y) = MTT Ja(p +sX) fa(p + tY)|i=s=0

where f, is the family of functions defined in Section 1. It is easy to show that
the corresponding affine connections V$« coincide with the «-connections for A,
defined in Jencova (2001a). As the connections are torsion-free, this is the only
case when this may happen, see also Jencova (2001b).

There are some important special cases. Fora = £1 we obtain the well known
Bogoljubov-Kubo-Mori (BKM) metric. Another important example 1s o = %3,
corresponding to the largest monotone metric, see Example 4.2. This is the unique
monotone metric that is contained in both classes A, and A, from Section 4.

Let us fix g € (0, 3]. Then

1—o 1+aq

(1= ) (1 - )

0

hao(w) - gao(w) + g—ao(w) =

If we proceed as in the proof of Corrolary 5.2, we see that the family of connections

o o
V=V — —D,,,
205()
can be obtained from G,, = Qh for o € [—ag, ap]. In particular, V¥ = V8«0, As
it was shown in JenCova (2001a) the connection V*® is flat, i.e. the Riemannian
curvature tensor R vanishes. Hence, for the -oo-affine parametrization 6,

2 2
Riin = T“g{kao(vgoaz, ngoak) — oo (V5 0k ngoal)}
2 2
. oa” — oy oy o o o B
- 40!2 (Fll%rj/g]/ Flkoﬁrjloy))“ ’
0 By

where

F,,k - Tl‘a d; fao(p)akf—(xo(p)

In particular, for op = 1 (the BKM metric), Vé-! and V$' correspond to the
mixture and exponential connections V™ and V), respectively. The a-connection
is then a convex mixture of the (m) and (e)-connections,

VY — I__O[v(m) + I+a

2 2
In the commutative case, this is an equivalent definition of the «-connections. If we
consider the natural affine parametrization p(0) = po + ), 6, X;, the coefficients

v(é’)

76



1648 Jencova

of Riemannian curvature tensor can be written in the form
2

o o —1 ! t 1—t¢
& = Tr i {9;0; log(p)p'd;0; log(p)p

4
— 3; 9 log(p)p' ;9 log(p)p' '} dt

If {X;} is an orthonormal basis of D with respect to the metric A5, we may
compute the coefficients at 6 = 0 as

2
o a-—1
i = Y TugT g — TigTjig)
g

where
o0
Tiji = Trd;d; log(p) Xy = —Tr X, / [(oo + )™ Xi(po +5)"' X (0o + )"
0

+ (o + )" X ;(po + )" X;(po + 5)"'1ds

As it was already proved e.g. in Petz (1994), the Riemannian curvature R of the
metric connection given by AXM is not equal to 0. Using Corrolary 5.3, it follows
that R* = 0 if and only if ¢ = %1.
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On the manifold of positive definite matrices, we investigate the existence of pairs of
flat affine connections, dual with respect to a given monotone metric. The connections are
defined either using the o-embeddings and finding the duals with respect to the metric, or
by means of contrast functionals. We show that in both cases, the existence of such a pair
of connections is possible if and only if the meiric is given by the Wigner-Yanase-Dyson
skew information.

Keywords: monotone metrics, flat affine connections, duality, generalized relative entropies,
WYD metrics.

1. Introduction

An important feature of the classical information geometry is the uniqueness of its
structures, the Fisher metric and the family of affine o-connections on a manifold
P of probability distributions [5, 1]. In the case of finite quantum systems, this
uniqueness does not take place: it was shown by Chentsov and Morozova [6] and
later by Petz [22] that there are infinitely many Riemannian metrics, which are
monotone with respect to stochastic maps. As for the affine connections, there were
several definitions of the a-connections [16, 19, 12, 14].

In the commutative case, two equivalent definitions of the connections were used
by Amari [1]. First, the connections can be defined using «-embeddings («-repre-
sentations) given by the family of functions

2 i
fo=41-a" > %70 )

log(x), a=1.

On the other hand, the connections can be defined as mixtures of the exponential
and the mixture connections,

1 1—
v = _.___*2“ v 4 — Ty, )

[331]
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Such connections are torsion-free and the o and —a connections are dual with
respect to the Fisher metric. Moreover, in the case of a finite system, that is on the
manifold of all (non-normalized) multinomial distributions, the a-connections are flat
for all «.

The definition involving o-representations can be easily generalized to noncom-
mutative case to obtain a family of flat connections V@ on the manifold of positive
definite matrices. This definition was treated also by the present author in [16] and
[17]. The dual of such «-connection with respect to a given monotone metric is
in general different from the —«-connection. The duals have vanishing Riemannian
curvature, but are not always torsion-free and hence not flat. The condition that the
dual of the o-connection with respect to a monotone metric is torsion-free restricts
« to the interval [—3, 3] and, for such «, singles out a monotone metric A,, which
belongs to the family of Wigner-Yanase-Dyson (WYD) metrics. This is also equiva-
lent to the condition that the dual of V' is V(™) see also [10]. A brief description
of these results is given in Sections 2 and 3.

For ¢ = =1, we get the Kubo-Mori-Bogoljubov metric, with respect to which
the mixture V™ and exponential V® connections are dual. As in the classical
case, we may use mixtures of V® and V% (o define a family of torsion-free
connections, having the required duality properties with respect to the BKM metric.
In our approach, however, the value of o in (2) will be restricted to the interval
[—1,1], but the proofs in Section 5 suggest that our results hold more generally.
Convex mixtures were considered also by Grasselli and Streater, see the Discussion in
[11]. We will answer the questions discussed there in proving that, for @ € (—1, 1),
affine connections defined by (2) are different from the a-connections and are not
flat. A simple direct proof of this fact can be found at the end of Section 5.

Another way to define an affine connection was proposed by Eguchi in [9], by
means of a contrast functional on P. A functional ¢ : P x P — R is a contrast
functional if it satisfies ¢(p,q) > 0 for all p,g and ¢(p,q) = 0 if and only
if p = ¢q. Using such a functional, a metric tensor and affine connection can be
defined. Let 6y, ...,6, be a smooth parametrization of P and let 0;, i = 1,..., p,
be the corresponding vector fields, then the metric tensor is given by

gl = —3:9/0(p(8), p(0"))lo=or-
An affine connection V¢ is defined by

%, = g* (V2 &) = 3,89 (p(0), p(O")lomsr-

Consider a special class of contrast functionals ¢,, related to convex functions g

satisfying g(1) =0 by
q
be(p. q) =fg(;)dp-

In this case, it was shown [1] that the corresponding metric is the Fisher metric
(multiplied by g”(1)) and the affine connection is the a-connection, o = 2g" (1) +3.
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As the quantum counterpart of such functionals we will use the relative g-entropies
H, defined by Petz [20],

Hy(p,0) =Tr p'2g(Ls/R,)(p"?),

where g is an operator convex function and g(1) = 0. It was shown that [18]:

(a) In the normalized case (or if Trp =Tro), He(p,0) > 0 and Hy(p,0) =0 if
and only if p = 0.

(b He(Ap, o) = AH,(p, o) for each A > 0.

(c) H, is jointly convex in p and o.

(d) H, is monotone, that is, it decreases under stochastic maps.

(&) H, is differentiable.

We see that H, is a contrast functional on the manifold of quantum states, and
we will show that we can use it to define the geometrical structures as above, even
in the non-normalized case. The relative g-entropies were used by Lesniewski and
Ruskai [18], who proved that the Riemannian structure given by H, is monotone
for each g and, conversely, each monotone metric is obtained in this way. A short
account on some of their results is in Section 4.

In Section 5 we will use H, to define an affine connection and show that
this definition contains both the a-connections, defined from «-embeddings, and the
convex mixtures of V@™ and V®, We will show that for each monotone metric
there is a family of such connections (the p-connections) parametrized by p € [0, 1],
such that they are torsion-free and the p- and (1 — p)-connections are dual. We
will then use the theory of statistical manifolds by Lauritzen [2] to investigate the
Riemannian curvature of the connections.

Finally, in the last section we will show that a pair of dual flat connections
exists if and only if the metric is one of the WYD metrics A,. The flat con-
nections are then the to-connections. This result holds for the connections given
by the relative g-entropies. It is known from [1] that dual flat connections give
rise to divergence functionals on the manifold, it is therefore reasonable to con-
sider connections defined from functionals having the properties (a)-(e). The class
of g-entropies seems to be large enough, although it does not contain all such
functionals (see [18]). The main results of the present paper can be summarized as
follows: If a pair of dual flat connections is required, the structures of information
geometry are unique even in the quantum case, at least if we consider only con-
nections defined by the relative g-entropies. These structures are provided by the
family of Wigner—Yanase-Dyson metrics and the «-connections.

2. The manifold and monotone metrics

Let M,(C) be the space of » X n complex matrices, M; be the real linear
subspace of hermitian matrices and let M C M, denote the set of positive definite
matrices. As an open subset in a finite-dimensional real vector space, M inherits
the structure of a differentiable manifold. The tangent space T, of M at p is the
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linear space of directional (Frechet) derivatives in the direction of smooth curves
in M and it can be identified with M; in an obvious way. In the present paper,
the elements of the tangent space, seen as directional derivative operators, will
be denoted by X,), etc., while the corresponding capital letters will mean their
representations X = X(p) etc. in M;. The map X — X is the same as Amari’s
-1-representation of the tangent space in the classical case [1], see also the next
section. The vector fields on M are represented by AM,-valued functions on M. If
X, Y are vector fields, then the bracket [X, )] is unrelated to the usual commutator
of the representing matrices and these two should not be confused. In the present
paper we will use [-,:] only in the first (vector fields) meaning.
A Riemannian structure is introduced in M by

WX, Y)=TrXJ,(Y), X, YeT,

where J, is a suitable operator on matrices. We say that the metric A is monotone
if it is monotone with respect to stochastic maps, that is, we have

Aripy(T(X), T(X)) < Ap(X, X), peM, XeT,

for a stochastic map 7. It is an important result of Petz [22], that this is equivalent
to

Jo=R;VEF(L,/R,) 'RV,

where F :R" — R is an operator monotone function, which is symmetric, F(x) =
xF(x7!), and normalized, F(1) = 1. The operators L, and R, are the left and
right multiplication operators. Clearly, J,(X) = p~!X if X and p commute, so that
the restriction of A to commutative submanifolds is the Fisher metric.

EXAMPLE 2.1. Let J, be the symmetric logarithmic derivative, given by J,(X) =

Y, Yp + pY¥ = 2X, then the metric A is monotone, with F(x) = 1f*. This metric
is sometimes called the Bures metric and it is the smallest monotone Riemannian
metric.

ExAaMPLE 2.2. The largest monotone metric is given by the operator monotone
function F(x) = £ In this case J,(X) = 3(p™'X+Xp™") is the right logarithmic
derivative (RLD).

EXAMPLE 2.3. An important example of a monotone metric is the Kubo—-Mori-
Bogoljubov (BKM) metric, obtained from

2

0
ﬁ'ff (p+sX)log(p +1Y)|s=0 = 2,(X, ¥)

In this case F(x) = Ex:g%%'
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3. The a-representation and «-connections

Let f: R — R be a monotone function and let p € M. Let us define the
operator L¢[p] : My — M, by

d
L¢[pl(X) = af(ﬁ + 5 X)|s—o0-

This operator has the following properties [16]:

(1) The chain rule: Ls..{p] = Lf[g(p)1L,[p]. In particular, if f is invertible
then L¢[p] is invertible and Lf[p]‘1'=Lf—|[f(p)].
(i) Ls[p] is a self-adjoint operator in M, with respect to the Hilbert-Schmidt
inner product (X,Y) = Tr X*Y.
(i) If Xp = pX, then L;[p)(X) = f'(0)X, f'(x) = L f(x).

Let now f, be given by (1). The map
by i M3 p = fulp) € My
will be called the a-embedding of M. The a-embedding induces the map
T, > X = X(fo(p)) = Lalpl(X) € My,

where Ly[p] := Ly [p], it will be called the a-representation of the tangent vector
X. We will often omit the indication of the point in the square brackets, if no
confusion is possible.

Let A be a monotone metric and let ¥; = L,(X;) and Y, = L,(X;) be the
a-representations of the tangent vectors X; and X5, then

Ap(Xy, Xp) = Tr Y1 Ky (1), (3)

where K, = L;'J,L; L.

ExAMPLE 3.1. The family of Wigner—Yanase-Dyson (WYD) metrics A, is defined
by J, = L_4L,. In [15], it was shown that such metrics are monotone for o €
[—3,3] and that there are no other monotone metrics, satisfying

82
Ap(X, Y) = ——Tr f(o+5X) f*(p +1Y)|s,1=0
dsot

for some functions f and f*. The corresponding operator monotone function is

I —a? (x — 1)?
1+a

G - -1

Fo(x) =

As special cases we obtain the BKM metric for ¢ = +1 and RLD meiric for
a = £3. The smallest metric in this class is the Wigner—Yanase (WY) metric,
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corresponding to o = 0, here Folx) = -};(1 + J/(x))?, the Bures metric is not
included. For the metric A,, o € [—3, 3], we have K, = L_aL;x‘l. It can be shown
that K;! = K_, if and only if A = A,.

The connection V@ is defined by

L (VW (0)) = XV fu ()

for smooth vector fields X, ). Clearly, a vector field is parallel with respect to this
connection if and only if its «-representation is a constant hermitian matrix-valued
function on M. For ¢ = —1 and o« = 1, we get the mixture and exponential
connections, sometimes denoted by V™ and V(. The mixture connection coincides
with the natural flat affine structure inherited from M;,.

For each « there is a coordinate system &i,...,&y, such that f,(p(&)) =
Y E&Z;, where Z; e My, i =1,..., N, form a basis of M. Clearly, such coordi-
nate system is V®-affine. The existence of an affine coordinate system is equivalent
to flatness of the connection V'@, that is, the connections are torsion-free and the
Riemannian curvature tensor vanishes. Thus we have a one-parameter family of flat
a-connections, just as in the classical case. But, contrary to the classical case, the
V@ and V) are not dual for a general monotone metric,

Let us define the connection V@* by

L' T,V W)(0)) = XL T, (¥) = XKy Lo(Y).

It can be easily seen from (3) that the connections V@ and V®* are dual
with respect to A. It follows that V®* is also curvature free and it is torsion-free
if and only if [16]

XL'J,(Y) = YL 1 1,(X) 4
for all vector fields satisfying [X , V] =0.

THEOREM 3.1 ([17]). Let a € [—3, 3]. The following conditions are equivalent:
(i) (V@)* is torsion-free.
() J, = LoL_q.

(iil) (V@)* = vy,

Proof: (i)=(ii): Let 8 — p(8) be a smooth parametrization of M and let 9; =
5%, i=1,...,N. Let us denote X;(0) = 3;(p(#)). Let V@* be torsion-free and
let F;(0) = L;'J,6)(Xi(®), i =1,...,N. Then we get from (4) that o;F; = 8 F;
for all i, j.

Let Aj,..., Ay be a basis of M, and let F;(8) =Y, fix(8) A, then 9; fi4(0) =
d; fu(0) for all k, i and j. This implies the existence of functions ¢y, ..., ¢n,
such that f;;(0) = 8;¢(8). Let ¢(8) = >, $e(0) A, then F; = 3;¢p. Moreover, if
pr = p(6(t)) is a curve in M, then

d 2 nFean = L 4
—$O) = Z THOFO) = L1, ( = p;).
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Let now p € M and let us consider the curve p, = p(6(¢)) = tp + (1 — ). Using
the fact that j—t pr=p—1 and p, commute for all 7, we have

ld 1
$O(1) — H(OO) = fo @) = fo L o, (o — V)di

1
=f0 (L4100 - D)YF (0 = Ddt = fu(p) — fa(D).

Therefore, ¢p(6) = f_,(p(@)) + c. It follows that

L, Ty (Xi(0)) = F;(0) = 9 f-a (p(8)) = L_o(Xi(0))

and J, = LyL_,.
(i) = (iii) and (1) = (i) are quite clear. O

The statement for ¢ = £1 was already proved in [3]. The equivalence (ii) <=
(ili) was proved (by a different method) in [11] for ¢ = +1 and in [10] for
ae(—1,1).

REMARK 3.1. Let D ={p € M : Tr p = 1} be the submanifold of quantum states.
The connections induced on D are orthogonal projections of the above connections.
The Riemannian curvature is given by [16]

2
¢ {TrY I, (DT XJ,(W) =Tt X J, (Z)Tr Y J,,(W)},

4

where p € D, X, Y,Z,W € T,(D), and thus R* = 0 if and only if ¢ = %I
Therefore, the a-connections are not flat on D, unless o = +1, which corresponds
to the classical results.

RY(X.Y,Z,W) =

4. Relative g-entropies and monotone metrics

Let G be the set of all operator convex functions (0, 00) — R, satisfying g(1) =
0 and g”(1) = 1. For g € G, we define the relative g-entropy H,: M x M — R
by [20]
Hg(p,0) =Tt p'/%g(Ls/Rp)(0™?).

The set G is the set of functions of the form

g(u)za(u—1)+f (u-l)zl"”

[0.00] u-+s

du(s), (5)

where @ is a positive finite measure on [0, oo] satisfying f[o,oo] du(s) = 1/2 and
a = g'(1) is a real number. We will denote by b = u({oc}) and ¢ = u({0}) the
possible atoms in 0 and oo, then

132 0
g(u):a(u—1)+b(u—l)2+c(u D +f (u — 1)?
0

145
d .
» g n(s)

u
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For an operator convex function g we define its transpose 2(u) = ug(u™!).
Clearly, g € G implies ¢ € G, with the positive measure 4 satisfying dp(s) =
di(s™!) and @ = —a. We say that g is symmetric if g = g. For each symmetric
function h € G, we denote by G, C G the convex subset of functions such that
g+2=2h If g € Gy, then clearly g € G, and H;(p, o) = H,(o, p).

THEOREM 4.1 ([18}). For each p,oc € M,
Hy(p,0)=aTr (o — p)

® 145
+ Tr (o — b“l—l—co’l—i—j _
( p){ 0 s L.+,

=aTt(o — p) +Tr (o — PIR,'k(La/Rp) (0 — p),

dM(S)](U —P)

where

u+ sdﬂ(s) - (u—1)2

Theorem 4.1 implies that if a =0, H, is a contrast functional on M. The value
of ¢'(1) = a does not influence the Riemannian structure and connections defined
by H,, so that we may also use functions with g’(1) # 0, as it is sometimes more
convenient, for example g(u) = —logu.

Let us consider the mixture connection V™ on M. A vector field on M
is parallel with respect to V™ if and only if its -1-representation is a constant
My,-valued function over M. In the rest of the paper, we will deal only with such
vector fields. The symbol X will denote the vector field such that the constant value
of the -1-representation is X, similarly Y, etc. Note that for such vector fields we
have [X, )] =0.

Let us define the Riemannian metric A on M by

k(u)=f0°°1+s g(u)—a(u—l). ©)

2
(X, Y) = —é%;ﬂg(p +5X, 0+t 1m0, VX, Y €T,. @)
Then [18]
A3(X,Y) =Tr XR,  kgym (Lo /R )(Y),
with |

g(w) +2w)

(u—1)%
Moreover, the function kg, is operator monotone decreasing, hence A% is a mono-
tone metric, with F = 1/kym the corresponding operator monotone function. Note
also that if & is a fixed symmetric function in G, then A8 defines the same mono-
tone metric for each g € Gy.

Conversely, if A is a monotone metric with the operator monotone function F,

then

ksym(u) = k(u) + umlk(u—l) =

8
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is a symmetric operator convex function with A(1) = 0, so that A = A" The
condition A”(1) = 1 is equivalent to the normalization condition F(1) = 1. This
gives a one-to-one correspondence between the monotone metrics and the convex
sets G, with symmetric 2 € G.

5. The p-connections

Let us fix a monotone metric A and let & be given by (8). Let us choose some
g € Gy, then . = A%. We define the affine connection V& by

3

9
A (VEY, 2) = — g Hy (0 +5X + 1Y, p+uZ)ls rum0,

just as in the classical case. It is clear that the restriction of V@ to submanifolds
of mutually commuting elements coincides with the classical o«-connection, with
a = 2g¢"”"(1) + 3. In contrast with the classical case, the condition g € G leads to a
restriction on «. Indeed, we have

i
gllf(l) —_ _6/
[0,00] 1+

From this, 0 > g”’(1) > —3 and therefore « € {—3, 3] for each g € G.

PROPOSITION 5.1. The connections V'8 and V@ are dual with respect to A
Moreover, the connections are torsion-free.

Proof: We have

d 08°
XAV, 2)=———Ho(p+uX +5sY, p+uX +1tZ); =0

du 9tds

3
= ———H,(p+uX +sY,0+t2)|s1u=0

3
han H" X tZ Y =
ooy (0 +uX +1Z, p+ 5Vl 0u=0

=2, (VEV, 2) + 4, (¥, V9 2),
so that duality is proved. Moreover, as [X, Y] = 0, the connection is torsion-free if
VY — vi¥x =0, which is obvious. O

If the function g is symmetric, then from Proposition 5.1, V® is self-dual
and torsion-free, hence it is the metric connection V. For g # g, let us define
g, =pg+(1—p)g, then g, € G, for p €[0,1] and 2, = g;—,. For A and g fixed,
the connection given by g, will be called the p-connection and denoted by V.
Clearly, V) is a convex mixture of V% and V®,

v — pv(g) +(1— p)V@.
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Thus we have a one-parameter family of torsion-free p-connections, satisfying
(VP = V=P We have VA/2 = V for all g € G;. In the rest of this sec-
tion we will investigate the Riemannian curvature of the p-connections.

ExaAMPLE 5.1. We see from (5) that the extreme boundary of G consists of
functions
145 (u—1)>

gs(u)= 5 _—— for s > 0,

1 2
8oolut) = > (u — 1)~
We have g; = g1 for s > 0 and gy = go. In this case
Ghs = {gp = P&s + (1 - p)g.h P € [05 1]}a

where h, = %(gs + g,). For the corresponding metric we obtain a unique family
of p-connections. In particular, if s =1, gy = k1 is symmetric and Gy, = {h1}.
The corresponding metric is the Bures metric. Hence we see that for the Bures
metric, we obtain only the metric connection, which is known to be not flat, see
for example [7].

EXAMPLE 5.2. Let

[ 4 1 o
1 062( -;u _u]—;—)s a#:‘:l,
8«(U) =1 _logu, o= —1,
| ulogu, o =+1.

Then g, € G for @ € [-3,3] and g, = g—,. The relative entropies H, are (up to
a linear term) the «-divergences defined by Hasegawa in [13]. It was also proved
that A%* = A,, the WYD metric, and V& = V@®  the a-connection from Section 3,
see also [14]. Hence, V) is flat. In particular, for ¢ = *1 we get the BKM
metric and the mixture and exponential connection. The family of p-connections
for g(u) = —log(u) is
v = pv(m) +(1 - p)v(e)

In the classical case, this is an equivalent definition of the a-connection, p = (1 —
o)/2. In our case however, these connections are different from the «-connections

which, by Theorem 3.1, have torsion-free duals with respect to the BKM metric if
and only if o = +£1.

To compute the Riemannian curvature tensor of V?), we use the theory of
statistical manifolds due to Lauritzen [2]. A statistical manifold is a triple (M, A, D),
where M is a differentiable manifold, A is a metric tensor and D is a symmetric
covariant 3-tensor called the skewness.
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On M, a class of connections is introduced by

o 1-2
VPY = Uy Y — —LD(X, 1), ©)

where X,Y are smooth vector fields, V is the metric connection and the tensor D
is given by D(X,Y, Z) = A(D(X,Y), Z). Such connections are torsion-free, this is
equivalent to symmetry of D, resp. D. Moreover, (V?)* = V1=P) Let R” be the
corresponding Riemannian curvature. The manifolds satisfying R? = R!~7 for all p
are called conjugate symmetric. It was proved in [2] that the manifold is conjugate
symmetric if and only if the tensor F = VD is symmetnc From symmetry of D,
it follows that F is symmetric if (and only if) it is symmetric in X and Y. We
also have that if there is some p # 1/2, such that R = R!~P, then the manifold
1S conjugate symmetric.

Let g € G, then (M, A%, D), where D(X,)) = V&Y — V(g)y is a statistical
manifold. The connections defined by (9) coincide with the p-connections if p €
[O 1]. For simplicity, we denote this manifold by (M, g). If g is symmetric, then

=0 and V?? =V for all p; in this case, the manifold is trivially conjugate
symmetrlc.

PROPOSITION 5.2. Let us denote R = RY?. Then
- 1-2
RP(X, 9, 2, W) = R(X, ¥, Z, W) + —2{F(V, X, Z,W) — F(X, Y, Z, W)}

py2
+ g_fﬂ{i&(D()c, W), DY, 2)) = MD(X, 2), DY, W)}

Proof: We have [X,)] =0 and therefore
RP(X, Y, Z,W) = MV VP z - vPVvP 2z, w).
Let us now recall that
F(X,Y,Z,W) = XDV, Z, W)= D(VxY, Z,W)— DY, V4 Z, W)— D, £, VaxW).

From (9) we get

- - 1=2 _ ) _
VOV 2 =V,y2 - —L(T,DW, 2) + D(x, Vy2)}

1—2p)*
+ (——-4—”)19(2(, D(, 2)).

Moreover, from self-duality of v,

AMVxDY, 2)+ D(X, Vy2), W) = XDV, Z, W)~ DV, Z, VaW) + D(X, Vy 2, W)

and
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MD(X, DY, 2)), W) = D(X, DV, 2), W) = A(D(X, W), D(, Z)),

this follows from symmetry of the tensor D. Subtracting the expression with inter-
changed X' and Y and using symmetry of V completes the proof. O

COROLLARY 5.1. Let g % g and let the connection V& be flat. Then the manifold
(M, g) is conjugate symmetric. Moreover, if R = O for some py € (0,1) then
RP =0 for all p€l0,1]. ‘

Proof: If V& is flat, then also its dual V® is flat, therefore 0 = R' = R® and
the manifold is conjugate symmetric. From Proposition 5.2, we see that

0=RX,V,Z,W) +_i—{x(D(x, W), DV, £)) - MD(X, Z), DY, W)},

and | therefore
RP(X; Y, Z,W) = p(p — DIXDX, W), DY, 2)) — MD(X, £), D(Y, W))}.

If this vanishes for some pg # 0, 1, then the term in brackets must be zero. O

Let A be the BKM metric and g(u) = —log(x), then V& = V@™ ig flat. It is
known [21] that in this case, the metric connection is not flat, hence R = RYZ £ (.
It follows that pV® + (1 — p)V© is flat if and only if p=0 or p = L.

6. Operator calculus

In the following sections, we are going to prove that the connection V& is
flat if and only if V® = V@ for some « & [-3,3]. To do this, we will need
to compute the derivatives of functions of the form c(L,, R,). We use the same
method as in [8].

Let ¢ be a function, defined and complex analytic in a neighbourhood of (R*)?2
in C2. As the operators L, and R, commute and have the same spectrum as p,
by the operator calculus we have

1 1 1
c(Ly, Rp) = ri) ffc(éa 77)5 . deéd??,

where we integrate twice around the spectrum of p. We have

1 i
& Wpras Rpdlimo = > ] [ eemem i pn_desdn,
L ) f f &, 1
35 Btc( ptsX+1Ys Ro)ls=0 = 2n )2 c 77){&_ Lp S Lp %, L,
1

1
+ L d&dn,
s—Lp X& briz L,|n—R,
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8% 1 1 1
—c(L sX s R 5,t=0 = A ) L
ae97 CLotsxs Rpter)lse=o (zm)szc(f ﬂ)g BT
1 1

X Ry d&dn.
n—R, n—-R,

We express the derivatives in the form of divided diﬁerences [4]. Let us denote
C(x’ Z) '_ C(y, Z)

TG yl0) === — (10)

TG, y) = & x; - ;(Z’ 2 (11)
T, y,dhw) = 2O E, (12
Tr. ylz, w) = T(x, ylzz - LTU(x, ylw) _ Txlz, w}: = ;“(ylz, w) (13)

Then we have:

(1) T(x,ylz), T(z|x,y), T(x,yjz, w) are symmetric in x,y and z, w.
T(x,y,zlw) is symmetric in x,y, z.

(i) T(x,x|z) = -(,’—;C(x,z) and T(z|x,x) = EEC(Z’ x),

@i) T(x, x, zlw) = —T(x, z|w),
dax )
(av) T(x,x,x|w) = Eaic(x, w).

Let p = >, A;|¥i){(:| be the spectral decomposition of p. Let e;; = |y} (],
then {e;; | i,j =1,...,n} is a basis of M,(C). Let u;; = L;, v;j = R,;. Then
WUjj€r] = Bjke,-l and Vijer = Bﬂek,-. We also have |

L,= Z}uzuii, R, = Z)\'iviia c(L,, Ry) = ZC(M, Ajui;vj;.
: i i

Let X =}, ;xije;;. Inserting this into the expressions for derivatives, we get

d
T W, Rplimo = 3 T (his 1) 241 Vi (14)
ik
Similarly,
2
EC(LHS,‘HW’ Rp)ls,1=0 = Z T(Ai, Aj, Ml A) G yie + yijxiouvy,  (15)
il
.92
a—'S—a;C(Lp+sXa Rpyer)s=0 = 2_; T (Ai, AjlAx, A)xyitijvi. (16)
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7. Conjugate symmetry

Let g € G and let k be given by (6). Let us define the function ¢ : R*x RT — R
by c(x,y) = (1/y)k(x/y). As we see from the integral representation, the function
k is operator monotone decreasing, therefore it has an analytic extension to the
right halfplane in C. It follows that ¢ is complex analytic in a neighbourhood of
(R*)?> and we may use the results of the previous section. Note also that for 2,
k() = u=k(u™") and &(x,y) = c(y, x). Moreover, &(x, y) = c(x,y) + &(x, y) =
(1/¥)ksym(x/y) is the Chentsov—-Morozova function. As follows from (6), k(1) =
f[O,oo] du = 1/2, therefore c(x, x) = 51; for all g.

LEMMA 7.1. Let ¢ and ¢ be as above. Then
d . .
A (VEY, 2)= 2Re—-Tr {Xe(Lpssy, RONZ) + YE(Lpisx, RONZ) —

— Xc(Lpisz R .
Proof: From Theorem 4.1 we compute

3

osdiau

d
= ——E;Tr {XC(Lp-I-sZy Rp)(Y) + YC(LP‘I‘SZ’ RP)(X)

- XC(Lps Rp+sY)(Z) - ZC(Lpa Rp+sY)(X)
— YL, Rorsx)(Z) — Ze(Lp, Rprs)(D}] .

For o,p € M, ¢(Ls, R,) is a positive operator on M,(C) endowed with the
inner product (A, B) =Tr A*B. For hermitian X and Y we have

A (VEY, 2)=—

TruZ —sX = tY)e(Lptuz, Rotsxry)UZ — X — Y )5 1 u=0

Tr Xc(Lg, Rp)(Y) +TrYe(Lg, Ry)(X) = 2ReTr Xc(Ls, Rp)(Y).
Clearly, for all X € M;, and sufficiently small s, p + sX € M. Moreover,

Re Tr Xc(L,, Rptsr)(Z) = Re Tr (Xe(Lp, Roysr)(Z))*
=Re Tr X&(L, 4,7, R,)(Z). O

LEMMA 7.2. Let D(X,Y) = VEY—-VPY and let D(X, Y, 2) = M(D(X, V), 2).
Let us denote c,(x,y) =¢(x,y) —c(x,y) =c(y,x) —c(x,y) and let

d
QX,Y, Z) = ng' Xcr(Lpysy, Rp)(Z).

Then
D(x,¥,2) =2Re{Q(X,Y, Z)+ Q(V. X, Z) + Q(X, Z,Y)} = 6Qyn(X, Y, Z),

where Qum is the symmetrization of Q over X, Y, Z.
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Proof: Straightforward from Lemma 7.1. 0

Let us now denote by T(x, y|z) resp. R(x, y|z), etc. the expressions (10)—(13)
for ¢ = ¢, resp. ¢ =c,. From Section 6 we find

Q(X,Y,Z) =Y RO, M) xe i sk a7
ik
Further,
XY, Z, W)= Z R\, Ay AlA) (i zjk + ZijXje) Wi Yii (18)
Ixy
+ Z R(Ai, Ajl Ay, Adzij wiXik Y-
Y

Clearly, XD, Z, W) is the symmetrization of (18) over )V, Z, W.
PROPOSITION 7.1. Let

{T(x,zly) + T(y, zlx) — T(x, y[2)}.

S(x, ylz) = 2. y)

Then the -1-representation @Xy(p) = Za,ﬂ dap€ap, Where
dup = Y S(har, hglhi) (Xai Vip + YaiXip)-

Proof: Let h = ~21—(g+§), then V = V®. In this case ¢ = }¢ = ¢. From Lemma
7.1 and Eq. (14) we see that

Ao (VxY(p), Z) = Re Z T gy A1) Xk Y125 + YriXijZje — XiiZij Yk )- (19)
ik

Let us denote fl, = ey, for @ = 1,...1n, f7, = esp +epa, @ # B, and [y =

i{eap—epa), @ # B. Then {fy,a=1,....n, fl, k=23, <f=2,...,n} forms
a basis of 7, with elements mutually orthogonal with respect to each monotone
metric A. Moreover, '

E(A'OH}"O[)-J k = 19
M figs fog) =
P 22 g), k£ L

Suppose that
VaV(p) =) alsfis.

ka<p
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then VyV(p) = Y, s dapas, Whete duy = a3, dop = als +iays, if @ < B and
dga = c_i,,ﬂ. From (19) we compute

a;a =2Re Z S()s.a, )"otllj)xajyjaa
Jj

aly =Re Y  S(ha hglA){xa; i + YoiXjs),
i

aly =Tm Y S(has AglA) (e Vi + Yoy Xjnl: -
J

As we know from Section 5, (M, g) is conjugate symmetric if and only if

XD, 2, W) —YD(X, Z,W) + D(X, Vy,Z, W) (20)

Using Lemma 7.2, (17), (18) and Proposition 7.1, we express the above equality
in terms of the divided differences and then insert the basis elements fjﬁ. This and
other further lengthy computations are best performed using some software suitable
for symbolic calculations, like Maple or Mathematica.

The equalities ¢(x,y) = ¢(y,x), ¢ (x,y) = —c¢,(y,x) and the definition and
properties of divided differences imply that

R(x, ylx)= T ycr(x, y) = R(x, yly), (21)
R(x, x}x) = —6%5’ where a = 2g" (1) + 3, 22)
R(x, yiz, w) =—R(z, w|x, y), (23)
T(x,ylz, w) =T (z, wix, ), (24)

19
S(x, ylx) = 23% logc(x, y), (25)
S(x, x|y) = 1{21_—m1‘L2 e, y)], (26)

2 X -y ox

1

S(x,xlx)z—a 27)

for all x,y,z,w > 0.

THEOREM 7.1. Let g# g and let g =g+ g, g- =8 — g If (M, g) is conjugate
symmetric, then
—ag(u) = 2ug,(u) — g-(«) +2au + 2a (28)

for all u >0, where a =g'(1) and o = 2g" (1) + 3.
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Proof: Let us write the equality (20) for the basis elements fofﬁ with o, 8 €
{1, 2}, in this case, the resulting expression depends only on eigenvalues A; and A;
of p. Letus put X =Z =¢;; and ¥ =W = ¢35 + €31, and let A; = x, A = y.
We get

R(x,x,x|y) — R(x, x, y|x) + R(x, y|x, x) — R(x, x|x, y)
+ 3R(x, x|x)S(x, x|y) — SCx, x|x)2R(x, y|x) + R(x, x|y)) = 0.

We have

_ ygr(x/y) N 2a

cr(x, y) = G—y? T xoy
& y) = ygx/y)
’ (x —yP

From this and from (i)—(iv) and (21)—(27), we get the equation

xX\x X X
Zg?'(;); +2a st “g’(;) * &(;) =0

Putting u = x/y and integrating this, taking into account that g(1) =0, g, (1) =0
and g/ (1) = —2a, we get (28). O

REMARK 7.1. Let g # g, @ and a be as above. According to Theorem 7.1, if
(M, g) is conjugate symmetric, then
1+«
2

If h is symmetric, then (M, k) is, of course, conjugate symmetric. In such a
case, « =a =0 and Eq. (29) reads

gw) =g W) +ug' () — au —a. (29)

h(u) = h' (™) + ub'(u),
which is fulfilled for all symmetric & € G.

ExampLE 7.1. It is easily checked that (29) is satisfied for all pg, + (1 — p)g—q,
p 0,11, @ € [-3,3] (as it should be). On the other hand, it is not true for g
from the extreme boundary of G, unless s = 1, which is symmetric (the Bures
case), or s ={, which corresponds to g,, o = 3.

8. Flat connections

As we know from Corollary 5.1 and Proposition 5.2, the connection V@ is flat
if and only if
(a) (M, g) is conjugate symmetric,
() R(X, Y, Z,W) + {MDX, W), D, 2)) — MD(X, 2), DY, W)} =0.
This holds also for symmetric g, in that case (a) is satisfied and D = 0.
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LEMMmA 8.1.

R(X, YV, Z,W) = XA(VyZ, W) — VAV Z, W) + A(VxZ, VyW) — L(Vy Z, V2 W).

Proof: The statement is proved similarly as Proposition 5.2, using self-duality
and symmetry of V. O

As before, we compute

XA(VyZ, W) =Re[XQ¥, Z, W)+ XQ(Z,Y, W)y — X O(Y, W, Z)},

where
X0, Z, W)=Y T, A, Ml A Gigzjie + 23 X wia i (30)
Y
+ Z T (his Ml A, A)Zij Wik Ve
ry
Moreover,
MX,Y) =TeXe(Ly, R)(Y) =Y 8, Ax;ei. G1)

i,j

The second term in (b) can be written in a form using D: let bjlj=1,...N}
be the orthonormal basis obtained by normalization of { f(fﬂ lk=1,23,a <f =

1,...,n}, then
MD(xX, W), DY, 2)) - MD(X, Z), DY, W)) (32)
=Y {D(X, W,b)D(Y, Z, b)) — D(X, Z, b;) D(Y, W, b))}.
J

Using Lemma 8.1, (30), (31), (32) and Proposition 7.1, we get from (b) an
equation involving divided differences, and we may proceed in the same way as in
Section 6.

PROPOSITION 8.1. Let g € G. If the connection V& is flat, then
(@ — Dg) + &' w)w ~ 1) — 28" @u(l + u) + a(g, () + 2a)(u — 1) + 8 =0 (33)
for all u > 0.

Proof: let X =Z =e¢1) and ¥ = W = ¢); + ¢3;. From (b) we get the equation

27 (x, x, x|y) — 2T (x, xlx, y) — 26(x, ¥)S(x, yIx)* + 42(x, ©)S(x, x10)S(x, xly)

_ 3M)—(2R(x, yix) + R(x, x|y) +
c(x, x) c(x, y)

(2R(x, y|x) + R(x, x|y))* = 0.
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For X =7 =e1p+e3, Y =W =i(e;a —ey), Eq. (b) reads
AT (y, y, x|x) + 4T (x, x, y|y) — 8T (x, ylx, y) + 4&(x, x)S(x, x|y)?
+42(y, Y)S(, y0)* — @R(x, y|x) + R(x, x[y)?* — QR(x, y|y) + R(y, yIx))* = 0.

As in the proof of Theorem 7.1, we get after some rearrangements

u (g ) +2a)" — @' @)’] + g@H2ug" W) + &' () + a(g ) +2a)} = 0

from the first equation, and

u [(gl ) + 2a)* — (8'(w))*] + {8, (@)u — g (u) + 2a)* — (&' (w)u — g(w)}* + 8z (u) =0,

from the second equation.
If g is symmetric, then in the above two equations ¢ =a =0 and g = 0.
From this we get

-8 + g ) — 1) - 28"(wu(l +u) + 8} =0,

which 1s (33).
Let now g # g. From (a), (M, g) is conjugate symmetric, and therefore (28)
holds. From this

g (wu — g () + 2a = —ag(u) — u{g (u) + 2a}.

Inserting this into the second equation and after some further computation we get
(33). O

We are now in a position to prove our main theorem.

THEOREM 8.1. Ler ¢ € G and o = 28" (1) + 3. Then « € [-3,3] and the
connection V& is flat if and only if V& = V@,

Proof: Let g be symmetric and suppose that V& is flat. Then 2 = 2¢ and we
get from (33) that g is a solution of

—g@)+ g’ w)u—1)—2g"(wWu(l+u)+4=0

with the initial conditions g(1) =0, g'(1) = 0. The unique solution of this equation
is

g(u) = 2(1 — vu)* = go.
If g # g, then from (28) and (33) we get that g, is the solution of

(@ — g, ) — (@ — (1 + u)g! (u) + du(u + 2)g" (1)
+ 4w+ 1)g" () —da@® — 1) + 8¢ =0
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350 A. JENCOVA
with g,(1) =0, g.(1) = —2a and g/(1) =0. If « # 1, the unique solution is

4 I+a 1—

peiU —uT)— (1 — +2a)(u -1
= g—o(u) — ga (1) — 2(a — g, (1)) — 1),

and from (28) we get g = go + g-a-
If « = —1, then the solution of the above equation is

g-(u) =log(u)(u +1) — 2(a — g~ (1)) (u — 1),
and from (28) we get

8r (u) =

g(u) = log(u)(u — 1).
It follows that g = g4, up to an additional linear term (g'(1) — g, (1N —1). O

COROLLARY 8.1. Let A be a monotone Riemannian metric and let V be the
metric connection. Then V is flat if and only if A is the WY metric (a =0).

Proof: Let G;, be the convex subset of G, corresponding to A. Then V = V®
and h = h implies that " (1) = —%. The proof now_ follows from Theorem 8.1. O
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Let M be a von Neumann algebra. We define the noncommutative extension of informa-
tion geometry by embeddings of M into noncommutative Lp-spaces. Using the geometry
of uniformly convex Banach spaces and duality of the Ly, and Lg spaces for 1/p+1/g = 1,
we show that we can introduce the a-divergence, for @ € (—1, 1), in a similar manner as
Amari in the classical case. If restricted to the positive cone, the a-divergence belongs
to the class of quasi-entropies, defined by Petz.
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divergences.
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1. Introduction

The classical information geometry deals with the differential geometric aspects
of families of probability densities with respect to a given measure u. The theory,
developed in Refs. 1 and 5, has already been extended to the nonparametric case,
where the manifold is modeled on some infinite dimensional Banach space, see
Refs. 22 and 8.

Noncommutative version of the theory has also been proposed, mostly restricted
to (invertible) density operators on finite dimensional Hilbert spaces,'’1417%2! but
there are results in infinite dimensions.?-12:23,24

An interesting part of the classical (finite-dimensional) information geometry,
developed by Amari and Nagaoka,? deals with the structure of Riemannian man-
ifolds with a pair of dual flat affine connections. For such manifolds, there is a pair

(8,7) of dual affine coordinate systems, related by Legendre transformations

0 d
By = —a—ngtp(n), B = a—giww),
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216 A. Jenéovd

where 1, ¢ are potential functions, satisfying

¥(0) + ¢(n) — Z B = 0.

A quasi-distance, called the divergence, is then defined by

D(61,62) = ¥(61) + ¢(m2) — Z B1am2 -

For manifolds of probability density functions, flat with respect to the La-
connections, the corresponding a-divergence belongs to the class of Cziszar’s f-

St(p.q) = ]f (E) dp,

where f is a convex function.
The f-divergences were generalized to von Neumann algebras by Petz in Ref. 20
by means of the relative modular operator of normal positive functionals on M:

Sg(0,%) = (9(Dgp)Ew: &w) 5

where f is operator convex and & is the vector representative of 1. On the other
hand, Amari’s construction of the a-divergence, starting from a pair of dual flat
connections, was extended to the manifold of faithful positive linear functionals on
a matrix algebra My, (C),'%1! and it was shown that this divergence belongs to
the class defined by Petz. The main purpose of this paper is the extension of this
construction to all von Neumann algebras.

One of the important results of the infinite dimensional, classical and quantum,
version of information geometry is the definition of Amari-Chentsov a-connections
for o € (—1,1) given in Refs. 8 and 9. This definition uses the a-embedding of the
manifold of density functions (or density operators with respect to a n.s.f. trace on
a semifinite von Neumann algebra) into the unit sphere of the (noncommutative)
L,-space, with p = 2/(1 — «). It was shown that the Amari-Nagaoka duality of
the +a and —a-connections is exactly the L,-space duality and that the fact that
these spaces for 1 < p < oo are uniformly convex is basic for this definition.

In this paper, the a-embedding is defined in a similar manner, but it is extended
to the whole predual M,. This embedding is used to define the manifold structure
on M,. The flat a-connections are induced from the trivial connection on L,, in
our setting the connection is defined on the tangent bundle. Its dual, living on
the cotangent bundle, is the —a-connection. Moreover, the +a-embeddings define
a pair of dual coordinates on M,. Using the uniform convexity of the L, spaces,
it is shown that the dual coordinates are related by potential functions, just as in
Amari’s theory. From this, we can define a divergence functional on L,(M, ¢).

Via the a-embedding, the divergence in L,(M, ¢) induces a functional on M, x
M., which is called the a-divergence. We will show that if restricted to the positive

divergences
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cone, the a-divergence is exactly the Petz quasi-entropy S,,, with
2 2 4 14 e
= t— 72
9a(?) l—a+l+a 1—a?
We will further investigate the properties of the divergence in L,(M, ¢), espe-
cially the projection theorems. These imply some existence and uniqueness results
for the a-projections, which generalize the projection theorems in Ref. 1.

2. Geometry of Banach Spaces

In this section, we list some facts about convexity and smoothness of Banach spaces,
see Refs. 15 and 7 for details.

Let X be a Banach space and let X* be the dual of X. For u € X* we denote
(z,u) = u(z). Let K be a closed convex subset in X with nonempty interior and
let S be the boundary of K. In particular, let S, be the sphere with radius r in X.

2.1. Supporting hyperplanes and functionals

Let us first recall that a (closed) hyperplane in X is a linear manifold z + H with
z € X and H a closed linear subspace of codimension 1. Each hyperplane is uniquely
given by z and an element u € X*, ||u|| = 1, having H as the null-space. Conversely,
each u € X~ defines the hyperplane

7+ Ker u={y € X, {y,u) = v = (z,u)} .

If z + H is a real hyperplane in a complex Banach space, then H is given by a real
linear continuous functional v and there is a unique v € X*, such that u = Rv. Each
real hyperplane determines two closed half-spaces {{z,u) <~} and {(z,u) > ~}.

A supporting hyperplane of K is a real hyperplane x + H, containing at least
one point of K and such that K lies in one of the two closed half-spaces determined
by = + H. If u is the corresponding real linear functional, then u (or —u) attains
its maximum on K. There is at least one supporting hyperplane through every
boundary point of K.

2.2. Smoothness and strict convezxity

A point z € S is called a point of smoothness if there is exactly one supporting
hyperplane passing through z, the tangent hyperplane at z. Equivalently, there is
a unique point vy € X*, ||lvz|| = 1, such that v, attains its norm at z. The tangent
hyperplane is then determined by v = Rv, and all points in the unit ball satisfy
R{y,v,) < 1. If each element in S; is a point of smoothness, then we say that X is
smooth.

The norm in X is said to be weakly (Gateauz) differentiable at x € Sy if for
each y € S1, the limit

B lz + ty| — || =] =:¢'(z,y) (1)

t—0 t




218 A. Jencovd

exists. The space X is smooth if and only if its norm is weakly differentiable at
each = € S;. The weak derivative is given by

q'(z,y) = Ry, vz) .

In such a case, the norm is weakly differentiable at each © € X except the origin,
and ¢'(z,y) = R(y, Vz/||z||)> Where vz is the unique point in the unit sphere ST
in X*, such that (z,v5 /) = lz|-

We say that K is strictly convez, if every boundary point of K is an extreme
point, that is, if S contains no line segment. In this case, every supporting hyper-
plane of K contains exactly one point of S. The space X is strictly convex if the
closed unit ball K is strictly convex. There is a duality between strict convexity
and smoothness of a Banach space:

(i) If X* is strictly convex, then X is smooth.
(ii) If X* is smooth, then X is strictly convex.

2.3. Uniform smoothness and uniform convexity

We say that the norm in X is strongly (Fréchet) differentiable at x € 51 if the limit
(1) exists uniformly for y € Sy, if this is true for all z € Sy, the norm is termed
strongly differentiable. The norm is uniformly strongly differentiable if (1) exists
uniformly in z, y € S;. Clearly, if the norm is strongly differentiable, then X is
smooth and the map

is well defined. Moreover, we have

Theorem 2.1.7% The norm is (uniformly) strongly differentiable if and only if the
map T — vy is single-valued and norm to norm (uniformly) continuous from S
to S7.

The space X is uniformly smooth if for each € > 0 there is an n(g) > 0, such that
lell > 1, lyll > 1 and | —y| < n(e) always implies |z+yl| > |lzl| + [yl e~y

The dual notion to uniform smoothness is uniform convexity: X is uniformly
conver if for each 0 < & < 2 there is a §(¢) > 0 such that if z, y € K; and
|z — || = e, then ||3(z + y)|| < 1 — &(¢). The function d(e) is called the module
of convezity. Every uniformly convex Banach space is strictly convex and reflexive.
Moreover, the following statements are equivalent:

(i) The norm on X (X*) is uniformly strongly differentiable.
(ii) X is uniformly smooth (uniformly convex).
(iii) X* is uniformly convex (uniformly smooth).

Let us now define the map F : X \ {0} — X*\ {0} by

F(z) = [|z]lva/)z -
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Then F is a support mapping,”

(i) [lz]| =1 implies [|[F(z)|| =1 = (z, F(z)),
(ii) A > 0 implies F(Az) = AF(z).

It follows from Sec. 2.2 that if X is smooth, the support mapping is unique. If
we put F(0) = 0, then we have

Theorem 2.2.% Let the Banach space X be uniformly convex and let the norm be
strongly differentiable. Then F is a homeomorphism of X onto X* (in the norm
topologies).

3. Noncommutative L, Spaces

In this section, we recall the definition and some properties of noncommutative L,
spaces on a von Neumann algebra, following the approach in Refs. 4 and 16.

Let M be a von Neumann algebra and let ¢ be a faithful normal semifinite
weight. We denote Ny the set of y € M satisfying ¢(y*y) < co and My the set of
all elements in Ny N N}, entire analytic with respect to the modular automorphism
Jf associated with ¢. We also denote the GNS map by Ny 3 y — ns(y) € Hyp.

Let 1 < p < oo. The noncommutative Ly-space with respect to ¢ is the space
L, (M, @) of all closed operators acting on the Hilbert space Hy, satisfying

TJs0%, (W) Ts D JsyJsT

for all y € My, such that the L,-norm

o€ Mo,[|z||<1

2/p
“T“p—{ sup ITIP/Q%(:E)II}

is finite. Then L,(M, ¢) with this norm is a Banach space. Let 1 < p < 00, then
L,(M, ¢) is uniformly convex and uniformly strongly differentiable. The dual space
Ly(M,¢) is Ly(M, @), with 1/p+ 1/q = 1, where the duality is given by

(T, Ty = g{}ﬂi(Tﬁ¢(y): T'ns(y)) (2)
where T' € L,(M,¢), T' € Ly(M,¢). The limit is taken in the *-strong topology

with restriction y € My, ||ly| £ 1. Each T € Ly(M,¢), 1 < p < oo, has a unique
polar decomposition of the form

T = uAY?, (3)

where 1 € M, u € M is a partial isometry, such that the support projection
s(¥) = u*u and Ay 4 is the relative modular operator, see Appendix C in Ref. 4
for definition and basic properties. We have

lud /5|l = $(1)/P. (4)
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On the other hand, each operator of the form (3) is in L,y(M, ¢). The positive cone
L;(M, ) is the set of positive operators in L,(M, ¢) and we have

Ly (M.¢) = {A)5% € M}
The identity
plau) = (uhy4,0")s ()
for a € M gives an isometric isomorphism of M, and L1 (M, ¢). Similarly, L2(M, ¢)
is isomorphic to Hy by
ul G gy,

where &, is the vector representative of ¢ in the natural positive cone in Hy.
If ¢ is a different n.s.f. weight, then there is an isometric isomorphism 7, (¢, ¢) :
Ly(M,$) — Lp(M, ) and

(T, T')g = (1p(6, )T, 74($, $)T") 5 (6)

holds for all T € L,(M, ¢) and T' € L,(M, ¢).
A bilinear form on L, (M, ¢) x Lq(M, ¢) is defined by

[T, T = (T,T*y, T&Ly(MP),T €Ls(M,).

If Ty, € Ly (M, ), > 1/pk = 1/r, then the product T =T} - Ty, is well defined
as an element of L.(M,¢) and

ITlr < [ T1llps -+ 1 Tnllpn -
It» =1, then
[Ty Tulg = [T, 1]p = [T1 -+ Th, Thet1 - Tn]o
= [Tiet1 - TnT1 - Tilo (7)
foreach1 <k <n-—1and
71+ Talgl < [ Tillps -+ [ Tnllp, - (8)

Let LS(M, @) = {T € L,(M,¢),T = T*}. Since the adjoint operation is a
conjugate linear isometry on L,(M,¢), L;(M ,®) is a real Banach subspace of
L,(M,¢). Moreover, for 1 < p < o0, L;}(M, @) is uniformly convex and the dual
Lg*(M, @) = LQ(M, @) for 1/p+1/q=1.

4. The Manifold and Dual Affine Connections

Let M be a von Neumann algebra and let ¢ be a faithful normal semifinite weight.
For —1 < a < 1, we define the noncommutative a-embedding by '

2

2 M, — L,(M,o), =
(% % ,’P( :gb) p 1*05

w  pud 3,
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where w(a) = ¢(au), a € M is the polar decomposition of w. It is clear from
uniqueness of the polar decompositions that £2 is bijective. Moreover, it maps the
hermitian (that is, w(a*) = w(a)) elements in M, onto L*(M,¢) and M onto the
positive cone LT (M, ¢).

If ¢ is a different fn.s. weight, then the space L,(M, ) is identified with
L,(M, ¢) by the isometric isomorphism 7,(%, ¢). The corresponding a-embeddings
are related by

£ = 1,(x, 9)2 .

We denote by M, the set M, with the manifold structure induced from £¢.
Due to the above isomorphism, the manifold structure does not depend of the
choice of ¢. For w € M,, £%(w) € L,(M,¢) will be called the a-coordinate of
w. The —a-coordinate is an element of the dual space L,(M,¢), 1/p+1/q = 1.
Moreover, for w1, wa € M, and a n.s.f. weight ¢, we have by (6)

(€% (w1), 2% o (wa))y = (Tp(9, D} (W), Ta (1, )2 o (w2))y
= (£ (w1),£2 y(w2))g . (9)

In the sequel, we will just write £, instead of £2. We will say that £,(w) and £_(w)
are dual coordinates of w € M,.

Remark 4.1. It is clear that it is also possible to define the manifold structure on
hermitian elements in M, , using the real Banach space Lg (M, ¢). All the subsequent
statements hold also for this case.

The trivial connection on L,(M, ¢) induces a globally flat affine connection on
the tangent bundle T'M,, called the a-connection. Let us recall that there is a
one-to-one correspondence between affine connections and parallel transports on
TM,. If the connection is globally flat, the parallel transport is given by a family
of isomorphisms Uy, : Tp(Mgy) — Ty(My), z, y € M,, satisfying

(i) Upe = 1d,
(ii) Uy’zUmiy = U$TZ.

In our case, the tangent space T, (M) can be identified with L,(M, ¢) and the
map Uy, is the identity map for all =, y € M,. We define the dual connection as
in Ref. 8, i.e. a linear connection on the cotangent bundle 7*M,, such that the
corresponding parallel transport U* satisfies

<U’ U;,y(w)><f> = <Uy,$(v)aw>¢ = <’L‘,’LU>¢5

for w € (Tpx(Mqa))* = Ly(M, ¢) and v € Ty(M,). Obviously, U* is the trivial paral-
lel transport in L,(M, ¢), hence the dual of the a-connection is the —a-connection.
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5. Duality

The L, spaces for 1 < p < oc are uniformly convex and uniformly smooth, therefore
we can use the results of Sec. 2.
Let w € M.. We will show how w is related to its dual coordinates.

Proposition 5.1. Let w € M, and let w(a) = Y(au) be the polar decomposition.
Then

pgw(a) = (ba(w),a*u*l_o(w))s, ae M.

Proof. We have s(Ay 4) = s(¥) = w*u. From this and from (5), (7) it follows that

Ylau) = (WAyg,a%)p = [uhy guuals = A /LA Gu"uals

* 1 % *
= [MAL{Z,AKEU ualy = E(é’a(w),a ul_o(w))g - -

Let ¢ = £,(w) and & = £_,(w) be the dual coordinates of w € M,. The map
x> & =4_o05" ()

is called the duality map. It is easy to see from (4) and Proposition 5.1 that for
z € L,(M, ¢) we have

q P 1 _
, ba

5

q

T

p

q

It follows that

j o
xT

Yz/zll, = p

= (11)

p

Proposition 5.2. The duality map is a homeomorphism Ly(M, ¢) — Lo(M, ¢).

Proof. It is immediate from (10) that the duality map is continuous at 0. Further,
let F be the map defined in Sec. 2 and x # 0, then we have from (11)
PP 12-p
F(z) = ||zl pvas|izl, = p—qﬂmllp T
The statement now follows from Theorem 2.2. O
Let us define the function ¥, : L,(M, ¢) — RT by

P

=qp(1),

-
p(7) -

where z = puA;{ %- Then we have
Proposition 5.3. ¥, is strongly differentiable. The strong deriative at x is given
by

DUp(z)(y) = Ry, By, ¥ € Lp(M, @)
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where % is the dual coordinate. If 1/p+1/q =1, then
T(5) = R(z,5)s — Tr(a).

Proof. We have from uniform smoothness of L,(M, ¢) that the norm is strongly
differentiable at all points except z = 0 and

Dz p(y) = R(Y, vayjjzll,) o -
It follows from (11) that for z # 0,

p—1

DY,(z)(y) = ¢ ‘g RY, Vel 0 = Ry, ) -

P

As p > 1, the function || || is strongly differentiable at z = 0 and
DY,(0)(y) = 0=R{y,0) .

The last equality is rather obvious. O

In the commutative case, as well as on the manifold of positive definite n x n
matrices, ¥, is the potential function in the sense of Amari, see Refs. 1 and 14, 11.
In general, it is not twice differentiable, but the above proposition shows that the
Legendre transformations, relating the dual coordinate systems, are still valid. It
will also be clear from the results of the next section, that

U ()= sup (R(y,Z)g — Yp(y))
QELP(M=¢‘)

hence ¥, is the conjugate of the convex function ¥,

6. Divergence in L,(M, ¢)
Following Ref. 1, the function Dy, : Lp(M, $) x Ly(M,$) — R™, defined by

Dy(z,y) = ¥p(z) + V(7)) — R(z, 7)o
is called the divergence. It has the following properties.

Proposition 6.1.

(i) Let fp(t) = p+ qt? — pqt. Then

Yy
Dp(wvy) i ‘5

(I "

p \lyls

for all z, y € L,(M, ¢), where for y =0, we take the limit lim, .o t? fp(s/t) =
qs® for all s. In particular, Dp(z,y) > 0 for all z, y € Ly(M, ¢) and equality
is attained if and only if x = y.

(ii) D, is jointly continuous and strongly differentiable in the first variable.
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(ii) Dyp(y,x) = Dq(Z,7).
(iv) Dp(z,y) + Dp(y, 2) = Dp(z,2) + R{z — y, Z — ).

Proof. The statement (ii) follows from Propositions 5.2 and 5.3. (iii) and (iv)
follow easily from the definition of D,. We will now prove (i). If y = 0, then
Dy(z,y) = ¥p(z) and if x = 0, Dy(z,y) = U,(y), which is equal to the right-hand
side of (12).

Let now z # 0, y # 0 and let ¢ = ||z||/| ¥|lp- Then by (11)

o
R <;a%/nyup>¢ :

Let ||y|lp = r and let S, be the sphere with radius 7 in L,(M, ¢). Then y, £ € S,.
From Sec. 2, the tangent hyperplane y + H to S, at y is given by R(z,vy/r)s = 7,
Sy lies entirely in the half-space given by R(z,v,/-)¢ < and y is the unique point
of S, contained in y + H. Hence,

p—1

. y
Rz, 7)e = tq H—
P D

ylI® |y
Dy(z,4) > Tp(z) + Ty(§) — tpg H— ~ H—
pll, |lp

p
fp(t) 2 0:

where equality is attained in the first inequality if and only if ¥ = y, and in the
second inequality if and only if ¢ = 1. O

We will also need the following lemma.

Lemma 6.1. Lety € L,(M,¢), d > 0 and let
Uya:={x € Lp(M,¢), Dp(z,y) <d}.

Then Uy,q is conver and weakly compact.

Proof. It is easy to see that D, is convex in the first variable, therefore the set
U4 is also convex. To show that it is weakly compact, it is sufficient to prove that
it is weakly closed and norm bounded.

Let {z,} be a sequence in Uy 4, converging weakly to some z € L,(M, ¢). Then
llz]lp < liminf, o |||, We therefore have

P
- <.’£,y>¢>
P

Dp(z,y) = Vy(§) +q Hf—)

o (w’n? g)‘ﬁ)

. |IP
< limi J =
ulgggf(‘l’q(qu” p |l
= liminf Dp(zy,y) < d

n—oo

and Uy 4 is weakly closed.
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Finally, for z € Uy 4, we have by Proposition 6.1(i),

P
Y |x|p) <
=z —= 1 < Dy(z,y) <d.
HP pfp(”yh) (%:9)

As f,(t) goes to infinity for ¢ — oo, we see that ||z, is bounded. ]

7. Dp-Projections
| Let C be a subset in L,(M, ¢), y € L,(M, ¢). If there is a point z,, € C, such that
; Dp(xmuy):gggDp(may):

then z,, will be called a Dp-projection of y to C. In this section, we prove some
uniqueness and existence results for D,-projections.

Proposition 7.1. Let C be a convex subset in L,(M,¢), y € Lp(M,¢) and T, €
C. The following are equivalent.

(1) DP($m7 y} = mianC‘ Dp(wa y)a
(ii) ¥ — Zm 1s in the normal cone to C' at T, that is,

Rz — Zm,§ — ETm)p L0, Vzel
(iit) Dplzm) = Dol im) + Dpl@r ) ¥ 3EC.
If such a point exists, it is unique.
Proof. Let z,, be a point in C satisfying (i) and let z € C. Then z; = tz+(1—t)zp,

lies in C for all t € [0,1] and thus Dp(zs,y) > Dp(2m,y) on [0, 1]. We have from
Proposition 5.3

d . "

0< ﬁTDp(ﬁm Y)|t=0 = BT — T, T — B9
which is (ii). Further, from Proposition 6.1(iv)

‘ R(T — T, Em — T)¢ = Dp(,y) — Dp(@, Tm) — Dp(Tm, Y) ,

I hence (ii) implies (iii). Finally, let z,, satisfy (iii), then we clearly have D, (zm,y) <
: D,(z,y), for all z € C.
To prove uniqueness, suppose that z; and zy are points in C, satisfying (iii).
Then

Dy(z1,y) 2 Dp(21,T2) + Dyp(2,y) = Dp(@1,%2) + Dp(@2,71) + Dp(@1,9) -

It follows that Dp(z1,z2) + Dp(x2,z1) < 0 and hence x; = x. a

Proposition 7.2. Let C # 0 be a weakly closed subset in L,(M,¢) and y €
L,(M,¢). Then there exists a Dy-projection of y to C.
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Proof. For some d > 0, the set U, 4 has a nonempty intersection with C. By
Lemma 6.1, the sets Uy 4 N C are weakly compact. The intersection of these sets
for all such d is therefore nonempty and is equal to some U, , N C. Then p =
mingec Dp(z,y) and all the points in Uy,, N C are D,-projections of y in C. O

By Propositions 7.1 and 7.2, if C' is a nonempty convex weakly closed subset in
L,(M, ), we can define the map y + Tm, which sends each point y to its unique
D,-projection in C.

Proposition 7.3. Let C # 0 be a weakly closed convex subset in Ly(M,®). Then
the D,,-projection is continuous from Ly(M, ¢) with its norm topology to C' with the
relative weak topology.

Proof. Let {y"} be asequence in L,(M, ¢) converging in norm to y. Let z7, be the
unique Dp-projection of y™ and z,, be the unique Dp-projection of y in C, obtained
by Propositions 7.2 and 7.1. We have to prove that z7, converges weakly to .
As the duality map is continuous, we have §™ — ¢ in L,(M, ¢). Further, we
have from joint continuity of D, that lim Dy(2,y™) = Dp(2,y) and lim Dp(y", 2) =
D,(y, 2) for any z € Ly(M, ¢), in particular, lim D,(y™,y) = lim Dp(y,y™) = 0.
Let k1 > 0 be such that ||y|| < ky and ||y™|| < k; for all n. Further, let us choose
an element z € C. By Proposition 6.1(i) and the definition of the D,-projection,

we have
mn) Dy, ™)
fp(llynl < Ty Tple (13)
|$m|l) Dy(2,y)
fp(nyu = Tw/plr (14)

As the right-hand side of (13) converges to the right-hand side of (14), we see that
there is a constant kz > 0, such that ||z;,| < k2 and |zl,|| < ko for all n. For
sufficiently large n, we get by Proposition 6.1(iv)

By =D lal = inf Dy(x,y"
n p(Tr> Y"™) 2€C, ||z <k (T, ")

_ n f mny — 2 S
weaﬁg”p%{pp(m,y)+Dp(y,y )= Rz -y, 5" — D¢}

< D}P(mm?y) + Dp(y’yn) T (kl 5 k2)”§ = gan < d-l—E,
where d := Dy(zpm,y). Similarly,
Dp(zp,y) = Dp(ap,, y™) + Dp(y™,y) — Rizh —y", 7 —7")e
<dn+ Dp(y™y) + (k1 + k)T — 7" g £ d+ 2¢.

Hence for sufficiently large n, = € Uy dy2: N C. These sets are nonempty and
weakly compact, therefore {27} contains a weakly convergent subsequence. On the
other hand, any limit of such subsequence has to be in Uy g2, N C for all € and
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thus also in (), Uy,d+2 NC. By uniqueness, this intersection contains a single point

n

. converges weakly to Zn,. a

T, it follows that x

8. The a-Divergence in M,
Let @ € (—1,1) and let p = . The divergence in L,(M, ¢) defines the functional
Se: M, x M, — R™,
Sa(wr,we) 1= Dp(la(wr), lalw2))
— qp(1) + p¥(1) — paRWALE vA /%),

where wi(a) = p(au) and ws(a) = ¥(av) are the polar decompositions. It is called
the a-divergence. Let us remark that a similar definition for the a-divergence ap-

peared also in the Discussion in Ref. 19.
It follows from (9) that S, does not depend of ¢. In particular, if ¢ is faithful,
then

2 1/(2 *
(UA;/E,UAI/QI} _ (Ai’/‘éwp)&p’Aw/éf) vEy),

where £, is a vector representative of 1. It follows that if ¢, ¢ € M,F, 1 is faithful
and Ay ¢, = [ AE) is the spectral decomposition, then

Sal0,%) = (Gp(Boprty e €g) = f I Exés|?,

where g,(t) = p + qt — pgt'/P. Hence, in this case the a-divergence is equal to the
quasi entropy Sglp, defined by Petz in Ref. 20 (see also Ref. 18). We will show that
this is true on the whole of M x MJ.

Lemma 8.1. Letp, v € M, u, v € M be partial isometries satisfying u™u = s(p),
v*v = s(¢). Let p, ¢ > 1 be such that % + % = 1. Then

(u ('10/2}”&1/% = (A ;/éip)g Al/(QP uruty), (15)

where &, is a vector representative of 1.

Proof. Let 1/p < 1/2. We have

(uisy5, 00 8)e = Hm(AYSTPv un[Zne(y), A g7(3)).

with y € My, ||y|| < 1. For y € Ny,

(AL 2Py w0y (y), Ay ame(v))

A1/2 1/p *UAUP

= (Jg, ,wﬁi’ﬁw( ), Jeu oMo (Y))

= (g, Jeyme Dy 5 Pt ul Py (1) (16)
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here we have used that JZ , Je, 5, = s(¥) = s(Ay,¢), the support of Ay . Let
t € R, then

Teume Do 5 0 ulh 14(y) = Seyime Ap v ulE iny(y)
= Sty V" By 686 6une ()
= Sey.meV (Dy : Dipy)—sung(y)
= y*u™ (D : Dipy)~ €y,
where oy (a) = p(u'au) and uA¥ ju* = AY , by (C.8) in Ref. 4. From this, we
have
W ey me Dyl 0 UAE 14(y)) = (Do : Dipu)—suyy™€y, véy)

= (A %, AL o wyyEy, véy)

= (WA oy Ep, vEs)

where we have used (C.5) and (C.8) of Ref. 4. It follows that for z = it,

* 1/2—2z &« z * * AZ ®
(o Jegms B 5“0 UDE 16(y)) = (y*Epr Y A ¢ wvEy) . (17)

By Lemma 3.1 in Ref. 16, both sides of (17) are holomorphic for 0 < Rz < 1/2
and continuous for 0 < Rz < 1/2. Equation (15) holds for 1/p < 1/2 by (16) and
analytic continuation of (17).

Let now 1/g < 1/2. We have by the first part of the proof

& 1/ 1 % 1
<UA¢{£WA¢,Z>¢ = (uy, ’Uﬂgfgwgw) = (S, 60 vy, A,gfgwsfmfwgw)

= 1/q 1/2 1/2
- (Jg"f’ "EV’ A&yﬂ: £ JE‘P N3 A‘S(p;&‘:‘[: £¢, A&,‘,,&p U*U&b)

. (Alfp“‘l/?{_:w?Al/Q TL*U&,’;),

txos’s‘t,ﬂ? (p'lg‘i,b
we have used the equations (C.14) Jy . = Jy,ny and (85) JyymByy i Jiam =
Al from Appendix C in Ref. 4. O

It follows that S(@,¥) = Sép((,o,zb) for all positive normal functionals ¢ and
. The function gp, 1 < p < oo is operator convex and it follows from the results
in Ref. 20 that

(i) Sy is jointly convex on M x M,
(ii) S, decreases under stochastic maps on M, x M,
(ili) S, is lower semicontinuous on M} x F(M;) endowed with the product of
norm topologies, where F (M) denotes the set of faithful elements in M.

The following properties of the a-divergence are valid on M, x M, and are
immediate consequences of the results of Sec. 6.
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(i) Positivity

Sales ) 2 911100 (%) >0

and Sy (p,1) =0 if and only if ¢ = ¢ (here || - ||; is the norm in M.).
(ii) Salp,¥) = S—al®, )

(iii) generalized Pythagorean relation

Salp, V) + Sa(¥,0) = SQ(QO,O') + R{a(p) = £a(¥),L_a(0) — £ o(¥))e-

Let o, 1 € M, and let x4, t € [0,1] be a curve in L,(M, ¢), given by

zt = Lo () + t(fa(¥) — £a(p)),

then ¢;'(z:) is the a-geodesic in M,, connecting ¢ and . Notice that the
Pythagorean relation (iii) is a generalization of the classical version in Ref. 1, which
says that equality is attained if and only if the a-geodesic connecting % and ¢ is
orthogonal to the —a-geodesic connecting ¢ and o.

We also define the a-projection of ¢ € M, onto a subset C' C M, as the element
in C that minimizes S, (-, ) over C. We will say that a subset C C M, is a-convex
if £,(C) is convex. The next proposition is a generalization of the results in Refs. 1
and 2 and follows directly from Proposition 7.1.

Proposition 8.1. Let C C M, be a-conver and let ) € M,, ¢m € C. The following
are equivalent:

(i) @m is an a-projection of ¢ in C.
(ii) For all o € C,

Sa(0,¥) 2 SalPm,:¥) + S—a(@m, o).

(iii) If ¢¢ is the —a-geodesic connecting om and v, then %La(wt) lies in the
normal cone to £,(C) at £y(Pm).

If such a point exists, it is unique.

The topology induced by the a-embedding from the norm, (resp. the weak topol-
ogy in L,(M, #)) will be called the a-, (resp. the a-weak topology). The following
proposition is also immediate from Sec. 7.

Proposition 8.2. Let C be a nonempty subset in M, and let 1 € M,.

(i) If C is a-weakly closed, then there exists an a-projection of v in C.
(ii) If C 1s a-convex, a-weakly closed, then the a-projection is a continuous map
from M, with the a-topology to C with the relative a-weak topology.
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9, The Case x =0

Let @ = 0, p = ¢ = 2. The space La(M,¢) can be identified with the Hilbert
space Hy and the dual pairing (-, )4 is the inner product (-,:) in Hg. Through this
identification, the 0-embedding becomes the map

w — 2u, ,

where w(a) = @(au) is the polar decomposition of w and &, is the unique vector
representative of ¢ in the natural positive cone V' in Hy. Hence the 0-embedding
maps M, bijectively onto Hys. Up to multiplication by 2, the restriction of £ to the
positive cone M7 corresponds to the identification of the positive normal function-
als with elements in V' proved by Araki in Ref. 3. It has also been shown that this
identification is a homeomorphism M — V. It follows that the relative 0-topology
is the same as the relative Li-topology in M.
The duality map is the identity on H, and the potential function is

1
To(z) = 2l
Therefore, the potential function is C°°-diferentiable and
D*¥y(x)(y, 2) = R(y, 2) Ve Hy.

It follows that ¥, defines a Riemannian metric in the tangent bundle T'M,, which
corresponds to the real part of the inner product, induced from the 0-embedding.
In the matrix case, this metric was studied on density matrices and it was shown
that it coincides with the Wigner—Yanase metric, see Ref. 10.

The Do-divergence in Hy is

1
Da(z,y) = 5l - ylI?,

hence the Dy-projection corresponds to minimizing the Hilbert space norm. This
means, in particular, that there is a unique Ds-projection onto every closed convex

subset of Hy.
The 0-divergence in M. becomes

So(w1,ws) = 2||ué, — véyll®.

On the positive cone, the 0-divergence generalizes the classical Hellinger distance.

10. The Unit Sphere

The a-embedding maps the unit sphere S in M, onto the sphere S, with radius p
in L,(M,¢). The duality map « — & maps S, onto the sphere S; with radius ¢ in
the dual space Ly(M, ¢). From (11), we have that for € Sy,

&= qUsrp- (18)

Proposition 10.1. The duality map Sp 3 « — & € S is uniformly continuous.
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Proof. The statement follows from (18) and Theorem 2.1. a

For each = € Sy, there is a unique tangent hyperplane z + H, through z, where
H, is given by the condition

Ry, Z)p = qR(Y: Ve/p)s = 0.
Hence there is a splitting L,(M,¢) = H, @ [z] and, similarly as in Ref. 8, there is
a continuous projection 7, : L,(M, ¢) — H, given by
1

Ry, B)az,
- Y, T)g

T
Tx(y) =y — Ry, Ua,-/nmnp)as; =y -

which is obtained by minimizing the L,-norm.

As the norm is strongly differentiable, the unit sphere forms a differentiable
submanifold D, in M,. Let w € D, and let € S, be its a-coordinate. The
tangent space T,,(D,) can be identified with the tangent hyperplane H, and 7, can
be used to project the a-connection onto TD,.

Remark 10.1. Let 9 be a faithful state with the a-coordinate = in L,(M, ¢)
and let &, be the vector representative of ¢ in a natural positive cone. Then
has the a-coordinate 7,(¢, ¢)(z) = pAéip in L,(M,) and the dual coordinate

T4, 0)E) = q/_\.éiq in Ly(M,v). By (9) we have for y € L,(M, ¢),

U E)o = (o1, 8)(4), 4Dy = (Wb, a0, €w) = alyw, 1w,
where yy = 7p(1, ¢)(y). It follows that 7,(1, ¢) maps T (D,) onto the subspace
w =12 € Lp(M, ), Rz, 1y =0}

This corresponds to the results in Ref. 9, where the a-connection is obtained on
the fiber bundle F* over a manifold of faithful states.

The projected connection, even in the classical and the matrix case, is no longer
flat. Hence, it does not define a divergence, but nevertheless, we can use the restric-
tion of S, as a quasi-distance on the unit sphere. This restriction has the form

Sa(wr,w2) = pa(1 — RA/E vAY%),)

which corresponds to the definition of the a-divergence in Ref. 1 for probability
densities and in Ref. 13 for density matrices.
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Abstract

We present a construction of a Banach manifold structure on the set of faithful normal states of a von
Neumann algebra, where the underlying Banach space is a quantum analogue of an Orlicz space. On the
manifold, we introduce the exponential and mixture connections as dual pair of affine connections.
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1. Introduction

An information manifold is a family of states of some classical or quantum system, endowed
with a differentiable manifold structure. For parametrized families of probability distributions,
the geometry of such manifolds and its applications in parameter estimation is already well
understood, see, for example, the books [3,4]. This development was started by Rao [20] and
Jeffreys [11], who suggested the Fisher information as a Riemannian metric for parametrized
statistical models. Later on, Effron [5] defined the concept of statistical curvature and pointed
out the importance of exponential models, which led to the introduction of the exponential affine
connection on the manifold. Amari in his well-known book [2] equipped the manifold with a
family of «-connections and introduced the concept of duality, which is related to the notion
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of statistical divergence. The most important of these structures, in applications as well as in
the theory, is the dual pair of exponential and mixture connections, with the related statistical
divergence, called the I-divergence, or relative entropy.

The nonparametric information manifold was introduced by Pistone and Sempi [18,19], based
on the idea of a nonparametric exponential model. As it turned out, a natural parametrization
for such models is given by the exponential Orlicz space. Further developments, including the
definition of the affine connections and duality, can be found in [7,8].

For families of quantum states, similar structures were found in the finite-dimensional case,
see, for example, [10,12,15,17]. In infinite dimensions, the situation is more complicated. As
there is no suitable noncommutative counterpart of the exponential Orlicz space, it is not clear
how to choose the underlying Banach space for the manifold. Some suggestions can be found in
[9,13,21,22]. See also [1] for a definition of a noncommutative Orlicz space.

The aim of this paper is to introduce a differentiable manifold structure on the set of faithful
states of a quantum system, represented by a von Neumann algebra M. Moreover, we want this
manifold to be a quantum counterpart of the Pistone and Sempi construction.

We use an approach similar to Grasselli [8] in the commutative case: we define an Orlicz norm
on the space of self-adjoint operators in M and take the completion under this norm to be the
underlying Banach space for the manifold. The norm is defined by a quantum Young function,
as in [23]. The definition of a Young function on a Banach space, together with some results
on the associated norms, can be found in Section 3. For a faithful state ¢, the quantum Orlicz
space B, and its centered version By, ( are introduced in Section 4. The definition of the related
Young function is based on the relative entropy approach to state perturbation. We treat the dual
spaces in Section 6. The main result is contained in Section 8, where the manifold structure is
introduced and, moreover, the exponential and mixture connections are defined as a pair of dual
affine connections on each connected component of the manifold.

2. Preliminaries

We recall some properties of relative entropy and perturbed states, that will be needed later.
See [16] for details.

Let M be a von Neumann algebra in standard form. For w and ¢ in M, the relative entropy
is defined as

—(log(Ay.g,)80,80)  if suppw < suppy,
S(w’(p):{oo 2(Apg pp pp

otherwise,

where &, is the representing vector of w in a natural positive cone and Ay ¢, is the relative
modular operator. Then S is jointly convex and weakly lower semicontinuous. Let us denote
Py ={we M, S(w, ¢) < o0}, then P, is a convex cone. We will need the following identity:

S @)+ Y SWi ) =Y SWi. ). (1)

where ; € M:, i=1,...,n,and ¥ = Zi Y. Since S(;, ¥) 1s always finite, it follows from
this identity that ), ¥; € P, if and only if y; € P, for all i.
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Let G, be the set of normal states on M and let Sy := {w € &, S(w, ) < oo}. Then S, is
a convex set and generates P,. From (1), we get

S @) +AS(Wr1, ¥) + (L =282, ¥u) =AS(WY1, ) + (1 = M) S (Y2, ), 2)

where v, Y are normal states and v, = Ay + (1 — X)), 0 < A < 1. As above, it follows
that ¥, € S, if and only if both 1, Yr» € Sy, in other words, S, is a face in S,. For C > 0, we
define the set Sy, ¢ := {w, S(w,p) < C}. Then S, ¢ is convex and compact in the o (M., M)
topology.

Let us suppose that ¢ is a faithful normal state on M and let & be a self-adjoint element in M.
The perturbed state [(ph] is defined as the unique maximizer of

sup {w(h) — S(w, 9)}. 3)

weS,

Then [(ph] is a faithful normal state and S ([<ph], @) 1s finite. Let ¢, (h) be the supremum in (3),
that is

cp(h) =["](h) = S([¢"]. ¢). 4)
It is known that
o(h) < cy(h) <loggp(e"). (5)
Moreover, we have
o (h) — S(, 9) = cy(h) — S(w. [¢"]) (6)

for any self-adjoint 7 € M and w € G,. Let h, k be self-adjoint elements in M, then the chain
rule [¢"**] = [[¢"]*] and

Co(h + k) = cpn (k) + ¢ (h) (7)

holds. Let now &, be the vector representative of ¢ and let o e M be the functional induced
by the perturbed vector

1
ho_ 3(ogAp+h) g _ Lcp(h) A2
Spi=¢ So =€ A,

£p-
Then ¢, (h) = log¢" (1) and [¢"] = ¢" /9" (1). Moreover, if 9" = ¢, then h = k.
3. Young functions on Banach spaces and the associated norms
Let V be a real Banach space and let V* be its dual, with the duality pairing (v, x) = v(x).

Recall that any convex lower semicontinuous function V — R U {400} is lower semicontinuous
with respect to the o (V, V*)-topology.
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3.1. The Young function

We will say that a function @ : V — R U {00} is a Young function, if it satisfies:
(1) @ is convex and lower semicontinuous,
(i) @(x)>0forallx € Vand ®(0) =0,
(i) @(x) =P (—x) forallx e V,
(iv) if x #£ 0, then lim;_, 5o @ (tx) = 00.
Lemma 3.1. Let @ be a Young function. Let us define the sets
Co:={xeV, @) <1},
Ly = {x e V,3s >0, such that @ (sx) < oo}.
Then Cg is absolutely convex and Ly = Un nCe. In particular, L is a (real) vector space.
Proof. Letx,y € Cg and let «, B € R, such that |o| + || < 1. Put y =1 — |«| — |B], then
@ (ax + By) = (o[ sgn(@)x + |Blsgn(B)y + y0) < || (x) + |B|P(y) < 1
hence ax + By € Cp and Cyp is absolutely convex.

Let now x € Lg and let s > 0 be such that @(sx) = K < 0o. Choose m € N such that m >
max{1/s, K/s}, then by convexity

1 1 1 K
Pl —x)=DP| —sx )| <—DP(sx)=— <1
m ms ms ms

and x € mCg. Since obviously nCe C Lg¢ for all n, we have Ly = Un nCg, which clearly
implies that L is a vector space. [

Let us recall that the effective domain
dom(@) = {x € V, ®(x) < o0}
is a convex set. Any convex lower semicontinuous function is continuous in the interior of its

effective domain [6]. Clearly, L is the smallest vector space containing dom(®).
In the space L, we now introduce the Minkowski functional of Cg,

[xlle :=inf{p >0, x € pCo}.
Since Cg is absolutely convex and absorbing, || - [|¢ is a seminorm. Moreover, || x|l = 0 means
that @ (rx) < 1 for all # > 0. By the property (iv), this implies that x = 0. It follows that | - ||

defines a norm in L. Let us denote by By the completion of L under this norm.

Lemma 3.2. Let x € L. Then ||x||l¢ < 1 ifand only if @ (x) < 1.
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Proof. If ||x||¢ < 1, then x € Cp and @(x) < 1. Let now ||x|l¢ =1 and let ¢, < 1 be a se-
quence converging to 1. Then @(#,x) < 1 for all n and, by lower semicontinuity, @ (x) <
liminf, ®(t,x) < 1. Hence ||x||¢ < 1 implies @ (x) < 1. On the other hand, if @(x) < 1, then
x € Cp and clearly x|l < 1. O

Lemma 3.3. Let x € Lg. Then ||x||o < 1 implies ®(x) < ||x||l¢ and ||x||¢ > 1 implies @ (x) >
lx||@. Moreover, if @ is finite valued, then ||x||¢ =1 if and only if @ (x) = 1.

Proof. Let ||x||¢ < 1. By convexity of @ and Lemma 3.2,

X X
Q(x) = GD(IIXIIcp ) < IIXIlcpCD(—) < lxlle.
lxlle

o
Let now ||x||l¢ > 1, then @(x) > 1. If @(x) = oo, then the assertion is obviously true. Let
us suppose that @ (x) is finite. The function ¢t — @ (¢x) is convex and bounded on (0, 1), hence

continuous on (0, 1). It follows that @ (tx) = 1 for some ¢ in this interval and clearly r = 1/||x||¢.
We have

1=D(tx) <tP(x)
and hence ||x||¢ < @(x). This also proves that last statement. [
3.2. The conjugate function

Let V* be the dual space. Let the function @*: V* — R U {oo} be the conjugate of @,

o*(v) =supf{v(x) —@(x)} = sup {v(x)— @)}
xeV xeDom(®)

The function @* is convex, lower semicontinuous and positive, @*(v) = @*(—v) and @*(0) = 0.
But, in general, @* is not a Young function: consider the case when @ (0) =0 and @ (x) = o0
for all x # 0, then @ is a Young function, but its conjugate is identically equal to O on V* and
the condition (iv) is not satisfied.

Let (dom(®))* be the orthogonal subspace to dom(®) in V*, that is

(dom(q)))L = {v e V* v(x)=0forall x € dom((b)}.

Then (dom(®))* is a closed subspace in V*. Let V be the quotient space V=Vv* (dom(@))L - If
u and v are elements in the same equivalence class, then

*(w)= sup {vx)—@W}= sup {ux)—@x)}=0"w)
xedom(®) xedom(®)

and @* is well defined as a function on V.

Lemma 3.4. @*: V — R U {00} is a Young function.
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Proof. It is easy to see that @* satisfies (i)—(iii) from the definition of a Young function. More-
over, it follows from the definition of the conjugate function that

V)| < P(x) + @*(v) forallxeV,veV. (8)

LetveV,v # 0. Then there is an element x € dom(®) such that v(x) # 0. It follows that
®*(tv) > |tv(x)| — @ (x) for all ¢t and (iv) is satisfied. O

We will define Cg+, L=, || - ||+ and Bg+ in the same way as for &.
Lemma 3.5 (Holder inequality).
lv)| <2lxllellvlle forall x € By, v € B«
Proof. Let x € Cop, v € Cop+, then by (8)
v < @)+ P*(v) <2.

Let x € Ly, v e Lp+. By Lemma 3.2, x/||x||l¢ € Cop, v/||v|ep*x € Cop+ and therefore |v(x)| <
2|1x|lg ||v]|@=. Clearly, the inequality extends to x € Bg, v € Be+. O

3.3. The second conjugate

If E is a Banach space and H C E is a closed subspace, then the dual of the quotient space
(E/H) can be identified with H-. It follows that V* N V = (dom(@®))-L, which is nothing else
than the closure of Lg in V. Let us denote this space by V.

As before, we can find the conjugate function to @* : V — RU {400} with respect to the pair
(V, V*). Note that for x in V, we have

sup{v(x) — @*(v)} = sup {v(x) — P* (W)} = & (x),

vevV veV*

where @** is the second conjugate to @ : V — R U {+o00}. Since @ is convex and lower semi-
continuous, @**(x) = @ (x) on V [6]. It follows in particular that the restriction of @** to V is
a Young function.

It is clear from Holder inequality that any x € L defines a bounded linear functional on Bg+.
Let ||x || %« be its norm in Bj., then by Lemma 3.2,

Ix[[G+ = sup{[v()|, @*(v) < 1}.

Similarly, if v € L+, then v € Bg and we have
lvllg = sup{|v(x)|, @(x) <1}

Lemma 3.6. For x € Lo, we have ||x]l¢ < ||x]p+ < 2|x|l@. Similarly, if v € Lo, then ||v]|¢x <
lvllg < 2lvllgx.
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Proof. Let v € Lg+. By Holder inequality, [|v||g < 2|[v]|e+. Let now ||v]|§ =1, then for x € Co
we have

v(ix) —d(x) < 1.
On the other hand, for x € dom(@®), such that @ (x) > 1, we get from Lemma 3.3
v(x) —@(x) Sv(x) — x[le <O.

It follows that @*(v) < 1 and v € Cg+, hence ||v]e+ < 1. Therefore, [[v||e+ < ||v]} for all
v € Lg=. The proof for x € Ly is the same, using the fact that @ is the conjugate of @*. O

Proposition 1. By« C B} and Lo+ =V N Bjy. Similarly, By C Bl and Lo =V N B..

Proof. As we have seen, L+ is a vector subspace in B} and the norms in L¢+ and B} are
equivalent, hence Bg+ C Bj. Let now v € VN B}, be such that ||v]|5 = 1. Then @*(v) < 1,

exactly as in the proof of Lemma 3.6. It follows that for all v € VN By, @*(v/|lv]p) <1 <00
and v € Lg+. Again, the proof for Ly and Bg is the same. O

Let @ be a Young function such that O is an interior point in dom(®). Then the function @ is
continuous in 0, therefore there is an open set U containing O such that U C Cg. It follows that
Co is aneighborhood of 0 in V, hence it is absorbing in V:

V=|JnCo=Lo (assets). 9)

Since C¢ 1s a convex body (that is, O is a topological interior point), its Minkowski functional
Il - |l is continuous with respect to the original norm [14, p. 182]. It follows that we have the
continuous inclusion V C Bg. Further, since dom(®) has non-empty interior, (dom(®))* = {0}
and V = V*. Clearly also V = V.

Proposition 2. Let 0 € intdom(®). Then V C By C By and Ly« = B+ = By T V™.

Proof. By (9), each x € V is in Lg, and by continuity, ||x|¢ < K|/x]|, for some fixed K > 0.
Let v € B, then

v@)| < vliplixlle < Kllvligllx]l forx eV,
hence ve V* =V and ||v|* < K vl - The statement now follows from Proposition 1. O
4. The spaces B, and B,, o

Let M be the real Banach subspace of self-adjoint elements in M, then the dual M7 is
the subspace of Hermitian (not necessarily normal) functionals in M*. We define the functional
Fy: Mj — RU {oo} by

S(w,p) ifweG,,
00 otherwise.

F(p(w) = {
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Then F, is convex and lower semicontinuous, with dom(Fy,) = S,. It follows from (1) that F,
is strictly convex. Its conjugate F(;'; is

Fj(h)= sup {o(h) — Fy(w)} =cy(h), heM;.

Hence ¢, is convex and lower semicontinuous, in fact, since finite valued, it is continuous on M.
We have ¢, = F;* = F, on Mg. Note also that

co(h+A)=cy(h)+Ai, VieR. (10)
We define another convex and lower semicontinuous functional on M7, namely,

(o) = : S(w,9) —w(l) ifwe M,
v 00 otherwise.

Then the conjugate functional is

Fi(h)y= sup {o(h)—Sw.¢)+o)}= sup {roh)—Sho,¢)+1r}
we M7 WS AeRT
= sup {r(w(h) —S(®,9))— rlogr+ 1}
weB LeRT
= sup {A(cy(h) + 1) — Alogr} = e = (1),
reRT

Again, h — ¢"(1) is convex and continuous and I:";* = F(p.
Next, we define a Young function on M;. Let @, : M — R be defined by

") +eh)
2

@, (h) = 1.

Lemma 4.1. &, is a Young function.

Proof. The property (i) from the definition of a Young function follows from the properties of
h— ¢"(1). Since ¢" (1) = e > »(M=5(@.9) for a]l normal states w, we have

@4 (h) > cosh(w(h))e 5@ — 1. (11)
In particular,
@, (h) > cosh(p(h)) —1 >0 forall h. (12)

Since obviously @,(0) = 0, (ii) follows. Let now /4 be such that w(h) =0 for all € S, then
by definition, c¢,(h) =0 and ¢ = (ph, hence h = 0. Therefore if & # 0, then there is a state
w € Sy such that w(h) # 0 and then lim;_, o cosh(tw(h)) = oo, this implies (iv). Property (iii)
is obviously satisfied. O
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Let Cy :=Co,, By := Bgp, and || - ||l := || - lo, . Since dom @, = M, we have by Proposi-
tion 2 that M C B, If QD:; is the conjugate of @, then B(’; = Bq); C M;.
Let now h € My, such that ||a||, =1 > 0, that is,

o 2)-

If w is a state, then by (11),
h
cosh(@) <265@9). (13)

If w € Sy, then |w(h)| < ct, where ¢ > 0 is some constant depending on S(w, ¢). It follows that
each w € §, extends to a continuous linear functional on B,. Moreover, for C > 0, S, ¢ is an
equicontinuous subset in By

Let M 0 C M; be the subspace of elements satisfying ¢(h) = 0. Then by putting v = ¢
in (6), we get

co(h) = S(p. [¢"]) >0.
Let us define

cyp(h) + cyp(—h)

Py,0(h) = 7 :

h € M(p70.

Then it is easy to check that @, ( is a Young function on M, o. We have
Lemma 4.2. Let h € M . Then
@y 0(h) < Dy(h) < 2Pe0 — 1.

Proof. The first inequality follows from a < e* — 1 for a > 0, the second follows from x 4+ y <
2xy forx,y>1. O

Let us construct the Banach space B%,o =:Byoandlet| -[go0:=1"- ||q>(p’0.
Proposition 3. The norms || - |ly,0 and || - ||, are equivalent on M .

Proof. Let us denote Cy o := Cg, ,. We show that
1

Lethe Cypandt = %log 2. Then by convexity, @ o(th) <t = %logZ and hence

By (th) < 2 Pe0M 1 <1,
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which implies tCy o € Cy N My ,. The other inclusion follows from the first inequality in
Lemma 4.2. It follows from (14) that for & € M o,

2
h <y < —=hlg.0- O
17llg,0 < lI2lly 10g2|| lp,0

Note that since ¢ € Sy, ¢ extends to a bounded linear functional on B,,. Clearly, the comple-
tion of M o under the norm || - ||, is the Banach subspace {h € By, ¢(h) = 0}. It follows from
the above proposition that By o can be identified with the subspace of centered elements in By,.

5. Extension of ¢,

Since S, C B; C M3, the restriction of F,, is a strictly convex lower semicontinuous func-
tional on B;, with effective domain S,. Its conjugate F(;" is a lower semicontinuous extension
of ¢, to By, moreover, F;* = F,. We show that this extension has again values in R and is
continuous.

Lemma 5.1. Let the sequence {h,}, C Mg be Cauchy in the norm || - ||,. Then the sequences
{cp(hn)}n and {S([(ph”], ©)}n are bounded.

Proof. By (5), we have for all n

@(hy) < cyphy).

Since ¢ (h,) converges, ¢, (h,) is bounded from below. Let ng be such that ||, — hyll, < 1 for
all n > ng, then

w(hy) — S(w, ) < w(hno) + C(,o(hn - hno) < “hnoH +log2

for all such n and w € S,. It follows that {c,(h,)}, is bounded.
If {h,}, is Cauchy, then the sequence {th,}, is also Cauchy for all # € R and there are con-
stants A;, B;, such that

A < C(p(thn) < B:;, Vn.

On the other hand, we have

= [¢"](hn).
t=1

d

By convexity,

> A+ (0 = D" ] (hy).

t=1

d
C(p(thn) P Cgo(hn) + (- 1)Ec<p(thn)

For arbitrary fixed r > 1, we get

Bl‘_Al
r—1

[gphn](hn) < , Vn.
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Boundedness of S([¢], ¢) now follows from
0< S([e"].¢) =[0"](hn) = cy(hn). O
Theorem 4. Let {h,}, be a sequence in My, converging to some h in By,. Then

lim ¢y () = sup {(h) — S(w. ¢)} (15)

weS,

and there is a unique state € S, such that the supremum is attained. The state  is faith-
ful. Moreover, lim, S([¢""], ) = S(, ¢), lim,[¢"" (hy)] = ¥ (h) and lim, S(¥, [p""]) = 0. In
particular, [¢""] converges to W in norm.

The state ¢ will be denoted by [¢"] and the limit lim,, Cp(hp) =:cy(h).

Proof. This proof is similar to the proof of [16, Theorem 12.3].

By Lemma 5.1, there is some C > 0 such that [¢""] € S, ¢ for all n. The set S, ¢ is weakly
relatively compact in G, and hence there is subsequence [goh"k] converging weakly to a state
¥ € Sy,c. We will show that [(ph”k 1(hy, ) converges to ¥ (h).

Since Sy ¢ is an equicontinuous subset in B, w(h,) converges to w(h) uniformly for all
w € Sy, c. This implies

[@" [ (hn) = [@™ ()| < &

for sufficiently large ny. We further have

[e" ] —w ] < [fe" ] = [¢" Jthm)| + [[@"* 1) = v )|
W) = v ()| < ¢

for sufficiently large m and nj. Putting both inequalities together, we get [goh"k 1(hp,) — Y (h).
Let w € S,. By definition,

[0" ] () = S([@"¢ ], 0) = o) = @ (hn) = S(@, 9.
By weak lower semicontinuity of the relative entropy, we get
Y (h) = S, @) = limsupcy(hy) 2 w(h) — S(w, @) (16)
and thus v is a maximizer of (15). On the other hand,
V() = S, 9) <[9"* | (hn) = S([¢" ], ) = ¢ ().
From this and (16), it follows that v/ (h) — S(v, ¢) =limcy (hy,). It also follows that
limsup S([¢" ], ¢) < S, 0)

and this, together with lower semicontinuity implies that S ([goh"k ], @) converges to S(¥, ).
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To show that such 1 is unique, suppose that ¥’ is another maximizer, then for v; := Ay +
(1 =2)y’,0< A <1, we have

Y (h) = S, ) = Yn(h) =S¥, @)
> Ya(h) = xS, ) — (1 =M)SW', @) =¥ (h) — S(¥, ¢)

hence v, is a maximizer as well and, moreover,

SWi, @) =ASW, ) + (1 = 1)SW', 9).

By strict convexity, this implies that ¥ = v'. It also follows that the whole sequence [¢"] con-
verges weakly to .
Using (6), we have

S(p, ¥) < 1in’111nfs(<p, [¢"]) = limey (hn) — @ (h) < 0.
This implies that supp ¢ < supp ¥ and 1 is faithful. Finally, by taking the limit in the equality
¥ (ha) = S 9) = cyhn) = S(¥. [¢"])
we get lim,, S(, [goh"]) —0. O
Corollary 5.1. Let h;, be a sequence in By, then h,, — 0 if and only if ¢, (th,) — 0 for all t € R.
Proof. Let h, be such that c,(th,) = log (p’h"(l) converges to 0, then gath"(l) converges to 1,
for all r € R. Therefore, for each ¢ > 0, ®,(h,/¢) < 1 for large enough n, that is, ||A,|l, — O.

The converse follows from Theorem 4. O

In particular, if s, € M; is a sequence converging strongly to &, then &, converges to % in
[l - I, see [16].

6. The dual spaces

The dual space M , is obtained as the quotient space M /{¢p}. Each equivalence class in
M, can be identified with its unique element v satisfying v(1) = 0. By Proposition 2, we have
B;,o = ng;ﬂ C M ,- By Proposition 3, B;,o is the same as B /{¢}.

Lemma 6.1. Let ¢, be the restriction of ¢, to By o. Then the conjugate functional is E;;(v) =
Fy(v+ ).

Proof. Letv € B;j, v(1) =0. Then by (10),

Fy(v+¢) = sup {v(h) +@h) — ()}

= sup {v(h —@(h)) —Cp(h — @)} =Cy(v). O
heBy
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Let V be a Banach space and V* its dual. For any subset D C V, let D° be the polar of D
in V* thatis, D° ={v e V*, v(h) <1, Vh € D}. We will need the following lemma.

Lemma 6.2. Let F:V — R™ be a convex functional such that F(0) =0 and let F* be its conju-
gate. Let D={x €V, F(x)<1}and D* ={ve V*, F*(v)<1}. Then

1
ED* C D° C D*.

Proof. If v € D*, then v(x) < F(x) + F*(v) <2 for all x € D and therefore %v € D°. Let now
v € D°, then

v(x) -1 <0< F(x) forxeD.

If F(x) > 1, then by continuity there is some ¢ € (0, 1) such that F(tx) = 1. Since tx € D,
v(tx) < 1, moreover, by convexity, 1 = F(tx) <t F(x). Consequently,

1
v(x)—lg;—léF(x).

It follows that F*(v) <landve D*. O

Let us denote Ky o :={h € By 9, Py0(h) < 1}. Then K, o is the closed unit ball in By, ¢. Its
polar K(; o 18 the closed unit ball in B; 0-

Proposition 5. Let v be an element in K; o- Then there are states w1, wy, satisfying S(w1, ¢) +
S(wa, ¢) < 1, such that v = w1 — w;.

Proof. Since ¢, is continuous on By, o, the set D :={h € By o, ¢,(h) < 1} is closed. Let us en-
dow the dual pair B, o and B;,o with the o (B0, B;,o) and o (B;’ o» By,0) topology, respectively.
As D is convex, it is closed also in this weaker topology. The set D N —D is absolutely convex
and closed, moreover,

DN-DC K,o<2(DN-D), (17)

as can be easily checked. Then
1 o o o
E(D N—-D)"cK,,S(DN-D)".

By [14], (D N —D)° is the closed convex cover of D° U —D°, which is the same as the closed
absolutely convex cover of D°. Moreover, since D° is the polar of a neighborhood of 0, it is
compact [14]. Therefore its absolutely convex cover is also compact, hence closed. It follows
that (D N —D)° is the absolutely convex cover of D°.

By Lemmas 6.1 and 6.2,

1
71 —9)ED"C S~
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and this implies

1
1 absconv(Sy,1 — @) C K;,o C absconv(Sy,1 — ). (18)

Let now v € absconv(S,,1 — ¢), then there are elements ¢y, ..., ¢, € Sy 1, and real numbers
Ayeooshn, )y lAgl =1, suchthatv=>)" A,(¢, —¢). Let m <n be such that A; > 0 fori <m
and A; <O fori > m. Then v = w|; — wy, with

m n
1= kigi+(1=Ne, o= Y |kilgi+rp,

where A = ) 7., A;. Moreover, S(wi,¢) < > ;" AiS(¢i,¢) < A, and similarly, S(ws,¢) <
1—Xx. O

Theorem 6.

(i) By =P, — Py and BN M} =P,
(i1) B;,O = Un n(S(p,l — 8%1).

Proof. (i) Let w € B* and let v = w — w(1)@. Then v can be seen as an element in B* . Let
||v||* 0=1 then by Proposmon 5, there are w1, @y € Sy .1, such that v/t = w1 — wy, that 1s w=
twi —l— w(1)¢ —tws. Since wy, w2, ¢ € P, and Py, is a convex cone, it follows that B; C Py — P,
On the other hand, we have already shown that if w € S, then w € B;‘j and hence 73<p - Py, C B;.
Let w € B:; N M, then we get w + twy = tw; + w(1)g. It follows that w + rw; € Py, and
identity (1) implies that @ must be in P,,.

(i1) By Proposition 5,

K(;() - (S<p,1 - S(p,l) - 4K(;,()
The equality now follows from the fact that the closed unit ball is absorbing in B;’; 0- O

In the rest of this section, we find an equivalent norm on B(’; o- We define a function f: G, x
S, —> RT by

flo1, @) =S(w1, ¢) + S(w2, ¢).

Clearly, f is weakly lower semicontinuous and strictly convex. Further, let v € &, — &, and let
Ly ={(w1,w) € 6, x &4, w1 —wr =v}. Then L, is a weakly closed subset in M, x M,.

Lemma 6.3. Let v € S, — S,. Then the function f attains its minimum over L, at a unique point
(v4,v_) € Ly,.

Proof. By assumptions, v = w; — w, for some w;, wy € Sy. Let C > 0 be such that w, w; €
Sy,c, then the infimum is taken over the set L, NSy c % Sy c. Since L, is weakly closed and
Sy,c is weakly compact, the intersection is weakly compact and f attains its minimum on it.
Uniqueness follows by strict convexity of f. O
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Let us now define the functional ¥, o: M7 ; — R™ by

W, 0(v) = { £v+, v_) ifves, -8y,

otherwise.

Lemma 6.4. ¥, ( is a Young function.

Proof. Itis easy to check that ¥, ¢ is convex, positive, ¥, o(v) = ¥, o(—v) and that ¥, o(v) =0
if and only if v = 0. We will show that ¥, ¢ is lower semicontinuous.

To do this, we have to prove that for any C > 0, the set of all v satisfying ¥, o(v) < C is
closed. Let v, be a sequence of elements in this set, converging to some v. Let v, = v,+ — v,—
be the corresponding decompositions, then v, 1, v,— € Sy ¢ for all n, hence there are elements
v/ and v_ in S, ¢ and a subsequence v, = vy 4 — Uy, — such that v, — v/ and v, — v_
weakly. It follows that v = v/ — v_ and ¥, o(v) < SV, @) + S(_, @) <liminf S(vy, 4, @) +
S(vp—, ) < C.

Suppose that v # 0, then ¥, o(v) > 0.If # > 1, then by convexity, ¥, o(v) < ¥, o(fv), hence
lim; 00 Wp,0(tv) =00. O

Let us find the corresponding Banach space. Note that
Cy,,= {0)1 —w: wi,w €6y, S(wy, @) + S(wy, ) < 1}-

By Proposition 5, this implies that K(; 0ECy,, S Sy,1 — Sp,1 and by Theorem 6(ii), B(’; 0 C
LW(p,o - B;,O'

Proposition 7. || - lw,, defines an equivalent norm in B;,O.

Proof. Let l1/(;k o - M — R be the conjugate functional, then
W, o(h) = sup v(h) — ¥ o(v)
veMy

= sup sup  wi(h) —wa(h) — f(w1,w2)

VS, =8y (w1,w2)€ELy

= sup wi(h) —S(wi,9) +wr(=h) — S(w2, ) =2Py o(h).

wl,a)zeSw

It follows that ¥, o(v) = U/;"*E)(v) = 2<D;’j’0(%v). Since the norms || - ||;;’0 and || - ||¢;’0 are equiv-

alent, this finishes the proof. O
7. The chain rule

Proposition 8. Let h € By, k € M. Then [¢"*] = [[¢"1¥], ¢y (h + k) = |y (k) + ¢4 (h) and
for all normal states w the equality

w(k) — S(o, [¢"]) = co(h + k) — cp(h) — S(w, [¢"TF]) (19)

holds.
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Proof. Let h, € M; be such that 4, — h in B,. By the chain rule (7), we have [tk =
[[¢" 1] and ¢, (hy + k) = cpyhny (k) + ¢y (hy). By Theorem 4, ¢, (hy) — cy(h), cp(hy + k) —
cy(h + k) and [p"] — ["], [p""T*] — [¢"T*] strongly. Now we can proceed exactly as in the
proof of [16, Theorem 12.10] to obtain (19). By putting @ = [¢"*] in this equality, we get

[0 + ([ . [6]) = (h+ ) — ) > 0(0) = S(o. [¢")

for all w, which implies the statement of the proposition. O
Theorem 9. Let h € By,. Then By, = By and Sjyn) = S,.
Proof. Let k € M; and let ¢ > 0. By Proposition 8,

c[¢h](k) =cy(h+k) —cy(h).
Since ¢, 1s continuous on B, there is a § > 0 such that

|cp(h + k) — cy(h)| <log2

if ||k]l, < 8. It follows that lkllfn < & whenever | k||, < de and this implies B, & Biyny. In

particular, i € By
Let h, be a sequence converging to & in By, then by (6)

o (hy) — S(@, ) = cp(hy) — S(w. [¢"]).
By Theorem 4, and lower semicontinuity,
w(h) — S(@, ) < cp(h) — S(o, [¢"]).

This implies S, < S[(ph].
Further, &, converges to & in By} and by Theorem 4 and Proposition 8,

[["] "] =tim[[¢"] "] = tim[¢" "] =.

By the first part of the proof, Bj,nj = By and Sp = Sj,ny. O

Theorem 10. Let i, k € B,. Then the chain rule c,(h + k) = cj i (k) + ¢, (h), [[9"1*] = [¢"T*]
holds.

Proof. Let k, € M be a sequence converging to k in By, = Bj,u. Then
[[e" '] =tim[[¢"]" ] =lim[¢" " ] = [¢" "]
and by Proposition 8,
co(h+k)= lirgnc[(ph](kn) +cp(h) = C[(ph](k) + ¢y (h). O
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Corollary 7.1. Let h € B, and let w be a normal state. Then the equality
w(h) — S(@, ) = cy(h) — S(w. [¢"])
holds.
Proof. By (6) and lower semicontinuity, we have
w(h) — S(w, p) <cy(h) — S(a), [goh])

Since, by the chain rule, ¢ = [[¢"17"] and crh)(—h) = —cy(h), we also have

w(—h) — S(w,[¢"]) < cph(=h) = S(w, ) = —cy(h) — S(w, 9)
which implies the opposite inequality. O
Corollary 7.2. Let [¢"] = [¢*] for some h, k € B,. Then h — k = p(h — k).

Proof. Let us suppose that 4 € B, is such that [¢"] = ¢. Then [¢""] = ¢ for all n € N. It follows
that c,(nh) = np(h) = ncy(h) for all n and for 0 <7 < 1, we have by (5) and convexity of ¢,
that

tcy(h) = @(th) <cy(th) <tcy(h).

It follows that ¢, (th) =tc,(h) =te(h) for all t > 0. Since also [ga_h] = [[(ph]_h] = @, we have
cp(—th) =tcy(—h) = —tep(h) fort > 0.

It is easy to see that c,(k — 1) = c,(k) — A for all k € By, and A € R. Let A = ¢(h), then it
follows that

cp(t(h —2)) =0=cy(t(=h+ 1))

for all # > 0. This implies |2 — A||, = 0 and hence h = A.
Let now [¢"] = [¢¥], then [[*] "] =[¢* "1=¢pand h—k=r=¢(h —k). O

Note that the function ¢, : By o — R corresponds to the cumulant generating functional in the
commutative case. Let us list some of its properties.

Theorem 11. The function ¢, has the following properties:

(1) ¢y is positive, strictly convex and continuous, ¢,(0) = 0.
(i1) ¢y is Gateaux differentiable, with Efp (h) = [<ph] — Q.
(ii1) The map

Byoah[¢"] —ge B},
k

is one-to-one and norm to O’(B(p 0

By 0)-continuous.
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Proof. (i) By Corollary 7.1, ¢, (h) = S(, [¢"]) > 0 and €y (0) = 0 by definition. Let now 4, k €
Byoand 0 < A < 1 be such that

Co(Ah + (1 = k) = Ay (h) + (1 — )Ty (k).

Then

S;Pk(w(h) —S(@,9) + 1 =) (k) - S, p))

= Asup(w(h) — S(w, 9)) + (1 — 1) sup(w (k) — S(w, 9)).

Sy Sp

This implies that the maximum in both expressions on the right-hand side is attained at the same
point. Therefore [goh] = [<pk], hence h —k=¢p(h — k) =0.
(i) By Theorem 4, ["] — ¢ is the unique element in B ,, such that

([¢"] = 0) ) =2p(h) + 5 ([¢"] = ¢)-

By [6], this implies that ¢, is Gateaux differentiable in & with derivative ¢, (h) = [o"]— 0.

(iii) Let 2, — h in B, then [(ph"] converges strongly to [g0h] and S([goh”], Q) —> S([gah], Q).
It follows that [(ph"](k) — [gvh](k) for each k € M and moreover, the set {[(ph"], n € N} is
equicontinuous in B:;. This implies that [goh"](k) — [goh](k) for all kK € B,. The map is one-to-
one by Corollary 7.2. O

8. A manifold structure on faithful states

Recall that a C”-atlas on a set X is a family of pairs {(U;, ¢;)}, such that

(i) Uijc X foralli and | JU; = X.
(i) For all i, ¢; is a bijection of U; onto an open subset ¢; (U;) in some Banach space B;, and
fori, j, e;(U; NU;j) is openin B;.
(i11) The map ejel._lz e;(UiNUj) — e;j(U NU;j)isaCP-isomorphism for all i, j.

Let F be the set of faithful normal states on M. For ¢ € F, let V,, be the open unit ball in
By o and let sy, : V, — F be the map h — [¢"]. By Corollary 7.2, sy 1s a bijection onto the set
¢ (V) =1 Uy C Sp. Let ¢, be the restriction of s, 'to U,. Then we have

Theorem 12. {(U,, ey), ¢ € F.} is a C*-atlas on F.

Proof. The property (i) and the first part of (ii) of the definition of the C? atlas are obviously
satisfied. Let ¢1, ¢2 € Fi be such that Uy, N Uy, # ¥. We prove that ey, (Uy, N Uy, ) is open in
By, 0.

Let hy € ey, (Uy, N Uy,). Then there is some hy € By, o, such that [go{”] = [(pgz]. By The-

orem 9, B, = B =B = By, and by the chain rule, ¢; = [go’z‘], where k = hy, — hy +

h h
lp; '] [p,°]
@2(h1) € By, 0. Clearly, the map By, o — By, 0, given by h + h — @2 (h) is continuous.
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Let ¢ > 0 be such that i, + 1, € V,,, whenever ||1}]l,, < ¢ and let us choose § > 0 such that
hy 4 k' € Vy, and ||k} — @2(h) ||y, < € for ||h|ly, < 8. For such i, we have

kt-hy 1, —a (B B4l —@a ()
:[902 B 1]:[%2 S 1]€U¢1HU¢2-

This proves that s90_11 (Ugp, NUy,) is openin By, o. It is also clear that the map

h1+h,
Spy (h1 +hY) = [§011 ']

—1, .1 -1
Sgr So1 1 Sg, (Up, NUy,) — Ser (Up, NUy,)
h—k+h—q@(h)

is C*°, which proves (iii). O

It is not difficult to see that for ¢ € F, the set F, := {[o"], h e By 0} is a connected compo-
nent of the manifold. Let us now define a family of mappings

U By o03hr>h—ga(h) € Bpo, @1,02 € Fp.

It is clear that this defines a parallel transport on the tangent bundle of F, and the associated
globally flat affine connection is the exponential connection [7].
Let us recall that the dual connection is defined on the cotangent bundle 7*F, by means of

the parallel transport {(U(/(,g),@1 )*, @1, 92 € Fy}, where

*
<(U</(>§?</>1) v, h) = (v, Uf.g?wh)’ ve 8;2,0’ h € By, 0,

and the duality is given by (v, h) = v(h). Since v(h — ¢1(h)) = v(h) for all ¢, the dual parallel

transport is

(m) . p* *
U§01,§02'B<p1,09v'_>U€B¢2,0, 01,92 € Fyp,

which corresponds to the mixture connection.
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16

On quantum information manifolds

Anna Jencova

16.1 Introduction

The aim of information geometry is to introduce a suitable geometrical structure on
families of probability distributions or quantum states. For parametrised statistical
models, such structure is based on two fundamental notions: the Fisher information
and the exponential family with its dual mixed parametrisation, see for example
(Amari 1985, Amari and Nagaoka 2000).

For the non-parametric situation, the solution was given by Pistone and Sempi
(Pistone and Sempi 1995, Pistone and Rogantin 1999), who introduced a Banach
manifold structure on the set P of probability distributions, equivalent to a given
one. For each p € P, the authors considered the non-parametric exponential family
at p. As it turned out, this provides a C*°-atlas on P, with the exponential Orlicz
spaces Lg (1) as the underlying Banach spaces, here ® is the Young function of the
form ®(z) = cosh(z) — 1.

The present contribution deals with the case of quantum states: we want to
introduce a similar manifold structure on the set of faithful normal states of a von
Neumann algebra M. Since there is no suitable definition of a non-commutative
Orlicz space with respect to a state ¢, it is not clear how to choose the Banach space
for the manifold. Of course, there is a natural Banach space structure, inherited from
the predual M,. But, as it was already pointed out in (Streater 2004), this structure
is not suitable to define the geometry of states: for example, any neighbourhood of
a state ¢ contains states such that the relative entropy with respect to ¢ is infinite.

In (Jencovd 2006), we suggest the following construction. We define a Luxem-
burg norm using a quantum Young function, similar to that in (Streater 2004) but
restricted to the space of self-adjoint operators in M. Then we take the comple-
tion under this norm. In the classical case, this norm coincides with the norm of
Pistone and Sempi, restricted to bounded measurable functions. This is described
in Section 16.2. In Section 16.3, we show that an equivalent Banach space can be
obtained in a more natural and easier way, using some results of convex analysis.
In the following sections, we use the results in (Jencovd 2006) to introduce the
manifold, and discuss possible extensions.

Algebraic and Geometric Methods in Statistics, ed. Paolo Gibilisco, Eva Riccomagno, Maria
Piera Rogantin and Henry P. Wynn. Published by Cambridge University Press. © Cambridge
University Press 2010.
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Section 16.6 is devoted to channels, that is, completely positive unital maps
between the algebras. We show that the structures we introduced are closely related
to sufficiency of channels and a new characterisation of sufficiency is given. As it
turns out, the new definition of the spaces provides a convenient way to deal with
these problems.

16.2 The quantum Orlicz space

We recall the definition and some properties of the quantum exponential Orlicz
space, as given in (Jencova 2006).

16.2.1 Young functions and associated norms

Let V be a real Banach space and let V* be its dual. We say that a function
®:V - RU{oo} is a Young function, if it satisfies:

(i) @ is convex and lower semicontinuous;
(ii) ®(x) > 0 for all x € V and ®(0) =0,
(iii) ®(x) = @(—x) for all z € V,

(iv) if « # 0, then lim;_, o P(tz) = 0.

Since @ is convex, its effective domain
dom(®) :={z €V, ®(z) < o0}
is a convex set. Let us define the sets
Co :={x €V, ®(z) <1},
Ly :={z € V,3s > 0, such that ®(sz) < co}.

Then Lg is the smallest vector space, containing dom(®). Moreover, the Minkowski
functional of Cg,

llz||e := inf{p > 0,2 € pCp} = inf{p > 0,D(p " 2) <1}

defines a norm in Lg.

Let Bg be the completion of Lg under || - ||¢. If the function ® is finite valued,
®:V — R, (or, more generally, 0 € int dom(®)), then Ly =V and the norm || - ||¢
is continuous with respect to the original norm in V', so that we have the continuous
inclusion V C Bg.

Let now @ : V' — R be a Young function and let the function ®* : V* — RU{o0}
be the conjugate of ®,

D" (v) = :161‘13 v(x) — D(x)

then ®* is a Young function as well. The associated norm satisfies

lo(@)] < 2[lzfle o]l

ZEGB(I), v € Bg+

(the Holder inequality), so that each v € Bg~ defines a continuous linear functional
on Bg, in fact, it can be shown that

Lq>* :Bcp* :B$ EV*
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in the sense that the norm |- ||4~ is equivalent with the usual norm in Bj. Similarly,
we have Ly =V C By C Bj..

16.2.2 Relative entropy
Let M be a von Neumann algebra in standard form. Let M be the set of normal

positive linear functionals and &, be the set of normal states on M. For w and ¢
in M, the relative entropy is defined as

—(log(Ay e, ), &) if suppw < supp
S(w, @) =

%) otherwise

where £, is the representing vector of w in a natural positive cone and A, ¢ is the
relative modular operator. Then S is jointly convex and weakly lower semicontin-
uous. We will also need the following identity

where 11, 19 are normal states and ¢y = APy + (1 — A\)ihy, 0 < X < 1. This implies

that S is strictly convex in the first variable.
Let us denote
P, = {w e M, S(w,p) < oo}
Sy, ={w € 6., S(w,p) < oo}
K,c:={we6,, Sw,¢) <C}, C > 0.

Then P, is a convex cone dense in M and S, is a convex set generating P,. By
(16.1), S, is a face in &,. For any C' > 0, the set K, ¢ separates the elements in
M and it is convex and compact in the o(M.,, M)-topology.

16.2.3 The quantum exponential Orlicz space and its dual

Let M, be the real Banach subspace of self-adjoint elements in M, then the dual
M is the subspace of Hermitian (not necessarily normal) functionals in M*. We
define the functional F, : M} — RU {oco} by

S(w,p) ifweb,
F, = ’
o) { 00 otherwise.
Then F, is strictly convex and lower semicontinuous; with dom(F,) = S,. Its
conjugate
F7(h) = sup w(h) — S(w,¢)
weEB,
is convex and lower semicontinuous; in fact, being finite valued, it is continuous on
M. We have F* = F, on Mj.
We define the function ®, : M, — R by

o, (1) = SR TSR
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Then @, is a Young function. Let us denote ||hl|, := ||h||s, and B, := By, then
we call B, the quantum exponential Orlicz space.

Let h € My, ||h]|, < 1. Then
cosh(w(h)) < 2e5«#),

It follows that each w € S, defines a continuous linear functional on B,. We denote
by B, the Banach subspace of centred elements in B,, that is, h € B, with
w(h) = 0. Then

F*(h)+ F*(—h
oo = LD

is a Young function on M, o := {h € M,,¢(h) = 0} and it defines an equivalent
norm in By g.

Remark 16.1 Let M be commutative, then M = L. (X, 3, u) for some measure
space (X,X, u) with o-finite measure pu. Then ¢ is a probability measure on 3,
with the density p := dp/du € Li(X, %, u). For any Hermitian element u € M,
F}(u) = log [ exp(u)pdp, so that

D, (u) = /cosh(u)pdu -1

It follows that in this case, our space B, coincides with the closure Mg (yp) of
LOO(Xv Ev 90) in L (50)

Let us now describe the dual space B . It was proved that B} =P, — P, and
B o =Unn(K, 1 — Ky 1). If we denote by C o the closed unit ball in B , then
Coo CKyo1—Ky1 C4C, (16.2)
so that any element in C, ¢ can be written as a difference of two states in K, ;.
Forvin S, —S,, let L, := {wi,ws € S,, v = w; — wy}. We define the function
U, 0 R* by
infr, S(wi,¢) +S(wa,p) ifves, -8,
\pw,O(U) =
00 otherwise.
Then ¥, ¢ is a Young function and it was proved that

87 o (v) = 1/20, 4(20)

for v € M . It follows that the norm in B, is equivalent with || - ||y, -

16.3 The spaces A(K,) and A(K,)**

In this section, we use a well-known representation of compact convex sets, see for
example (Asimow and Ellis 1980) for details. We obtain a Banach space, which
turns out to be equivalent to B, o.
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Let K C &, be a convex set, compact in the o(M,, M)-topology and separating
the points in M. In particular, let K, := K, 1. Let A(K) be the Banach space
of continuous affine functions f : K — R, with the supremum norm. Then K can
be identified with the set of states on A(K), where each element w € K acts on
A(K) by evaluation f — f(w). Moreover, the topology of K coincides with the
weak*-topology of the state space.

It is clear that any self-adjoint element in M belongs to A(K), moreover, M
is a linear subspace in A(K), separating the points in K and containing all the
constant functions. It follows that M, is norm-dense in A(K).

The dual space A(K)* is the set of all elements of the form

p:frraf(w)—axf(wr)

for some wy,wy € K, aj,ay € RT, so that A(K)* is a real linear subspace in M,.
The embedding of A(K)* to M, is continuous and the weak*-topology on A(K)*
coincides with o(M.,, M) on bounded subsets. It is also easy to see that the second
dual A(K)** is the set of all bounded affine functionals on K.

Let L C K be convex and compact. For f € A(K)**, the restriction to L is in
A(L)**, continuous if f € A(K) and such that ||f|zllz < ||fllx-

Lemma 16.1 Let a,b > 0, then A(K, ) = A(K,) and A(K, ,)*™* = A(K, )",
in the sense that the corresponding norms are equivalent.

Proof Suppose that a > b. Since K, C K, 4, it follows that A(K, ,) € A(K, )
and A(K, o)™ C A(K, )™ with || fllo.s < ||flls,a for f € A(K, .)**. On the other
hand, let w € K, 4, then w; :=tw + (1 —t)¢ € K, whenever t <b/a. Then

w = a/buyye — (a/b—1)p

so that K, , is contained in the closed ball with radius (2a — b)/b in A(K,;)*.
It follows that any f € A(K, ;)** defines a bounded affine functional over K, ,,
continuous if f € A(K, ;) and

[fllo.a = sup [f(w)] < [ Fllo.0(2a —b)/b.

weKy o

O

We see from the above proof that S, C A(K, ;)* and each K, , is weak*-compact
in A(K,)*. It follows that dom (F,) C A(K, )" and F,, is a convex weak*-lower
semicontinuous functional on A(K, ,)*.

Let us denote by Ay (K) the subspace of elements f € A(K), such that f(¢) = 0.
Then we have

Theorem 16.1 Ay(K,) = B, o, with equivalent norms.

Proof We have by (16.2) that the norms are equivalent on M;. The statement
follows from the fact that M, is dense in both spaces. |
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16.4 The perturbed states

As we have seen, F,(w) = S(w, ¢) defines a convex lower semicontinuous functional
A(K,)* — R. Let f € A(K,)**. We denote

co(f) = jnf F@)+ Slw.p).

Then —c,(—f) is the conjugate functional F;(f), so that ¢, is concave and upper
semicontinuous, with values in R U {—o0}.
Suppose that ¢, (f) is finite and that there is a state ¢ € S, such that

co(f) = F() + S(, ).

Then this state is unique, this follows from the fact that .S is strictly convex in the
first variable. Let us denote this state by ¢/. Note that if f € M,, then ¢/ exists
and it is the perturbed state (Ohya and Petz 1993), so that we can see the mapping
f — ¢/ as an extension of state perturbation.

In (Jencova 2006), we defined the perturbed state for elements in By, o; we remark
that there we used the notation ¢, = F and the state was denoted by ("], h € B,.
It was shown that [p"] is defined for all h € B, and that the map

B%Q € h— [(ph]

can be used to define a C'*-atlas on the set of faithful states on M. By Theo-
rem 16.1, we have the same for Ay(K,). We will recall the construction below, but
before that, we give some results obtained for f € A(K,)**.

First of all, it is clear that ¢, (f +¢) = c,(f) + ¢ for any real ¢ and ¢/ = p/*¢ if
¢/ is defined. We may therefore suppose that f € Ay(K,)**.

Lemma 16.2 Let f € A(K,)** be such that ¢/ exists. Then for allw € S,,

S(w,9) + f(w) 2 S(w, ') + ¢, ().

Equality is attained on the face in S,, generated by o .

Proof The statement is proved using the identity (16.1), the same way as Lemmas
12.1 and 12.2 in (Ohya and Petz 1993). O

The previous lemma has several consequences. For example, it follows that
co(f) < =S(p,¢f) < 0if f € Ag(K,)*. Further, S(w,¢’) is bounded on K,
so that K, C K, ¢ for some C > 0. It also follows that S, C S,. In particular,
S(p, ') < oo and since also S(¢f,¢) < oo, the states ¢ and ¢/ have the same
support.

Lemma 16.3 Let ¢ = ¢/ for some f € A(K,)**. Then we have the continuous
embeddings A(Ky) C A(K,) and A(Ky )™ T A(K,)*™.

Proof Follows from K, C Ky ¢ and Lemma 16.1. O
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We will now consider the set of all states ¢/, with some f € A(K,)**. Let ¢ be
a normal state, such that ¢ € S;;. We denote

By identity (16.1), fy is an affine functional K, — R U {oo}, such that f,(¢) = 0.

Theorem 16.2 Let ¢ be a normal state. Then 1 = o for some f € A(K, )™ if
and only if Y € S, and K, C Ky ¢ for some C > 0.

Proof 1t is clear that ¢ € S, if ¢ = o/ and we have seen that also K, CKyc.
Conversely, if K, C Ky ¢, then f, € Ag(K,)** and

fd’(w) +S(w,<,0) = S(wv¢) - S(¢7¢) > —S((,OJL/J)
for all w € S,. Since equality is attained for w = 9, 1 = /v, O

Note also that, by the above proof, ¢, (fy) = —S(¢, ).

16.4.1 The subdifferential

Let ¢ € S,. The subdifferential at ¢ is the set of elements f € Ay(K,)**, such
that ¢ = ¢/. Let us denote the subdifferential by 0, (1). By Theorem 16.2, the
subdifferential at 1 is non-empty if and only if K, C Ky c.

Lemma 16.4 If 0, () # 0, then it is a closed convex subset in Ay(K,)**. More-
over, ¢, 1s affine over O, ().

Proof Let f,g € 0,(¢) and let gy = Ag+ (1 —X)f, A € (0,1). Then
D)+ S(W, ) = Acp(9) + (1 = Ny (f).

Since ¢, is concave, this implies that ¢y = ¢ and that c,(gx) = Ac,(g) + (1 —
A, (f). Moreover, we can write

9, () = {9 € A(K,)™, ¢p(9) = 9() = S(¥, 9)}

and this set is closed, since ¢, is upper semicontinuous. ]

Lemma 16.5 Let ¢ € S,, 0,(¢) # 0 and let g € Ag(K,)**. Then g € 9,(¢) if
and only if there is some k € R, such that

9W) = fo(w) 2k, we S, and g(y) = f(d) =F. (16.3)
In this case, k = c,(g) — ¢, (fy) < 0.

Proof 1f g € 0,(¢), then (16.3) follows from Lemma 16.2 and k£ < 0 is obtained by
putting w = ¢. Conversely, suppose that (16.3) is true, then we have for w € S,

g(w) + S(w, ) = g(w) — fy(w) + fu (W) + S(w, ) > k+c,(fy)
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and g(¢) + S(¢,w) = k+c, (fy), this implies that 1) = ¢9 and ¢, (g) = k+ ¢, (fy).
U

16.4.2 The chain rule
Let C, :={¢ € S,, K, C Ky ¢, Ky C K, 4 for some A,C > 0}.

Theorem 16.3 Let ¢ € C,. Then

(i) Sy =Sy,
(i) A(K,) = A(Ky), A(K,)* = A(Ky)*™, with equivalent norms,
(iii) ¢ € Cy.

Proof Let ¢ € C,. By Theorem 16.2, ¢ = ¢/, f € A(K,)*™ and also ¢ = ¢ for
some g € A(Ky)**. Now we have (i) by Lemma 16.2 and (ii) by Lemma 16.3, (iii)
is obvious. O

We also have the following chain rule.

Theorem 16.4 Let ¢ € C, and let g € A(K,)** be such that 19 exists. Then

co(9) =colg+ f)—co(f), W =" (16.4)
holds for f = fy.

Proof Suppose that 19 exists, then

9(W) + fu(w) + 5w, 9) = g(w) + 5w, ) + ¢, (fu) = ¢y (9) + ¢ (fy)

for all w € S, = S, and equality is attained at w = 9. This implies ¢, (g) =
co(g+ f) = cp(f) and 99 =/ *9. O

16.5 The manifold structure

Let F be the set of faithful normal states on M. Let ¢ € F. In this section we show
that we can use the map f — ¢/ to define the manifold structure on F. So far, it
is not clear if this map is well-defined or one-to-one on Ay (K, )**. The situation is
better if we restrict to Ag(K, ), as Theorem 16.5 shows.

Theorem 16.5 Let f € A(K,). Then
(i) ¢/ exists and p/ €C,.
(ii) If g € A(K,) is such that ¢¢ = ¢/, then f — g = (f — g).
(ili) In Lemma 10.2, equality is attained for allw € Sy, in particular,

f - f(SD) = f«,of .
(iv) The chain rule (16.4) holds for all f,g € A(K,).
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Proof We may suppose that f € Ay(K,). By the results in (Jencovd 2006) and
Theorem 16.1, if f € Ay(K,) = By, then 1 = ¢/ exists, f — f(¥) € Ag(Ky) =
By and ¢ = 1=/, By Theorem 16.2, 1 € C, and (i) is proved. (ii),(iii) and (iv)
were proved in (Jencovéd 2006). O

Proposition 16.1 is not needed in our construction. It shows that each ¢ € C, is
faithful on A(K,).

Proposition 16.1 Let ¢ € C, and let g € A(K,) be positive. Then g() = 0
implies g = 0.

Proof Let g be a positive element in A(K,) = A(Ky), with g(¢)) = 0, then by
Lemma 16.5, fy + g € 0,(¢). Since ¢ exists, we have by the chain rule that
Y9 = plvt9 = 1. Since g € Ag(Ky), g =0. O

Let us recall that a CP-atlas on a set X is a family of pairs {(U;, e;)}, such that

(i) U; C X for all 4 and UU; = X;
(i) for all 4, e; is a bijection of U; onto an open subset e;(U;) in some Banach
space B;, and for all ¢, j, e;(U; NUj) is open in B;;
(iii) the map e;je; ' : e;(U; NU;) — e;(U; NU;) is a CP-isomorphism for all 4, j.

Let now X = F. For ¢ € F, let V,, be the open unit ball in Ay(K,) and let
sy, : V, — F be the map f +— of. By Theorem 16.5, s, is a bijection onto the set
U, :=5,(V,). Let e, be the map U, 3 ¢ — fy € V,,. Then we have

Theorem 16.6 (Jencovd 2006) {(U,,e,), ¢ € F} is a C*®-atlas on F.

In the commutative case, the space corresponding to A(K,) is not the exponen-
tial Orlicz space Lg, but the subspace Mg, see Remark 16.1. The corresponding
commutative information manifold structure was considered in (Grasselli 2009). It
follows from the theory of Orlicz spaces that (under some reasonable conditions on
the base measure p)

Mo (p)" = Lo (1), Lo~(n)" = Lo (n).

By comparing A(K,) with these results, it seems that the quantum exponential
Orlicz space should be the second dual A(K,)**, rather than A(K,).

To get the counterpart of the Pistone and Sempi manifold, we would need to
extend the map s, to the unit ball VJ* in Ay(K,)** and show that it is one-to-one.
At present, it is not clear how to prove this. At least, we can prove that c, is finite
on V,; *.

Lemma 16.6 Let f € Ag(K,)™, ||fll < 1. Then 0 > ¢, (f) > —1 and the infimum
can be taken over K.

Proof Let w € S, be such that S(w,y) > 1. Since the function t — S(w, )
is convex and lower semicontinuous in (0,1), it is continuous and there is some

147



148

274 A. Jencovd

t € (0,1) such that S(w;, p) = 1, recall that w; = tw + (1 —t)¢. By strict convexity,
it follows that 1 = S(wi, ) < tS(w,¢) and S(w, ) > 1/t. On the other hand,
w; € K, and therefore —1 < f(w;) = tf(w). It follows that

fw)+ 5w, p) > =1/t +1/t = 0= f(p) + 5(p,9) > ¢, (f):

From this, ¢, (f) = inf,er, f(w) + S(w,p) > —1. O

16.6 Channels and sufficiency

Let NV be another von Neumann algebra. A channel from N to M is a completely
positive, unital map o : N' — M. We will also require that a channel is normal,
then its dual a* : ¢ — p o @ maps normal states on M to normal states on N.

An important property of such channels is that the relative entropy is monotone
under these maps:

Swoa,poa)<S(w,p), w,p € G,.

This implies that o* defines a continuous affine map K, — Ky on. If fo €
A(Koa )™, then composition with o* defines a bounded affine functional over K,
which we denote by a(fy). Then a(fy) is continuous if fo € A(K,0q) and

(o)l = sup [folwea)l < sup |fo(wo)| = [l foll

wo €Ky oa

so that « is a contraction A(K,oq )™ — A(K,)** and A(Kpon) = A(K,).

Lemma 16.7 Let o : N — M be a channel and let g9 € A(Kyo0)™. Then
Cpoa (90) <cp (0‘(90))-

Proof We compute
co(algn)) = inf go(woa)+S(w,¢) 2 inf go(woa) +5(w0a,90a) 2 cua(90):
w © w ©
O

Let S be a set of states in &,(M). We say that the channel a : N' — M is
sufficient for S if there is a channel 8 : M — N, such that

woaoff=uw, weS.

This definition of sufficient channels was introduced in (Petz 1986), see also (Jencova
and Petz 2006a), and several characterisations of sufficiency were given. Here we
are interested in the following two characterisations. For simplicity, we will assume
that the states, as well as the channel, are faithful.

Theorem 16.7 (Petz 1986) Let ¢ € S,. The channel o is sufficient for the pair
{v, ¢} if and only if S(¥, ) = S(Yoa,poa).
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Theorem 16.8 (Jencovd and Petz 2006b) Let ¢ = @/ for some f € M. Then « is
sufficient for {1, v} if and only if there is some gy € N, such that poa = (poa)9®
and f = a(go).

In this section we show how Theorem 16.8 can be extended to pairs {¢, ¢} such

that 9, () # 0.
So let ¢ = ¢/ for some f € A(K,)** and suppose that o : N' — M is a sufficient

channel for the set {1, }. Let us denote ¢y := poa, ¥y :=poa. Let §: M = N
be the channel such that ¢y o 8 = @, ¥y o B = . We will show that 1y = Lpg(f”').
To see this, note that for wy € S, ,

B(fy)(wo) = fy(wo o B) = S(wo o B,9) — S(wo © B, ) — S(¢, p).
Then

B(fy)(wo) + S(wo, o)
= S(wo 0 B,9) + S(wo, o) — S(wo © B, 0 0 B) =S¥, ) > =S(,¢) = ¢, (fy)

by positivity and monotonicity of the relative entropy, and

B(fe) (o) + S(tbo, o) = =S¥, @)

B P
50 that ¢, (B(f)) = ¢ (fu) and v = "),
On the other hand, this implies by Theorem 16.2 that f,, € A(K,,)*" and we

obtain in the same way that ¢ = ¢*/v0) and ¢, (a(fy,)) = cpp (foo)-

Theorem 16.9 Let ¢ be such that 0,(¢)) # 0 and let o : N' — M be a channel.
Let o9 = poa, g =Y o« The following are equivalent

(i) « is sufficient for the pair {p, ¥},
(i) fo, € A(K,,)" and 6 = "),

(ill) cpy (fuy) = o (fy)-
Proof The implication (i) — (ii) was already proved above. Suppose (ii) holds, then
co(alfe,)) = alfu,) (W) + S, @) =

= _S(w()y 900) - S(‘PO,¢0) + S(wa QO)
By putting w = ¢ in Lemma 16.2, we obtain ¢, (a(fy,)) < —S(¢,1). Then

0 S SOPNP) - S(w()ﬂﬂo) S S(@vao) - S(¢7¢) S 0.
It follows that c, (fy) = =S(p, %) = =S(¢o,%0) = ¢y, (fy, ), hence (iii) holds. The

implication (iii) — (i) follows from Theorem 16.7. O

In particular, if 1) = ¢/ for f € A(K,), the above theorem can be formulated as
follows.

Theorem 16.10 Let ¢ = ¢/, f € A(K,) and a : N'— M be a channel. Then « is
sufficient for {1, ¢} if and only if there is some gy € A(K,, ), such that ¥y = ¢’
and f = a(go).
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Proof The statement follows from Theorem 16.9 and the fact that if ¢ = o/ for
f € Ay(K,), then we must have f = fy, by Theorem 16.5. O
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Abstract. We introduce a new notion of a sufficient subalgebra for quantum states: a sub-
algebra is 2-sufficient for a pair of states {pg, p1} if it contains all Bayes optimal tests of p
against p;. In classical statistics, this corresponds to the usual definition of sufficiency. We
show this correspondence in the quantum setting for some special cases. Furthermore, we
show that sufficiency is equivalent to 2-sufficiency, if the latter is required for {,068’”, pi@” 1,
for all n.

Mathematics Subject Classification (2000). 46L.53, 81R15, 62B05.

Keywords. quantum hypothesis testing, sufficient subalgebras, 2-sufficiency,
quantum Chernoff bound.

1. Introduction

In order to motivate our results, let us consider the following problem of classical
statistics. Suppose that Py and P; are two probability distributions and the task
i1s to discriminate between them by an n-dimensional observation vector X. The
problem is, if there is a function (statistic) 7: X — Y, such that the vector ¥ =T (X)
(usually of lower dimension) contains all information needed for the discrimina-
tion.

In the setting of hypothesis testing, the null hypothesis Hy= Py is tested against
the alternative H; = P;. In the most general formulation, a test is a measurable
function ¢: X — [0, 1], which can be interpreted as the probability of rejecting the
hypothesis if x € X occurs. There are two kinds of errors appearing in hypoth-
esis testing: it may happen that Hp is rejected, although it is true (error of the
first kind), or that it is not rejected when Hjp is true (error of the second kind).

Supported by the Slovak Research and Development Agency under the contract No. APVV 0071-06,
grant VEGA 2/0032/09, Center of Excellence SAS-Quantum Technologies and ERDF OP R&D Project
CE QUTE ITMS 26240120009.
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16 ANNA JENCOVA

For a given test ¢, the error probabilities are
oz(go):/(p(x)Po(dx) first kind
,B((p):/(l —@(x))P1(dx) second kind

The two kinds of errors are in some sense complementary and it is usually
not possible to minimize both error probabilities simultaneously. In the Bayesian
approach, we choose a prior probability distribution {A, 1 -1}, A€[0, 1] on the two
hypotheses and then minimize the average (Bayes) error probability

/fﬂ(x))»Po(dX)-F/(l—<P(X))(1—X)Pl(dX)=)»0t(90)+(1 —A)B(@).

Suppose now that T is a sufficient statistic for {Py, P;}. Roughly speaking, this
means that there exists a common version of the conditional expectation E[-|[T]=
Ep,[-|T1, Py- a.s. and E[-|T]=Ep[-|T], Pi- as. If ¢ is any test, then E[¢|T] is
another test having the same error probabilities. It follows that we can always have
an optimal test that is a function of 7, so that only values of 7'(X) are needed for
optimal discrimination between Py and Pj.

The following theorem states that this can happen if and only if T is suffi-
cient, so that the above property characterizes sufficient statistics. The theorem was
proved by Pfanzagl, see also [16].

THEOREM 1. [15] Let T:X — Y be a statistic. The following are equivalent.

1. For any 2 €(0,1) and any test ¢ : X — [0, 1], there exists a test y:Y — [0, 1],
such that

ra(oT)+ (=P oT)<ra(p)+—-1)B(p)

2. T is a sufficient statistic for {Py, P1}.

The problem of hypothesis testing can be considered also in the quantum set-
ting. Here we deal with a pair of density operators pg, p1 € B(H), where H 1is
a finite dimensional Hilbert space and all tests are given by operators 0 < M <
1, M € B(H). The problem of finding the optimal tests (the quantum Neyman-—
Pearson tests) and average error probabilities was solved by Helstrom and
Holevo [6,8].

Here a question arises, if it is possible to discriminate the states optimally by
measuring on a given subsystem. Then we can gain some information only on the
restricted densities, which, in general, can be distinguished with less precision.

Let My C B(H) be the subalgebra describing the subsystem we have access to.
The average error probabilities for tests in My are usually higher than the optimal
ones. We will consider the situation that this does not happen and M, contains
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QUANTUM HYPOTHESIS TESTING AND SUFFICIENT SUBALGEBRAS 17

some optimal tests for all prior probabilities. In agreement with classical terminol-
ogy (see [16]), such a subalgebra will be called sufficient with respect to testing
problems, or 2-sufficient, for {pg, p1}.

The quantum counterpart of sufficiency was introduced and studied by Petz,
see Chap. 9. in [13], in a more general context. According to this definition, the
subalgebra M is sufficient for {pg, p1}, if there exists a completely positive, trace
preserving map My — B(H), that maps both restricted densities to the original
ones. Then the restriction to M preserves all information needed for discrimina-
tion between the states and it is quite easy to see that a sufficient subalgebra must
be 2-sufficient.

The conditions for sufficiency seem to be quite restrictive (see for example the
factorization conditions in [9]) and might be too strong, if only hypothesis testing
1s considered. It is therefore natural to ask if there is a quantum version of Theo-
rem 1, that is, if every 2-sufficient subalgebra must be sufficient.

In this paper, we give a partial answer to this question. We show that
2-sufficiency and sufficiency are equivalent under each of the following conditions:
(1) the subalgebra M| is invariant under the modular group of one of the states,
(2) My 1s commutative, (3) p9 and p; commute. Moreover, we show that if the
2-sufficiency condition is strengthened to hold for n independent copies of the den-
sities for all n, then the two notions become equivalent.

The organization of the paper is as follows. In Section 2, some basic notions
are introduced and several characterizations of a sufficient subalgebra are given.
A new characterization, based on a version of the Radon—Nikodym derivative,
i1s found, this will be needed for the main results. Section 3 gives the quantum
Neyman—Pearson lemma and quantum Chernoff bound. Section 4 contains the
main results: a convenient necessary condition for 2-sufficiency is found and it is
shown that it implies sufficiency in the three above described cases. Finally, the
quantum Chernoff bound is utilized to treat the case when 2-sufficiency holds for
n independent copies of the states, for all n.

2. Some Basic Definitions and Facts
2.1. GENERALIZED CONDITIONAL EXPECTATION

Let H be a finite-dimensional Hilbert space and let p be an invertible density
matrix. Let My C B(H) be a subalgebra and let E: B(H) — My be the trace pre-
serving conditional expectation. Then E(p) is the restricted density of the state p.

As we have seen, the classical sufficient statistic is defined by certain property of
the conditional expectations. It is well known that in the quantum case, a state pre-
serving conditional expectation does not always exist. Therefore we need the gener-
alized conditional expectation, defined by Accardi and Cecchini [1]. In our setting,
it can be given as follows.

154



18 ANNA JENCOVA

Let us introduce the inner product (X,Y),=Tr X*p!/2Yp!/? in B(#). Then the
generalized conditional expectation E, is a map B(H)— M, defined by

(X0,Y)p=(X0, E,(Y))E(p), Xo€My, YeB(H)

It 1s easy to see that we have

E,(X)=E(p)"'2E ("2 Xp"2) E(p)~'/2 (1)

It is known that E, is completely positive and unital and that it is a conditional
expectation if and only if p'! Myp~"" € My, for all t €R. It is also easy to see that
E, preserves the state p, that is, E7 o E(p) = p.

Next we introduce two subalgebras, related to E,. Let F, be the set of fixed
points of E, and let N, € B(H) be the multiplicative domain of E,,

Ny={X€BM), E,(X*X)=E,(X)*E,(X), E,(XX*)=E,(X)E,(X)*}

Then both F, and N, are subalgebras in B(H). It is clear that F, € MyN N,
moreover, X € F, if and only if p"' Xp~ € My for all t €R. As for N,, we have
the following result.

LEMMA 1. N, =p P Mop~ 12N p= 12 My pl/?

Proof. 1t 1s clear from (1) that X € N, if and only if
E (pl/zx*Xpl/z) —E (pl/zx*pl/z) E(p)—lE (pl/ZXpl/z)
E (pl/ZXX*pl/z) —E (pl/ZXpl/2) E(p)—lE (p1/2X*p1/2)

Let A= Xp!/2, B=p!/?. Similarly as in [11], we put M = A — BA, with A =
E(p) YE(pY/?Xp'/?). Then from E(M*M) >0, we obtain

E(A*A)>= E(A*B)E(p)"'E(B*A),
with equality if and only if M =0, this implies
12X 2 = E(p) E (pl/ZXpl/z) e Mo.

Conversely, let Xo=p"1/2Xp'/2 e My, then E(p'?Xp'/?)=E(p)Xy, this implies
y
that M =0.
Similarly, we get that p~'/2X*p1/2 € My is equivalent with the second equality.
O

It 1s also known that E,(XY)=E,(X)E,(Y), E,(YX)=E,(Y)E,(X) for all X e
N,, Y € B(H), this can be also shown from the above Lemma. Note that in the
case that E, is a conditional expectation, F, =N, = M.

155



QUANTUM HYPOTHESIS TESTING AND SUFFICIENT SUBALGEBRAS 19

2.2. A RADON-NIKODYM DERIVATIVE AND RELATIVE ENTROPIES

Let pg, p1 be invertible density matrices in B(#H). We will use the quantum version
of the Radon—Nikodym derivative introduced in [5]. In our setting, the derivative
dpy,p, Of p1 with respect to pg is defined as the unique element in B(#), such that
Trp1 X =(X*,dp,,p,) po- Then clearly

/ —1/2

—1/2
dpo.o1 =Py '~ P10

so that d,, ,, 1s positive, and ||d,, o, || <A for any A >0, such that p; <Apg. It is
also easy to see that

Ep, (dpo,m) :dE(po)vE(m)

Let us recall that the Belavkin—Staszewski relative entropy is defined as [5]

/ ~1/2

—-1/2
Ses(p1, po) =—Tr pon (po P10y ) =—Tr pon(dpy.p,)

where 7(x) =—xlog(x). Let S be the Umegaki relative entropy

S(p1, po) =Tr p1(log p1 —1log po)

then S(p1, po) < Sps(p1, po), [7] and S(p1, po) =Sas(p1, po) if po and p; commute.
Both relative entropies are monotone in the sense that

S(p1, po) = S(E(p1), E(po)),  Sps(p1, po) = Sps(E(p1), E(po))

holds for any subalgebra M,. As we will see in the next section, equality in the
monotonicity for S is equivalent with sufficiency of the subalgebra M, with respect
to {po, p1}. For Sgp, we have the following result.

LEMMA 2. The following are equivalent.

(i) Sps(p1, po) =Sps(E(p1), E(po))
(i) dpy,p; € Np,
(iii) p1p, ' €Mo
(V) Py =E(p1)E(pp)~!

Proof. Since the function —n(x)=xlog(x) is operator convex,
n (dE(po),E(m)) =1 (Epo (dpo,m)) <Ey (”(dpo,m)) (2
by Jensen’s inequality. We have
Tr po(E py (1(dpy, p1)) — N(Epy(dpy.p1))) = SBs (01, po) — Ss(E(p1), E(po))

and since pq is invertible, equality in the monotonicity of Spg is equivalent with
equality in (2). As it was proved in [14], this happens if and only if dj, ,, € Ny,.
This shows the equivalence (i) <> (i1). The equivalence of (i1) and (ii1) follows by
Lemma 1, (iii)) <= (iv) is rather obvious. O
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2.3. SUFFICIENT SUBALGEBRAS

We say that the subalgebra My C B(H) is sufficient for {pg, p1} if there is a com-
pletely positive trace preserving map T : My— B(H), such that T o E(pg)=po and
T o E(p1) = p1. The following characterizations of sufficiency were obtained by
Petz.

THEOREM 2. [10,13] The following are equivalent.

(1) My < B(H) is sufficient for {pg, p1}
(i)  S(p1, po) =S(E(p1), E(po))
(i) Tr ,og,oll_s =Tr E(po)* E(p1)' ™ for some s <€ (0, 1)
(iv) TrEp(X)p1=Tr Xp;y for all X € B(H)
(V) Ep=E,,.

The next characterization is based on the Radon—Nikodym derivative.

THEOREM 3. The subalgebra My C B(H) is sufficient for {pg, p1} if and only if
dpo,p € Fpy:

Proof. Let us denote d =d,, », and do=dEg(py),E(p)- Since dy € My, we have by
definition that

Tr p1 Epy (X) = (do, Epy (X)) E(pg) = (d0, X)

so that Tr p1 E,,(X)=Tr p1 X if and only if (dy, X)p, = (d, X)p,. It follows that d =
dp 1s equivalent with sufficiency of My, by Theorem 2 (iv). Since E,,(d) =d, this
is equivalent with d; ,, € Fp,. O

3. Quantum Hypothesis Testing

Let us now turn to the problem of hypothesis testing. Any test of the hypothe-
sis Hy=po against the alternative Hj = p; is represented by an operator 0 <M <1,
which corresponds to rejecting the hypothesis. Then we have the error probabilities

a(M)=Tr pgM first kind
B(M)=Trp;(1—M) second kind

For 1€ (0, 1), we define the Bayes optimal test to be a minimizer of the expression
Aa(M) + (1 =2)B(M) 3)

It is clear that minimizing (3) is the same as maximizing

A

Tr —1 M’ = —
(p1 —1tpo) T
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3.1. THE QUANTUM NEYMAN-PEARSON LEMMA

The following is the quantum version of the Neyman—Pearson lemma. The obtained
optimal tests are called the (quantum) Neyman—Pearson tests. We give a simple
proof for completeness.

LEMMA 3. Let t >0 and let us denote P, 1 :=supp(p) —tpo)+, P:,— :=supp (p1 —
tpo)— and P;o:=1— P,y — Pi_. Then the operator 0 <M; <1 is a Bayes optimal
test of po against py if and only if

M;=PF ++X;

where 0 < X; < P; .

Proof. Let 0<M <1, then

Tr (p1 —tpo) M =Tr (p1 — tpo)+ M —Tr (p1 —1po) - M <Tr (p1 — tpo)+ M
<Tr (o1 —tp0)+="Tr (p1 —tpo) Pt + “4)

It follows that M, =P,  + X;, X; < P, 1s a Bayes optimal test. Conversely, let M,
be some Bayes optimal test, then we must have

Tr (p1 —tpo) M; =Tr (p1 — tpo) + M; =Tr (p1 — 1po) Pt +

so that Tr (p; —tp9) - M; =0. By positivity, this implies that P, _ M, =M;P; _ =0, so
that

M (P 4+ P o) =(Pr++ Pro)Mi =M,
which is equivalent with M; < P; . + P, o. Furthermore, from
Tr (o1 —100)+ (Pt + + Pro— M) =0

we obtain Py — P M P y =P, (1 —M;)P;+ =0, hence (1 — M;)P;+ =0. We
obtain P,y <M, and by putting X,:=M; — P, 1, we get the result. O

Let us denote by Il,; the minimum Bayes error probability. Then

e 5 =da(My 1-1) + (1T =2)B(My/1-1))

1

=5 =lI(L=2)p1 =200l ()

where the last equality follows from
1 —1="Tr (p1 —tpo) =Tr (p1 — tpo)+ — Tr (02 — tpo) -
and

o1 —tpolli =Tr|p1 —tpol =Tr (p1 — 1p0) + + Tr (02 — 1p0) -

158



22 ANNA JENCOVA

3.2. THE QUANTUM CHERNOFF BOUND

Suppose now that we have n copies of the states py and p;, so that we test the
hypothesis ,ogg’” against ,oi@" by means of an operator 0 < M, <1, M, € B(H®").
Again, we may use the Neyman—Pearson lemma to find the minimum Bayes error

probability

1
Mesn=3 (I=111=2)pE" = ApZ" |11)

The following important result, obtained in [3] and [12] (see also [4]), is the quan-
tum version of the classical Chernoff bound:

: 1 : -5
lim (—; log He,k,n) =—log ( inf | Tr p, pl) =:£0cB(p0, P1) (6)

0<s<

The expression £pcp has a number of interesting properties. For example, it was
proved that it is always nonnegative and equal to 0 if and only if pg= p;, more-
over, it 18 monotone in the sense that

EocB(po, p1) =&0cB(E(p0), E(p1))

Therefore, although it is not symmetric, £pcp provides a reasonable distance mea-
sure on density matrices, called the quantum Chernoft distance. Note also that in
the case that the matrices are invertible, the infimum is always attained in some
s*el0, 1].

4. 2-Sufficiency

We say that M, is sufficient with respect to testing problems, or 2-sufficient, for
{po, p1} if for any test M and any A€ (0, 1), there is some test N, € My, such that

Aa(Ny) + (1 =2)B(N) =ha(M)+ (1 —1)B(M)

It is quite clear that M, is 2-sufficient if and only if for all + >0, we can find a
Neyman—Pearson test M; € My. Moreover, suppose that My is a sufficient subal-
gebra for {pg, p1} and let T =E, = E,,. Then, if M; is a Neyman—Pearson test,
then T'(M;) € My is a Neyman—Pearson test as well. Hence, a sufficient subalgebra
is always 2-sufficient. In this section, we find the opposite implication in some spe-
cial cases.

LEMMA 4. P, o #0 if and only if t is an eigenvalue of d:=d,, ,,. Moreover, the
rank of Py is equal to multiplicity of t.

Proof. By definition,

1/2 1/2
(p1 —t,Oo)Pt,0=,00/ (d—t)po/ P o=0
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172 /2 0. Suppose P, #0, then ¢ is an eigenvalue of d and

so that (d —1)p, Pt,o,o(l)
any vector in the range of ,oé/ 2 Pt,o,oé/ 2 is an eigenvector. This implies that (P o) =
r(p'/? P, op'/?) <r(F), where F is the eigenprojection of .

Conversely, let ¢+ be an eigenvalue of d with the eigenprojection F, then

—1/2 —1/2 1/2 —1/2
(p1 —1p0) Py /Fpo 2=p, (d—1)Fp, /2=,

so that the range of p~1/2Fp~1/2 is in the kernel of p; —pp, this implies r(F) <
r(Pt’()). O

Let us denote Q; + =supp (E(p1) —1E(po))+, Qro=ker (E(p1) —1E(p)) and let
1'[8’ , be the minimal Bayes error probability for the restricted densities

) 1
Mg, = ol Ja(M)+(1=0BM) =5 (1= (1 =D E(on) = 1E(po) 1)

LEMMA 5. The following are equivalent.

(1) The subalgebra My is 2-sufficient for {pg, p1}.
(i) T2, =TI, for all »€(0,1).
(1) Q;o0=Pr0 and Q4= P4 for all t>0.

Proof- 1t is obvious that (i) implies (i1). Suppose (ii) and let us denote f(¢):=
maxo<p<1 It (p1 —tpo)M. If N; 1s any Neyman—Pearson test for {E(pg), E(p1)},
then

Tr (p1 —tpo) Ny =Tr (E(p1) —tE(po)) Ny = f (1),

so that N; is a Neyman—Pearson test for {pg, p1} as well. Putting N; = Q; + and
Ni=Q: ++ Q0. we get by Lemma 3 that

Or+=P++Xs, Qi++010=FP4++Y;,

with X;, Y, <P, . This implies that Q; <P, o and Q;, =P, 1 if P;(=0.

Let ¢ be an eigenvalue of dy, then P, o> Q;0#0, hence ¢ is also an eigenvalue
of d, and its multiplicity in dy is not greater that its multiplicity in d. Since the
sum of multiplicities must equal to m =dim(#), we must have r(Q; o) =r(Py ), SO
that Q; 0= P;o. This implies that X; < Q; o, hence X;=0 and P, = Q;  for all 7.

The implication (ii1) — (i) is again obvious. d

Note that the condition (ii) is equivalent with

IE(p1) —tE(po)ll1 > llp1 —tpoll1, for all >0

This condition, with E(pg) and E(p;) replaced by arbitrary densities oy and o
was studied in [2]. It was shown that for 2 x 2 matrices, this is equivalent with the
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existence of a completely positive trace preserving map 7', such that 7' (pg) =o¢ and
T(p1) =o01. In our case, this means that 2-sufficiency implies sufficiency for 2 x 2
matrices. Since any nontrivial subalgebra in M(C?) is commutative, this agrees
with our results below.

The above Lemma gives characterizations of 2-sufficiency, but the conditions are
not easy to check. The next Theorem gives a simple necessary condition.

THEOREM 4. Let My be 2-sufficient for {p1, po}. Then dp, 5, € Np,-

Proof. By the previous Lemma, we have P; o= Qo€ M, for all ¢. Let 11,...,#%
be the eigenvalues of d and denote P; =P, o. Then from (d —t,'),oé/ 2P,- =0 we get

1/2ZP _ 1/2Ztl

By Lemma 4 and its proof, supp (,01/2 1/00/ )< F; and r(P;) =r(F;), with F; the

eigenprojection of 7. It follows that > . ,ol/ 2 ,,001/ 2 and hence also >, P;, is invert-

ible. Therefore,

-1

dp(l)/z_,oé/zc C_Zt, ZP

that is, d = ,01/2 ,0_1/2, with ¢ € My. Moreover, d =d* = p, 1/Zc”‘pé/ , so that d e
,oé/zMO,oO 1/2ﬂp0 1/2M ,01/2 By Lemma 1, this entails that d € Ny,. O

THEOREM 5. Let the subalgebra My be 2-sufficient for {pgy, p1}. Then My is suffi-
cient for {po, p1} in each of the following cases.

(1) ,0 ' Mop, " C My for all teR
(2) My is commutative
(3) po and py commute

Proof. (1) By Theorem 4, we have d € N,,. Since p, tMOpO "' C My, we have d €
Ny, = Fp,. By Theorem 3, this implies that My is sufficient.

(2) Since d € N,,, we have Sgs(p1, p0) =Sps(E(p1), E(pp)), by Lemma 2. Since
M, 1s commutative,

S(E(p1), E(p0)) =SBs(E(p1), E(po)) =Sps(p1, po) = S(p1, po)

By monotonicity of the relative entropy, this implies S(p1, po) =S(E(p1), E(pg)), SO
that M, is sufficient for {pg, p1}, by Theorem 2 (ii).

(3) Let M; be the subalgebra generated by all P; 4, t € R. Then M; is com-
mutative and 2-sufficient for {pg, o1}, hence sufficient by (2). If Mj is 2-sufficient,
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we must have M| C My by Lemma 5, so that My must be sufficient for {pg, p1}
as well. O

It is clear from the proof of (1) that 2-sufficiency implies sufficiency whenever
Ny, = Fp, (or, equivalently, N, = Fj,,). In fact, it can be shown that N,, = F),
whenever M, is commutative, which gives an alternative proof of (2). Next we give
a further example of this situation.

EXAMPLE 1. Let X=C* and let My=M(C?) ® 1 C B(H). Let p be a block-diag-

p1 0
0 p2

M(C?), and let o be any density matrix. Suppose that My is 2-sufficient for {p, o}.
By Theorem 4, d,; , € N,, which by Lemma 2 is equivalent with op~' e My. This

onal density matrix p =( ), where pi, pp are positive invertible matrices in

implies that o must be block-diagonal as well, o = (001 UO )
2

0p
supp (o1 — tp1) 4 =supp (o2 — tp2) 4. Since p; is a projection in M(C?), we have he
following two possibilities: either p; =1 for t <ty and p; =0 for t > 1y, or p; is one-
dimensional for ¢ in some interval (7, ;). Since p =0 1n the first case, we may sup-
pose that the latter is true, so that p; is a common eigenprojection of o1 —tp and
oy —tpy for t € (ty, 7). It follows that oy —tp; commutes with o, —tpy for 1 € (19, 1),
which implies that p; commutes with p,.

Let X € N, then X =p'2X0p~ 12, where both Xo, pXop~' € My. Let Xy =
Y ® I € My, then pXop~' € My if and only if ,olY,ol_1 =,02Y,02_1, that is, ¥ com-
mutes with ,02_1,01. If ,02_1,01 is a constant, then p' Myp~"" € My, so that F, =
My=N,. Otherwise, Y must commute with both p; and p, and in this case, X =
,01/2X0,0_1/2 =Xp€eF,.

In conclusion, if My is 2-sufficient for {p, o}, we must have N, =F,, so that M
must be a sufficient subalgebra.

By Lemma 5, P+ € My for all + >0, so that P, 4 = (p, 0 ), where p; =
t

Let us now suppose that we have n independent copies of the states, pggm and
p". An optimal test for Hj: ,089” against Hj: pP" usually cannot be obtained as
the product of optimal tests, but we may ask if there is some optimal test in Mgg’”.
If this is the case for all A, we say that M, is (2, n)-sufficient for {pg, p1}.

THEOREM 6. The following conditions are equivalent.

(1) My is (2, n)-sufficient for {pg, p1}, for all n.
(1) My is a sufficient subalgebra for {pg, p1}.

Proof. Let us denote

(1= 111 =) E(e1)®" = AE(p0)*" [11)

e

N —

0 —
I, 0=
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By Lemma 5 (i1), the condition (i) implies that I, ; , = 1'[27 5. for all n, hence also

. 1 : 1
hlgn (—; log He,k,n) :hrlln (—— log l'Ie A n)

By (6), this entails that

inf Tr,o1 ‘o] = 1nf1TrE(,oo)1_sE(p1)s
<s<

0<s<l1

By monotonicity, we have Tr ,o1 s 1=TrE (po) ' E(py)* for all s€]0,1]. Suppose
that the infimum on the RHS is attalned in some sg € [0, 1]. Then

Tr E(pg)' ™ SOE(,OI)SO— inf Tr,ol Spi <Trpy pt.

If so=0 or 1, then the quantum Chernoff distance is equal to 0, so that pg=p;
and the subalgebra M, is trivially sufficient. Otherwise, we must have Tr E (pg)! 0
E(p))%=Tr pé_so p;” for so€ (0, 1), which implies that My is sufficient for {po, p1},
by Theorem 2 (iii).

Conversely, let E,en be the generalized conditional expectation B(H®")— Mgi’”.
It is easy to see that for any invertible density matrix p, E,en = E®”, so that if
E, =E,, then E, on = E, @n for all n. Hence if My is sufficient for {,00 p1}, then

M, " is sufficient for {,o ,,ol "} for all n, this implies (i). O
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We give a list of equivalent conditions for reversibility of the adjoint of a unital Schwarz
map, with respect to a set of quantum states. A large class of such conditions is given
by preservation of distinguishability measures: F-divergences, Li-distance, quantum
Chernoff and Hoeffding distances. Here we summarize and extend the known results.
Moreover, we prove a number of conditions in terms of the properties of a quantum
Radon—Nikodym derivative and factorization of states in the given set. Finally, we show
that reversibility is equivalent to preservation of a large class of quantum Fisher infor-
mations and y?2-divergences.
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1. Introduction

In the mathematical description of quantum mechanics, a quantum mechanical sys-
tem is represented by a C*-algebra A C B(H) of bounded operators on a Hilbert
space H. In the case that H is finite-dimensional, the physical states of the system
are represented by density operators, that is, positive operators with unit trace.
The evolution of the system is described, in the Schrédinger picture, by a trans-
formation T on the states. Here T' is usually required to be a completely positive
trace preserving map on the algebra.

Let § be a set of states, then S can be seen as carrying some information.
If S undergoes a quantum operation 7', then some information can be lost. If &
represents a code which is sent through a noisy channel 7': A — B, then the resulting
code T'(S) might contain less information than S. In the framework of quantum
statistics, S represents a prior knowledge on the state of the system and the task of
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the statistician is to make some inference on the true state. But if, say, S is a family
of states on the bipartite system 4 ® B and only the system A is accessible, then
the statistician has to work with the restricted states which might be distinguished
with less precision. However, it might happen in some situations that the original
information can be recovered, in the sense that there is a quantum operation S
such that SoT(0) = o for all ¢ € S. In this case we say that T is reversible for S.
Such maps are also called sufficient for &, which comes from the well-known notion
of sufficiency in classical statistics.

The information loss under quantum operations is expressed in the monotonic-
ity property of distinguishability measures: quantum f-divergences [28] like relative
entropy, the L;-distance, quantum Chernoff and Hoeffding distances [2], etc., which
means that these measures are non-increasing under quantum operations. It is quite
clear that if T"is reversible for S, then T" must preserve all of these measures on S.
It was an important observation in [27] that preservation of the relative entropy,
along with other equivalent conditions, is equivalent to reversibility. These results
were then extended in the papers [29, 15, 16]; see also [24]. The very recent paper
[13] extends the monotonicity results to the case that 7" is the adjoint of a subunital
Schwarz map and proves that reversibility is equivalent to preservation of a large
class of quantum f-divergences, as well as distinguishability measures related to
quantum hypothesis testing: the quantum Chernoff and Hoeffding distances. In the
present paper, we find conditions for reversibility in terms of the L;-distance and
complete the results for the Chernoff and Hoeffding distances and L;-distance for
n copies of the states, giving an answer to some of the questions left open in [13].
Moreover, we find a class of quantum Fisher informations, such that preservation of
elements in this class is equivalent to reversibility. We also prove reversibility con-
ditions in terms of a quantum Radon—Nikodym derivative, and a quantum version
of the factorization theorem of classical statistics.

The various equivalent reversibility conditions are interesting also from the
opposite point of view, when we are interested in the equality conditions for the
divergences in the first place. This was used, for example, for a characterization of
the quantum Markov property [10, 15, 19, 20], conditions for nullity of the quantum
discord [8, Lemma 8.12], [6], conditions for strict decrease of Holevo quantity [31]
and the equality conditions in certain Minkowski type quantum inequalities and
related quantities, [18].

In a preliminary section, we deal with the properties of positive maps, 2-positive
maps and Schwarz maps, and their duals with respect to a state. In particular, we
find a new characterization of 2-positivity in terms of generalized Schwarz inequality
and we show that a unital positive map has the property that its duals with respect
to all states are Schwarz maps, if and only if it is 2-positive. Then we proceed to
the various reversibility conditions: we list the already known conditions related to
f-divergences and give an example of a (non-quadratic and strictly convex) oper-
ator convex function f, such that preservation of the corresponding f-divergence
does not imply reversibility. Further, we prove reversibility conditions in terms of
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a quantum Radon—Nikodym derivative and certain factorization conditions on the
states. In Secs. 3.4 and 3.5, we deal with the Li-distance, quantum Chernoff and
Hoeffding distances. In the last section, we give the reversibility conditions in terms
of the quantum Fisher information.

2. Preliminaries

Let H be a finite-dimensional Hilbert space and let A C B(H) be a C*-algebra.
We denote by AT the positive cone in A and by S(A) the set of states on A. For
a € AT, we denote by suppa the projection onto the support of a, that is, suppa
is the smallest projection p satisfying ap = a.

A positive linear functional 7 on A such that 7(ab) = 7(ba) for all a,b € A
(equivalently, 7(a*a) = 7(aa*) for all a € A) is called a trace. We will also require
that 7 is faithful, then any linear functional ¢ on A has the form

ola) =(ap,), acA

for a unique operator p, € A, and ¢ is a state if and only if p, > 0 and 7(p,) = 1.
In this case, p,, is called the density operator of ¢ with respect to 7. Conversely, any
operator p € AT with 7(p) = 1 defines a state ¢, on A with density p. Moreover,
if 7 is faithful, then

(a,b); =7(a*b), a,be A

defines an inner product in A.

Clearly, A inherits the trace Tr = Try from B(#), but in general, there exists
different faithful traces on A even if we require 7(I) = Tr(I). We will consider
general traces only in Sec. 2.4, in the rest of the paper we always assume that 7 =
Tr = Try for a fixed representation A C B(H). Accordingly, the density operators
with respect to Tr will be referred to simply as density operators and we will
identify S(A) with the set {p € AT, Trp = 1}. We will also denote (a,b) := (a,b)1y
the restriction of the Hilbert—Schmidt inner product in B(H).

2.1. Positive maps

Let B C B(K) be a finite-dimensional C* algebra and let T: A — B be a positive
map. Let T be the adjoint of T', with respect to the Hilbert—Schmidt inner product.
We will say that T is faithful if 7'(a) = 0 for a > 0 implies a = 0.

Lemma 1. Suppose that T : A — B is a positive map. The following are equivalent.

(i) T(
(ii) T'(p) is invertible for some positive invertible p.
(iii) T* is faithful.

p) is invertible for any positive invertible p.

Proof. The implication (i) = (ii) is trivial. Suppose (ii) and let @ > 0 be such that
T*(a) = 0. Then 0 = TrT*(a)p = TraT(p), hence a = 0.
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Suppose (iii) and let p be any positive invertible element. Let ¢ := supp T'(p).
Then 0 = TrT(p)(I — q) = TrpT*(I — q), this implies I — g = 0, hence (i)
holds. a

Lemma 2. Let T: A — B be a positive map, such that T*(I) < I. Let p and o
be positive operators and let p = suppp, po = suppT(p), ¢ = suppo and gy =
suppT'(o). Then

(i) T*(I —po) < I —p.

(i) if ¢ < p then qo < po.
(iti) T'(pAp) € poBpo.
(iv) if T™ is unital, then T (py) > p.

Proof. Note that for 0 < a < I and any positive w, a < I — suppw if and only if
Traw = 0. We have

Tr pT™(I —po) = TrT(p)(I — po) =0
which implies (i). Moreover, suppose ¢ < p, then by (i),
0<TrT(c)(I —po) =TroT*(I —py) <Tro(l—p)=0

this proves (ii). Let a be a positive element in pAp, then suppa < p, hence by (ii),
supp T'(a) < pog, so that T'(a) € poBpg. Since pAp is generated by its positive cone,
this implies (iii).

Finally, (iv) follows directly from (i) if 7 is unital. O

We say that T is n-positive if the map
T(n) =1id, ® T:Mn(C) RA— Mn(C) ® B

is positive, and T is completely positive if it is n-positive for all n. The adjoint T™*
is n-positive if and only if T" is n-positive.

2.2. 2-positive maps and Schwarz maps

We say that T is a Schwarz map if it satisfies the Schwarz inequality
T(a"a)>T(a)*T(a), ac A (1)

This implies that 7" is positive and subunital, that is, 7'(I) < I. It is well-known
that a unital 2-positive map is a Schwarz map [25, Proposition 3.3].

Let c € AT and a € A. We define a*c ta := lim._,g a*(c + €I)"1a, if the limit
exists. Note that this is the case if and only if the range of a is contained in the

range of ¢ and then a*c~'a = ac™a, where ¢~ denotes the generalized inverse of c.

Lemma 3. Let a,b,c € A. Then the block matriz M = (; 2) s positive if and
only if ¢ > 0, bc™'b* is defined and satisfies a > bc™1b*.
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Proof. The proof for the case that ¢ is invertible can be found in [4]. For the
general case, note that M > 0 if and only if (b‘i . f - 1) is positive for all € > 0. By
the first part of the proof, this is equivalent to ¢ > 0 and a > b(c + €I)~1b* for all
e > 0. Since b(c+el)~1b* is an increasing net of positive operators, the limit exists
if and only if it is bounded from above, this proves the lemma. O

Let ¢ € A be a positive invertible element. Then we say that T satisfies the
generalized Schwarz inequality for c if for all a € A, T'(a)*T(c) T (a) is defined
and satisfies [21]

T(a*c ta) > T(a)*T(c) 'T(a), ac A (2)

Note that the condition that T'(a)*T(c)~1T(a) is defined is satisfied if T™* is sub-
unital, by Lemma 2(iii).

The next proposition gives a characterization of 2-positivity of maps in terms

of the generalized Schwarz inequality, which might be interesting in its own right:

Proposition 1. Let T: A — B be a positive map. Then T is 2-positive if and only
if T' satisfies the generalized Schwarz inequality for every positive invertible ¢ € A.

Proof. Let M = (;- b) be a positive element in Ms(A). Let € > 0 and denote

C

M. = (% ,'.;). Then M. > 0 and it is clear that T(s)(M) > 0 if and only if

T(2)(M:) > 0 for all € > 0. Hence we may suppose that c is invertible. In this case,
M > 0 if and only if ¢ > 0 and @ — bc~'b* > 0, by Lemma 3. Then

a—bcb* 0 be b b
M = +
0 0 b* c

where both summands are positive. Since T is positive, this implies that T is 2-
positive if and only if for all b € A and invertible ¢ € AT,

o (b B (T TR
@\ e o)\ Ty T) T

Again by Lemma 3, this is equivalent to the generalized Schwarz inequality
for c. O

2.3. The map T,
Let p € S(A). We define a sesquilinear form in A4 by
(a,b), =Tr a*pt?op' %, a,b e A.

Then (-,-), defines an inner product in pAp, where p = supp p.

Let T: A — B be a positive and trace preserving map, so that T'(p) is a density
operator in B. Let py = supp T'(p), then by Lemma 2(iii), T'(p.Ap) C poBpo.

The map T, : pAp — poBpog is defined by

T,(b) = T(p)~"/*T(p"/?bp"/*)T(p) "%, b€ pAp.
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Note that T,(a) is the unique element in poBpy satisfying

<T*(b)7 a>P = <b’ Tp(a)>T(p)7 be 87 (3)

so that T, is the dual of the unital map 7, defined in [26]. Note also that T, is
positive and unital and its adjoint T}, : poBpo — pAp,

w1\ 1/2mx —1/2 —1/2y .1/2
T3 (b) = p'/*T*(T(p) /6T (p) 1) p"/
satisfies

TyoT(p)=p (4)

by Lemma 2(iv).
It can be shown that 7" is n-positive if and only if T}, is n-positive. We will now
investigate the case when 7T, is a Schwarz map.

Lemma 4. Let T: A — B be a positive trace preserving map and suppose that p is
an invertible density operator. Then T, is a Schwarz map if and only if T' satisfies
the generalized Schwarz inequality for ¢ = p.

Proof. T, satisfies the Schwarz inequality (1) if and only if
T(p"2b*bp' /%) = T (p"2b*p'*)T (p) "' T (p"*bp'/?), b e A.

1/2

Putting a = p'/2bp'/?, we see that this is equivalent to

T(a*p~ta) >T(a)*T(p) 'T(a), ac A O

The above lemma, together with Proposition 1, implies the following result. Its
importance will become clear at the beginning of Sec. 3.

Proposition 2. Let T': A — B be a positive trace preserving map. Then T}, is a
Schwarz map for any invertible density operator p if and only if T is 2-positive.

2.4. Multiplicative domain and fized points

This section contains some known results on the multiplicative domains and sets
of fixed points of unital Schwarz maps and related decompositions of the density
operators. We include the proofs partly for the convenience of the reader, and partly
because we need a particular form of some of the results (mainly Theorem 2(v) and
2(vi)) which might be difficult to find explicitly in the literature.

Let B C A C B(H) be a C*-subalgebra. We will denote by A’ the commutant
of A, that is the set of all elements in B(#), commuting with A. Then A’ is a C*-
subalgebra in B(#). The relative commutant of 55 in A is the subalgebra B’ N A.
A conditional expectation E: A — B is a positive linear map, such that F(bac) =
bE(a)c for all a € A, b,c € B. Such a map is always completely positive. There
exists a unique trace preserving conditional expectation E: A — B, determined by
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Tr(ab) = Tr(E(a)b) for a € A, b € B (that is, E is the adjoint of the embedding
B — A with respect to (-,)).
Let ®: A — B be a unital Schwarz map. Let us denote

Mg :={aec A, ®(a"a) =P(a)"®(a), P(aa”) = P(a)P(a)"}.
It is known that [13, Lemma 3.9]
Mo ={ac A, ®(ab) =P(a)®(b), ®(ba) = P(b)P(a),Vb < A}.

This implies that Mg is a subalgebra in A, called the multiplicative domain of ®.
The restriction of ® to Mg is a *~homomorphism.

Let now ®: A4 — A be a unital Schwarz map and suppose that there is an
invertible density operator p € S(A), such that ®*(p) = p. Let us denote by Fo
the set of fixed points of ®, that is,

Fo:={ac A, ®(a)=a}
and let ¢, denote the state p,(a) = Tr pa for a € A.

Theorem 1. (i) Fo is a subalgebra in M.

(ii) There exists a conditional expectation Eq : A — Fg, such that E3(p) = p.
(iii) p"Fap " C Fg for allt € R.

(iv) Let us fix a faithful trace T in Fg. Then we have a decomposition

p=p'p",

where p? € Fy is the density operator with respect to T of the restriction of ©Pp
to Fo and pP € FNA is a positive invertible element such that ®*(pB) = pB.

Proof. (i) Let a € Fg, then since ® is a Schwarz map, ®(a*a) > ®(a)*P(a) = a*a.
But we have Tr p(®(a*a) —a*a) = 0, so that ®(a*a) = a*a, similarly ®(aa*) =
aa*, hence a € Mg. Let now a,b € Fg, then ®(ab) = ®(a)®(b) = ab and
obviously ®(a 4+ b) = a+ b, ®(I) = I, so that Fg is a subalgebra.

(i) Let Eg := lim,oo & ZZ;& ®*. then by the ergodic theorem, Eg is a con-
ditional expectation onto the fixed point subalgebra Fg. It is obvious that
Ey(p) = p.

(iii) Is equivalent to (ii) by Takesaki’s theorem [34].

(iv) It was shown in [15] that for any subalgebra satisfying (iii), there is a decom-
position p = pApB, where p* is the density of the restriction of ¢, to Fo with
respect to 7 and p? is a positive invertible element in the relative commutant
Fi N A For any a € A,

Tr®(a)p = Tr &(a)p?p? = Tr ®(ap?)p® = Trap? ®*(p?)
so that pAp? = p = ®*(p) = pA®*(p?), this implies p? = &*(p?). O
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Theorem 2. Let p € A be an invertible density operator and let T: A — B be a
trace preserving map, such that both T* and T, are Schwarz maps and po := T (p)
is invertible. Denote ® :=T*oT, and ® :=T,o0T*. Then

(i) Fg is a subalgebra in Mp- and Fg is a subalgebra in Mr,.

(ii) The restriction of T* is a *~isomorphism from Fz onto Fa, and its inverse is
the restriction of T,.

) Fo is a subalgebra in T*(Mr-).

(iv) p*Fap™™ C Fo and pit Fzpy ™" C Fg, for all t € R.

; T(FenNA) CFNB

There are decompositions
p=T"(p)o", po=piT(p")
where pi € ]-"(%L and pB € Fiy N AT is such that ®*(pP) = pP.

Proof. Note that we have ®*(p) = p and ®*(py) = T o ®*(p) = py. Moreover,
since T, (po) = p, T} is faithful by Lemma 1.

By Theorem 1(i), F; is a subalgebra in Mg. It is easy to see that, since T}, is
faithful, Mg C Mrp-. The second inclusion in (i) is proved similarly.

By (i), the restriction of T* is a *-homomorphism on Fj. Since ®oT* = T* o0 ®
and ® o T, =T, o ®, we have T*(Fz) C Fa, T,(Fo) C Fg and T, o T*(a) = a for
a € Fj, this proves (ii).

(iii) Follows from (i) and (ii).

(iv) Follows from Theorem 1(iii).

To prove (v), let b € F;, a € F3 N A and ¢ € B. Then

TrebT (a) = Tr T*(cb)a = Tr T (¢)T* (b)a = Tr T™(c)aT™ (b) = Tr T*(b) T (c)a

= TrT*(bc)a = TrbcT'(a) = TrcT'(a)b

so that T'(a) € Fz N B, where we used the fact that b € Mz, T*(b) € Fo and
cyclicity of the trace.

To prove (vi), let 7 be the restriction of Tr to Fg. By (ii), 7 := 7 o T™ defines a
faithful trace on Fz. By Theorem 1(iv), we have the decompositions

p=p*p" po=pip;
where p?(pg') is the density of the restriction of ¢,(p,,) to Fo(Fz) with respect
to 7 (7). Let now a € Fg, then

7(aT*(py)) = 7(2(a)T*(py) = T(T*(T,(a))T*(pg)) = 7(T*(T,(a)pyy)
= 7(T,(a)py ) = TrTp(a)po = Trap = T(ap™).
It follows that p* = T*(p3'). If b € B, then
TeT*(b)p = Te T*(0)T* (pg )p” = Tr T*(bpg )p” = Trbpg T(p")
so that po = pg'T(p?). a
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3. Conditions for Reversibility

Let A C B(H) and B C B(K) be finite-dimensional C*-algebras. Let S C S(A) be
a set of density operators and let T': A — B be such that T* is a unital Schwarz
map. We say that T is reversible (or sufficient) for S if there is a map S: B — A,
such that S* is a unital Schwarz map and

SoT(oc)=0, oc€S. (5)

In this section, we study various conditions for reversibility. If not stated otherwise,
we assume that the following two conditions hold:

(1) S contains an invertible element p and T'(p) is invertible as well.
(2) T: A — B is such that both 7 and T, are unital Schwarz maps.

In the original approach of [29], the map T and the recovery map S were both
required to be 2-positive. The possibility of weakening this assumption was dis-
cussed in [13, Remark 5.8], where the question was raised whether it is enough to
assume that 7™ is a unital Schwarz map for the map 7}, to be a Schwarz map as
well. Proposition 2 above shows that this is not the case, in fact, it follows that if
Condition 2 holds for any density p, then T must be 2-positive. Moreover, as we
will see in Theorem 4, regarding reversibility of 7', Condition 2 is not more general
than assuming that T is a completely positive map.

On the other hand, note that the Condition 1 is not restrictive. Indeed, for
S C S(A) there always exists a (finite) convex combination p of elements in S, such
that suppo < suppp =: p for all 0 € S. Moreover, T' is reversible for § if and only
if it is reversible for the closed convex hull ¢o(S), therefore, we may always suppose
that p € S. By Lemma 2, we also have pg := suppT'(p) > suppT'(o) for all 0 € S.
Hence S C S(pAp) and T'(S) C S(poBpo).

Let T be the restriction of T to pAp, then T maps pAp into pgBpg, by Lemma 2.
We have T'(0) = T'(0) for o € S. Again by Lemma 2,

T*(po) = pT™(po)p = p,

so that T* is a unital Schwarz map. Note also that Tp = T,. It follows that if
T satisfies Condition 2, then T satisfies both 1 and 2. Moreover, T is reversible
for S ¢ S(A) if and only if T is reversible for S C S(pAp). Indeed, let S be
the restriction of S to poBpg, where S:B — A is the adjoint of a unital Schwarz
map satisfying (5). Then S maps poBpo into pAp, S* is a unital Schwarz map and
SoT(c) =SoT(s) =0 for all ¢ € S. Conversely, let S:poBpo — pAp be the
adjoint of a unital Schwarz map, such that S oT(c) = o for o € S, then we extend
S to amap S: B — A by

S(b) = S(pobpo) + [Trb(1 —po)lp b€ B.

Then S* is a unital Schwarz map and S o T (c) = S o T(0) = o for every o € S.
Moreover, S is n-positive whenever S is n-positive.
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The above constructions can be easily illustrated in the trivial case when
S = {p}. Then both T and T are always reversible, the recovery map being Ty
for T, and an extension of T for T

3.1. Quantum f-divergences

Let f:]0,00) — R be a function. Recall that f is operator convex if f(AA + (1 —
A)B) < Af(A)+(1=)\)f(B) for any A € [0, 1] and any positive matrices A, B of any
dimension. It was proved in [13] that any operator convex function has an integral
representation of the form

f(z) = £(0) + azx + bx? —|—/

(0,00)

(L_ z )duf(t), z € [0,00)

14+t x4+t

where a € R, b > 0 and gy is a non-negative measure on (0, c0) satisfying [(1 +
) 2dus(t) < oo

Let now o and p be two density operators and suppose that suppo < supp p.
Let A,,, = LURE1 be the relative modular operator, note that A, ,(a) = gap™!
for any a € A. Let f:]0,00) — R be an operator convex function. The f-divergence
of o with respect to p is defined by

St(o,p) = (P2, f(Asp)p'?)

see [13] also for the case of arbitrary pairs of density operators. A well-known
example is the relative entropy S(o, p) = Tro(log o — log p), which corresponds to
the operator convex function f(x) = zlogz. Another example is given by Ss(c, p) =
1 — Tro®p'~*, this corresponds to the function fs(z) = 1 — 2°, which is operator
convex for s € [0, 1].

Let T*:B — A be a unital Schwarz map. Then any f-divergence is monotone
under 7" [13], in the sense that

S¢(T(0), T(p)) < Sy(o, p).
Theorem 3 ([13]). Under the Conditions 1 and 2, the following are equivalent.

(i) T is reversible for S.
(ii) S(T(0), T(p)) = S(o;,p) for allo € S.
(111) T*(T(o )"tT(p)_it) =op~ foroc €S, t eR.
) TrT(0)*T(p)'=% = Tro*p' =% for all o € S and some s € (0,1).
) S¢(T(0),T(p)) = S¢(o,p) for all 0 € S and some operator convexr function
[ with |supp ps| > dim(H)? + dim(K)?, where |X| denotes the number of
elements in the set X.
(vi) Equality holds in (v) for all operator convex functions.
(vil) Equality holds in (iv) for all s € [0,1].
(viii) Ty oT(0) =0 forallo €S.
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Remark 1. The equivalence of (i)—(iii) and (viii) was first proved in [27], for the
case when all states are faithful and T is the restriction to a subalgebra, and sub-
sequently for any unital 2-positive map in [29], in the more general setting of von
Neumann algebras, see also [15, 16], where Conditions (iv) and (vii) were proved.

The following example shows that, unlike the classical case, preservation of an f-
divergence with strictly operator convex f is in general not sufficient for reversibility.
This solves another open problem of [13], showing that the support condition in
Theorem 3(v) cannot be completely removed.

Example 1. The function f(z) = (1 +2)~', > 0 is operator convex and the
corresponding measure p¢ is concentrated in the point ¢ = 1, uy({1}) = 1. We have

Sp(o,p) = Tr p(Lo + Rp) ™ (p).

We will show that the equality S¢(T'(0),T(p)) = St (o, p) does not imply reversibil-
ity of T'.

Let A be a matrix algebra and let ¢ € A be an invertible density matrix. Let
p € A be a projection such that op # po and Trpo = X\ # 1/2. Let B C A be
the abelian subalgebra generated by p and let T': A — B be the trace preserving
conditional expectation, then T'(o) is the density of the restriction of o to B. Put
z:=(1-XNp+AI—p)eBandp:= (I —z) 'ox. Then

1

p=c zoxr >0

where ¢ = A(1 — \), and
Trp=c ! Troz® =1

so that p is an invertible density matrix as well. Moreover, we also have T'(p) =
(I —x)~'T(0)x, so that

(La + Rp)_l(p) =T = (LT(J) + RT(P))_l(T(p))

and the equality S¢(T(0),T(p)) = Sf(o, p) holds. On the other hand, we have from
Theorem 5(iv) below that 7' is reversible if and only if 0 = 04p® and p = p“p?
for some o4, pA € Bt and pP € AT. It follows that both o4 and p commute with
pP and, since B is abelian, this implies that o and p* commute with . But this
is possible only if p# and o4 are constants. It follows that we must have o = p and
it is easy to see that this implies that ¢ commutes with x, which is not possible by
the construction of x.

3.2. The commutant Radon—Nikodym derivative

Let p, o be density operators in 4 and suppose that suppo < suppp =: p. The
commutant Radon—Nikodym derivative of o with respect to p is defined by
d(o,p) = p~Pop /2.
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Then d = d(o, p) is the unique element in pAp, satisfying
Troa = (I,a), = (d,a),. (6)

Moreover, d > 0 and ||d|| is the smallest number A satisfying o < Ap, note that
|d|| > 1 and ||d|| = 1 if and only if p = o.

Lemma 5. Let suppo < supp p. Let T: A — B be a trace preserving positive map.
Then

Proof. Directly by definition of T}, and d(o, p). O

The following simple lemma provides a useful tool for the analysis of reversibility.
Note also that it gives a reversibility condition also for the case when both T" and
the reverse map S are only required to be positive and trace preserving.

Lemma 6. Let p be invertible and let T : A — B be a trace preserving positive map.
Then Ty oT(0) = o if and only if T*(d(T(0),T(p))) = d(a, p).

Proof. For a € A, we have by (3) and (6) that

(T*(d(T (), T(p))), a)p = {d(T(0), T(p)), Tp(a))1(p) = TrT,(a)T(o)
=TraT, oT(o).

It follows that T*(d(T(¢),T(p))) = d(o, p) if and only if TraT); o T(0) = Trao for
all a € A. O

Now we are able to characterize reversibility in terms of the Radon—Nikodym
derivative. While (ii) or (iii) give easy conditions for reversibility, Condition (iv)
will be necessary for the proof of Theorem 6 below. The last two conditions are not
really new, but will be useful in proving Theorem 7.

Theorem 4. Suppose the Conditions 1 and 2 hold. Let us denote ® = T o T,.
Then the following are equivalent.

(i) T is reversible for S.

(ii) T*(d(T(0),T(p))) = d(o, p), for allc € S.

(iii) d(o,p) € Fo, for allo € S.

(iv) pd(o,p)p~ € T*(Mqp~), for allo € S and t € R.

(v) There is a trace preserving completely positive map S:B— A, such that So
T(o)=o0,0€S.

(vi) There are trace preserving completely positive maps T:A—Band S: B — A,
such that T(0) =T (o), SoT(0c) =0, 0 € S.
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Proof. By Lemma 6, (ii) is equivalent to 7y o T(0) = o for ¢ € S, which is
equivalent to (i) by Theorem 3(viii). (iii) is the same as (ii), by Lemma 5. Since by
Theorem 2(iii), Fg is a subalgebra in T* (M=) and p"* Fep~ C Fg for all t € R,
(iii) implies (iv).

Suppose (iv) and let A; be the subalgebra generated by {p“d(c,p)p~*, t €
R, 0 € §}. Then A; C T*(Mrp+). Let E: A — A; be the trace preserving con-
ditional expectation. Then its adjoint is the embedding £*: A4; — A and since
pt A1 p~ C A, for all t € R, the map E, is the p-preserving conditional expecta-
tion, [1]. Hence

E*(d(E(0), E(p))) = d(E(0), E(p)) = E,(d(a, p)) = d(a, p).

By the equivalence of (ii) and (i) and Theorem 3(viii) (for the map F), E o E(0) =
oforalloc €S8.

Let F* denote the embedding M- < B, then, as above, its adjoint F' =
F**:B — M« is the trace preserving conditional expectation. Let us define the
map T : Mg« — T*(Mp+) by T := T* o F*. Then since T* is faithful by Lemma 1,
T is injective, so that T is a *-isomorphism and there is an inverse map R =
(T)~:T*(Mrp-) — Mrp-. Define the map S:B — A by S := E%oR*oF. Then S
is completely positive and trace preserving. Moreover, T o S* =T*oF*oRo E,=
ToRoE,=E*oE,, sothat SoT(s) = (E*o E,)*(c) = o and (v) holds.

Suppose (v). Let Sy := T'(S) and let o = T'(¢) for 0 € S. Then since S(og) = o
and T'o S(0¢) = T(0) = 00, the map S is reversible for Sy. Hence by Theorem
3(viii), the map T := S;O is completely positive and satisfies T(U) = 0y, this proves
(vi). The implication (vi) — (i) is clear. O

Remark 2. Note that by the proof of (v), the completely positive maps T and S
can always be given as adjoints of a composition of a conditional expectation and
a *-isomorphism.

Corollary 1. Under the Conditions 1 and 2, T is reversible for S if and only iof T
is reversible for S := | J{p**Sp~, s € R}.

Proof. Suppose T is reversible for S. Let o € § and let d = d(o, p). Then d € Fo
and therefore also d(p"op™"%, p) = p"*dp~* € Fg, for all s € R. O

3.3. Factorization

In this section, we give a characterization of reversibility in terms of the structure of
states in §. More precisely, we show that the elements in S must have the form of a
product of two positive operators, such that 7™ is multiplicative on one of them and
the other does not depend on o. This can be viewed as a quantum version of the
classical factorization theorem for sufficient statistics, see, e.g., [33]. The first such
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factorization result was proved in [22], see also [13, Theorem 6.1]. Similar conditions
for the infinite dimensional case are proved in [15, Theorem 6].

Theorem 5. Assume Conditions 1 and 2. Let & =T*oT, and P = T,oT*. Then
the following are equivalent.

(i) T is reversible for S.
(ii) There is a positive invertible element pP € Fi N A, such that for each o € S,

o =T*(ot)p?, T(o) = ofT(pP),

with some of' € .7:(%'.
(iii) There is an element pP € AT, such that for each o € S,
o =T (of)o®, T(0) = i T(pP),

with some of' € B,
(iv) There is an element pB € A%, such that each o € S has the form

o=0"p",

A

where o is a positive element in T* (M ).

Proof. Let us denote oy := T'(0) for 0 € S. Suppose (i) and let
p=T"(p)p", po=piT(p")

be the decomposition from Theorem 2(vi). Then, by Theorems 2 and 4, we have
for o € S,

o = p'%d(0, p)p'/* = p'*T*(d(00, po))p*"?
= T*(p5")"*T*(d(00, po))T* (p)/*pP
= T*((p3")"2d(00, po) (i)' /?)p" = T*(0g')p"”

where we put of' := (pg)*/2d(00, po)(pi')'/2. Since d(og, po) = T,(d(a, p)) € fg,

o' is a positive element in Fz. Moreover, o' = T(p?) =200 (p®)~1/2, hence

oo = o' T(p"),

where we used Theorem 2(v). This proves (ii). It is clear that (ii) implies (iii).
Suppose (iii). Then for a € B,

Tracy = Tracy T(p?) = Te T* (acd)p®.
On the other hand,

Traco = Tr T*(a)o = Tr T*(a)T* (03")p".
Putting a = o§', we obtain

Tr T ((07)2)0" = Te T (0)2 P
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Since p is invertible, the decomposition implies that p? must be invertible as well,
hence by Schwarz inequality, T*((0§')?) = T*(c4')?. This implies that o' € Mrp-,
which proves (iv) with o := T*(o¢!).

Finally, suppose (iv). Let o € S. Since both o4 and p? are positive and so is
their product o, they must commute. It follows that

we = ot = (M) (") € T (M)

for all t € R, where p = p?p® is the decomposition for p. We have p™w;p~ % =
wiwgys € T*(Mp«) for all ¢, s € R. By analytic continuation for ¢t = —i/2, we get
pat/2p=1/2p7 € T*(Mrp-), hence also p**d(o, p)p~" € T*(Mq-) for all s. By
Theorem 4(v), this implies (i). O

The next corollary shows that the recovery map 7}, does not depend on the
choice of p. For faithful states, this was proved already in [29].

Corollary 2. Suppose the Conditions 1 and 2 hold. Then T s reversible for S if
and only if Ty = T}|supp cAsuppo for all o € S.

Proof. Let 0 € S, q := suppo, qo := suppT'(c) and suppose that T' is reversible
for S. Let us denote w = o%/2p~Y/2 wy = T(0)*/?>T(p)~*/2. By Theorem 5(ii) and
Theorem 2, we have
wo = (00)"?(pg) ™% € F3
and
w=T"(wy) € Fo, wo="T,(w).
Then for a € qAgq,
T,(a) = T(0)" 2T (6" a0 ®)T (o)~ 1/?

= (wg )" Ty(w* aw)wy ' = (wy ') Tp(w)* Ty (a)Tp(w)wy '

= QOTp(a)QO-
Since p? is invertible, we must have gy = supp o' € Fs and g = supp T*(of') =
T*(qo). Hence also T,(q) = qo and goT,(a)qo = T,,(qaq) = T,(a).
Conversely, since T, is unital, the equality T, = T),|q4, implies that T =
T lgoBqo by Lemma 2, so that Ty o T'(0) = Ty o T(0) = o and T is reversible
for S. O

3.4. Quantum hypothesis testing

Let o and p be density operators in A. Let us consider the problem of testing the
hypothesis Hy = p against the alternative H; = 0. Any test is represented by an
operator 0 < M < I, which corresponds to rejecting the hypothesis. Then we have
the error probabilities

a(M)=TrpM, pB(M)="Tro(l—-M).
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For s € [0, 1), we define the Bayes optimal test to be a minimizer of the expression

(7)

s
1—s

sa(M) + (1 - 5)B(M) = (1 - 5)(1 - Te(o — tp)M), ¢ =
Then the minimal Bayes error probability is

II, := Oénj\}réj{s&(M) + (1 =s)B(M)} = sa(M_ )+ (1 —5)B(M=)

where M; maximizes the expression Tr(o — tp)M over all 0 < M < I. Below we
formulate the quantum version of the Neyman—Pearson lemma. The obtained Bayes
optimal tests are called the (quantum) NP tests for (p, o).

If a € A is a self adjoint operator, we denote by a, the positive part of a, that
is, ay = Zi7>\i>0pi, where a = ) . \;p; is the spectral decomposition of a.

Lemma 7 ([14, 11]). Fort > 0, let P,y := supp(c — tp)+ and let P, be the
projection onto the kernel of o —tp. Then 0 < My < I is a Bayes optimal test if
and only if

My =P 4 + X

with 0 < X; < P, 9. The minimal Bayes error probability is

M = 50 =11 = 5) = splly),

Let now T': A — B be a trace preserving positive map. Let s € (0,1), ¢t = s(1 —
s)~! and let T19 be the minimal Bayes error probability for testing the hypothesis
Hy =T(p) against H; =T(0). For N € B, 0 < N < I, we have

Tr(T (o) —tT(p))N = Tr(o — tp)T*(N) < Oén]\:}%(ITr(a —tp)M

so that > llg, this 1s equivalent to the fact that
h H2>H his is equival he f. h
[T(o —tp)llx < |l —tpl[. (8)

In [17], equality in (8) was investigated for a pair of invertible density operators,
in the case when T is the restriction to a subalgebra. If equality holds for all ¢ > 0,
then the subalgebra must contain some Bayes optimal test for all s € [0, 1], such
subalgebras are called 2-sufficient. It was shown that in some cases, 2-sufficiency is
equivalent to sufficiency, that is, reversibility of T" for {o, p}. From another point of
view, this condition was studied also in [5] and it was shown that for a completely
positive trace preserving map, the equality implies reversibility for certain sets S.

Since the Li-norm is one of the basic distance measures on states, equivalence
between equality in (8) and reversibility is an important open question. We will
show below (Theorem 6) that this equivalence holds if equality in (8) is required
for all o in the extended family S = [J{p**Sp~%, s € R}. Moreover, Theo-
rem 7 shows this equivalence if equality in (8) holds for n copies of the states,
for all n.
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We will suppose below that p is invertible.

Lemma 8 ([17, Lemma 4]). P, # 0 if and only if t is an eigenvalue of d(o, p).
Moreover, the rank of P; o is equal to the multiplicity of t.

Lemma 9. The function t — P;  is right-continuous. Moreover,

lim Ps’+:Pt,++Pt’0, t20

s—t—

Proof. Let p(t) := o —tp for t € R. Let AL(¢),..., )\f\, (t) denote the decreasingly
ordered eigenvalues of p(t) (with multiplicities). For ¢1,t5 € R, we have p(t1) =
p(ta) + (t2 —t1)p. By Weyl’s perturbation theorem [3, Corollary I11.2.6], this implies
that

m?XP\j(tl) — X (t2)] < [t1 — talllp]l-

Moreover, since p is invertible, we obtain by [3, Corollary II1.2.2] that
X (t2) < AS(t2) + (B2 — t1)Ajy (p) < Xi(t1)

when t; < to, where )\fv(p) denotes the smallest eigenvalue of p. Hence the functions
t— )\f(t) are continuous and strictly decreasing.

It is clear that for ¢t < 0 all )\j(t) are strictly positive, and that )\j. (t) = 0 for some
index j if and only if P, o # 0. Let 0 < ¢; < --- < t,, be the eigenvalues of d(a, p)
and put tg := 0, t,, 11 := oo. Then there are indices iy, € {1,...,. N}, k=1,...,n,
such that N = i3 > iy > -+ > iy > ip41 := 0 and for every t € [tx—1,tx) the
strictly positive eigenvalues of p(t) are given by Y (t),. .., /\fk (t).

Let t € [tg—1,tr) and let y(¢t) be a circle, contained entirely in the open half-
plane of complex numbers having strictly positive real parts and enclosing all
AL, ... )\fk (t). By continuity of )\j, there is some § > 0 such that ~(¢) encloses

AL(s), ..., )\;Lk (s) forall s € (t —0,t+ ) and [t,t + ) C [tg—1,tx). Then
1
PS,+ = 5. _ (ZI—p(S))ildza s € [t7t+5)
201 Jo(1)
This implies that ¢ — P; 4 is right-continuous. Let now ¢ € (t5_1,tx), then we can
find 6 > 0 as above, but such that, moreover, (t —d,t+ ) C (tx—1,tx). In this case,
1
Py =— (2 — p(s)) " tdz, se(t—3d,t+06)
2Z7T ’V(t)
so that ¢ — P, 4 is continuous at t. Suppose t = t;_1, then by definition of 75, and
tk_1, we must have
)\j(tkfl) =0 j=ipg+1,.. 01,
<0 j > 1.
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Let 74, be a circle in the complex plane, enclosing )\%(tk_l), Ceey )\fk (tx—1) and 0,
but such that the closed disc encircled by 7}, does not contain any other eigenvalue

of p(tx—1). Then there is some § > 0 such that (tp—1 — 0,tx—1) C [tk—2,tk—1) and
1

Poi=— ¢ (2 —p(s)) "dz, s€(tpy —5,tx1).
T !
k
It follows that lims_n; ) Psy =P, ,++P, 0. Since P,g=0fort ¢ {t1,...,tn},
this proves the assertion. O

Let us denote Q4 := supp(T'(c) — tT(p))+ and Q¢ the projection onto the
kernel of T'(c) — tT'(p).

Lemma 10. Let T: A — B be a trace preserving positive map and suppose that
both p and T(p) are invertible. The following are equivalent.

(i) IT(o) =tT(p)llx = llo = tpllx, for all t € R.
(11) Pt’+ = T*(Qt7+), Pt70 = T*(Qt,O) fO’f’ t e R.

Proof. Since Q; + is an NP test for (7'(p),T(c)), (i) implies that

Tr(T' (o) = tT(p))Qu+ = Tr(o — tp)T™(Qr,+) = o?ﬁé[ﬁ((j —tp)M

so that T%(Q: +) is an NP test for (p, o). By Lemma 7, there is some 0 < X; < P, g,
such that T*(Q¢,+) = Py + + X;. It follows that P, = T (Q¢ 4 ) holds for all ¢ such
that P.o = 0, that is, for ¢ € R\{t1,...,t,}. Since t — P, 4 and ¢t — T*(Q¢,+) are
right continuous, it follows that 7*(Q¢ +) = P; 4+ for all t. On the other hand, by
Lemma 9 we have for all ¢

Pop + Pro = lim Poy = lim T*(Qu) = T*(Qut) + T (Quo)
S

s—t—

hence P, g = T*(Q¢,) for all t. The converse is obvious. O

Theorem 6. Assume the Conditions 1 and 2. Then
(i) T s reversible for S if and only if
lo —tplls = |T(0) = tT(p)ll1, o €S, t>0. (9)

(ii) Suppose that p*Sp=* C 8 for all s € R. Then T is reversible for S if and
only if

lo—tpllh = T (o) = tT(p)l1, o€8, t=0. (10)

(iii) Suppose that B is abelian. Then T is reversible for S if and only if (10) holds.

Moreover, in this case all elements in S commute.

(iv) Suppose that all elements in S commute with p. Then T is reversible for S if
and only if (10) holds.
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Proof. (i) By Corollary 1, T is reversible for S if and only if it is reversible for S.
By monotonicity (8), we get (9).

For the converse, let ¢ € S. Then by Lemma 10, (9) implies that Pio =
T*(Q¢,0) for the corresponding projections for o and p. This implies that Qo €
M« and Pt7() € T*(MT*).

Let t1,...,t, be the eigenvalues of d = d(o, p) and let Fi, ..., F,, be the cor-
responding eigenprojections. Denote P; := P, 9. Then we have (d—ti)p1/2Pi =
p~/2(oc —t;p)P; = 0 and this implies

d,Ol/2 ZPZ = p1/2 Ztlpz

Moreover, any vector in the range of p'/2P;p'/? is an eigenvector of d, so
that supp (p'/?P;ip'/?) < F; and by Lemma 8, rank(F;) = rank(P;) =
rank(p'/2P;p'/?). Tt follows that >, P; is invertible, so that d(o,p)
p2cp=1/2 | with

—1

Cc:= thpz ZPJ GT*(MT*)
i j

It follows that for s € R and o € S, p**~1/2d(a, p)p'/?>~% € T*(Mrp+). By
analytic continuation, we get p‘td(c, p)p~" € T*(Mrp-) for all t € R, which
implies that T is reversible for &, by Theorem 4.

(ii) Clearly follows from (i).

(iii) Let 0 € S and let P, o and Q0 be the corresponding projections. Note that
since B is commutative, Qo must commute for all £. Suppose that (10) holds,
then P, o = T%(Q+,0) and, since then Qo € Mry-, this implies that all P,
commute as well. As in the proof of (i), d(o,p) = p'/?cp~'/?, where we now
have ¢ > 0. This implies that d(o, p)p = p'/%cp*/? > 0, hence d(o, p)p =
pd(o, p) and therefore also op = po. This implies that p**op~% = o and the
statement follows by (ii). The converse implication is clear.

(iv) Follows from (ii). O

3.5. Quantum Chernoff and Hoeffding distances

Let n € N and suppose we are given n identical copies of the states p®",o®" €
S(A®™). Consider the problem of testing the hypothesis Hy = p®" against H; =
o®". Then the minimum Bayes error probability is
1
Mo = 5 (1= (1= 5)0®" = 5p%"[|1).

It is an important result of [2] that as n — oo, the probabilities Il ,, decay expo-
nentially fast and the rate of convergence is given by

1
lim ——logIl; ,, = —log< inf Tra“pl_“> =: C(o,p) (11)

n 0<u<1
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for any s € [0,1], where we put 2" = supp z for any positive x € A. The quantity
C(o,p) is called the quantum Chernoff distance. Note that C' is related to the
convex quantum f-divergence S, (o, p), but one can show that C itself is not an
f-divergence [13]. Nevertheless, if 7" is the adjoint of a unital Schwarz map, then C
satisfies monotonicity:

Clo,p) 2 C(T(0), T(p))

and, moreover, C'(c, p) = 0 if and only if o = p.

Let us consider again the problem of testing the hypothesis Hy = p against the
alternative Hy = o. Let 0 < M < I be a test. Differently from the Bayesian
approach, in the asymmetric approach the error probability a(M) is bounded,
a(M) < € for some fixed € > 0. The error probability (M) is then minimalized
over all tests, under this constraint,

Be :i=inf{B(M),0 <M < I, a(M) < €}.

Suppose we have n independent copies of the states 0®” and p®™ and let M,, € A®™.
Here we require that the probabilities a(M,,) decay exponentially as n — oo. Let
r > 0 and put

Brn =1nf{8(M,), 0 < M, <I, o(M,) <e "}
The following equality was proved in [9, 23]: For r > 0,

—ur — log Tr pto!—

1
lim ——log B,,, = sup =: H.(p,0).
non

0<u<1 1—-u

The limit expression is called the quantum Hoeffding distance. Similarly as the
Chernoff distance, H, is not an f-divergence [13], but it is related to S,. This
implies the monotonicity

HT(T(U)a T(p)) S HT(O-a p)
for T' the adjoint of a unital Schwarz map. Moreover, by [12], see also [13],
Ho(o, p) := lim H, (0, p) = S(0,p) = Tro(logo —logp)
r—

holds if supp o < supp p.

Suppose that g := supp o < supp p, then the function [0, 00) > r — H,.(0o, p) has
the following properties [12], see also [2]:

The function is convex and lower semicontinuous, for r € [0, S, (p, o)] it is strictly
convex and decreasing, and for r > S,(p,0) it has a constant value H,(o,p) =
—log Tr gp, here

1
So(p,0) = —logTrqp + ——Trp(log p —log o)q.
Trqp
Note that if supp o = supp p, then S,(p,0) = S(p,0).

184 1250016-20



Rewversibility Conditions for Quantum Operations

Proposition 3 ([13]). Let o and p be two density operators in A such that
supp o = supp p. Let T : A — B be the adjoint of a unital Schwarz map and suppose
that one of the following conditions holds:

(i) Clo,p) =C(T(0),T(p))-
(ii) H,(0,p) = H(T(0),T(p)) for some r € [0,5(T(p),T(0))].

Then Ty oT(0) =
Theorem 7. Assume the Conditions 1 and 2. Then the following are equivalent.

(i) T is reversible for S.

(ii) C(o,p) =C(T (o), T(p)) for all o € co(S).
(iii) ||a®” tp®" ||y = | T(0)®™ —tT(p)®"||y for allc € S, t >0 and n € N.
(iv) H.(o,p) = H.(T(0),T(p)) for allc € S and r > 0.

Suppose moreover that there is some So C S, such that S C ¢o(Sp U {p}) and
T(p) ¢ T(So). Then there exists some ro > 0 such that (1)—(iv) are equivalent to

(v) H.(o,p) = H.(T(0),T(p)) for all o € co(S) and some r € [0, 7).

Proof. Since T is reversible for S if and only if it is reversible for co(S), (i) 1mplies
(ii) by monotonicity of C'. Conversely, suppose (ii) and let o € S, then o1 := £ (0+p)
is an invertible element in co(S). Proposition 3 now implies that T o T(O‘l) =0
and by (4), we have also T o T'(0) = 0.

Further, suppose (i), then by Theorem 4(vi), there are trace preserving com-
pletely positive maps T:A — B and S:B — A, such that T( ) = T(o),
SoT(o) = 0, 0 € S. It follows that T(0)®" = T(0)®" = T®"(6®") and

= S®(T(0)®"), for all ¢ € S, where T®" and S®" are completely posi-
tive and trace preserving. By monotonicity of the L;-norm, this implies (iii). The
implications (iii) = (iv) = (i) were already proved in [13].

Suppose now that the additional condition holds. Let us choose some ¢ € (0, 1)

and put
ro = inf S(T(p), T(ep+ (1 — 2)r).

c€Sy

Then if 9 = 0, there exists a sequence o, € Sy, such that S(T(p),T(ep + (1 —
g)oyn)) — 0. This implies that T(c,,) — T(p), so that T(p) € T(Sp), which is not
possible. Hence rg > 0.

Suppose (v) holds and let o0 € Sp. Denote 0. = ep + (1 — €)o. Then 0 <
r < S(T(p),T(o:)). Since o. is invertible, we can apply Proposition 3, which
implies that T} o T'(0.) = 0. and therefore also T o T(0) = o for all 0 € Sp.
Since S C ¢o(Sp U {p}), this implies (i). The implication (i) = (v) follows by
monotonicity. O

Remark 3. Note that if all elements in S are invertible, then we may replace co(S)
by S in (ii) and by Sy in (v), where we put rg := inf,cs, S(T(p), T (0)).
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3.6. Quantum Fisher information and x?-divergence

Let us denote by D the set of invertible density operators in A. Then D is a
differentiable manifold, where the tangent space at each point p € D is the vector
space 7, of traceless self-adjoint elements in A.

A monotone metric on D is a Riemannian metric \,, satisfying

Mo(z,2) > Aoy (T(2), T(2)), €T, peD (12)

for any completely positive trace preserving map 7 : A — B.
It was proved by Petz in [30] that any monotone metric has the form

Ao(,y) = Te(J)) " (z)y

with Jg = f(Ap)R,, where A, := A,, = L,R;", and f:(0,00) = (0,00) an
operator monotone function satisfying the symmetry f(¢) = ¢f(t~!). Under the
normalization condition f(1) = 1, the restriction of A, to the submanifold of diag-
onal elements in D coincides with the classical Fisher information for probability
measures on a finite set, moreover, the monotonicity condition (12) characterizes
the classical Fisher information up to multiplication by a constant. Accordingly,
any monotone metric with the above normalization is called a quantum Fisher
information.
The operator J g satisfies [28, 24|

gl

frx
() =TT

for any operator monotone (not necessarily symmetric or normalized) function f
and T': A — B the adjoint of a unital Schwarz map. This is equivalent to [30]

(J;J;)_l > T*(Jf

1) (13)

which implies that the monotonicity (12) holds for all such f and 7.
A related quantity is the quantum version of the y2-divergence, which was intro-
duced in [32] as

Xi/p(0,0) = M (o = p,o0 —p)

where )\g is a monotone metric.

Let now f:(0,00) — (0,00) be operator monotone. Then ¢ — f(¢)~! is a non-
negative operator monotone decreasing function on (0,00). By [7], for each such
function there is a positive Borel measure vy with support in [0, c0) and fooo(l +
s2)"tdys(s) < oo, fooo s(1+ s?)71dvs(s) < oo, such that

rot = [T e = [ R0
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where fs(t) = s +t,t € RT. Then it follows that

() = F(L,R;Y) IR = / (sRy + L) dus(s) = / (J3)Ydvg(s) (14)
0 0
where J$ := JJ* = sR, + L,.

Lemma 11. Let T : A — B be the adjoint of a unital Schwarz map. Let x € A.
Then for s > 0,

Traz*(sR, + Lp)_l(m) > Tr T(.ZL')*(SRT(p) + LT(p))_l(T(q:)) (15)
and equality holds if and only if

(sRp+ L) "(x) = T*[(sRr(p) + Lr(p)~ (T(2))]. (16)

Proof. Since the function fs is operator monotone, the inequality (15) follows from
(13) for f = f,. If equality holds for some z € A, then

(@, ((J3) " = T*(J3,)) "' T)(x)) =0

which again by (13) is equivalent to ((Jj)_1 — T*(J%(p))_lT)(x) =0. O

It follows from the above lemma and the integral representation (14) that
M(z,z) = )\T( )(T( x),T(x)) if and only if (16) holds for all s € supp vy, that is,

(5 +8p) Hzp™ ') =T[(s + Arp)) (T(@)T(p) ")), s€suppry.  (17)

Let now x € T,. Then since p is invertible, there exists some interval I > 0 such
that oy, := p+uzx € S(A) for u € I. Let us denote by I, , the largest such interval
and let S, 5 := {oy,u € 1, .}

Proposition 4. Let p €D,z €T, and T: A — B be such that T and S, . satisfy
the Conditions 1 and 2. Then the following are equivalent.

(i) /\g(x,x) = /\ij;(p) (T'(x),T(z)) for a monotone metric such that |suppvy¢| >
\spec(A ) Uspec(Aq,)|.
(ii) ptap™=t =T*(T(p)"T ()T (p)~"""), t €R.
(ii) p~/2ap V12 = T*(T(p)~ V2T ()T (p) V/2).
(iv)
)

(v

is reverszble for S, ..

T
/\f (x,z) = )\éi(p)( (x),T(z)) for any monotone metric /\g.

Proof. Note that by the assumptions, T'(p) must be invertible. Suppose (i), then
(17) holds and by [13, Lemma 5.2], this implies that

hAp)zp~' = h(App)T ()T (p)~"
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for any complex-valued function h on spec(A,) U spec(Arp(,). In particular, for
h(\) = X, we get (ii). We have (ii) = (iii) by analytic continuation for t = i/2.
Suppose (iii) and let o, € S, . Then

T*(d(T(ou), T(p))) = T*(I +uT(p)”*T(x)T(p)"*/?)
=TI +up Pup % = d(ou, p)

and by Theorem 4, this implies (iv). (iv) implies (v) by monotonicity of Fisher
information. The implication (v) = (i) is trivial. O

Let S C S(A) and let Lin(S) = span{o; — 02:01,02 € S}. Then Lin(S) is a
vector subspace in the real vector space of self-adjoint traceless operators.

Theorem 8. Suppose that the Conditions 1 and 2 hold. Then the following are
equivalent.

(i) T is reversible for S.
(ii) M (z,z) = A§(p) (T'(z), T(x)) for all z € Lin(S) and all monotone metrics.
(iii) X%/f(a, p) = X%/f(T(a),T(p)) for all o € S and all x*-divergences.
iv) The equality in (ii) holds for some symmetric positive operator monotone func-
(iv)

tion f such that |supp pg| > dim(H)? 4+ dim(K)?.
(v) The equality in (iii) holds for some f as in (iv).

Proof. (i) implies (ii) by monotonicity of Fisher information and the implication
(ii) = (iii) is clear. We also have (ii) = (iv) and both (iv) and (iii) imply (v). It is
therefore enough to prove (v) = (i). So suppose (v) and let 0 € S. Put z = 0 —p in
Proposition 4(iii), then it follows that 7*(d(T'(c),T(p))) = d(o, p) for 0 € S which
implies (i) by Theorem 4. O

Remark 4. An important example of a quantum Fisher information, respectively
1

x?-divergence, is given by f(t) = 1 f1(t) = 2(1+¢). In this case, vy is concentrated
int=1and )\g(m,y) = 2Try(L, + R,) *(x) is called the Bures metric. It is the
smallest element in the family of quantum Fisher informations. The simple example
below shows that preservation of the Bures metric does not imply reversibility, so
that, once again, the support condition in (iv) respectively (v) of the above theorem
cannot be dropped.

So let y = y* € A be such that py # yp and Trpy = 0, and let C C A be the
commutative subalgebra generated by y. Then z := py +yp € 7, and, by replacing
y by ty for some t > 0 if necessary, we may suppose that ¢ := p+ 2z € D. Let
T:A — C be the trace preserving conditional expectation, then T'(c) = T'(p) +

T(z)=T(p) +T(p)y + yT(p). This implies that

(Ly+ Ry) (o — p) =y = (Lr(p) + Rrp) " (T(0) = T(p))

which implies that X%/f (o,p) = X%/f(T(a), T(p)).
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On the other hand, if T is reversible, then by Theorem 5(iv), p and o must

commute. But we have [0, p] = [p?,y] # 0.
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A quantum binary experiment consists of a pair of density operators on a finite-dimensional
Hilbert space. An experiment £ is called e-deficient with respect to another experiment F if, up
to €, its risk functions are not worse than the risk functions of F, with respect to all statistical
decision problems. It is known in the theory of classical statistical experiments that (1) for
pairs of probability distributions, one can restrict oneself to testing problems in the definition
of deficiency and (2) that O-deficiency is a necessary and sufficient condition for existence of
a stochastic mapping that maps one pair onto another. We show that in the quantum case, the
property (1) holds precisely if £ consist of commuting densities. As for property (2), we show
that if £ is O-deficient with respect to F, then there exists a completely positive mapping that
maps £ onto F, but it is not necessarily trace preserving.

Keywords: comparison of statistical experiments, quantum binary experiments, deficiency, sta-
tistical morphisms.

1. Introduction

In classical statistics, a statistical experiment is a parametrized family of probability
distributions on a sample space (X, X). The theory of experiments and their
comparison was introduced by Blackwell [2] and further developed by many authors,
e.g. Torgersen, [17, 18]. Most of the results needed here can be found in [16].

For our purposes, a classical statistical experiment & = (X, {pg, 0 € ©®}) is
a parametrized set of probability distributions py, 6 € ®, over a finite set X, where
©® 1s a finite set of parameters. This can be interpreted as follows: X is a set of
possible outcomes x € X of some experiment, each occurring with probability p(x),
where p is a member of a parametrized family {py}, but the value of the parameter
is not known. After observing x, a decision d is chosen from a finite set D of
possible decisions, with some probability w(x,d). The function p: X x D — [0, 1]
is called the decision function. It is clear that a decision function is a Markov
kernel (or a stochastic matrix), that is, d — wu(x,d) is a probability distribution for
all x € X.

*Supported by the grants VEGA 2/0032/09 and meta-QUTE ITMS 26240120022.
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A loss function W : ©® x D — R™T represents the loss suffered if d € D is
chosen and the true value of the parameter is 6. The risk, or the average loss of
the decision procedure p when the true value is 6 is computed as

Re(0, W, ) =) Wo(d)u(x, d)ps(x).
x,d

The couple (D, W) is called a decision problem. If D consists of two points, then
the decision problems (D, W) are precisely the problems of hypothesis testing.

Let F be another experiment with the same set of parameters, then its “informative
value” can be compared to that of £ by comparing their risk functions for all
decision problems. This leads to the definitions of (k, €)-deficiency and e-deficiency,
see Section 2. One of the most important results of the theory is the following
randomization criterion.

THEOREM 1. Let & = (X,{ps,0 € ®O}) and F = (Y,{q9,0 € O}) be two
experiments. Then & is e-deficient with respect to F if and only if there is
a Markov kernel A : X xY — [0, 1] such that

1A(pe) — qolli < 2e,
where A(p) =) A(x, y)p(x).

For € = 0, this is the Blackwell-Sherman—Stein theorem [2, 13, 15]. For a general
€ it was proved in [17].

If ® consists of two points, then the experiment is called binary. In this
case, e-deficiency is equivalent to (2, €)-deficiency [17], which means that such
experiments can be compared by considering only the risk functions of hypothesis
testing problems.

The development of the quantum version of comparison of statistical experiments
was started recently by several authors [14, 3, 8]. A quantum statistical experiment
is a set of density operators on a Hilbert space, mostly of finite dimension. Some
versions of the randomization criterion, resp. the Blackwell-Sherman—Stein theorem
were obtained, in particular, conditions were found for the existence of a trace
preserving completely positive map that maps one experiment onto the other. It
was conjectured in [14] that the existence of such positive (but not necessarily
completely positive) trace preserving map is equivalent to O-deficiency. A weaker
form of this was obtained in [3], where the notion of a statistical morphism was
introduced. The (even weaker) notion of a k-statistical morphism was considered
in [8].

The present paper reviews some of the results of [3] and [8], with focus on the
problem of comparison of binary experiments. As an extension of [8], we prove
that (2, €)-deficiency and e-deficiency of a quantum experiment £ with respect to
another quantum experiment J are equivalent for any J precisely if the experiment
& is abelian, that is, all density matrices py commute. Moreover, we use the results
in [12] to show that any k-statistical morphism can be extended to a map that is
completely positive, but not trace preserving in general.
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2. Quantum statistical experiments

Let H be a finite-dimensional Hilbert space and let A C B(H) be a C*-
algebra. Let S(A) denote the set of density operators in A. A (quantum) statistical
experiment £ consists of A and a family {py, 0 € ®} C S(A), which is written as
E = (A, {pg, 0 € ®}). Throughout the paper, we suppose that ® is a finite set.

The family {pg,0 € ®} represents our knowledge of the state of the quantum
system represented by .A: it is known that this family contains the state of the
system but the true value of 6 is not known.

Let (D, W) be a decision problem. The decision is made by a measurement on
A with values in D. Any such measurement is given by a positive operator-valued
measure (POVM) M : D — A, that is, a collection of operators M = {M,,d €
D} C A" such that ) , M, = I. If all M, are projections, we say that M is
a projection-valued measure (PVM). We will denote the set of all measurements by
M(D, E).

Note that any POVM defines a positive trace preserving map M : A — F(D),
where F (D) is the C*-algebra of all functions D — C. The map is given by

M(a)(d) = Tr Mya, ace A, deD,

and any positive trace preserving map A — F (D) is obtained in this way. Moreover,
we define the map M : F(D) — A by

M(f)=Y_ fd) (TrMy)'Mq,  f€F(D).
d

Then M is again positive and trace preserving. Since J (D) is abelian, both M and
M are also completely positive [10].

As it was pointed out in [3], the set of quantum experiments contains the set
of classical experiments and these correspond precisely to abelian experiments, that
is, experiments such that all densities in the family {pg, 0 € ®} commute. Indeed,
let £ be abelian and let C be the subalgebra generated by {py,0 € ®}. Then
C is generated by a PVM P concentrated on a finite set X and we have the
classical experiment (X, {py := P(py), 0 € ®}). Conversely, let (Y, {gy,0 € ©}) be
any classical experiment with |V| < dim(#) and let Q : Y — A be any PVM,
then (A, {Q(qg), 0 € ®}) defines an abelian quantum experiment. It is clear that
po = P(py) and pg = ]S(pg), 0 € ©, so that £ and (X, {py}) are mapped onto each
other by completely positive trace preserving maps. In particular, the experiments
are equivalent in the sense defined below.

3. Deficiency

Let £ be an experiment and let (D, W) be a decision problem. The risk of the
decision procedure M € M(D, ) at 6 is computed as [5]

Re(®, W, M) =Y M(ps)(d)Wo(d) =Y Wy(d)Tr ps M.
deD d
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Let now F = (B,{0y,0 € ®}) be another experiment, with B C B(K) for
a finite-dimensional Hilbert space K and with the same parameter set. Let k € N,
Dy :={0,...,k— 1} and let € > 0. We say that &£ is (k, €)-deficient with respect
to F, in notation £ >; . F, if for every decision problem (Dy, W) (equivalently,
for all decision problems (D, W) with |D| = k) and every N € M(Dy, F), there
is some M € M(Dy, E) such that

Re(0, W, M) < Rr(0, W, N) + €| Wy, 0 €0,

where ||[Wy| = SUP,e Wy(x). We say that &£ is e-deficient with respect to F,
E >, F, if it is (k, €)-deficient for all k € N.

The relation < defines a preorder on the set of all experiments. If we have
& >o F and simultaneously F > &, then we say that £ and F are equivalent,
& ~ F. The equivalence relation & ~; F is defined similarly, and £ and F are
called k-equivalent.

The Theorem 2 below (apart from (iii)) was proved in [8, Theorem 5] in a more
general setting. We give the proof in our simpler case, just for the convenience of
the reader.

The most important ingredient of the proof is the minimax theorem, which can
be found in [16].

THEOREM 2. Let & = (A,{pp,0 € ®}) and F = (B,{0p,0 € O}) be two
experiments with the same parameter set ©®, |®| < oco. Let k € N, € > 0. The
following are equivalent.

(1) & Zk,e F
(ii) For every loss function W : ©® x D; — RT,

i Rs(O, W, M) < i RrO6,W,N W
MEE%Bk,g>; e )< Arﬁlgk,ﬂ; #( ) +e|W]

where [[W] =, [|Wsll.
(iii) For every loss function W : ©® x Dy — R,

Mep, Re(®, W, M) = max Ry, W,N) —€|[W].

(iv) For every N € M(Dy, F) there is some M € M(Dy, &) such that
|M(pg) — N(og)ll1 < 2e, Vo € O.

Proof: Suppose (i), then for any N € M(Dy, F), there is some M € M(Dy, &)
such that

Y R0, W, M) < Y Rr(6, W, N)+e|W],
0 0

this implies (i1).

Suppose (ii) and let W : ® x Dy — R* be a loss function. Then W:0xD, - R"
given by Wy = ||Wy||— W, is a loss function with [|[W| < ||[W||. Since Rg(@, W, M) =
|Wol| — Re(@, W, M) and similarly for Rr, we have (ii) implies (iii).
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Suppose (iii), and let N € M(Dy, F). Then for every loss function W, we have

Re(O, W, M) > Rr(O0,W,N)—¢€|W
Meﬂ?é‘kg)z e ) Z #( ) —ellW,

and this implies that

su min (Rr(@,W,N) — Rc(8, W, M)) <e.
w, ||WI|)|<1M€M(Dk S)Z

The set M = M(Dy, ) is compact and obviously convex and the set VW of
all loss functions W with |[W]| < 1 is convex as well. Moreover, the function
M, W) — ZQ(R}-(Q, W, N)— Reg(0, W, M)) is linear in both arguments, hence the
minimax theorem applies and we get

€ > min sup (R, W,N)— Rec(0, W, M))
MeM WGWZQ:

= min vslelgv;We(d)(N(Ge)(d) M(pg)(d)).

Let P(®) be the set of all probability measures on ® and let p € P(®). For
M € M fixed, let W be given by

p©)if N(og)(x) — M(pg)(x) >0,

otherwise.

Wy(x) =

Then W € W, so that we get
€ > min Z Y Wa(x)(N(09)(x) — M (ps)(x))

MeM xeDy
Jf%;p( )2|| (09) — M(pg)|I1

Since this holds for any p € P(®), we have obtained

sup min pP)IM(pg) — N(og)ll1 < 2e.
peP(©) MeM Z

The set P(®) is convex and the function M x P(®) — R, given by (M, p) —
Y o PO)|IM(pp) — N(og)ll; is convex in M and concave (linear) in p. Hence the
minimax theorem applies again and we have

minsup M (ps) — N(09)lls = supmin ) p(0) M (pg) — N(op)|1 =< 2
p p 0

which clearly implies (iv), by taking the probability measures concentrated in 6 € ©.
Suppose (iv) and let N € M(Dy, F). Let M € M(Dy, ) be chosen for N by
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(iv). Then for any loss function W,

Re (0, W, M) — Rr(8, W, N) = Z Wo (x)(M(pg)(x) — N(09)(x))

x€Dy
| Wall
2
so that & >; . F. O

< |M(pg) — N(og)ll1 < €l|Wsll.

The following corollary is a generalization of the classical randomization criterion
to the case when the experiment JF is abelian. In the case when € = 0, it was
proved in [3].

COROLLARY 1. Let € = (A,{pg,0 € ®O}) and let F = (B,{0y,0 € ®O}) be
abelian. Then £ >, F if and only if there is a completely positive trace preserving
map T : A — B such that

T (pg) —oplli <2, 06 ¢€0.

Proof: Let (X, {pg,0 € ®}) be a classical experiment equivalent to F and let
P = (Py,..., P, be the PVM such that P(oy) = py, 6 € ®. Suppose & >, F,
then P € M(X, F) and by Theorem 2 (iv), there is some M € M(X, ) such that

IM(pg) — P(op)lli = [IM(pg) — pollt < 2e.

Put T =PoM , then T : A — By C B is positive and trace preserving, where
By is the abelian subalgebra generated by P. Hence T is also completely positive.
Moreover,

1T (ps) — aally = 1P(M(ps) — pa)lli < IM(pg) — polli < 2e.

For the converse, let N € M(D, F) for any finite set D. Put Q = N o T, then
Qe M(D,€E) and

1Q(pg) — N(og)lli = IN(T (pg) — 0u)ll1 < 2e.
By Theorem 2 (iv), this implies & >, F. l

3.1. Deficiency with respect to testing problems

Let (D, W) be a decision problem. Then any M € M(D,, &) has the form
(My, I — M) for some 0 < My <1 and the risk of M is

Re(0, M, W) = Wy(1) + (Wy(0) — Wy (1))Tr pg Mp.
By Theorem 2 (iii), £ >, F if and only if

max Tr AgpgMy > max Tr AgogNy — €||W 1
max ; poMo = max 2@: o —elWll (1
0<My<l1 0=Nop=1
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for all loss functions W, where we denote Ay := Wy(0) — Wy(1). It is easy to see

that
+ 1
S s [Sn] = H(Sas[San]).
here we have used the equality Tra™ = %(Tra + Tr|a|) for a self-adjoint element
ae A

THEOREM 3. & >, F if and only if

HZAQIOQH EHZAQUGH —282|A9|
5 ! 5 ! 5

for any coefficients Ay € R.

Proof: Follows from (1) and (2). For the ‘if” part, put Ay = Wy (0)—Wy(1), we then
have ) ,|Ag| < |[W]||. For the converse, let F. := {0, Ay > 0}, F_ := {0, Ay < 0}
and put

Agif 6 € Fy
Wo(0) = ; o
0 otherwise
—Agif 6 € F_
Wo(1) = | o
0 otherwise
Then W is a loss function with |[W] =), Al []

3.2. Deficiency and sufficiency

Let T : A— B be a completely positive trace preserving map. The experiment
F = (B,{T(pg), 0 € ®}) is called a randomization of £. If N € M(D, F), then
T*(N) € M(D, &) and it is clear that 7*(N) has the same risks as N, hence &
is O-deficient with respect to F.

Suppose that in this setting, F is (k,0)-deficient with respect to &, then we
say that T is k-sufficient for £. If also £ is a randomization of F, then we say
that T is sufficient for &, this definition of sufficiency was introduced in [11]. If
T is a restriction to a subalgebra Ay, C A, then we say that Ay is k-sufficient,
resp. sufficient for &, if T is. If the experiments are abelian, then it follows by
the randomization criterion that 7 is sufficient if and only if it is k-sufficient
for every k € N. Moreover, for abelian binary experiments, 7 1is sufficient if and
only if it is 2-sufficient. (In fact, the last statement hold for all classical statistical
experiments [16].)

It is not clear if any of the above two statements holds for quantum experiments.
The latter condition for binary experiments was investigated in [6], for a subalgebra
Ap. It was shown that A, is 2-sufficient if and only if it contains all projections
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P, +, t >0 (see Lemma 1) and that this is equivalent to sufficiency in some cases.
In particular:

THEOREM 4. Let £ = (A, {p1, p2}) be an experiment and let Ay C A be an
abelian subalgebra. Then the following are equivalent:

(1) Ao is 2-sufficient,

(i) Ao is sufficient,

(iii) Ay is sufficient and £ is abelian.

Proof: The equivalence of (i) and (ii) was proved in [6, Theorem 5(2)], (i1)
— (ii1) follows from [9, Theorem 9.10]. (ii1) — (i) is obvious. ]

4. Binary experiments

Let £ = (A, {p1, p2}) be a binary experiment. Note that we may suppose that
p1 + p2 is invertible, since £ can be replaced by the experiment (PAP, {p1, p2}),
where P = supp (p1 + p2) is the support projection of p; + p;.

Let us denote

fe(t) ;== max Tr(p; —tp)M, t € R.
MeA

€A,
o<M<I

Then by (2), 1
Je@) =Tr(p1 —tp2)4 = E(Ilm —tpafi +1—1). (3)

It is easy to see that Theorem 3 for binary experiments has the following form.

THEOREM 5. Let £ = {A, {p1, p2}) and F = (B, {01, 02}). Then the following
are equivalent:
(1) 8 22,6 f;
(i) ||p1 —to2ll1 = llo1 —tos|li — 2(1 4+ t)e for all t >0,
(iii) fe(t) > fr@) — (1 +1t)e for all t > 0.

We will need some properties of the function fg. First, we state the quantum
version of the Neyman-Pearson lemma [4, 5]. For this, let us denote P, :=
supp (p1 — tp2)4+ and P, o = ker (o1 —tp>) for t > 0.

LEMMA 1. We have fe(t) = Tr(p; — tpo)M for some M € A, 0 <M < I, if
and only if
M=Pt,++X’ OSXSPt,O-
The proof of the following lemma can be found in Appendix.

LEMMA 2.

(1) fe is continuous, convex and fe(t) > max{l —¢,0}, t € R.

(i) fg is nonincreasing in R. Moreover, fe¢ is analytic in R except of some
points 0 <t; < --- <1, | <dim(H), where fec is not differentiable. These
are exactly the points where Py # 0.

We will denote by T¢ :={t1,..., 1} the set of points defined in (ii).
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4.1. Deficiency and 2-deficiency for binary experiments

For classical binary experiments, it was proved in [17] that £ >, . F is equivalent
with £ >, F, so that for comparison of such experiments it is enough to consider
all testing problems. We prove below that this equivalence remains true if only &
is abelian, and that this property characterizes abelian binary experiments.

We will need the following lemma.

LEMMA 3. Let si,52 ¢ Te, 0 < 51 < s9. Then there is a classical experiment

F =X ={1,2,3},{p,q}), such that fe(t) = fFr(t) for all t and fe(s;)) = fF(si),
i=1,2.

Proof: Let us define linear functions g;(¢t) := a; —tb;, i = 0,...,3, where
ay=by=1, a3 =b3 =0 and a; = fe(s;) — i fe(si), bi = —fz(s;), i = 1,2, so that
gi(t) = fe(si) + (t — ;) fe(si)
is tangent to fe at s;, i =0,1,2, where we put so = 0. Since fg is convex and
fe(t) > max{l —¢,0}, gi(t) < f(t), for all i and ¢. Moreover, since fg is also
nonincreasing, we have for any t < 0, —1 = fz(t) < fe(s1) < fe(s2) <0 so that

by > by > by > b3. Convexity and fg(0) =1 also imply that
1 —a;=1— fe(s1) +s1fe(s1) =0,
ar — ay = fe(s1) — fe(s2) — fe(s2)(s1 — 52) + s51(b1 — b2) > 0,
ay = fe(s2) + 5200 > 0,
so that ag > a; > a, > a3. Put p, :=a;_1—a;, g :=b;_1—b;, i =1,2,3, then p =
(p1, p2, p3) and q = (q1, g2, q3) are probability measures. Let F := ({1, 2, 3}, {p, g}),

then
froy=" > pi—tg= Y g1 —g).
i,pi—tq;>0 ,8i—1(1)>g; ()
Let us now define the points ¢, ..., #; as follows. Put #) := 0 and for i =1, 2, 3,

let ¢/ := 1t _, if g = gi—1, otherwise let #/ be such that g;(r) < g;_i(t) for
t <t/ and g;(t/) = gi—1(¢/). Note that ¢/ > 0, since g;(0) < g;—(0). Moreover, since
8i(si) = fe(si) > gi—1(s;), we have t/ <s; for i =0,1,2. In fact, t{ < s; fori =1, 2,
since g;_1(s;) = gi(s;) = fe(s;) implies fg = g; = g;— in some interval containing s;,
so that ti/ = ti/—l <s;i_1 < s;. Similarly, for i =2,3, g;(si—1) < fe(si—1) = gi—1(si—1),
so that we either have ¢/ =1t | or ¢/ > s;_;. In the case that g,(¢) > 0 for all ¢,
we put t; = oo. Putting all together, we have 0 =) <t <s; <1 <s§ <t; <00
and

3
fr0=) gt —gj() = gim1(0), telt_.t)), i=1273,
j=i

Jr(t)=0, t € (t, 00).
It follows that fr(t) < fe(¢t) for all t+ and fr(s;) = fe(s;), i =1, 2. L]
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We will now state the main result of this section.

THEOREM 6. Let £ = {A, {p1, 02}) be a binary experiment. Then the following
are equivalent:
(1) €>p¢ F < &> F for any € >0 and any abelian binary experiment F,
(i) € > F < & > F for any € >0 and any binary experiment F,
(iii) € =90 F <= & >o F for any abelian binary experiment JF,
(iv) &€ is abelian.

Proof: Suppose (i) and let F = (B, {01, 02}) be any binary experiment such that
E >y F. Let D be a finite set and let N € M(D, F). Put p; := N(0;), i = 1,2,
and let Fy := (D, {p1, p2}). Then by Theorem 5, we have for each ¢t > 0,

o1 — to2llt = llor — ozl — 2(1 + t)e = || p1 — tpally — 2(1 + 1)e.

Hence £ >,. Fy and (i) implies that £ >, Fy. By Corollary 1, there is some
M e M(D, E) such that

IM(p;) — N0l = IM(p;) — pilli1 <2, i=1,2.

By Theorem 2, £ >, F and this implies (ii). (ii) trivially implies (iii).

Suppose (iii). Choose any points 51,52 ¢ Tg, 0 < 51 < 52, then by Lemma 3,
there is a classical experiment F = ({1, 2, 3}, {p1, p2}) such that fg(¢) > fr(¢t) for
t >0 and fg(s;) = fr(s;), i =1,2. By Theorem 5, this implies that £ >, ¢ F and
by (iii), £ >o F. By Corollary 1, there is a POVM M : {1,2,3} — A such that
Pk =M(pr), k =1,2. For i = 1,2, put J; :={j € {1,2,3}, p1(j) —sip2(j) > O},
then we have

fe(s) = fr(s) =Y _ pi1(j) = sip2(j)

JeJ;

=Y Tr(piM;) — siTr (p2M;) = Tr (p1 — sip2) Y M;.
jeJ; j€l;
Since s; ¢ T¢, we have Py o =0 and Lemma 1 implies that Zjeli M; =P 4.
Hence the projection Py , is in the range of M. Since for all j € {1,2,3} we
either have M; < P,  or M; < I — P, ,, P;, , must commute with all M;. In
particular, P  and Py, . commute.

Since this can be done for any such sj, sp, it follows that all {P; 1, ¢ Te} are
mutually commuting projections. Since t +— P; ; is right-continuous, it follows that
P;; + commutes with all P for s ¢ Te, and by repeating this argument, P; , are
mutually commuting projections for all r > 0.

Let now A be the subalgebra generated by {P, y,t > 0}. Then A, is an abelian
subalgebra which is 2-sufficient for £. Hence £ must be abelian by Theorem 4.

The implication (iv) = (i) was proved by Torgersen [17]. [

REMARK 1. If dim(H) = dim(K) = 2, it was proved in [1] that & >, F if
and only if F is a randomization of £. The above proof shows that if dim(K) > 3
this is no longer true unless £ is abelian.
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5. Statistical morphisms

Let Sg := span{py,0 € ®O}. A k-statistical morphism [3, 8] is a linear map
L : S¢ — B such that

(1) L(pg) € S(B) for all 6,

(i) for each POVM N : D; — B there is some M € M(Dy, £) satisfying

TrL(p)N; = TrpM;, i€ Dy, pe€Ss.

The map L is a statistical morphism if it is a k-statistical morphism for any k.
It is clear that any positive trace preserving map L : A — B defines a statistical
morphism. The proof of the following proposition appears also in [8].

PROPOSITION 1. & >0 F if and only if there is a k-statistical morphism
L : S¢ — B such that L(py) = 0p.

Proof: Suppose that £ >; o F for some k, then we also have £ >,y F, and
by Theorem 3, this implies || >, Aopolli = || D, Agoylli for any Ay € R. Put
L : pg — og and extend to Sg by L(3_, Agps) = D 5 AgL(ps), then [[L(x)[l1 < [lx]
for x € Sg, so that L is a well-defined linear map on Sg. Theorem 2 (iv) now

implies that L is a k-statistical morphism. The converse is obvious. [J

In [14] and [3], a question was raised whether O-deficiency is equivalent with
the existence of a trace preserving positive map that maps one experiment onto
another. It is clear that this question is equivalent with the question if any statistical
morphism can be extended to a trace preserving positive map. We show below
that if £ and F are binary experiments, then any k-statistical morphism such that
L(p;) = o0;, i = 1,2 can be extended to even a completely positive map, but
Theorem 6 implies that such an extension is not trace preserving in general. This
shows that the condition that the map preserves trace cannot be omitted.

Let #; be as in Lemma 2. Note that

n=max{r =0, fe(r) =1 -1} =max{r = 0, p1 — 102 = 0} “4)
and #; =0 if and only if supp p» £ supp p;. Let us denote
fmax = min{t = 0, fe(r) =0} =min{r = 0, p; —1p, < 0}. )
Then we have either f,,x = 1; or tpn.x = 00, and the latter happens if and only if
SUPP £1 £ supp p2. We have 11p2 = P1 = TmaxP2 (6)
and t;, fma.x are extremal values for which the inequality occurs. Equivalently,
Lol < 02 <17 p1 (7)

with =L and 1 I extremal. We also remark that ¢; = sup(p1/p2) and tyax = inf(p1/p02)

max

as defined in [12].

THEOREM 7. Let £ = (A, {p1, 02}), F = (B, {o1,02}) be binary experiments. If

E =50 F, then there is a completely positive map T : A — B such that T (p;) = o,
i=1,2
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Proof: Let & >, JF, then there is a 2-statistical morphism L : Sg¢ — B,
L(pi) =0, i =1,2. Moreover, fg(t) > fr(t) for all ¢. Let ¢; and ¢ ,, be as in (4)
and (5) for F. Since fr(¢) > max{0,1 —1t}, we must have #; <t and #,, < fmax.
The rest of the proof is the same as the proof of [12, Theorem 21]:

Let u, v € S¢ be positive elements such that ker(u) £ ker(v) and ker(v) £ ker(u).

Then there are some ¢, ¥ € ‘H such that up = vy =0, but uy #0, ve # 0. Put

W av) (0. ag)
T = —L
@ = " T )

then 7 is a completely positive extension of L. We show that such u and v exist.

Suppose fnax < 00 so that supp p; < supp p2, then u := tpx 02— p1, ¥V := p1 — 11 02.
Then u,v > 0 and the condition on the kernels follows by extremality of #; and
tmax- If fmax = 00 but #; > 0, then we put u := tl_l,ol — p2 and v := p;. Finally, if
Imax = 00 and #; = 0, then we put u := p;, v := ps. L]

L), ae€A,

REMARK 1. One can see that the extension obtained in the above proof cannot
be trace preserving unless dimH =2 and £ is abelian.

Appendix: Proof of Lemma 2

The statement (i) follows easily by definition and (3).

Let p(t) := p; —tpy. It can be shown ([7, Chap. II]) that the eigenvalues of p(¢)
are analytic functions ¢ +— A;(¢) for all + € R. It follows that p(¢#) has a constant
number N of distinct eigenvalues A;(¢),...,An(?), apart from some exceptional
points where some of these eigenvalues are equal, and there is a finite number
of such points in any finite interval. Moreover, let P;(t) be the eigenprojection
corresponding to A;(¢) for a non-exceptional point ¢, then ¢ — P;(t) can be extended
to an analytic function for all ¢ such that, if s is an exceptional point, then the
projection corresponding to A;(s) is given by > Johj ()=h (5) P;(s). By continuity,
Tr P;(t) is a constant, we denote it by m;. If s is not an exceptional point, m; is
the multiplicity of A;(s).

By differentiating the equation Tr p(s)P;(s) = m;XA;(s) one obtains

1
M (s) = ——Tr pa Pi(s). ®)
m;

It follows that A;(s) is nonincreasing for all s, moreover, A;(s) = 0 implies that
P2 P;(s) =0, so that p(t)P;i(s) = p(s)P;(s) = A;(s)P;(s) for all + and A;(s) is an
eigenvalue of p(¢) for all . Hence A; is either strictly decreasing or a constant,
which must be nonzero, since we assumed that p; + o, is invertible. It follows that
each A; hits 0 at most once, so that there is only / < N points where A;(t) =0
for some i. Let us denote the points by 0 <# < --- < ¢, it is clear that these
are exactly the points where P;o # 0. Let J; :={i, A;(¢;) >0}, j=1,...,1. Then
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J; C Jj—1 and
fe@) =) midi(t),  telti ), j=1,....1
iel;
This implies (ii). 0J
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Abstract—For a pair of quantum channels with the same
input space, we show that the possibility of approximation of
one channel by post-processings of the other channel can be
characterized by comparing the success probabilities for the two
ensembles obtained as outputs for any ensemble on the input
space coupled with an ancilla. This provides an operational
interpretation to a natural extension of Le Cam’s deficiency
to quantum channels. In particular, we obtain a version of the
randomization criterion for quantum statistical experiments. The
proofs are based on some properties of the diamond norm and
its dual, which are of independent interest.

I. INTRODUCTION

The theory of comparison of statistical experiments started
in the work of Blackwell [1], who introduced a natural order-
ing of experiments in terms of the risks of optimal decision
rules. This ordering was extended by Le Cam [2] into a
deficiency measure on statistical experiments, expressing how
well an experiment S can be approximated by randomizations
of another experiment 7. Le Cam’s randomization criterion
shows that deficiency also gives the maximal loss in the
average payoffs of decision procedures, experienced when the
experiment S is replaced by 7. For an account on comparison
of statistical experiments, see e.g. [3, 4].

An extension of Blackwell’s results for quantum experi-
ments was first obtained by Shmaya [5] in the framework of
quantum information structures. In [6], a theory of comparison
for both classical and quantum experiments is developed in
terms of statistical morphisms. In both works, either additional
entanglement or composition of the experiment with a com-
plete set of states is required. Quantum versions of Le Cam’s
randomization criterion were studied in [7, 8]. In particular,
Matsumoto in [8] introduced a natural generalization of classi-
cal decision problems to quantum ones and proved a quantum
randomization criterion in this setting. The main drawback
of this approach is the lack of operational interpretation for
quantum decision problems.

Comparison of channels can be obtained as an extension
of the theory of comparison of experiments. A natural idea
is the following: given two channels with the same input
space, compare the two experiments emerging as outputs for
a single input experiment. If the output experiment of the
channel ¥ is always more informative than the output of the

This work was supported by the grants VEGA 2/0069/16 and by Science
and Technology Assistance Agency under the contract no. APVV-0178-11.
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channel ®, we say that ¥ is less noisy than ®. An ordering of
classical channels was first introduced in the work by Shannon
[9], where a coding/decoding criterion was applied. Similar
orderings were studied in e.g. [10, 11]. For some more recent
works see e.g. [12, 13].

In the quantum setting, it is possible to use a stronger
ordering, namely to consider experiments on the input space
coupled with an ancilla. As it turns out, for quantum channels,
¥ is less noisy in this stronger sense if and only if ® is
a post-processing of W. In fact, it is enough to compare
guessing probabilities for ensembles of states. This remarkable
result was first obtained by Chefles in [14], based on [5]. It
was extended and refined in [6], in particular it was proved
that no entanglement in the input ensemble is needed. Some
applications were already found in [13, 15-17].

The aim of the present work is to establish an approximate
version of these results, which may be called the randomiza-
tion criterion for quantum channels. More precisely, we study
an extension of Le Cam’s deficiency for quantum channels,
based on the diamond norm. Such definitions appear naturally
in quantum information theory, for example the approximate
(anti)degradable channels, [18]. We show that deficiency can
be characterized by comparing success probabilities for output
ensembles, with respect to the success probability of the
input ensemble. These results are then applied to statistical
experiments and a quantum randomization criterion is proved
in terms of success probabilities.

The diamond norm appears as a distinguishability norm for
quantum channels [19]. As it was observed in [20], this norm
can be defined using the order structure given by the cone of
completely positive maps. We also show that the dual norm
on positive elements can be expressed as the optimal success
probability for a certain ensemble. These properties provide
a convenient framework for proving our results and are of
independent interest.

II. NOTATIONS AND PRELIMINARIES

If not stated otherwise, the full proofs can be found in [21].
Throughout the paper, all Hilbert spaces are finite dimen-
sional. If H is a Hilbert space, we fix an orthonormal basis
{les),i=1,...,dim(H)} in H. We will denote the algebra of
linear operators on H by B(H), the set of positive operators
by B(H)" and the real vector space of self-adjoint elements
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by By (). The set of states, or density operators, on H will
be denoted by S(H) := {o € B(H)*, Tro = 1}.

Let £(#,K) denote the real vector space of Hermitian
linear maps B(H) — B(K). The set L(#, )T of completely
positive maps forms a closed convex cone in £(H, K) which is
pointed and generating. With this cone, L(#, K) becomes an
ordered vector space. We will denote the corresponding order
by <. An element of £(H,K)" that preserves trace is usually
called a channel. We will denote the set of all channels by
C(H,K).

For ¢ € L(H,H), we define

s(9) =D _(ei, d(len)(es))e)-
0]
It is easy to see that s defines a linear functional L(H, H) —
and for all ¢ € L(H,K), ¢ € LK, H), s(pod) =s(po

(G
We now identify the dual space of £(H,K) with L(K,H
where duality is given by

(,9) = s(tpog),

Note that the tracelike property of s implies that we have

(¢,9) = (¢, ¢) and
(9, §00) =(po& 1) = (Yo,
The dual cone of positive functionals satisfies

(L(H,K)T) o= {v € LIK,H), (¥, ¢) > 0,V € LIH,K)"}
= LK, H)*,

R
)-
):

¢ e LH,K), e LK, H).

so that the cone of completely positive maps is self-dual.
Remark 1. Let us denote
Xy = Z lei)(ej| @ |ei)(ej| € B(H®@H)T.
0
The Choi representation C' : ¢ — (¢ ® idy)(X3) provides
an order isomorphism of L(H, ) onto By, (K ® #H) with the

cone of positive operators B(K ® H)™*. Note also that for any
¢ € LH,H), s(¢) = TrC(¢p) X, so that

(,9) = s(¥ 0 ¢) = Tr[C(Y 0 §) Xy] = Tr[C($)C(¥7)]-

It is of course possible to use the Choi representation with this
duality, but for our purposes it is mostly more convenient to
work with the spaces of mappings.

III. THE DIAMOND NORM AND ITS DUAL
The diamond norm in £(H, K) is defined by

lI9lle = (¢ @ id)(p)llr, e9)

sup
PES(HRH)

where ||-||; denotes the trace norm in B(K®@7). It was proved
in [20] that this norm is obtained from the set of channels and
the order structure in £(#, ). Namely, for ¢ € L(H, K),

o= inf inf{A>0,-da<¢<Aa}. (2
l¢lle = _inf nf(A>0,-da<o<Aa) @

3

It was also shown that the dual norm in £(/C, ), which we

will denote by || - ||°, is similarly obtained from the set of

erasure channels {¢, : B(K) 2 A~ Tr[A]o, 0 € 6(H)}:
l¥]° = in )inf{/\ >0,-Aps <Y <A} (3)

= f
cES(H

We list some useful properties of these norms.

Proposition 1. (i) If ¢ € L(H,K)T, then

l¢lle = sup Trlg(o)], [l¢lI°=sup (a,¢).
TES(H) a€C(K,H)
(i) If ¢, € C(H,K), then
lg—9llo=2 sup (7,9 —4)
720,|lv][°<1

(i) If x € C(K,K") and £ € C(H',H), then the maps ¢ —
X o ¢ and ¢ — ¢ o & are contractions with respect to
both || - || and || - ||°.

An important property of the dual norm is its relation to
success probabilities for ensembles of quantum states. Let
& ={\;,0;}%_, be and ensemble on H, here o; € G(H) and
A1,..., A are prior probabilities. In the setting of multiple
hypothesis testing, the task is to guess which one is the true
state. Any procedure to obtain such a guess can be identified
with some POVM M = {Mj,..., My}, M; € B(H)T,
>.;M; = I. Here Tro;Mj is interpreted as the probability
that o; is chosen while the true state is o, so that the average
success probability for the procedure M is ), A;Tr M;0;. One
can show that the maximum probability of a successful guess
for this ensemble has the form Py,..(£) = ||dgl|®, where
¢e € L(C™,K) is the map A — >, Aj;A;0;. More generally,
we have

Proposition 2. Let v € L(K,H)T. Then there is an (equiprob-
able) ensemble &£, on H ® K such that

I71© = dim(K) Tr [V ()] Psuce (E5)-
Moreover, for any ¢ € L(H,H')T, we have

Egor = (@ id)(E,).
IV. THE MAIN RESULT
Let ® € C(H,K) and ¥ € C(H,K'). Similarly to Le
Cam’s deficiency for statistical experiments, we may define
the deficiency of ® with respect to ¥ by

0(®,¥)= inf [|2—aoT.

aeC(K' K)
Since C(K', K) is convex and compact, the infimum is attained,
in particular, 6(®, ¥) = 0 if and only if ® = a o ¥ for some
a € C(K',K). In this case, we write ® < ¥ We also define
Le Cam distance by

A(®, ¥) = max{5(®, ¥), (¥, ®)}.

This defines a preorder on the set of channels with the same
input space. The following data processing inequalities for ¢§
are obvious consequences of their definition and Proposition
1 (iii).
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Proposition 3. Let ®,, &5, &, Uy, Uy, U be channels with the
same input space.

(i) If @1 <X Py, then §(P1,P) < §(DP2, V).

(i) If Uy 2 Uy, then 6(P,Ty) > §(D, Uy).

Let now §(®,¥) = 0. Then for any ensemble £ on the

tensor product H ® H, with an ancillary Hilbert space Hy,
we have

PSUCC(((P@idHo)(S)) SPSUCC((‘I’(@idHo)(S))- 4

The converse was proved in [6, 14]. Our aim is to prove an
e-version of this result.

Theorem 1. Let & € C(H,K), ¥ € C(H,K'), € > 0. Then
0(®,¥) < € if and only for any finite dimensional Hilbert

space Ko and any ensemble £ on H @ Ko,
PSMC(((I) & idiCo)(g)) < PSUCC((W & idKo)(g)) + %Psuw(g)

Moreover, one can restrict to Koy = K and equiprobable
ensembles with k = dim(K)? elements.

Proof. Assume that o € C(K', K) is a channel such that
18— 0w, <

Then for any v € L(Ko,H)T and x € C(K, Ky), we have by
positivity and Proposition 1 (ii), (iii) that

(1 x0®) < <%X°a°‘1’)+|<%X°(‘I’—a°‘1’)>|
< <%X0a0‘1’>+§||7||°||X°(Oé°‘1’—¢’)||<>
1
< (xoao®) + bl

From this, we obtain by Proposition 1 (i) and properties of s
that

[@oq]|®= sup (x,Poy)= sup (y,xo®)
XEC(K,Ko) XEC(K,Ko)
1
< sup  (y,x0aol)+ eyl
XEC(ICJCO)
1
= sup (xoa,¥Pory)+ §6||7||°
XEC(K,Ko)
1
< Woryl]* + §€||7||°-

Hence we have proved that §(®, ¥) < e implies

1
12 oll* <ITorll®+ Sellvll®, Ve L(Ko, H). ()

Since by (1) we have ||¢|l, = ||¢ ® idk,||. for any Ko, we
also have 6(® ® idi,, ¥ ® idk,) < e. Hence we obtain

€ <
Shle ©

for all v € L(K1,H ® Kg) and any K. If £ is any ensemble
on H ® Ky, then

Pouee((2 @ id)(E)) = lld@iaye) llI” = (2 @ id) o ¢¢||°

and similarly for W. Putting v = ¢¢ in (6) implies the desired
inequality.

(@ & idi,) o v[|* < [[(¥ @ idic,) o 7l +
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For the converse, note that by Proposition 1 (ii), we have

0(®,¥) =2 min

P — v
a€C(K',K) t, oo )

'yEE(lC H)+
llvlI°<1

Since the sets C(K',K) and {y € L(K,H)",||7]|® < 1} are
both convex and compact and the map (a,y) + (v, ® —ao¥)
is linear in both variables, we may apply the minimax theorem,
see e.g. [3]. It follows that

0(®,¥) = 2maxmin(y,® — a o ¥)
0% «a
@) — [T}
< 2max {[|@ o9 — [T o v]*}.

= 2max {(7,
2

Proposition 2 and the assumption now imply that the last
expression is less that e.
O

In the case € = 0, we obtain a stronger condition. Similar
results were proved in [6].

Theorem 2. Let ® € C(H,K), ¥ € C(H,K') and let £ €
C(Ko,K) be a surjective channel. Then 6(®,%¥) = 0 if and
only if for any ensemble £ on H ® Ky,

Pouee((2 ® €)(E)) < Pouee (¥ ® €)(E)).

In particular, by choosing ¢ as a classical-to-quantum chan-
nel of the form A — ), A;0; for a set of states {o;}
that spans B(K), we see that for ¢ = 0 we may restrict to
ensembles of separable states.

V. THE RANDOMIZATION CRITERION FOR QUANTUM
EXPERIMENTS

A quantum statistical experiment is a pair T = (H, {ps, 0 €
©}), where py € G(H) for all # € © and O is an arbitrary
set of parameters. Any experiment can be viewed as the set of
possible states of some physical system, determined by some
prior information on the true state. Note that this definition
contains also classical statistical experiments on finite sample
spaces, which can be identified with diagonal density matrices.

Based on the outcome of a measurement on the system,
a decision j is chosen from a (finite) set D of decisions.
This procedure, or a decision rule, is represented by a POVM
{Mj,j € D} on H. The performance of a decision rule is
assessed by a payoff function, which in our case is a map
g: 0O x D — RT, representing the payoff obtained if j € D
is chosen while the true state is pg. The average payoff of the
decision rule M at § € O is computed as

= 90,Tr py M.
jeD

Pr(6,M,g)

The next theorem is the celebrated Le Cam’s randomization
criterion for classical statistical experiments. Note that our
setting contains only experiments on finite sample spaces, but
the theorem holds in a much more general case.
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Theorem 3. [2] Let T and S be classical statistical experi-
ments. Then the following are equivalent.
(i) Tor any decision space (D, g) and any decision rule M
for S, there is some decision rule N for T such that

sup PS(aang) -

PT(G,N,g) - emax|g(9,d)|
e d

<0.

(i1) There is some channel o such that
Sl;pHUa —a(pg)ll < 2

Remark 2. One can show that the condition (i) of the above
theorem is equivalent to

Psucc({)\j: Z l/fjéa'H}) < Psucc({)\j: Z ngé’})“‘fpsucc(g)
0€0g 0€0g

for any ensemble of the form & = {);,> ycq, 15)]eq) (e}
and any finite subset ©g C ©.

As it was proved in [22], Theorem 3 does not hold for
quantum experiments. The quantum randomization criterion
proved in [8] is based on an extension of the classical decision
spaces to quantum ones, but an operational interpretation of
the quantum decision problems is not clear. The aim of the
present section is to apply Theorem 1 to prove a quantum ran-
domization criterion, formulated in terms of optimal guessing
probabilities of some ensembles. In view of Remark 2, this
gives a quantum extension of Le Cam’s theorem. In the case
€ = 0, a similar result was obtained in [6].

Theorem 4. Let S = (K,{og, 6§ € ©O}) and T =
(H,{po, 8 € ©}) be quantum statistical experiments and let
€ > 0. Then the following are equivalent.

(i) There is some « € C(H,K) such that

sup [log — a(pg)ll1 < 2¢
S

(ii) Let {61,...,0,} be any finite subset of © and let £ =
i,k be any ensemble on C" ® K, conststmg of
block-diagonal states T; = 2]21 lef) el @ 7, 7'] €
B(K)*, 32, Trr) = 1. Then

n
Psucc({)\ia Z U@j by sz}) S
j=1

n
< Psucc({/\ia Z Py; o2y Tf}) + €Psucc(€)
j=1
Moreover, in (ii) we may restrict to equiprobable ensembles
with k = dim(K)2.

Proof. Let {0;,...,0,} C O and let ¢5 € L(C™, K) be given
by A 320 | Ajjop;. Ttis easy to see that ¢s is a channel.
Moreover, by [21, Lemma 2], we have for any « € C(H, K),

||¢8 —«o ¢T||<> = mjax ||09j - a(pGj)Hl:

where ¢ is defined analogically. By Theorem 1, the restric-
tion of (i) to {f;,...,0,} is equivalent to

Psuw((¢8 ® Zd)(g)) < PsuCC((¢T ® zd)(f)) + €Psucc(g)

for any ensemble £ on C™* ® K. It is now clear that (i) implies
(ii). Since for any state p € G(C" ® K),

(s @ id)(p Zae @1l =(

Zpe Q71 =

where 7 =3 [e})(e}|® 74 is a block diagonal state, we see
that (ii) implies that

(s @ id)(T)

(o7 @ id)(p (7 @ id)(T)

inf sup |log — « < 2e
weith o & p0|| o — a(pe)llx

for any finite subset ©g C ©. Let Pg denote the set of
probability measures over © with finite support, then we

clearly have
Z p(0)llog —

Now we use the minimax theorem once more. For this, note
that Pg is a convex set, C(H,K) is compact and convex, the
map (p,a) = Y 5.0 P(0)|log — alpg)ll1 is linear in p and
continuous and convex in «. The minimax theorem can be
applied and we obtain

S p(®)llos — o)
O

sup min

up  min d(po)ll1 < 2e.
p e

sup min
pEPe AEC(H,K)

min  sup p(8)||los — alps)ll1
oy S 3 Ol = o)

= mln su gy — &
D, Sup pllos — alpa)ll-

Hence (ii) implies (i).
O

We will say that an experiment So = (K, {75,0 € Op})
is complete if the set {79,0 € O¢} spans B(H). If O is a
finite set, then @, is a surjective channel in C(C!®°l K). By
an application of Theorem 2 we obtain

Corollary 1. Let S = (K,{op, 6§ € ©O}) and T =
(H,{py, 0 € O}) be quantum statistical experiments. Let

So = (K, {m,...,7nv}) be a complete experiment. Then
op = alpg) for some a(H,K) if and only if for any
{61,...,0,} C O and any collection {A;'-J}, 1 =1,...,k
j=1,...,N,l=1,...,n of nonnegative numbers such that

>t Aj-’l =1 for all i, we have

Pguec({1/, ZA;",IU& ®7;}) < Pouec({1/, ZA?;% ®7;})-
Jl 3l

Corollary 2. Let & € C( ), ¥ € C(H,K') and let

To = (H, {r]t, ..., 7D, So = (K, {7, ..., 78}) be com-
plete experiments. Then §(®, \If) =0 if and only if

Poyee (R ®@idic, ) (€)) < Psuee((¥ ® idic, ) (E))

holds for all ensembles of states of the form

={\;, ZA lTl
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VI. CONCLUDING REMARKS

We proved a version of the randomization criterion for
quantum channels and applied it to obtain a randomization
criterion for quantum statistical experiments. The deficiency
0(®,T) in some special cases already appeared in quantum
information theory and our results can be further used to
obtain an operational definition e.g. for the approximately
(anti)degradable channels [18], similarly as it was done for
antidegradable channels in [15]. Another possible application
is to e-private and e-correctable channels [23].

We used some properties of the diamond norm and its dual
that can be obtained solely from the order structure given by
completely positive maps and the trace preserving condition.
This suggests the possibility to apply similar methods to
more general situations. For example, one may assume some
structure in the channels, obtaining similar results for more
specific quantum protocols, such as quantum combs, [24]. It is
also possible to define deficiency in terms of pre-processings.
In the special case of POVMs regarded as a special kind of
channels, this leads to an approximate version of the ordering
of POVMs by cleanness, [25]. More generally, the processing
can consist of a combination of pre- and post-processing,
also allowing some correlations between input and output
systems, either classical or quantum. This would be closer
to the original definition by Shannon, [9]. It seems that all
these situations can be treated within the suggested framework.
Another challenging problem is the extension of these results
to infinite dimensional Hilbert spaces. Some partial results in
this direction were obtained in [26]. Although the methods
used in [20] rely on finite dimensions, it seems plausible that
the useful properties of the norms can be extended also to this
case. All these problems are left for future work.

REFERENCES

[1] D. Blackwell, “Comparison of experiments,” Proc. 2nd
Berkeley Symp. on Math. Stat. and Probab., pp. 93-102,
1951.

[2] L. L. Cam, “Sufficiency and approximate sufficiency,”
Ann. Math. Statist., vol. 34, pp. 1419-1455, 1964.

[3] H. Strasser, Mathematical Theory of Statistics. Berlin,
New York: de Gruyter, 1985.

[4] E. Torgersen, Comparison of Statistical Experiments.
Cambridge University Press, 1991.

[5] E. Shmaya, “Comparison of information structures and
completely positive maps,” J. Phys. A-Math. Gen.,
vol. 38, pp. 9717-9727, 2005.

[6] F. Buscemi, “Comparison of Quantum Statistical Models:
Equivalent Conditions for Sufficiency,” Commun. Math.
Phys., vol. 310, pp. 625-647, 2012.

[7] A. Jencovd, “Comparison of quantum binary experi-
ments,” Rep. Math. Phys., vol. 70, pp. 237-249, 2012.

[8] K. Matsumoto, “A quantum version of randomization
condition,” arXiv:1012.2650, 2010.

[9] C. E. Shannon, “A note on a partial ordering for commu-
nication channels,” Inform. Control, vol. 1, pp. 390-397,
1958.

208

[10] J. Korner and K. Marton, “Comparison of two noisy
channels,” in Colloquia Mathematica Societatis Janos
Bolyai, Topics in Information Theory. North Holland,
1977, pp. 411-424.

[11] 1. Cziszar and J. Korner, Information Theory. Coding
Theorems for Discrete Memoryless Channels. New York
- San Francisco - London: Academic Press, 1981.

[12] M. Raginsky, “Shannon meets Blackwell and Le Cam:
Channels, codes, and statistical experiments,” IEEE ISIT
Proceedings, pp. 1220-1224, 2011.

[13] F. Buscemi, “Degradable channels, less noisy channels,
and quantum statistical morphisms: an equivalence rela-
tion,” arXiv:1511.08893, 2015.

[14] A. Chefles, “The quantum Blackwell theorem and mini-
mum error state discrimination,” arXiv:0907.0866, 2009.

[15] F. Buscemi, N. Datta, and S. Strelchuk, “Game-theoretic
characterization of antidegradable channels,” J. Math.
Phys., vol. 55, p. 092202, 2014.

[16] F. Buscemi, “Fully quantum second-lawlike state-
ments from the theory of statistical comparisons,”
arXiv:1505.00535, 2014.

[17] F. Buscemi and N. Datta, “Equivalence between divisi-
bility and monotonic decrease of information in classical
and quantum stochastic processes,” Phys. Rev. A, vol. 93,
p- 012101, 2016.

[18] D. Sutter, V. B. Scholz, and R. Renner, “Approximate
degradable quantum channels,” IEEE ISIT Proceedings,
pp. 2767-2771, 2015.

[19] A. Kitaev, “Quantum computations: Algorithms and error
correction,” Russian Mathematical Surveys, vol. 52, pp.
1191-1249, 1997.

[20] A. Jencova, “Base norms and discrimination of gener-
alized quantum channels,” J. Math. Phys, vol. 55, p.
022201, 2014.

[21] ——, “Comparison of quantum channels and statistical
experiments,” arXiv:1512.07016, 2015.

[22] K. Matsumoto, “An example of a quantum statistical
model which cannot be mapped to a less informative one
by any trace preserving positive map,” arXiv:1409.5658,
2014.

[23] D. Kretschmann, D. W. Kribs, and R. W. Spekkens,
“Complementarity of private and correctable subsystems
in quantum cryptography and error correction,” Phys.
Rev. A, vol. 78, p. 032330, 2008.

[24] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Theo-
retical framework for quantum networks,” Phys. Rev. A,
vol. 80, 2009.

[25] F. Buscemi, M. Keyl, G. M. D’ Ariano, P. Perinotti, and
R. F. Werner, “Clean positive operator valued measures,”
J. Math. Phys., vol. 46, 2005.

[26] K. Kaniowski, K. Lubnauer, and A. Luczak, “Quantum
Blackwell-Sherman-Stein Theorem and Related Results,”
Open Systems & Information Dynamics, vol. 20, p.
1350017, 2013.

2253



Chapter 7

Generalized quantum channels and

measurements

[CS1] A. Jencova, Generalized channels: Channels for convex subsets of the state space, J.
Math. Phys. 53 (2012), 012201

[CS2] A. Jencové, Base norms and discrimination of generalized quantum channels, J. Math.
Phys. 55 (2013), 022201

209



210

JOURNAL OF MATHEMATICAL PHYSICS 53, 012201 (2012)

Generalized channels: Channels for convex subsets
of the state space

Anna Jencova?
Mathematical Institute, Slovak Academy of Sciences, gtqfdnikova 49,814 73
Bratislava, Slovakia

(Received 26 October 2011; accepted 21 December 2011; published online 25 January 2012)

Let K be a convex subset of the state space of a finite-dimensional C*-algebra. We
study the properties of channels on K, which are defined as affine maps from K into the
state space of another algebra, extending to completely positive maps on the subspace
generated by K. We show that each such map is the restriction of a completely positive
map on the whole algebra, called a generalized channel. We characterize the set of
generalized channels and also the equivalence classes of generalized channels having
the same value on K. Moreover, if K contains the tracial state, the set of generalized
channels forms again a convex subset of a multipartite state space, this leads to a
definition of a generalized supermap, which is a generalized channel with respect
to this subset. We prove a decomposition theorem for generalized supermaps and
describe the equivalence classes. The set of generalized supermaps having the same
value on equivalent generalized channels is also characterized. Special cases include
quantum combs and process positive operator valued measures (POVMs). © 2012
American Institute of Physics. [doi:10.1063/1.3676294]

. INTRODUCTION

The first motivation for this paper comes from the problem of measurement of a quantum
channel. A mathematical framework for such measurements, or more generally, for measurements
on quantum networks, was introduced in Ref. 4, in terms of testers.> For quantum channels, these
were called process POVMs or PPOVMs in Ref. 16. Similar to POVMs, a PPOVM is a collection of
positive operators (F1, ..., Fy,) in the tensor product of the input and output spaces, but summing
up to an operator I, ® w for some state @ on the input space. The output probabilities of the
corresponding channel measurement with values in {1, ..., m} are then given by

pi(€) =Tr(M; X¢), i=1,...,m,

where X¢ is the Choi matrix of the channel £. Via the Choi isomorphism, the set of channels
C(Ho, H1) can be viewed as (a multiple of) an intersection of the set of states in B(H; ® Hy) with a
self-adjoint vector subspace J. This is a convex set, and a measurement on channels can be naturally
defined as an affine map from this set to the set of probability measures on the set of outcomes.

A natural question arising in this context is the following: Are all such affine maps given by
PPOVMs? And if so, is this correspondence one-to-one?

Further, the concept of a quantum supermap was introduced in Ref. 6, which is a map B(H;
® Ho) = B(Hz ® H») sending channels to channels. It was argued that such a map should be
linear and completely positive. But it is clear that it is enough to consider completely positive maps
J — B(H3 ® H,) sending channels to channels. We may then ask whether all such maps extend to
a completely positive map on B(H;| ® Hy), and if this extension is unique.

Supermaps on supermaps were defined similarly, these are the so-called quantum combs, which
are used in description of quantum networks.*® It was proved that all quantum combs can be
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represented by memory channels, which are given by a sequence of channels connected by an
ancilla, these form the “teeth” of the comb. The theory of quantum combs was subsequently used
for optimal cloning’ and learning? of unitary transformations and measurements.® As it turns out,
the set of all N-combs forms again (a multiple of) an intersection of the set of multipartite states by
a vector subspace.

To deal with these questions in full generality, we introduce the notion of a channel on a convex
subset K of the state space, which is an affine map from K into another state space, extending to a
completely positive map on the vector subspace generated by K. In order to include all channels,
POVMs and instruments, and other similar objects, we work with finite-dimensional C*-algebras
rather than matrix algebras. We show that each such map can be extended to a completely positive
map on the whole algebra, these maps are called generalized channels (with respect to K). Further, a
measurement on K is defined as an affine map from K into the set of probability distributions and it
is shown that each such measurement is given by a (completely) positive map on the whole algebra
if and only if K is a section of the state space, that is, an intersection of the set of states by a linear
subspace. This special kind of a generalized channel is called a generalized POVM.

We describe the equivalence class of generalized channels restricting to the same channel on
K. Moreover, we show that if K contains the tracial state, the set of generalized channels, via Choi
representation, is again (a multiple of) a section of some state space, so that we may apply our results
on the set of generalized channels themselves and repeat the process infinitely. This leads to the
definition of a generalized supermap. We show that the quantum combs and testers are particular
cases of generalized supermaps, other examples treated here include channels and measurements
on POVMs and PPOVMs, and supermaps on instruments. We also describe channels on the set of
states having the same output probabilities for a POVM or a finite number of POVMs.

The outline of the paper is as follows: After Sec. II, we consider extensions of completely
positive maps on subspaces of the algebra and of positive affine functions on K. If the subspace
is self-adjoint and generated by its positive elements, then a consequence of Arveson’s extension
theorem shows that any completely positive map can be extended to the whole algebra. For positive
functionals on K, we show that these extend to positive linear functionals on the whole algebra if
and only if K is a section of the state space. These results are used in Sect. IV for extension theorems
for channels and measurements on K. We characterize the generalized channels with respect to K
and their equivalence classes. We show that a generalized channel can be decomposed to a so-called
simple generalized channel and a channel.

In Sec. V, we prove that the set of generalized channels is again a section of a state space
and introduce the generalized supermaps. We give a characterization of generalized supermaps as
sections of a multipartite state space and show that the quantum combs are a particular case. We
prove a decomposition theorem for the generalized supermaps, similar to the realization of quantum
combs by memory channels proved in Ref. 8. In particular, we show that a generalized comb can
be decomposed as a simple generalized channel and a comb. Finally, we describe the equivalence
classes for generalized supermaps and consider the set of supermaps having the same value on
equivalence classes.

Il. PRELIMINARIES

Let A be a finite-dimensional C*-algebra. Then .4 is isomorphic to a direct sum of matrix
algebras, that is, there are finite-dimensional Hilbert spaces H,, . .. H,, such that

A= BH)).
J

Below we always assume that A has this form, so that .4 is a subalgebra of block-diagonal elements
in the matrix algebra B(#), with # = @;#;. The identity in .A will be denoted by I4. We fix a
trace Tr4 on A to be the restriction of the trace in B(#), we omit the subscript A if no confusion
is possible. If A = B(H{) is a matrix algebra, then we write I;; and Try, instead of I3y and Trgy,).
We will sometimes use the notation H,4, Hp, etc., for the Hilbert spaces, and Hap = Ha @ Hp,
TrA = TI"HA, IA = IHA'
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If B is another C*-algebra, then Trﬁ‘g’g will denote the partial trace on the tensor product A ® B,
Try(a ® b) = Tr(a)b. If the input space is clear, we will sometimes denote the partial trace just by
Tr A-

For a € A, we denote by a’ the transpose of a. Note that Trj@’B x" = (Trj@’Bx)T for x
€cA®B.IfAC A, thenAT = {a’,a € A}.

We denote by A" the set of all self-adjoint elements in A, A* the convex cone of positive
elements in A and G(A) the set of states on .4, which will be identified with the set of density
operators in A, that is, elements p € A" with Trp = 1. If p € G(A) is invertible, then we say that
p is a faithful state. The projection onto the support of p will be denoted by supp (o). If A = B(H),
then we denote the set of states by G(#H). Let t4 denote the tracial state t;' I4, here t4 = Tr(14).
Later on, we will also need the set §.(A) = {a € A", Tr(ca) = 1} for a positive invertible element
¢ € A, note that &;,(A) = G(A).

The trace defines an inner product in A by (a, b) = Tr (a*b), with this A becomes a Hilbert
space. If A C A is any subset, then A+ will denote the orthogonal complement of A. Then A++
=: [A] is the linear subspace, spanned by A. The subspace spanned by a single element a will be
denoted by [a].

Letnow L C A be a (complex) linear subspace. We denote by L" the set of self-adjoint elements
in L, then L" is a real vector subspace in .A”. The subspace L is self-adjoint if a* € L whenever a
€ L. In this case L = L*@iL". If also I 4 € L, then L is called an operator system.'> If L is generated
by positive elements, then we say that L is positively generated. If L, and L, are subspaces in A,
then L, VL, denotes the smallest subspace containing both L, and Ly, and L; A L, = L N L,.

A. Channels, instruments, and POVMs

Let H, K be finite-dimensional Hilbert spaces. For any linear map T : B(H) — B(K), there is
an element X7 € B(K ® H), given by

Xp =T @idy)(Wy), W =Y )il ® i)l ()
i,J

for |i) a canonical basis in . Conversely, each operator X in B(X ® H) defines a linear map
Tx : B(H) — B(K) by

Tx(a) = Try[(Ix ® a")X],  a € B(H). 2)

It is easy to see that Tx, = T and X7, = X, so that the two maps are each other’s inverses. The
matrix X7 is called the Choi matrix of 7. We have the following:

(i)  Tis completely positive (cp) if and only if X7 > 0.
(i) Tis trace-preserving if and only if Trx X7 = Iy.

Let now A = @; B(#;) and B = @; B(K;) be finite-dimensional C*-algebras. For any linear
map T : A — Btherearelinear maps T;; : B(H;) — B(IC;) such that T(a;) = ®;Tj(a;), a; € B(H;).
It is clear that T is a cp map if and only if all T}; are cp maps. Put

Xr = eai.jXT,',' € B® A. (3)

Then it is easy to see that Eq. (2) and both (i) and (ii) hold with H = @;H; and K = &;K; (hence,
we may replace Try and Tri by Tr 4 and Trg, similarly for /; and ). The matrix X7 is again called
the Choi matrix of T.

Next we describe instruments and POVMs as special kinds of channels. Let K; = K for all
j=1,..., m, so that B=C" ® B(K). Then a channel T : A — B is called an instrument A
— B(K), with values in {1, ..., m}."* Note that T is a channel if and only if 7}; are cp maps, such
that for each i, T; := ) ;T}; is a channel B(H;) — B(K). The Choi matrix of an instrument has the
form X7 = @; 37, [7)(j| ® Xij, with

TrpXr = & ZTFKXU‘ =®ily, = Iy = 14
J
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Let us now suppose that IC = C, then B is the commutative C*-algebra 3 = C”. A channel T :
A — B maps states onto probability distributions, hence it is given by a POVM My, ..., M,, € AT,
YuiMi=14as

T(a)=(TrMa,...,TrM,a). @)
The Choi matrix is X7 = )", |k) (k| ® M, with Trg X7 =Y, M| = L.

1. The link product

Let H; be Hilbert spaces, fori =1, 2, ... and let M C N be a finite set of indices. We denote
Ham = Qe Hi- Let N € N be another finite set and let X € Huy, Y € H s be any operators.
The link product of X and Y was defined in Ref. 8 as the operator X * Y € B(Hann ® Hanm),
given by

X xY = Truew (L ® YYX @ L), )
where T is the partial transpose on the space H . In particular, X * Y =X Q Y,if M NN =
@and X x Y = Tr(Y'X),if M = N.

Proposition 1 (Ref. 8): The link product has the following properties.

1. (Associativity): Let M;, i = 1, 2, 3 be sets of indices, such that M; N M, N M3z = @. Then
f()l" X; € HM,-,

(X1 *Xz)*X3 = X1 *(Xz *X3)
2. (Commutativity): Let X € Hnz, Y € Hy, then
Y« X=EX=xY)E,

where E is the unitary swap on H o n @ Hanm-
3. (Positivity): If X and Y are positive, then X x Y is positive.

The interpretation of the link product is the following: If X € B(H; ® Ho)andY € B(H, ® H;)
are the Choi matrices of maps Tx : B(Ho) — B(H;) and Ty : B(H,) — B(H3), then X x Y is the
Choi matrix of their composition Ty o Tx. For X € B(#,), we have

Y « X = Ty(X). (6)

Let now X € H be a multipartite operator and let Z U O = M be a partition of M, then X
defines a linear map ®x.7.0 : Hz — Ho, by

®yx.z0(ar) = Try,(Iy, ® ar)X,  az € Hr. (7

As it was emphasized in Ref. 8, X is the Choi matrix of many different maps, depending on how
we choose the input and output spaces Z and O. The flexibility of the link product is in that it
accounts for these possibilities. For example, let M = M; U M, U Myand N = N UN, U M,
be partitions of M and N. Put @y := Py, 1, pmeum, and Py := Py.aiur.n;- Then X x Y is the
Choi matrix of the map B(H m,un;) = B(Ha,un,), given by

CDY*XlMlUN’l,MzU/\/z =(Py ® ld/\/lz) o (ldM ® dy).

In the case when the input and output spaces are fixed, we will often treat a cp map and its Choi
matrix as one and the same object, to shorten the discussion.

lll. EXTENSIONS OF CP MAPS AND POSITIVE FUNCTIONALS

The main goal of this paper is to study cp maps and channels from a convex subset K of the state
space into another C*-algebra. To characterize such maps, it is crucial to know whether or when
these can be extended to cp maps on the whole algebra. This section contains an extension theorem
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for cp maps on a vector subspace. We also prove that positive affine functionals on K have positive
extensions if and only if K is a section, that is an intersection of the state space by a vector subspace.

A. An extension theorem for cp maps

Let J C A be a subspace and let K be a finite-dimensional Hilbert space. Let B C B(K) be a
C*-algebra.

Amap B : J — Bis positive, if it maps J N A" into the positive cone B and E is completely
positive, if the map

idc, ® E: B(Ko) ® J > B(Ko) ® B

is positive, for every finite-dimensional Hilbert space KCy. If J is an operator system, that is a self-
adjoint subspace containing the unit, then Arveson’s extension theorem' '3 states that any completely
positive map E : J — B(K) can be extended to a cp map A — B(K).

The following is a consequence of this theorem in finite dimensions.

Theorem 1: Let J C A be a self-adjoint positively generated subspace. Then any cp map
J — B can be extended to a cp map A — B.

Proof: Let J* = J N AT, so that J is generated by J T . There is some p € JT such that the
support of p contains the supports of all other elements in J* . Let us denote p := supp (p), then J
is a subspace in the algebra A, := pAp. Denote

At A, — A, Aa) = p'"*ap'?.

Then J':= A ~'(J) is an operator system in A,,. Moreover, & : J — B is a cp map if and only if &’
:= BoAisacpmap J' — B C B(K). By Arveson’s extension theorem, E can be extended to a cp
map &' : A, - B(K). Let Eg : B(K) — B be the trace preserving conditional expectation, then
®:=Ego® oA~!isacpmap.A, - Bextending E. This can be obviously extended to A 0.

B. Sections of the state space

Let f be an affine function G(A) — R*. Then, since G(A) generates the positive cone A", fcan
be extended to a positive linear functional on .A. Below we discuss the possibility of such extension
if fis defined on some convex subset K C G(A). Let us first describe a special type of such subset.

Let K € &(A) be a convex subset and let Q be the convex cone generated by K, then
O = {AK, ) >0} C AT. The vector subspace [K] generated by K is self-adjoint and [K] = Q
- 0+iQ - 0.

We say that K is a section of G(A), if

K =[K]INGSA). (8)
It is clear that a section of &(.A) is convex and compact. It is also clear that (8) is equivalent with

Q0 =[KINnA". C))

Sections of the state space can be characterized as follows.

Proposition 2: Let K C &(A) be a compact convex subset and let Q = {AK, » > 0}. Then K is
the section of G(A) if and only ifa, b € Q, and b < a impliesa — b € Q.

Proof: Since we always have Q C [K] N A, itis enough consider the inclusion [K] N AT € Q.
But [K]N AT =(Q — Q)N AT and hence any element y € [K] N AT has the formy =a — b
witha, b € Q,and b < a. O
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Proposition 3: Let K C &(A). Then K is a section of &(A) if and only if there is a subspace
J C A, such that K = J N S(A).

Proof: If K is a section of &(.A), then we can put J = [K]. Conversely, let K = J N &(A) for
some subspace J € A. Then Q = J N A" and if a, b € Q with b < a, then obviously a — b €
J N A" = Q. By Proposition 2, K is a section of G(A). O

Note that if K = J N &(.A) for some subspace J, we do not necessarily have J = [K], even if J
is self-adjoint. The next proposition clarifies this situation.

Proposition 4: Let J € A be a self-adjoint subspace and let K = J N &(A) # (. Then there is
a projection p € A, suchthat [K| = J N A,. In particular, J = [K] if J contains a positive invertible
element.

Proof: Suppose first that J contains a positive invertible element p and let K = J N &(A),
equivalently, O = J N A*. Since A is finite-dimensional, for any a € J" there is some M > 0, such
that a < Mp, and then

a=Mp—(Mp—a)e Q— Q.

This implies J* = Q — Q and since J is self-adjoint, J = [K].

For the general case, choose some state p € K such that its support contains the supports of all
o € K, sothat K € A,, where p := supp (p). Then J, := J N A, is a subspace in A, containing
the positive invertible element p and K = J, N &(A,). Hence, by the first part of the proof, [K]
= Jp, O

C. Positive affine functions on K

Let A(K) be the vector space of real affine functions and A(K)™ the convex cone of positive
affine functions over K. In this paragraph, we study elements in A(K)* that can be extended to a
positive affine functional on G(A), hence, are given by positive elements in A.

Any element in A(K) extends to a (unique) real linear functional on [K]" and conversely, any
linear functional on [K]" defines an element in A(K), so that

AK) = (K1) = Ak :={a+ K+, ae A"}

In other words, any element ¢ € A(K) has the form ¢(¢0') = Tr ac for some a € A" and two elements
ay, ay € A" define the same ¢ € A(K) if and only if a; = a, + x for some x € K+,

Let mgx1 : a — a + K be the quotient map. Then it is clear that g1 (AT) € A(K)T. We are
interested in the converse. Note that if K is the closure of K, then K is convex and K+ = K+,
[K]=[K]and A(K) = A(K), A(K)*T = A(K)™.

Theorem 2: Let K € G(A) be a nonempty convex subset. Then A(K)* = g (AY) if and only
if K is a section of G(A).

Proof: 1t is clear by the remark preceding the theorem that we may suppose that K is closed.

Let K be a section of G(A), then any positive affine function on K extends to a positive linear
functional on [K]. Since positive functionals are completely positive and [K] is positively generated,
the assertion follows by Theorem 1.

Conversely, suppose that K is not a section of G(A). Then there is some x € [K]N A", such
that x € Q. Since Q is closed and convex, by Hahn-Banach separation theorem there is a linear
functional fon A", such that f(x) < s < inf{f(a), a € Q}, for some s € R. This implies that s < f(0)
= 0 and, moreover, Af(c) > s for all A > 0, 0 € K, hence f(c) > 0 and f defines an element ¢ €
A(K)*. But ¢ has a unique extension to [K], namely, f and f{x) < s < 0, so that ¢ cannot be given
by an element in A™. O
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IV. GENERALIZED CHANNELS

Let K € &(A) be a convex set and let E : K — B* be an affine map. Then E extends to a
linear map [K] — B. (Note that in general, this extension does not need to be positive.) We will
say that E is a cp map on K, if this extension of E is completely positive. If E also preserves trace
(equivalently, E(K) € &(B)), then E will be called a channel on K.

Remark 1: Note that by this definition, E is a cp map (resp. channel) on K if and only if (the
extension of) E is a cp map (resp. channel) on K :=[K]N &(A), the smallest section of S(A)
containing K. Therefore, without any loss of generality we may suppose that K is a section of G(.A).

Theorem 3: Let K C &(A) be a convex subset. Then any cp map on K has a cp extension to
A If® : A — Bisacpmap, then ® defines a channel on K if and only if its Choi matrix satisfies

TrpXe € 14+ (KT)*. (10)
Two cp maps @y, P, : A — B define the same cp map on K if and only if
Xo, — Xo, € BR(KT)*. (11)

Proof: Since [K] is positively generated, the first statement follows from Theorem 1. The map
@ defines a channel on K if and only if Tr (®(a)) = 1 for all a € K, that is,

Tr@’)=1=Tr(®@a)) =Tr((Izg ® a")Xe) = Tr(a’ TrzXo), aek,
equivalently, TrgX¢ € 14+ (K Tyl Furthermore, ®, and &, have the same value on K if and only
if

Tr(b(di(a) — D2(a) =Tr(b ® aT)(Xq)] — Xo,) =0, Va € K, b € B,
thatis, Xo, — Xo, € B KT)* = B® (KT)*. O

Any cp map @ : A — B, satisfying (10) will be called a generalized channel. Two generalized
channels having the same value on K will be called equivalent. If we want to stress the set K (or the
subspace [K]), we will say that ® is a generalized channel with respect to K (or [K]).

We will next introduce an example that will be used repeatedly throughout the paper. Let A
be a finite-dimensional C*-algebra and let S : A — Ay, T : Ay — A be completely positive maps.
Let Jy € Ay be a self-adjoint vector subspace. Then S™'(Jy) = {a € A, S(a) € Jo}, and T(Jp) are
self-adjoint subspaces in .A. In particular, if Jy = [S(p)] is the one-dimensional subspace generated
by S(p) for some p € G(A), then S~!(Jy) N S(A) is the equivalence class containing p for the
equivalence relation on G(A) induced by S.

Lemma 1: Let S : A— Ao be a cp map and let Jy be a subspace in Ag. Then S™'(Jo)*
= S*(JOJ-), where S* . Ay — A is the adjoint of S with respect to {a, by = Tr(a*b).

Proof: Let a € A, then Tr (a*S*(b)) = Tr (S(a*)b) = Tr (S(a)*b) = 0 forall b € JOL if and only
if S(a) € Jo, this implies that $*(J3")* = S7'(Jo), so that S~!(Jo)* = S*(JgH). O

We denote by ST the linear map A — Ay, defined by ST(a) = [S(a”)]”. Note that the Choi
matrix of ST satisfies X ¢r = Xg, so that S is a channel if and only if ST is a channel.

Lemma 2: Let S : A — Ag be a channel and let Jo € Ay be a subspace. Let J =S~ '(Jy). Then

i IDHE = HIHH.
Gi) Ta+ T =Ty g+ D).

Proof: We have
ST =1a, S@") e Joy={a, S(@) e IS} =(ST)'(Jy),
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(i) now follows by Lemma 1 and (ii) follows from the fact that ST is a channel, so that (ST)* is
unital. a

Example 1 (Channels on channels): Let A = By ® By, Ao = By and let S : B ® By — By be
the partial trace Trp,. Let Jo = [I5,] = ClIp,. The set
C(Bo. By) := Trg([13,]) N 15,6(B; ® By) (12)
is the set of all Choi matrices of channels 3y — 3. Denote J := Trgll([lgo]) and K =J NGB ®
Bo), then K is a section of the state space and C(By, B;) = 5,K . It follows that Z is a channel on K
if and only if tgol E is a channel on C(By, 13;). Hence, any channel C(By, B;) — &(B) is given by a
cpmap ® : B; ® By — B, such that TrzX¢ € tgol I,08, + (KT)*.

Since 15,985, € J, we have J = [K] by Proposition 4, so that (K7)* = (J7)*. Note also that S”
= Sand S*(a) = Iy, @a fora € By. By Lemma 2,
(K"t = 1Ip, ® [15,]"
and taking into account that X¢ > 0, we get
TrsXo € [Is, ® (15, + 15,11 N (B1 ® Bo)* = I, ® S(Bo). 13)
Moreover, ®; and &, are equivalent if and only if
Xo, — Xo, =15, ®Y, Y eB® By, TrgY =0. =

Example 2 (Channels on POVMs): Put By = C™ in example 1, then C(3y, C™) is the set of all
POVMs on By, with values in {1, ..., m}. If ® : B; ® By — B is a cp map, then the Choi matrix
has the form X¢ = Z;’zl 1)1 ®X;, X; € (B® By)*. The condition (13) becomes

Xo= Y INGI®X;, TsX; =0V oc6&®B, (14)
j=1

and &, and @, are equivalent if and only if X¢, = Z_/ )il ® Xij, i =1,2, with

Xij— Xy, =YVj, YeB®By Trg¥ =0. .

Example 3: Let A = B(H) and let E = (E|, ..., E;) be a POVM on B(H). Then E defines a
channel Sg : B(H) — C* by a — (Tr(Eja), ..., Tr(E;a)). Let p be a faithful state and let Sg(p)
=A=(1,..., M) Let J = S;'([A]) and let

K=JNGA) ={oe&H), Tr(0E)=Ari,i=1,... k.

We have SL = Sgr and (SL)*(x) = Y., x;; EI for x € C¥, and since p € J is invertible, (KT)*
= (JT)t = S5, ([A]*1), by Lemma 2. It follows that channels K — GS(B) are given by cp maps

® : B(H) — B, such that
TisXo = Y GE[, Y chi=1
i i

Note that if E is a projection valued measure, then E7 is a PVM as well and positivity of X¢ implies
that we must have ¢; > 0 for all i. Moreover, ®; and @, are equivalent if and only if

Xo, = Xo,=» y;®E], y;€B. Y iy =0.
j J

More generally, let E' = (EY, ..., E} ),i=1,...,nbe POVMs. PutJ =N;J;, for J; = S,
with A, = Tr(E'p),j=1,...,k,i=1,...,n and

K=IN6A) ={o €S, Tr(cE)=x, j=1,....k, i=1,....n}.
Again, p € J, so that
(KDy- =D =01 = viIHt = viSE ).

217



218

012201-9 Generalized channels J. Math. Phys. 53, 012201 (2012)

It follows that channels K — &(B) are given by cp maps © : B(H) — B, satisfying

n ki
TrsXo =y 3 di(EDT, Y dii=1,
iJ

i=1 j=1

and ®;, ¥, are equivalent if and only if

Xq;l — Xq>2 = Zylj ®(E;)T, Yij € B, Zyl])\lj = 0, Vi. O
ij J

A. Measurements and instruments on K

Let B=C" ® B(K;) and let ® : A — B be a generalized channel with respect to K. Then
there are cp maps ®; : A — B(K),j =1, ..., m, such that ®(a) = ) ;|j){j| ® ®;(a). Since

1=Tr(®@) =Y Tr(®;(@). ack,
J

> j®; is a generalized channel with respect to K. In this case, we will say that @ is a generalized
instrument with respect to K.

In particular, let B = C™, then any cp map ® : A — B has the form (4) with some positive
elements M; € A and the Choi matrix is X¢ = ) SNUT® M,T Then & is a generalized channel
with respect to K if and only if

ZM,» =TrpXL e I, + K™ (15)
j

Any such collection of positive operators will be called a generalized POVM (with respect to K). If
M and N are generalized POVMs, then they are equivalent if and only if

M;—N; e K+, Vj. (16)

Now let K be any convex subset of G(A4). A measurement on K with values in a finite set X is
naturally defined as an affine map from K to the set of probability measures on X. It is clear that any
generalized POVM with respect to K defines a measurement on K by

pja)=Tr(M;a), je€X, aeK.

Conversely, any measurement on K is given by a collection of functions A; € A(K) ", i € X, such that
> iri = 1 (here 1 is the function identically 1 on K). Each A; is given by some element M; € A" such
that }°; M; € 14+ K*. By Theorem 2, all M; can be chosen positive, and hence form a generalized
POVM, if and only if A extends to a measurement on the section K, see Remark 1. If K is a section
of G(A), then measurements on K are precisely the equivalence classes of generalized POVMs. If
K is not a section, then Theorem 2 implies that there are measurements on K that cannot be obtained
by a generalized POVM.

Example 4 (PPOVMs): Let By = B(Hy), Bi = B(H1), and B = C* in example 1. Let us
denote C(Ho, H1) := C(By, B) in this case. Since this is (a multiple of) a section of G(H; ® Hy),
measurements on C(Hy, H;) are given by generalized POVMs. A collection (M, ..., M,,) of
operators M; € B(H; ® Ho)" is a generalized POVM with respect to C(H, H1) if and only if

ZMJ‘ZI?{, R w, w € G(Hyp).
J
Note that these are exactly the quantum 1-testers, also called process POVMs, or PPOVMs, in
Ref. 16. Moreover, two PPOVMs, M and N, are equivalent if and only if

Mj—N;j=1Iy®y;, Tr(y)=0,V].
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Similarly, if we put By = B(Ho), By = C™, and B = C¥*, we get that any measurement on the set
C(B(Hp), C™) has the form (M, ..., M;), with

M=)l ® My, My € B(Ho)", Y Mij=we &S(Hy), Vi
i=1 J

and M and N define the same measurement if and only if

Mij = Nij = y;. Vi, Te(y)) =0, Vj.

B. Decomposition of generalized channels
Let c € A*. We denote x.: a — c"?ac'?. Then . is a completely positive map A — A and
X defines a channel on K if and only if Tr (x.(a)) = Tr (ac) = 1, that is, Tr ((14 — ¢)a) = O for all

a € K. This shows that x is a generalized channel if and only if
ce()Gs(A)=Ua+KHNA"
oek

Such generalized channels with respect to K will be called simple.

Proposition 5: Let ® : A — B be a generalized channel with respect to K. Then there is a pair
(x, A), with x = x . a simple generalized channel with respect to K and A : A — B a channel, such
that

d=Aoy.
Conversely, each such pair defines a generalized channel. Ifin each pair (x, A) we take the restriction
A4, with p = supp (c), then the correspondence is one-to-one.
Proof: Let ® : A — B be a generalized channel. Then TrzXe € (I4 + (KT)) N AT or
equivalently,
d*(Ig) e (I4+ KHN AT,

Put ¢ = ®*(Ig) and let p = supp (c). Then since b < ||b||I5 for b € BT, we have ®*(b) < ||b||c <
161l llc|lp. This implies that p®*(b)p = ®*(b)p = ®*(b) for all b € BT, and hence for all b € B, so
that ®* maps B into A,,. It follows that x.-1 o ®* is well defined and unital map B — A,. Let A,
be the adjoint map, A, = ® o x.-1, then A, is a channel A, — Band ® = A,ox..

The channel A, can be extended to a channel A : A — B as

Aa) = Ap(a) + oTra(l — p), acA,

where w € B is any state, and ® = Aoy.. The converse is quite obvious.

Suppose now that there are (x;, A;), i = 1, 2, such that ®; := A o x| = Arox, =: ®,. Let
Xi = Xe,- Then since ®7(Ig) = ¢;, we have ¢; = ¢, =: cand x| = x» =: x. Let p := suppc. But
then it is clear that if A; are defined on A, then we must have A; = ® o x . O

We apply this result to the set of channels on C(H, H 1), see example 1.

Theorem 4: For any channel E : C(Ho, H1) — &(B), there exists an ancillary Hilbert space
Ha, a pure state p € B(Ho ® Ha) and a channel A : B(H; ® Ha) — B, such that

B(Xe) = Ao (EQidy,)(p), & € C(Ho, H). a7

Conversely, let H, be an ancillary Hilbert space and let p € B(Ho @ Ha) be a state. Let A :
B(H1 ® Ha) — B be a channel. Then (17) defines a channel C(Hy, H1) — S(B).

Proof: By example 1 and Proposition 5,

CI) = A OXIH1®Q)
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with w € 6(Hp) and A : B(H; ® pHy) — B(K) a channel, p = suppw. Let now £ : B(Hy) —
B(H,) be a channel. Then we have

Xigo(Xe) = (I, ® 0')(E ® idy,) (W) I, ® ©'/%) = (€ @ idy,)(p),

where p = (I3, ® ©'/?)Wy, (I, ® @'/?) is a pure state in B(Ho ® pHo). Then (17) holds with
HA = pHo.

To prove the converse, let R : B(Ho) — B(#H4) be the cp map with Choi matrix p, then
o = (idy, ® R)(V3,). We have

(€ ®idy,)(p) = (€ @idy,)idy, ® R)(Vy,) = (idn, ® R)E ® idy,) (V).
Put ® = A o (idy, ® R), then ® is a cp map B(H; ® Ho) — B and
Q*(Ip) = (idy, @ R")Iy,en,) = In, @ w,
where w = R*(Iy,) = Try, pT is a state in B(Ho). ]

Note that the analog to the above theorem for PPOVMs was proved in Ref. 16.

V. GENERALIZED SUPERMAPS

Quantum supermaps were defined in Ref. 6 as completely positive map transforming a quantum
operation to another quantum operation. More generally, supermaps on supermaps, or quantum
combs, were introduced in Ref. 4. In this section, we define generalized supermaps as channels on
generalized channels and show the relation to quantum combs.

Let J € Abe aself-adjoint subspace. Denote by J the vector subspace generated by 14 + (J7)*.
Then it is easy to see that J is self-adjoint and

J =4V
Lemma 3:
(i)  If p € Jis any state, then
U4+ UDHHNAT =T NG, (A).

(ii) IflaeJ, then ] =J. )
(iii) If J = S~!(Jy) for a channel S : A — Ay and a self-adjoint subspace Jy C Ay, then J =
(STY*(Jo)-

Proof- (i) An element x € J has the form x = ¢4 + xo, where xo € (J7)* and ¢ = Tr p”x for
any state p € J, (ii) follows from the fact that if /4 € J, then

T=1av D =1V U ATy =,
(iii) follows from Lemma 2. O

Let K be a section of &(A) and let J = [K]. We denote by Ck (A, B) or C;(A, B) the set of
all generalized channels A — B with respect to J. In particular, if K = &(A), we get the set of all
channels C(A, B). An element ® € C;(A, B) will be identified with its Choi matrix X¢ € B® A.
In the next proposition, we characterize the set C; (A, B).

Proposition 6: Let K be a section of S(A) and let J = [K]. Then
Ci(A, B) = Tig' (J) N G e, (B® A),

where p is any element in K. In particular, if K contains the tracial state T4, then C;(A, B) =

Trz' (/) N1AS(B ® A).
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Proof: An element X € B ® A is the Choi matrix of a generalized channel with respect to J if
and only if X is positive and

TrsX € Ia+(UHHNAT =T NGS,r(A),

by Lemma 3 (i), which is equivalent with TrgX € Jand 1 = Trp” TrgX = Tr(Iz ® p")X.
If T4 € K, then 618®TAT(B®A):L46(B®A). O

This implies that if K contains the tracial state, then the set of generalized channels forms a
constant multiple of a section of the state space G(B ® .A). Then any cp map that maps C, (A, B)
to another state space is a constant multiple of a generalized channel. Since the set Trg1 (J) always
contains the unit, we can repeat the process infinitely. The generalized channels obtained in this way
will be called generalized supermaps.

Let By, B1, By, ... be finite-dimensional C*-algebras and let K be a section of the state space
&(By), such that 73, € K. Let J = [K]. We denote by C;(By, By, ..., B,) the set of all cp maps
that map C;(By, B, ..., B,—1) into &(5,). We further introduce the following notations. Let

A, =8B, 8,1 - ®By,n=0,2,....Let S, : A, —> A,_; denote the partial trace Trﬁn",
n=12,....

Theorem 5: We have forn=1, 2, ...,
C](B(), B Bn) = Jn N CnG(An)a

where
Jokmt = Ja1 (L, Br, oo Bogoy) i= Syt (S5 0(Sy 5 ST L)),
Do = Jo(J, By, ... Bo) o= Sy (Sy 1 (Sy o (. ST ),
andc, = c,(J, By, ..., By_1) = Hltzjtg,ﬂfz,.

Proof: We will prove the statement by induction on n, together with the fact that J, = S '(J,_)
forn=1,2,..., where we put Jy :=J.

For n = 1, the statement is proved in Proposition 6 and J; = § l_l(j ) by definition. Suppose now
that this holds for some n. Note that since J,_; contains the unit / s I =S, '(J,_,) contains the
unit as well. Then

1
CJ(BO, ceey Bn+l) = 76],‘(-’4}1! Bﬂ+l) (18)

n

and by Proposition 6,
Co,(An, Bur) = S, () N 14, S(A)-

Since SnT = S,, we have by Lemma 3 (ii) and (iii) that

j” = S:(jn—l) = S:(-]n—l), (19)
so that S, _&1 (J,) = Ju41. Finally, the proof follows from
14, II_yt5 12
7 - ﬁ = n[=_0tBn721 = Cp+1-
n Hl:() tBn—l—Z]

The above theorem can be written in the following form.

Theorem 6: Let k := | 7). Then X € C;(By, ..., B,) if and only if there are positive elements
Y € Aoy form=0, ...,k such that

Tan72m Y(m) — IBn ® Y(erl)7 m=0,...,k—1, (20)

—2m—1
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YO =X, Y® e Cy(Bo, By) if n =2k + 1 and YV € K if n = 2k.

Example 5 (Channels on generalized POVMs): Let X € C;(A, C™, B), then X defines a
channel on the set C;(A, C™) of generalized POVMs. Since X € B C™ ® A, we must have
X=3"_1/jl®X;, X; € B® A By Theorem 6, TrzX = Icn ® X, for some X, € K. It fol-
lows that if X is positive,

XeCiAC" B) < X=Z|j)(j|®Xj, TrgX; = Xo € K, Vj. 2D
j=1
O

Note that example 2 is a special case of the above example. Another special case is the following:

Example 6 (Channels and measurements on PPOVMs): Let H, H, be finite-dimensional Hilbert
spaces. Then C(B(Hy), B(H1), C™) is the set of all measurements on C(Hg, ;) with values in
{1, ..., m}, that is, the set of all PPOVMs. By (18),

1
dim 7‘[0

C(B(H0)9 B(Hl)v Cm) = C]| (B(Hl & HO)» Cm)v

so that
C(B(Ho), B(H1), C™, B) = (dim Ho)Cj,(B(H1 ® Ho), C", B),
here J, = Tr;[}([l%]). By (21), X € C(B(Hy), B(H1), C™, B) if and only if

X=Y"1)il®X;. TsX;=XoeC(B(Ho). B(H)). Vj.
j=1

Note that by Theorem 7 below, this also describes all cp maps sending POVMs with values in
{1, ..., m} to channels B(Hy) — B.

In particular, by putting B = C¥, we get that measurements on PPOVM:s are given by collec-
tions of instruments A ; : B(Ho) — B(#;) with values in {1, ..., k}, such that their components
Ayj, ..., Ay sum to the same channel, for all j € {1, ..., m}.

Let now K = &(8By). Then J = By and J = [15,], so that Proposition 6 gives the usual char-
acterization of the set C(By, B;) of all Choi matrices of channels 13y — ;. For n > 1, we have the
characterization in Theorem 6 with Y® e &(By) if n = 2k and Trp, Yy® = Ip, forn =2k + 1.
Suppose that all B;, j =0, 1, ..., are matrix algebras, B; = B(#;). Then, comparing Theorem 6
with the results in Ref. 8, we see that for n = 2k — 1, the set C(B(Hy), ..., B(H,)) is precisely
the set of k -combs on (Hy, ..., Ho—1). We give the definition below and also give an alternative
proof of the characterization of quantum combs. Note that a similar characterization was obtained in
Ref. 13 for Choi matrices of strategies and co-strategies of quantum games.

A. Quantum combs

Quantum N-combs were defined in Ref. 8 as a tool for description of quantum networks. A
quantum 1-comb on (Hy, H;) is the Choi matrix of a channel B(Hy) — B(H;). A quantum N-
comb on (Hoy, Hi, ..., Hon—1) is the Choi matrix of a cp map, transforming (N — 1)-combs on
(Hi, ..., Hon_2) to 1-combs on (Hg, Hoy—_1). We use the definition of N-combs with the matrix
algebras B(H ;) replaced by finite-dimensional C*-algebras B;,j=0,...,2N — 1. This corresponds
to conditional combs introduced in Ref. 9, which describe quantum networks with classical inputs and
outputs. We show below that the N-combs are precisely the generalized supermaps C(By, . . ., Boy—1).

Let A, B, C be finite-dimensional C*-algebras and let K be a section of G(A), let J = [K]. We
will describe the set of all cp maps A — C ® B that transform K into the set of all channels B — C,
this will be denoted by Comb; (A, B, C). It will be convenient to consider this set as a subset in
CRARB.
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It is quite clear that if X € (C ® A® B)™, then X € Comb, (A, B,C) if and only if X % p €
C;(A, C)forall p € &(B), this follows from (6) and from

Xxkp)xa=X*x@®p)=(X*xa)xp
forall p € &(B) and a € K.

Proposition 7: Suppose T4 € K. Then
Comby (A, B,C) =Cjep(AQ B, C).

Proof: Let X be a positive element in C® A® 5. As we already argued above, X €
Comb; (A, B,C)if and only in X * p € C;(A, C) for all p € &(B), in other words,

Tre(X % p) = (TreX) % p € J, o € &(B) (22)
and, simultaneously,
Tr (X % p) = Tr(p" [TrepaX]) = 14, p € &(B), (23)
which means that Treg 4 X = 7 415. Moreover, we can write (22) as
0 = Tr[(TreX) * p)al = Tr[(Tre X)(a ® p")]

forall p € Band a € J*, which is the same as Trc X € (J* ® B)* = J ® B. Putting this together,
we get X € Comb, (A, B, C) if and only if

TreX € [J @ BIA S (D), TrX = tags.
where S 4 := Trﬁ@’B .
LetY € J®B, then Y = Y ,(tj 14 + x;) ® b;, with b; € B and x; € (JT)*. Since 74 € K, we
have TrqY =14, t;b;,sothat TruY € [Ig]ifandonlyif Y = clagp + D_; x; @ b; forsomec € C,
this implies that

Y € [aes] V(U ®@B)=(J ®@B).

Conversely, let Y € (J ® B) and let {b; }, be a basis in B, such that b; = I. Then there are x; €
()L, suchthat Y = clags + Y Xk ® by = Y, (tida + xx) ® by, with t; = c and # = 0 for k # 1.
Hence Y € J @ B and clearly, TrqY € [I3]. This proves that [J ® B] A S;l([lg]) =(J ®B), so
that by Proposition 6,

Comb; (A, B,C) = Tr; ' (J ® BY) N14e56(C ® A® B) = Cra5(A® B,C).

Let us now denote by Comb(S3y, ..., Byy—1) the set of N-combs.
Theorem 7: Comb(By, ..., Boy_1) = C(By, ..., Bav_1).

Proof: For N = 1, the statement is trivial. Suppose that it is true for some N. Let Ayy_; :=
Bony ® ---® By and let Joy_1 := Joy_1(By, ..., Boy) and éoy_1 = con—1(By, .. ., Bay), with the
notations from Theorem 5. Then

Comb(By, ..., Bay) = C(Bi, ..., Boy) = Joy—1 N éan-16(Aan-1). (24)

Next, let A,y = AQN_] ® By, Joy = Jon(By, ..., Bon), and coy = coy(Bo, ..., Boy). Then it is
not difficult to see that J,y = Joy_1 ® By and coy = éay—1. By (24) and Proposition 7,

1

N

2N—-1

Comb(By, ..., Bowvyi) =

Combj, (Aan—1, Bo, Ban11),

1
= —C,, (Aan, Bont1),
CoN

= C(BO’ ceey 62N+1)5
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the last equality follows from (18). a

In accordance with this result, the elements in C;(By, ..., Boy—1) will be called generalized
N-combs.

Note that an element X € C(By, ..., Boy—1) is the Choi matrix of a generalized supermap
Bon—2 ® --- @ By — Byny—1, whereas the same operator as an element in Comb(By, ..., Boy_1) is
viewed as the Choi matrix of a cp map Byy 2 ® --- ® By — Byy_1 ® By. Note also that the set
C(By, ..., Boy_1,CH is precisely the set of N-testers with k values,’ so that quantum testers are a
special class of generalized POVMs.

B. Decomposition of generalized supermaps

Let k = [7]. Let us write the algebra A, as
An =B£k®8ék_1 ®®86, (25)

whereB} = B; forj=0,...,nifn=2k,andB} =Bjriforj=1,...,2kand By = B, ® By if n
= 2k + 1. Further, let us suppose that B} = 697;1 B(H B/), with minimal central projections {q,{f b
=0,1,...,2k Letusdenote

T ={l =(,.... 1) e N*" I e{1,....,n;}, j=0,...,2k)
be the set of multi-indices. For I € T; and [ < k, we denote I' = (I, ..., Iy) € Z;. Let q(I) :=

2k 2k—I -
®izoqr, , and Hpu) = Hpx _po . then

A, = @ Haa

1€y

and ¢([) are the minimal central projections in A,,.

Theorem 8: Let X € C;(By, ..., B,). Let k = | 5 |. Then there are the following:

~

an ancillary Hilbert space Hp = Hp, = Hp, = --- = Hp,,

2. elements X,,(I""") € C(B,,, , ® B(Hp, ,), B(Hp,) ® B,,) form=1, ..., kand for every
multi-index I € 1Ty,

3. astate Xo € B(Hp,) ® J, if n = 2k or a generalized channel X, € C;(By, B(Hp,) @ B1), if

n=2k + 1

m—1

such that, for all I € Iy,
q(DX = Ip, * Xp(I¥) x5 X (I") % Xo(lo), (26)
where

Xu(I™) :=(Up, ®q" ®q;" ' @ Ip, )Xu(I" ) m=1,... k @7

Lp—y m—1

and Xo(Io) = (I, ® 43)Xo.

Proof: We proceed by induction on k. If kK = 0, then we must have n = 1 and the statement is
trivial. Suppose now that the theorem holds for some k.

Let n be such that | 5] =k + 1. Then A, = B}, ., ® By, | ® A,2 and by Theorem 6, X €
C;(By, ..., B,) if and only if X is positive and there is some Y € C;(Bo, ..., B,_2) such that
X=1Ig YD

Trg, 2%k-+1

2k+2

Now by Theorem 11 from the Appendix, the last equation holds if and only if there is an ancillary
Hilbert space Hp = Hp, = Hp,,, and

Xi(Dier, T 1)) € CB(H s ), Byyo). - Xo(T 1) € B(Hpsa)
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with
Trp, Xo(T1; I}) = q(1°) Y™ (28)
such that

(g, , ® q1 " @ qUNX = Xy (L1, TLIS) % Xo(T1,15)

D1

for any multi-index I € Zy,. Put

M2k
X (I") == wp,,, ® <® X1G, Hf[f))
i=1

with an arbitrary state wp,,, € B(Hp,,,). Then X;11(I*) € C(By,, ® B(Hp,), B(Hp,.,) ® By»)s
and

q(DX = Ip,., * X1 (1) % Xo(T1, 1)),

where X ¢ 1(IF * 1) is given by (27). Let now X := @, .7 Xo(I1;J;) € B(Hp,) ® A,_». Then by
(28)and YV € C;(By, . .., Bu_2), we get

Trpguy o8, . X, = T, , YV =15, @ Y?, Y® eCy(By.....Bua),

n—3

which is equivalent with X; € C;(By, ..., B(Hp,) ® B,_»). Since L”EZJ =k, we may apply
the induction hypothesis to X;. Hence there is some ancilla Hg = Hg, =--- = Hg,, ele-
ments X,,(J™"') € C(B,,, , ® B(HE, ), B(Hg,)®B,,) form =1, ..., k — 1, an element
X[ e C(By_; ® B(He, ), B(HEgp,) ® By,), and X € By satisfying 3, such that for every
J e Ik,

Xo(IT;J;) = q(N) X} = Ig, % X (J) * -+ % Xo(Io).

Note also that we may suppose Hg = Hp, exactly as in the proof of Theorem 11. By putting
Xi(J) = Ig, % X[(J), we obtain the result. ]

Theorem 8, together with Proposition 5, gives the following Corollary.

Corollary 1: For k > 1 and for any generalized k-comb X € C;(By, ..., By_1), there exists
a pair (x, A), where x : By — By is a simple generalized channel with respect to J and X €
Comb(By, ..., By_1), such that

Dy = Ao (idp, 908 ® X).

Conversely, each such pair defines an element in C;(By, . . . , Bok+1). In particular, C;(By, . . . , Bok+1)
is the set of cp maps sending C(By, . .., By) to the set of generalized channels C;(By, Baog11).
We will now describe how an element Y € C;(By, ..., B,+1) actson X € C;(By, ..., B,). Let

@y : Cy(Bo, ..., B,) = B, be the cp map with Choi matrix Y. By (6),

Py (X) =Y % X =Try,[(5,, ® X")Y],

n+1

= Tra,[Uz,, ® P a(HX") Pa/™ @ q(I)Y],
1

i,J

= Tr, [PlUs,., @ (DX g™ @ g(I)Y],
i,/

=P > TrswlUs,., ® @DHX) g @ q(I)Y],
i 1

=P D (@ ®qU)Y) * (q()X).
| 1

1
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Let now n = 2k, so that | 7| = L"—;IJ = k. Then
q(DX = Ip, % Xe(I¥) - % Xy (1) % Xo(lo),
(@' @ qU)Y = Ig,  Yi(I*) -+ % Yi(T") * Yo(lo).
Here, I is he multi-index in Zy, such that Iy = i, I; = I;41,j=1,...,2k — 1,and Iy = Io/,. Then
(g™ @ qU)Y) * (@(DX) = Ip,g, * YeT*) * X, (I*) -+ x Yo(do) * Xo(Lo),

this follows from Proposition 1 and 2. More explicitly, we first apply the components of the channel
Yo(Ip) to the part of Xo(Iy) in By, then on the part of the result in B, we apply the components of
the channel X (I;), etc., both ancillas are traced out at the end.

Similarly, if n = 2k + 1, then |} | =k + 1 and

@ @ qU)Y = I, * Y (P s -5 Yi(Th) % Yo(ly),
where [ € Ty+1 is such that i2k+2 =1, fj =1;_forj=2,...2k + land [ = I, Iy. Then
(g™ ® qU)Y) % (qDX) = I, * Vet (P 5 X (1) s+ 5 Yi(Dh) * Xo(lo) * Yo(lo).
Note that here X((/y) is a channel, which we apply to Yo(fo), etc.
Example 7 (PPOVMs): Let Y € C(B(Ho), B(H,), C™). By Theorem 8, there is some ancilla

Hp,aPOVM M(= Ip, x Y1) € C(B(Hi @ Hp), C™)and astate p(= Yy) € B(Hp ® Ho), such that
Y = M*p. For any X € C(Hy, H1), we have

m
YxX=MxXx*p= @TrM,-(idD ® Dx)(p).
i=1
where M = (M, ..., M,,), compare this to Theorem 4. We will write such decomposition as
Y = (HD» (Mlv ey Mm)v p)
Next, let Z € C(B(Ho), B(H,), C™, B(H3) ® C!), which is the set of all instruments from

PPOVMs to B(H3), with values in {1,..., [}. Then there is an ancilla Hg a channel £ €
C(B(Ho), B(HE ® H1)) and an instrument A € C(C” ® B(Hg), B(H3) ® C!), such that
Z=AxE&.

Here A = ea’;;lAj, where each A; : B(Hg) — B(H3) ® C! is an instrument, with components
(Ayj, oo Ay). We write Z = (Hg, (A, ..., Ap), §). Letnow ¥ = (Hp, (M, ..., My), p) be a
PPOVM. We have

ZxY =@ Mij(Trypen, (Ie ® M;)idp ® £)(p)),

4 J

=P Tri,en(M; @ Iy,)idp ® [(Ai; ® idy,) 0 E1)(p).

J J

=P D Truyen(M; ® h)idp @ Ay p),
i

where f\_,- = (A; ®idy,) o0& is an instrument B(Ho) — B(H3 ® H,), with values in {1, ..., I},
such that ), Try, o A; ; = Trg o & for all j, compare this with example 6.

Example 8 (Supermaps on instruments): We next describe the set Comb(B(Hy), B(H;), C" ®
B(H;,), B(H3)), that is, the set of cp maps from instruments B(H;) — B(#,) to channels B(Hy) —
B(H3). By Theorems 7 and 8, for any such map, there is an ancillary Hilbert space H p, channels
& B(Hp ® H2) —> B(H3),j=1,..., mand achannel & : B(Ho) — B(Hp ® H) such that the
map has the form

(Atso o Ap) > Y Ejo(idp @ Aj) ok,
J
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This seems to be more general than the supermaps considered in Ref. 6, more precisely, this map
consists of m supermaps in the sense of Ref. 6, which have the first channel equal to the same §. O

The decomposition given in this section can be understood as a physical realization of general-
ized supermaps in C;(By, ..., B,). It is not unique, indeed, for example, by Theorem 4, any state p
on Hy @ H4 and a POVM on B(H| ® H 4) define a PPOVM, but (by the first part of this Theorem),
we can always have a decomposition where the state is pure. The elements in C;(By, ..., B,+1) do
not distinguish between these different realizations, but only the generalized channels they define.
We may go a step further and consider maps which recognize only the channels on K, defined by
the generalized channels, that is, maps which give the same result on equivalent channels. This is
the content of the next paragraph.

C. Equivalence of generalized supermaps
By Theorems 3 and 5, two elements X, X, € C;(By, ..., B,) are equivalent if and only if
Xi—XeB, @D 29)
Using Lemma 1, we get
()t = Sy (8,085 C .. (LT o),

where (LT)* = S¥([I4]* N J) if nis even and (LT)* = S;'((JT)*) if n is odd. From this, we get
the following proposition.

Proposition 8: Let k = | 5]. Two elements X, X2 € C;(By, ..., B,) are equivalent if and only
if there are elements W™ € B, ® Ap_om, m =1, ...k, such that
Xi—Xo =15, 0@ W,
Trg, ,, W = 18, 5, ® W(m—&-l)! m=1,...,k—1,

wh eB,®J, TpWhP=0 ifn=2k
T, WP e B, @ (Ut ifn=2k+1.

Itis not clear in the present how to interpret this equivalence, in terms of the physical realizations
of the channels. The next theorem gives a characterization of elements in C,;(5y, ..., B,+1) which
respect this equivalence.

Theorem 9: The set of all elements in C;(By, ..., B,+1) having the same value on each
equivalence class of elements in C;(By, ..., B,) is
Tttt N (Bug1 @ By ® Ju—1) N Cup1 S(Anyr).
In particular, if K = &(By), then this set has the form
C(By, ..., B,+1) N C(By, By, Byt1, Bi, - .., B,—1), if nis odd,
CBy, ..., Bu,1) NCBy, Buti1, Bo, ..., By—1), if niseven.

Proof: Let X € C;(By, ..., Byt1), then it is clear from (29) that the corresponding map has the
same value on equivalent elements if and only if it is equal to 0 on B, ® (J.”)*. Equivalently,

0=Tr (bTra,[(Iz,, ® Y)HX]) =Tr (b ® Y)X)

for all b € B,y1 and Y € B, ® (JL )+, thatis, X € (B,11 ® B, @ J- ) =B, 1 @ B, ® J1.
Since X € C;(By, - .., Byt1), we get the result.

Suppose K = &(By) and let k = L%J. Since X € B, ® B, ® J,_1, there are positive ele-
ments Z™ € B, ® B, ® A,_{_am, such that

Trg VAL ® Zm+h, m=0,.... k=2, (30)

n—1-2m n—2—2m
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76D e B, @B, ®J ifnisodd, (31)

z% Ve B, ®B,®S;'(J) ifniseven (32)
and Z©® = X. Suppose n is odd, then by Theorem 6, we get
Trs,, Tr, , ... Trg,X = Ip,08, 008 & Y'Y
with Y® e &(B;), and from (30), we have
Trg

n—1

k—1
TI'BM3 .. TI‘BZX = IB,,72®B,,74®---®81 ® z%=D,

This implies Trg,,, Z* D = Iy, ® Y®.If J = By, this together with (30) and (31) is equivalent with
X € C(By, By, By11, By, ..., B,_1). Similarly, if J = By and n is even, we have

Trg,, Trg, ... Trp, X = Ig,e8, 095,
and by (32), there is some positive element ARNS B,+1 ® B, such that
Trp, %D = Iy, @ Z®. (33)
Then

Trg

n—1

k
Tig, - T, X = I5, o5, 005, ® 2%,

so that we must have Trg, z® = Ip,. This, together with (30) and (33), is equivalent with X €
C(Bna Bn+lsBOa-~~an71)~ O

Example 9 (Equivalence on PPOVMs): Suppose that Z is a generalized POVM on the set of
PPOVMs, that is, Z € C(B(Hy), B(H,), C™, C¥). Then by example 6, Z = Zf;l Z_’;;l liV(i| ®
1j){(jl ® Z;; and each Z; is the Choi matrix of a cp map A;; : B(Ho) — B(H), such that there
is a channel £ with ) jA; = £ for all i. If Z attains the same value on equivalent elements, then
it defines a measurement on the set of equivalence classes of PPOVMs, that is, on the set of
measurements on channels B(Ho) — B(#,). By Theorem 9, this happens if and only if Z is also
in C(C™, Ck, B(Hy), B(H))). Using Theorem 6, we get that there are some numbers 1;; > 0, with
> jm; = 1 for all i, such that Try, Z;; = p;jIn,. It follows that there are channels &, such that A
= ;& ;. We have proved the following.

For any measurement on measurements on C(B(Ho), B(H)) with values in {1, ..., m}, there
are &; € C(B(Ho), B(H1)) and numbers u; > 0, > ju;; = 1, satisfying Y ;u;&;; = & for all i, such
that, if a measurement on C(B(Hy), B(#,)) has an implementation (Hp, (M, ..., M,,), p), then
the corresponding probabilities are given by

pi(Hp, My, ..., M), p) = ZMijTr(Mj(Eij ® idp)(p)).
J

Conversely, any such &;;, u; define a measurement on measurements on C(B(Hy), B(H1)). Note
that if (Hp, M, p) and (Hg, N, o) are implementations of PPOVMs, then these are equivalent if
and only if Tr (M;(¢ ® idp)(p) = Tr (N;(§ ® idg)(o) for any channel . O

D. Equivalence of combs

Any N-comb X € Comb(By, ..., Bayy1)is acp map Comb(5y, ..., Boy) = Bayi1 ® Boy. By
(24) and Theorem 3, two N-combs X and X, are equivalent if and only if

X1 — X2 € Boni1 ® (hy_ )" ® B,

where j2N71 = Jszl(Bl, ey BZN)~
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Proposition 9: Two elements X1, X, € Comb(By, ..., Boy_1) are equivalent if and only if there
are elements V'™ € Byyi1 ® Apw—1, m=1, ..., N, such that

X=X, =15, ® V™,
TrBzm—l V(m) = IBzm_z &® V(m_l), m=2,...,N,
Trs, VO = 0.

The proof of the next theorem is the same as of Theorem 9.

Theorem 10: The set elements in Comb(By, ..., Boy+1) having the same value on equivalent
elements in Comb(By, ..., Byy) is equal to

Comb(By, ..., Boy+1) N Comb(By, Bi, Ban, Bon1, Ba,s ..., Ban—1).

VI. FINAL REMARKS

We have introduced the concept of a channel on a section of the state space of a finite-
dimensional C*-algebra. We proved that such channels are restrictions of completely positive maps,
called generalized channels. If the section K contains the tracial state, the Choi matrices of generalized
channels with respect to K form again a section of the state space of some C*-algebra. This allows
us to define generalized supermaps as completely positive maps sending generalized channels (or
generalized supermaps) to states. The set of generalized supermaps is characterized as an intersection
of the state space by a subspace. This might be useful, for example, in optimization problems with
respect to supermaps.

Although the condition 74 € K includes the most important examples of channels and combs, it
might be interesting to consider supermaps for arbitrary generalized channels. By Proposition 6, this
should be possible by extending our theory using the set & ,(.A) instead of G(.A), with an invertible
element p € A". This can be done along similar lines.

Another possible extension of the theory is to look at the generalized channels sending a section
K, to a given convex subset K, of the target state space. The set Comb;(A, B, C) is a particular
example of this, but arbitrary convex subset can be considered, using similar tools as were used in
the present paper.

A natural question is an extension of these results to infinite dimension. For example, in the
setting of the algebras of bounded operators B(H) for infinite-dimensional Hilbert space H, quantum
supermaps were studied in Ref. 10. Channels and measurements on sections of the state space can
be studied also in this case and similar results can be expected. But the identification of the set of
channels with a section of a state space fails.
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APPENDIX: DECOMPOSITION OF SEMICAUSAL MAPS

Let A= @®,B(Ha4,) be a finite-dimensional C*-algebra and let 4, Hp, H) be finite-
dimensional Hilbert spaces. Let T : A® B(Hpg) — B(Hap) be a cp map. Then, we say that T
is semicausal if

TUAQ®b)=14® S(b) (A1)
for some cp map S : B(Hp) — B(Hp ), and T is semilocalizable, if
T =(ids ® G) o (F ®idp) (A2)
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for some unital cp map F : A — B(Hap) and a cp map G : B(Hpp) = B(Hp), where Hp is
some (finite-dimensional) Hilbert space. The following statement was proved in Ref. 12, in the case
that A is a matrix algebra. For the convenience of the reader, we give the modification of the proof
in Ref. 12 for our slightly more general case.

Lemma 4: Let T : AQ B(Hp) — Hap be a cp map. Then T is semicausal if and only if T is
semilocalizable.

Proof: Any representation of A ® B(H ) has the form
H(a &® b) = @nIE,, Ra, ® b= (@nIEn ®an) ®b

for some Hilbert spaces Hg,, where a = @,a, € A and b € B(Hp). Hence by Stinespring repre-
sentation, T has the form

T(a®b)=V" (@]t ®a,) D)V
for some linear map V : Hap — @, HE,4,5- Let now
S(b) =W*(1p @ )W
be a minimal Stinespring representation of S. Then (A1) implies that
Vg, @DV =Us @ W)Iap ® bYW ® Ip).

Exactly as in Ref. 12, we get by minimality of the Stinespring representation that there is some
isometry U : Hap — ®,HE,a,, such that

V=U®IpIsW).
Hence,
Q(a®b) = Uy @ W)U (@nlEg, ® a)U @ b)(14 @ W),
so that
@ = (ida ® G) o (F ®idp) (A3)

for the unital cp map F : A — B(Hap), given by F(a) = U*(®,Ig, @ a,)U and the cp map
G : B(Hpp) — B(H)), defined as G(d ® b) = W*(d @ b)W.
Conversely, if T is of the form (A3), then it is clear that T satisfies (A1), with

S(h)=G(p D). (A4)
0O

Theorem 11: Let A= ®B(H,,), B=®B(Hs,), C = ®B(Hc,) be finite-dimensional C*-
algebras, with minimal central projections {pi }x, {Gm tm» and {r, }, respectively. Let X € AQ B ®
C be positive. Then the following are equivalent:

(i)  There is some positive element Y € C such that
TraX=Iz®Y.

(ii)  There is an auxiliary Hilbert space Hp, positive elements Xo(n) € B(Hpc,) and X1(m, n) €
C(B(Hsp,p), A) such that

Xm,n = (I.A ® qm & rn)X = Xl(mv I’l) * X()(I’l)

Moreover, we have

TI'DX()(H) = Yn = rnY.
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Proof: Suppose first that B = B(H ) and C = B(H ) are matrix algebras. We can always write
He = He, ® He,- Let us define the map & : B(Hpc,) > A® B(Hc,) by

CD(a) =X=xa, a e B(HBCI).
Then @ is a cp map and

Try®(a) = [TraX] *a, a € B(Hpc,),

so that Tr 4 X is the Choi matrix of Tr4 o ®. Similarly, if £ : B(H¢,) — B(Hc,) is the cp map with
C-J matrix Y, then /4 ® Y is the C-J matrix of £ o Tr 4. It follows that the maps & and £ satisfy

TIAOG):EOTI'A.

For the adjoints, this condition has he form ®*(/4 ® ¢) = Ip ® £*(c), for all ¢ € B(H¢,) which
means that the map ®* is semicausal. By Lemma 4, (i) is equivalent with

® = (F*®idc,) o (ids ® G¥)

foracpmap G* : B(H¢,) = B(Hpc,) and a channel F* : B(Hpp) — A, with some Hilbert space
‘Hp. By putting X; and X, the Choi matrices of F' and G, respectively, we get (ii). Finally, (A4)
implies TrpXy =Y.

For the general case, note that X,, , € A ® B(H3p,¢,) and

TrAXm.n = (‘Im ® rn)TrAXa

so that (i) is equivalent with

TraXmn=1p, ®Y,, Vm,n,

m

where Y, = r,Y € B(Hc,)". By the first part of the proof, we get that (i) holds if and only if
Xm,n = X/l(mv }’l) * X(/)(m, I’l)

with positive elements X((m,n) € B(Hp, ,c,), Xi(m,n) € C(B(Hp,p,,), A) for some ancillary
Hilbert spaces Hp,,, and such that Trp, A X((m,n)=7Y,. Note further that in the proof of
Lemma 4, the cp map G and the ancilla H are given by a minimal Stinespring representation
of S. Hence X(,(m, n) and the ancilla are determined by Y,,, so that these depend only on n. More-
over, there are some H p, and Hp, such that Hp = Hp, p, for all n. Choose some state w, € B(Hp;)
for all n and put

Xo(n) 1= w, ® Xo(n),  Xi(m,n):= X (m,n)Q Ip,.
Then Xo(n) € B(Hpc,), X1(m, n) € C(B(Hsp,p), A), and
X1(m, n) * Xo(n) = X1(m, n) * Ip, * w, * Xo(n) = Xj(m, n) * Xo(n) = Xy
Clearly, also

TrpXo(n) = Trp, Xp(n) = ¥,.

I Arveson, W. B., “Subalgebras of C*-algebras,” Acta Math. 123, 141-224 (1969).

2Bisio, A., Chiribella, G., D’Ariano, G. M., Facchini, S., and Perinotti, P., “Optimal quantum learning of a unitary
transformation,” Phys. Rev. A 81, 032324 (2010).

3Bisio, A., D’Ariano, G. M., Perinotti, P, and Sedlak, M., J. Math. Phys. 52, 082202 (2011).

4 Chiribella, G., D’Ariano, G. M., and Perinotti, P., “Quantum circuit architecture,” Phys. Rev. Lett. 101, 060401 (2008).

5 Chiribella, G., D’ Ariano, G. M., and Perinotti, P, “Memory effects in quantum channel discrimination,” Phys. Rev. Lett.
101, 180501 (2008).

6 Chiribella, G., D’Ariano, G. M., and Perinotti, P, “Transforming quantum operations: Quantum supermaps,” Europhys.
Lett. 83, 30004 (2008).

7 Chiribella, G., D’Ariano, G. M., and Perinotti, P., “Optimal cloning of unitary transformations,” Phys. Rev. Lett. 101,
180504 (2008).

8 Chiribella, G., D’Ariano, G. M., and Perinotti, P., “Theoretical framework for quantum networks,” Phys. Rev. A 80,
022339 (2009).

231



232

012201-23 Generalized channels J. Math. Phys. 53, 012201 (2012)

9 Chiribella, G., D’ Ariano, G. M., Perinotti, P., Schlingemann, D. M., and Werner, R. F., e-print arXiv:0905.3801.

10 Chiribella, G., Toigo, A., and Umanita, V., e-print arXiv:1012.3197v2.

11 Choi, M. D., “Completely positive maps on complex matrices,” Linear Algebr. Appl. 10, 285-290 (1975).

leggeling, T., Schlingemann, D., and Werner, R. F., “Semicausal operations are semilocalizable,” Europhys. Lett. 57,
782788 (2002).

13 Gutoski, G. and Watrous, J., Proceedings of the 39th ACM Symposium on Theory of Computing, (STOC 2007) 565-574
2007.

14 Holevo, A. S., Statistical Structure of Quantum Theory (Springer-Verlag, Berlin, 2001).

5 Paulsen, V., Completely Bounded Maps and Operator Algebras (Cambridge University Press, Cambridge, England,
2003).

16Ziman, M., “Process POVM: A mathematical framework for the description of process tomography experiments,” Phys.
Rev. A 77, 062112 (2008).



CrossMark
JOURNAL OF MATHEMATICAL PHYSICS 55, 022201 (2014) ® €

Base norms and discrimination of generalized
quantum channels

A. JencCova
Mathematical Institute, Slovak Academy of Sciences, §tefa’nik0va 49, Bratislava, Slovakia

(Received 17 September 2013; accepted 16 January 2014;
published online 12 February 2014)

We introduce and study norms in the space of hermitian matrices, obtained from
base norms in positively generated subspaces. These norms are closely related to
discrimination of so-called generalized quantum channels, including quantum states,
channels, and networks. We further introduce generalized quantum decision problems
and show that the maximal average payoffs of decision procedures are again given by
these norms. We also study optimality of decision procedures, in particular, we obtain
a necessary and sufficient condition under which an optimal 1-tester for discrimina-
tion of quantum channels exists, such that the input state is maximally entangled.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863715]

. INTRODUCTION AND PRELIMINARIES

It is well known that in the problem of discrimination of quantum states, the best possible
distinguishability of two states po and p; is given by the trace norm ||pg — p1l;.'>!" The set of
states forms a base of the convex cone of positive operators and the restriction of the trace norm to
hermitian operators is the corresponding base norm. Similarly, it was shown in Ref. 20 that more
general distinguishability measures, obtained by specification of the allowed measurements, e.g.,
for bipartite states, are obtained from base norms associated with more general positive cones. This
correspondence is related to duality of the base norm and the order unit norm, with respect to a given
positive cone.

In a similar problem for quantum channels, and recently also quantum networks, the diamond
norm || - || for channels,'* resp. the strategy N-norm || - ||y for networks is obtained. Via the
Choi isomorphism, quantum networks are represented by certain positive operators on the tensor
product of the input and output spaces, so-called N-combs,>* see also Ref. 8. The set of N-combs is
the intersection of the multipartite state space by a positively generated subspace of the real vector
space of hermitian operators. Since this subspace inherits the order structure and the set of N-combs
forms a base of its positive cone, it is natural to expect that the distinguishability norm | - ||y, is in
fact the corresponding base norm.

Motivated by this question, we study positively generated subspaces of the space of hermitian
operators Bj,(#) acting on a finite dimensional Hilbert space H. For a given base B of the positive
cone, we define a distinguishability measure in terms of tests that are defined as affine maps
B — [0, 1] and show that this measure is given by the base norm. This, in fact, is easy to see for any
finite dimensional ordered vector space. We then study a natural extension of this norm to Bj,(H)
and its dual norm. An example of such a base is the set of Choi matrices of so-called generalized
channels. The set of N-combs is a special case. For N-combs, the obtained norm coincides with
[l - lvo and we recover some of the results of Ref. 9 concerning the dual norm. Moreover, we find a
suitable expression for this norm, closely related to the definition of || - || .

In Sec. IV, we introduce generalized quantum decision problems with respect to a base B. We
show that the maximal average payoff (or minimal average loss) of a generalized decision procedure
is again given by a base norm. We find optimality conditions for generalized decision procedures,
in particular, for quantum measurements and testers. In the case of multiple hypothesis testing for
states, we get the results obtained previously in Refs. 17, 7, and 12. In the case of discrimination

0022-2488/2014/55(2)/022201/18/$30.00 55, 022201-1 ©2014 AIP Publishing LLC
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of quantum channels, we find a necessary and sufficient condition for existence of an optimal tester
such that the input state is maximally entangled.

The rest of the present section contains some basic definitions and preliminary results on
discrimination of quantum devices, as well as convex cones, bases, and base norms.

A. Discrimination of quantum states, channels, and networks

Let ‘H be a finite dimensional Hilbert space and let B(#) be the set of bounded operators on
H. We denote by Bj,(H) the set of self-adjoint operators, B(H)* the cone of positive operators and
S(H) :={p = 0, Tr p = 1} the set of states in B(#). We will also use the notation B(#)™* for the
set of strictly positive elements in B(7). Let /C be another finite dimensional Hilbert space. It is
well known that B(KC ® H) corresponds to the set of all linear maps B(H) — B(K), via the Choi
representation:!

Xo = (P Qidy)(¥), Px(a) = Tryl(Ix ® a)X], (1)

here W = |¢)(¥| and |¥) = > ;1) ® |i) for an orthonormal basis (ONB) {|i),i = 1, ..., dim(#)}
in H, a" denotes transpose of a with respect to this basis. In this correspondence, B(K ® H)" is
identified with the set of completely positive maps and Bj,(K ® H) with hermitian maps, that is,
maps satisfying ®(a*) = P(a)*.

Consider the problem of quantum state discrimination: suppose the quantum system represented
by H is known to be in one of two given states pg or p; and the task is to decide which of them is the
true state. This is done by using a test, that is a binary positive operator valued measure (POVM).
This is given by an operator 0 < M < [, with the interpretation that Tr Mp is the probability of
deciding for py if the true value of the state is p. Equivalently, a test can be defined as an affine map
S(H) — [0, 1].

Given an a priori probability 0 < A < 1 that the true state is pg, we need to minimize the average
probability of error over all tests, that is to find the value of

[T, (po, p1) 1= 03}31 ATr(I — M)po + (1 — 2)Tr Mpy,

this is the minimum Bayes error probability. Then'®!!

1 1
Mleo, p1) = 5 = S 100 = A = Mpilh,

where |la||, := Tr|al, a € B(H) is the trace norm.

Let now A and K be two finite dimensional Hilbert spaces and consider the problem of
discrimination of channels. Here we have to decide between two channels ®, and ®; and this time
the tests are given by binary quantum 1-testers,> or PPOVMs,?' which are positive operators T €
B(K ® H)T, such that T < Ix ® o for some o € G(H). These correspond to triples (Ha, p, M),
where H 4 is an ancillary Hilbert space, p € S(H® Ha) and 0 <M < I, M € B(K ® H4). The
probability of choosing @ if the true value is ® for a tester 7 is given by

p(T,®) =TrTXe =TrM(O ®ida)p).

The minimum Bayes error probability is now

. 1 1
I} (Po, D)) := minA(1 — p(T, o)) + (1 = )p(T, ) = 5 = 5 1AP0 = A = )Py,

where the diamond norm || ® ||, for a hermitian map ® is defined as'*!°

[®llo = sup sup [ @ @ ide(p)lh
dim(£))<00 peG(HBL)

= sup [P®idc(p)l, dim(£) = dim(H).
PES(HRL)
By duality, this norm is related to the ch-norm for completely bounded linear maps, see Ref. 16.
Let now {Ho, Hi, ..., Hon—1} be finite dimensional Hilbert spaces. Consider a sequence of
channels ®; : B(Hyi—o @ Ha) & B(Hai—1 ® Ha), i =1, ..., N, connected by the ancilla H 4 as
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Mo Ho[ |Hs  Hew-of T [Han-s

FIG. 1. A deterministic quantum N-comb.

indicated in Fig. 1 (the first and last ancilla are traced out). This defines a channel & : B(Hy ®
Ho®--- Q@ Hon) > B(HIQH3® -+ ® Hpn—1), such channels describe quantum networks.
The channels @, ..., &y are not unique, in fact, these can always be supposed to be isometries. A
(deterministic) quantum N-comb is defined as the Choi matrix X¢ of such a channel, see Ref. 4 for
more about quantum networks and N-combs. The same definition, called a (non-measuring) quantum
N-round strategy, was also introduced in Ref. 8. A (non-measuring) quantum N-round co-strategy
can be defined as an (N + 1)-strategy for the sequence of spaces {C, Hy, ..., Hon_1, C}.

The tests for discrimination of two networks ®° and ®'! are given by quantum N-testers, which
are obtained by an (N + 1)-comb such that the first channel has 1-dimensional input space (hence is
a state) and a (binary) POVM is applied to the ancilla,* 3 see Figs. 2 and 3. This can be represented

by a pair (T, T}) of positive operators, such that Ty 4+ T} is an (N + 1)-round co-strategy.*3-°
The minimal Bayes error probability now has the form
(@’ o' = % - %nm“ — (1 =P o,
where the norm || - ||yo Was introduced in Ref. 3 as
I@llvo = sup (7o + )2 Xo(To + 1111, @)
for any hermitian ®. Another expression for this norm was found in Ref. 9:
[ ®lIne = sup Tr Xo(To — T1). 3)

In both cases, the supremum is taken over all N-testers. The dual norm was also obtained in Ref. 9
as

@1y, = sup Tr Xo(S1 — So),
s

where the supremum is taken over the set of pairs of positive operators such that Sy + S; is an
N-round strategy (N-comb).

B. Convex cones, bases, and base norms

Let V be a finite dimensional real vector space and let V* be the dual space, with duality (-, -).
A subset Q C V is a convex cone if Aq; + ©gy € Q whenever g1, g, € Q and A, u > 0. The cone
is pointed if 0 N — Q = {0} and generating if V = Q — Q. Closed pointed convex cones are in
one-to-one correspondence with partial orders in V,byx <py <y — x € Q.

The dual cone of Q is defined as

Q*={feV'(f.q)=0,q9 € Q}.

Ho Hi] [ Ho Hanv-3 (Hon—2 Han-—1
P*‘ vy T Un_1 Uy I:

FIG. 2. A quantum N-tester.
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/7*‘\ Uy Wy \113 I:
P, (o2} L

FIG. 3. A 3-tester W applied to a 3-comb ®.

This is a closed convex cone and Q** = Q if Q is closed. Moreover, a closed convex cone Q is
pointed if and only if O* is generating . A closed pointed generating convex cone is called a proper
cone.

A base of the proper cone Q is a compact convex subset B C Q, such that each nonzero element
g € Q has a unique representation in the form ¢ = Ab with b € B and A > 0. It is clear that any base
generates the cone Q, in the sense that Q = | J;.,AB. Then any element v € V can be written as
v =Aby — ubs, A, >0, by, by €B. h

For any base B, the map O 5 ¢ = Ab — X extends uniquely to a linear functional ez € O* and
we have B={q € Q, (e, q) = 1}.

Lemma 1. Let f € Q*. Then f € int(Q*) if and only if
Bf:={qeQ.(f.q)=1}
is a base of Q.

Proof. It is quite clear that By is a base of Q if and only if (f, g) > 0 for any nonzero g € Q. By
Theorem 11.6 of Ref. 18, this is equivalent with f € int(Q*). O

Let < denote the order in V given by Q. An element e € V is an order unitin V if forany v € V,
there is some r > 0 such that re > v. It is easy to see that e is an order unit if and only if e € int(Q).
Consequently,

Corollary 1. Any base B of Q defines an order unit eg in V* and, conversely, any order unit e in
V* defines a base B, of Q. We have ep, = e and B., = B.

Let B be a base of Q. The corresponding base norm in V is defined by
lvllpg = inf{A + u, v =Aby — uby, A, u >0, by, by € B}.
It is clear that ||g||g = (e, q) for all g € Q. Let V; be the unit ball of || - || in V, then
Vi = {Aby — uby, bi,bp € B,A, 0 > 0,A+u =1} =co(BU—B),

where co(A) denotes the convex hull of A C V. Let | - ||; be the dual norm in V*, then the unit ball
Vi for || - ||} is given by

Vi =V} =(co(BU—B))° =(BU—-B)° = B°N(—B)°,
where A° := {f € V*, (f,a) <1,Va € A} is the polar of A C V, see Ref. 18. We have
Vi={feV, -1=<(fib)<1,Vbe B} ={f € V", —ep <¢- [ <¢- e},
where ep is the order unit. Hence the dual norm is given by
[ flIp =inf{A > 0, —rep <o+ [ <o Aep} =: || flle,-

In general, if e is an order unit, then || - ||, defines a norm called the order unit norm in V*.
Since || - ||5 is the dual norm for || - ||.,, we get for v € V,

lvlle = llvl;, = sup  (fiv)=2  sup  (f,v) —(ep, V), 4)
—ep=q* f=<qxep feQ* f<pxep

where the last equality follows by replacing f by %( f +es).
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Example 1. Let V = By(H) and Q = B(H)". We identify V* with V, with duality (a, b)
= Trab, then Q is a self-dual proper cone and B = G(H) is a base of Q, with ez = I. The order unit
norm || - ||; is the operator norm || - || in B(#) and its dual || - || g is the trace norm || - ||;.

We will finish this section by showing that the base norm is naturally related to a distinguisha-
bility measure for elements of the base. By analogy with the set of quantum states, let us define a test
onabase Basanaffinemapt: B — [0, 1]. Itis easy to see that there is a one-to-one correspondence
between tests on B and elements f <= ep in Q*. Let by, b; be two elements of B and let us interpret
the value t(b) = (f, b) as the probability of choosing by if the “true value” is b. Then (f, b;) and 1
— {f, bp) are probabilities of making an error. Let A > 0, then we define the minimal average error
probability as

M (bo.b1):= _min (1= {f.bo)) + (1 = M(f. b).

OSQ*fSQ*eB
We obtain by (4) that
Hf(bo, b))=A— max (f, Abg— (1 —1)by)

0<p* f<p+ep

1
= E(l — [Abo — (1 — )byl ).

Il. BASE NORMS ON SUBSPACES OF By(7)

We now put V = Bj,(H), with the self-dual proper cone B(H)" as in Example 1. We will
describe all possible bases of this cone.

It is clear that int(B(H)*) = B(H)™™, hence the strictly positive elements are the order units
in By(#H). By Corollary 1, there is a one-to-one correspondence between strictly positive elements
and bases of B(H)™, given by

BH)™ " s5b< S,:={ae BH)",Trab=1} = BH)' N T,, 5)
where 7, = {x € B,(H), Trxb = 1}. By (4) and Example 1, the corresponding base norm is
lxlls, = sup Trax = sup Trab'*xb'?* = |b'*xb'?|, (6)
—b<a<b —I<a<lI

and the dual order unit norm is
Ixll, = inf{x > 0, —Ab < x < Ab} = [|b~"2xb™"/2|. 7
If b € B(H)", we define
167 2xb™ 2] = Tim ||(b + &)™ 2x (b + )72
Note that the expression on the RHS is bounded for all ¢ > 0 if and only if supp (x) < supp (b) and

in this case the norm on the LHS is defined by restriction to the support of b. Otherwise, the limit is
infinite. Moreover, for a, b € B(H)", we define

Dypax(a|b) :=loginf{A > 0,a < Ab} = inf{y > 0,a < 2"b}.

For a pair of states p and o, D, (p|lo) is the max-relative entropy of p and o, introduced in
Ref. 6. (Note that D,,,, was denoted by D, in Ref. 17.) If b € B(H)*™, then

Dypax(allb) = log(llalls)-

In general, if supp (@) < supp (b), then we may restrict to the support of b and with this restriction
Dyax(allb) = log (|lallp), otherwise Dyyax(allb) = oo.

A. Sections of a base of B(#)*

Let J C By (H) be a subspace and let Q = J N B(H)* be the convex cone of positive elements
in J. It is obvious that Q is closed and pointed. We will suppose that J is positively generated, then J
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=@ — Qand Qisaproper conein J. Let b € Q be such that suppa < suppb =: pforalla € Q, then
J € By(pH) and by restricting to B,(p7H), we may suppose that b is strictly positive. Conversely,
if J contains a strictly positive element, then J is positively generated.

Let Jt ={y € B,(H), Trxy =0, x € J}, let B,(H)|,. be the quotient space and let 7 :
By (H) — Bj(H)|,+ be the quotient map a — a + J*-. We may identify the dual space J* with
By, (H)| 1, with duality

(x, m(a)) = Trxa, x €J, ae By(H).

It was shown in Theorem 2 of Ref. 13 that the dual cone of Q is Q* = 7w (B(#)™), moreover, since
7 is a linear map, we have int(Q*) = int(w(B(H)1)) = w(B(H)™) by Theorem 6.6 of Ref. 18. In
other words, any element f € Q* has the form

f(x)=Trax, x e J,

for some (in general non-unique) element @ € B(H)* and fis an order unit in J* if and only if a may
be chosen strictly positive. Now we can use Corollary 1 to describe all bases of Q.

Lemma 2. A subset B C Q is a base of Q if and only if B = J N S5, where b € B(H*Y). In this
case, m(b) = ep.

Proof. Let B be a base of Q. Since ep € int(Q*), there is some b € B(#)*" such that ez = 7 (b)
and

B={ge Q. Trgb=(e,.q)=1)}=0NT;=JNS;
(see (5)). Conversely, it is quite clear that B = J N S; is abase of Q and ep = 7 (D). O

A set of the form B = L N S; where be B(H)*tand L C B,(H)isa subspace will be called
a section of a base of B(H)™, or simply a section. Let span(B) be the real linear span of B, then

B Cspan(B)NS; € LNS; =B,

so that B = span(B) N S; and B is a base of span(B) N B(H)". If moreover B contains a positive
definite element, we say that B is a faithful section. In this case, we have B N B(H)*" = ri(B),
where ri(B) denotes the relative interior of B, Section 6 of Ref. 18. Indeed, since B = L; N B(H)™,
where L; =: L N T; is an affine subspace containing an interior point of B(H)*, we have by
Corollary 6.5.1 of Ref. 18 that

ri(B) =ri(LyN B(H)Y) = LN B(H)™ = BN B(H)T.

For example, note that if B = {b} for some b € B(H)*, then B is a section and B is faithful if and
only if b is strictly positive. If a section B is not faithful, then there is some element b € B such
that p = supp (b) and B C B(p#H). Then B is a faithful section of a base of B(pH)™, in this case,
ri(B) = BN ri(B(pH)"). From now on, we will suppose that B is a faithful section of a base of
B(H)™.

Note that in Lemma 2, the correspondence between the base B and the element b such that
B = span(B) N Sj is not one-to-one, since the order unit ep = 7(b) may contain more different
strictly positive elements. We will now look at the set of all such elements. Let

B:={be B(H)", Trbb =1,V¥b € B}.
Then
B=n"ep) NBH)"=b+B"HNBH)", ®)

where b is any element in B. Note that B always contains a strictly positive element. Since by (8) B
is an intersection of B(H)* by an affine subspace, we have

{b € B(H)**, B =span(B) N S;} = BN B(H)* =ri(B).
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Lemma 3.

(i) I? is a faithful section of a base of B(H)™.
(i) B=B.
(iti) B = ﬂ,;,en.(g) Siy-

Proof. (i) Letb € ri(B). Since B isconvex, any element y € span(f}) has theformy = rby — ubs,
with by, b, € B and A, u > 0. Hence by (8), y = (A — )b + z for some z € B*. If y is also
in Sp, we must have 1 = Tryb = A — pu, so that y € b+ BHyNn B(H)T = B. 1t follows that
B = span(é) N Sp. ~ B

(i) It is clear that B € B and B = (b + BH) N B(H)T. Let b € ri(B), then B = (b + BH)N
B(H)T.Since b € B(H)**, foreachz e B{there is some ¢ > O such that 5 + tz € B and this implies
that EJ: C (B! = span(B), hence also B C span(B). It follows that span(B) = span(B), so that
B and B are two bases of the same cone. This implies (ii).

(iii) Obviously B € (e i) S+ If @ € (Nyeris) Sir» then a is a positive element such that
Trab' = 1 forall & e cl(ri(B)) = B, hence a € B = B. O

We call B the dual section of B. The section B defines a base norm || - || in span(B). Next we
show that this norm can be naturally extended to all B, (). For this, let us define

Op :={x € By(H), x = x; — x2, x1, X2 € B(H)", x; + x, € B}. 9
For b € B(H)", we define Oy, := Oy.

Lemma 4. We have

(i) Op={xeByH),IW e€B, —b <x<b}=UpO0.
(ii)  The unit ball of the base norm || - ||g is Op N span(B).

Proof. i) Letx =x; — xp withx; + x, =b' € B,then —b' = —(x; + x) <x<x; + x
= b'. Conversely, let —5' < x < D' forsome b’ € B.Putxy = 1/2(b' + x), then xy € B(H)*, x
—x_=x,andx, + x_ =b'€B.

(ii) By definition, the unit ball of || - ||5 is the set of elements of the form x = Ab; — (1 — A)b,,
b1, b, € B,0 < X < 1. Then clearly x € Og, by putting x; = Ab; and x, = (1 — A)b,. Conversely,
let x € span(B) be such that — b’ < x < b for some b’ € B, then x+ = 1/2(b' + x) are positive
elements in span(B) and we have x.+ = AL by,for AL >0, b. € B. By applying the order unit eg
to the equality &' = x, + x_, we see that we must have A . + A_ =1, so that ||x||p < 1. O

Theorem 1. Let B be a faithful section and let B be the dual section. Then Qg is the unit ball
of a norm in B(H). The unit ball of the dual norm is Oj.

We will denote this norm by || - || g, note that Lemma 4 (ii) justifies this notation.

Proof. Tt is clear that Op is convex and symmetric, that is, —Opg C Op. Since B is compact, Op
is closed. If x € Op, thenx = x; — x; with x;, x, > 0, x; + x, € B and by (6),

lxlls, < lxills, + llx2lls, = Tr(x + x2)b = 1,

for any b € ri(B), hence Op is bounded. Moreover, since b € ri(B) is an order unit, for every
x € By(H) there is some ¢ > 0 such that —th < x < tb, so that x € tOp (see Lemma 4 (i)). This
means that Op is absorbing . These facts imply that Op is the unit ball of a norm.

To show duality of the norms || - || and || - || 5, let Hy = H & H and let ® : B,(H,) — Bi(H)
be the map defined by ®(a @ b) = a + b. Let J, = ® ~!(span(B)), then J; is a subspace in B, (H,)
and

St =B ={x®x, x € B},

see Ref. 13. Let 7, : B(H2) — J5* = B(H»)|;; be the quotient map.
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Let b € ri(B) and put By = J> N Spq;- Then By is a base of 0 = />, N B(H,)' and it is clear
that for wy, w, € B(H)*, wy @ w, € B, if and only if w; + w, € B. Let now a € Bj,(H), then
a € Oy if and only if Tr (a @ —a)w < 1 for all w € B,. Equivalently,

m2(a @ —a) <qx ep, = (b ® b),

that is, there is some v € le such that a @ —a < b @® b + v. Since v = x @ x, x € B+, we obtain
+a < b + x. Note that we must have 5 + x > 0: if ¢ is any element in B(H)*, then we have & Trca
< Tre(b + x), so that Tre(b + x) cannot be negative. Hence a < b+ x e B,sothata € Og,
by Lemma 4 (i). This shows that O3 € Oj. Conversely, it is easy to see that if —b < x < b and
b < y < bforb e B, b € B, then Trxy <Tr bb = 1, this implies the opposite inclusion. O

Corollary 2. Let x € By(H). Then

(i) Op = mBeri(é) OS;;’ . .
(ii)  |lxllz = SUPjeics) Ix1ls; = supsep 162X,
(i) xls = €fy c riw)lIXlls = fy e I~ 2xb~ 2.

Proof. (1) It is easy to see from Lemma 4 that

Op = U Oy = cl( U Op). (10)

beB beri(B)

Indeed, let x € B,(#) be such that —b < x < b for some b € B and let b’ € ri(B), then b, := €b’
+ (1 —e)beriB)forall0 < e < 1.Let x" € Op be any element, then x, := ex’ + (1 — €)x € Op,
and x = lime .o+ Xe € cl(Upe icp) Ob)-

Since A° = (cl(conv(A)))° for any subset A € B;,(H) containing 0, we obtain by Theorem 1

os=03=(|J 0= ] o= ) o

beri(B) beri(B) beri(B)

that

(ii) Since Op is the unit ball of | - ||z, we get from (i)
lxllp = inf{A > 0,x € AOp} =inf{X > 0, x € A Os;, Vb € ri(B)}

= inf{A > 0,1 > |lx|ls;, Vb € ri(B)} = sup |ix|ls; = sup 16'xB'|y,
beri(B) beB

the last equality follows from (6) and continuity of the norm || - ||;.
(iii) On the other hand, we get from Lemma 4 and (10)

||x||B = mf{k > 0, X € )»OB} = mf{A > 0, X EM Uberi(B) Ob}

= inf inf{A > 0,x € AOp} = inf |x||, = inf |b~"2xb~1?|,
beri(B) beri(B) beB

where the last equality follows by (7). m|
Corollary 3. For a € B(H)*, we have
lalls = sup Trab = inf 2Pmex(@l®),
beh beB
Proof. We have

llallg = sup Trax.
JCEO;;

Letx € Oz, thenx =Xx; — X3, X1, X, € B(H)" and x| + x, =: b, € B, so that

Trax < Trax; < TraEx < supTral; < sup Tray = ||al|s.
beB yeO0;
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Hence |lalg = supzez Tr ab. The second equality follows directly from Corollary 2 (iii) and the
definition of D,,4y. O

We can also characterize the maximizer resp. minimizer in Corollary 3.

Corollary 4. Let a € B(H)™.

(i) Let by € B, then ||a||g = Traby if and only if there exists some g € span(B), such that a < q
and (q — a)by = 0. In this case, g = ||al|gbo, by € B, and ||a||g = 2Pme(@lbo),

(ii)  Let by € B, then |a| g = 2Pt if and only if there exists some t > 0 and by € B, such
that a < thy and (tby — a)by = 0. In this case, t = ||a||g = Traby.

Proof. (i) Let by € B be such that ||a|| g = Traby. Let by € B be such that ||a||g = 2Pmer@lbo) i
particular, a < ||a||gbo. Put ¢ = ||al|sbo, then ¢ — a > 0 and Tr (g — a)by = 0. Since also by > 0, it
follows that (g — a)by = 0.

Conversely, suppose ¢ € span(B) satisfies a < g and (¢ — a)by = 0. Then g = sb, for some by
€ B, s > 0. Since a < sby, we have

lallp <s =Traby < |lals,

so that Tr aE() =|lallg=s = 2 Dinax(@libo)
(ii) is proved similarly. -

lll. GENERALIZED CHANNELS

Let B be a section of a base of B(H)1. A generalized channel with respect to B (or a B-channel)
is a completely positive map @ : B(H) — B(K) suchthat &(B) C S(K). Let X4 be the Choi matrix
of @, then ® is a generalized channel with respect to B if and only if X¢ > 0 and

1=TroB)=TrTryl(I @ bNXe]l =Tr(I )Xo = Trb Tr X o,

for all b € B. Let Cg(H, K) denote the set of Choi matrices of all generalized channels with respect
to B, then

CsH,K)={X e BKQH)", TrrX € BT}.

Let us remark that if B is a section, then BT .= {bT, b € B} is a section as well, here b7 denotes the
transpose of b. Moreover, BT = BT. Note also that we have

Cp(H,C) =BT, (11)

so that, in particular, Cg(#H, C) is a section.

Proposition 1. Let B be a faithful section of a base of B(H)*. Then Cg(H, K) is a faithful section
of a base of BIIC @ M) and Cz(H,K) = {Ix ® b", b € B}.

Proof. Tt is easy to see that Ix ® B" = {Ix ® b', b € B} is a faithful section of a base of
B(K ® H)™ and

Cs(H,K)={X e BKQH)"', TrXU®b")=1,¥b € B} = I, @ BT.

The proof now follows by Lemma 3 (i) and (ii). O

Let now X € B,(K ® H) and let ® : B(H) — B(K) be the corresponding Hermitian map. By
Corollary 2 and Proposition 1,

X llepani) = sup I ® (B2 XU ® (0T
beB

and we have

(I ®GHXT @ (BNH'?) = (@ @ idy) (o),
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where o, = |¥) (¥, with

W) =Y 1) ® BNy =Y b1y ®1i) e HOH.

Hence o, € B(H® H)" and Tr 0, = b" € BT, sothato;, € Cz(H, H). Conversely, if o = |p)(¢| €
Cz(H, L) for some Hilbert space £, then there is some linear map R : H — L satisfying R*R = b
€ B and such that |p) = > ;R|i) ® |i). Let U : H — L be an isometry such that R = Ub'?, then

=Y RI)®Ii) =Y Ubi)® i) = (U & Dlyn).

Theorem 2. Let X € B, (K ® H)and let ® be the corresponding Hermitian map B(H) — B(K).
Let L be any Hilbert space with dim(L) = dim(#). Then

I Xlley.0) = sup sup (@ ®ide)(0)lh
dim(L)<oo oeCi(H.L)

= sup [[(®P®id)o)l,
oeCy(H.L)

and the dual norm is ”X”ZB(H ) = 1 Xl c@p7- Moreover, if X > 0 then

X =supTrd(h) = inf 2Dmax(XHY)
1 Xl esr.io) beg ) yodnt

and

. T
[ Xl;pr = inf 20 XWMEPD = qup  Tr XY = sup(y| X s |V),
beB YeCp(H,K) S

where the last supremum is taken over the set of all B-channels B(H) — B(K).
Proof. From what was said above, it is easy to see that

I Xlesnny = sup  [I(®®@ide)(|¢) (@Dl
lp)pleCy(H, L)

with dim(£) = dim(#). We will show that

sup (@ @ide)(lp)(eDlli = sup (P @ ide)(l@) (@Dl
lp){pleCa(H.L) lo)pleCp(H.L)

whenever dim(£) > dim(£). The proof is almost the same as the proof of Theorem 5 of Ref. 19,
we include it here for completeness.

Soletdim(L") > dim(£) = dim(H), then there is some ¢y € H & L, with |@g){wo| € Cz(H, L)
such that

sup 1P ®ide(lo) @Dl = 1P ® ide(lgo) (oDl -
lp){pleCp(H L)
Let |@o) = > it sile;) ® |&) be the Schmidt decomposition of ¢o, with {|¢;) } and {|§;) } orthonor-
mal sets in H resp. £’ and m = dim(). Then |go) (ol = > jl¢:) (@] @ [€:)(§;] and

(Tr /|9 (o) <Zs,|¢, gD € B =

Let {le;), i = 1, ..., m} be an ONB in L. Define the linear map U : L — L by
U= Zf"zl le;) (&, then U*U = ) ;|€;)(&;| is the projection in £’ onto the subspace spanned by
the vectors [&;), i = 1, ..., m, and (I ® U*U)lgo) = lgo). Put gy := (I ® U)lgo) = > il¢i) ® lei),
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then it is easy to see that |py ) {¢y| € Cz(H, L£). Now we have

sup [P @ ide(lp)eDlh = 1P ® ide(lou) (@u Dl
lp)(pleCy(H,L)

> (I @UN® ®ide)|ou) (v DU @ U)
=[P ®ido((I ® UNlpu){pulI @ U
=@ ®id(leo){wol 1

= sup ([ ®Qide(e){eDlh-
I} (@l €C (L)

Next, let Y be any element in Cz(#H, L), then the corresponding map & : B(H) — B(L') has
the form

N
§@=) ViaVi,  aeBMH),
i=1

where V; : H — L' are linear maps such that >, V;*V; € B. Let L, be a Hilbert space with
dim(L{) = N and let {|f;), j =1, ..., N} be an ONB in L. Define V = 21/\,:1 Vi ®|f;), then
V is a linear map H — L' ® L) with V*V =3, V*V; € B. Let V(a) = VaV* and let Z be the
Choi matrix of V, then Z is a rank one element in Cz(H, L' ® L;). Moreover, &(a) = Tr g, VaV*
and Y = Tr g, Z. It follows that

(@ @ ide )X = (P & ide)(Tr gy )|y = | Tr £y (P ® idper, ()
= P @ ideory) (Dl = 1 Xllesax)-

‘We now have

1 Xllepe.r0) = sup (@ ®ido)(e)eDlh <= sup (P ®idc) (o)
@) pleCz(H,L) oeCz(H,L)
= sup sup (@ ®ide) (o)l < 1Xley.n0)-

dim(L")<oo o€Ci(H,L')

The expression for the dual norm follows by Proposition 1. Suppose now that X > 0, then by
Corollary 3

Sup TI‘ X(I ® bT) = lnf 2Dllmx(x|| Y) ,

1 Xlles.c
s (ML) beB YeCy(H,K)

IXll;gpr = sup TrXY =in
YeCp(H,K) be

By (1), TrX(I ® b") = Tr Tr 4y X(I ® b") = Tr &(b). Moreover, let Y € Cz(H, k) and let S be the
corresponding B-channel, then

TrXY = Tr X(S ® id)(V) = Tr (S* @ id)(X)V = (¥, Xseoap ).

£ 2 Dnax(X1®T)
B

A. Channels

Let B = G(H), then generalized channels are the usual channels. In this case, we denote
Cp(H, K) by C(H, K). Note that B = {I} and C3(H, K) = 6(K ® H).
By Proposition 1, C(H, K) is a faithful section of a base of B(XX ® H)™ and

COH. K) = {Ix ® p. p € S(H)}.

Furthermore, let X € B,(K ® H) and let ® : B(H) — B(K) be the corresponding Hermitian map.
Then by Theorem 2,

I Xllcwy = sup (P Rid) o)l = [|Pllo,
0eS(HRL)
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with dim(£) = dim(#). For the dual norm, we have

IXlliesm = inf inf{A >0, —A(I ® p) < X < A(I ® p)}.
pES(H)

If o € B(K ® H)*, we obtain

inf 2Pmax(@lli®p) _ 27Hmm(’C|H)U’

o > =
lolliesr jaof

where H,,;,(K|H), is the conditional min-entropy, see Ref. 17.

B. Quantum supermaps

Let Ho, Hi, ... be a sequence of finite dimensional Hilbert spaces. For each n > 1, we define
the sets C(Ho, ..., H,) as follows: C(Hy, H) is, as before, the set of Choi matrices of channels
B(Ho) = B(H). For n > 1, we define C(Hy, ..., H,) as the set of Choi matrices of cp maps
B(H,-1 ®---® Ho) = B(H,) that map C(Hy, ..., H,—1) into &(H,). Such maps were called
quantum supermaps in Ref. 13. (Note that this definition is slightly different from the notion
of supermap introduced in Ref. 5, which is a cp map that maps Choi matrices of channels to Choi
matrices of channels.) and it was proved that forn = 2N — 1 we get precisely the set of deterministic
quantum N-combs for the sequence {Hy, ..., Hon—1}, Theorem 7 of Ref. 13. If n = 2N, we get the
set of N + 1-combs for {C, Hy, ..., Hon}.

Let us fix the sequence Hg, H1, ... and for this, put C, = C(H,, ..., H,). By using repeatedly
Proposition 1, we see that C, is a faithful section of a base of B(H, ® - -+ ® Ho)™ and

Cov1 =Co,(Hy ® -+ - @ Ho, Hn1)-
Moreover, by Proposition 1,
G, = Iy, ®Coy =C(Ho, ..., Hy, C)

(note that CI _y = Cy—1, the last equality above follows from (11)). Forn =2N — 1, this corresponds
to the set of N-round nonmeasuring co-strategies of Refs. 8§ and 9. Note also that for any finite
dimensional Hilbert space £,

C@n(’Hn ® - QHo L) = {Y>0,TrpY €C, = CC,,,I(/anl Q- ® Ho, Hn)}
={Y 2 0,Try,(Trp¥) € Coi)
= C(HOv cees Hn ® ['/)

Now we obtain the following expressions for the corresponding norm and its dual.

Theorem 3. Letn>2.Let X € By(H, ® --- @ Ho)andlet ® : B(H,—1 ® --- ® Ho) — B(H,)
be the corresponding map. We have

1 XNlcao.... 1) = sup TrX(Y, - 1))
Y1,Y2,>0,Y1+Y>,eC(Ho,...,H,,C)

sup IY'2xy'2|,
Y €C(Ho, o Hn,C)

= inf inf{A > 0, —AY < X <AY}

Y€C(Hore Ha)

= sup sup (@ ®ide )X
dim(£))<00 Y €C(Hoy, ., Hy,Hy 1 ®L))

= sup (@ ®ide)Y)ll,

YeC(Ho,.... Hn-2, Hu1®L)

where dim(L) = dim(H,_; ® - - - ® Hy). Moreover, the dual norm is

1 X1 1, @ o, Ho) = 1 X et .. ,,C)-
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Proof. Duality of the norms is obtained from Theorem 2, this also implies the first equality. Next
two equalities follow by Corollary 2. The rest follows by Theorem 2. a

For n = 2N — 1, first two expressions are exactly the N¢-norm as obtained in Refs. 9 and 3.
Duality of the norms corresponding to strategies and co-strategies was also obtained in Ref. 9.

IV. A GENERAL QUANTUM DECISION THEORY

As before, let B be a faithful section of a base of B(H)". As we have seen, elements of B may
represent certain quantum devices and it is therefore reasonable to consider the following definitions.

Let {bg, 0 € ®} C B be a parametrized family, for simplicity, we will suppose that the set of
parameters © is finite. If B is the set of states, the pair £ = (H, {by, 0 € ®}) is called an experiment
and is interpreted as an a priori information on the true state of the system. Accordingly, for a section
B, we define a generalized experiment as a triple £ = (H, B, {by, 0 € O}).

Another ingredient of decision theory is a (finite) set D, the set of possible decisions. A decision
procedure m is a procedure by which we pick some decision d € D, with probability based on the
“true value” of b. That is, m is a map B — P(D), where P(D) is the set of probability measures on
D, such a map will be called a measurement on B, with values in D. The payoff obtained if d € D is
chosen while the true value is 6 € © is given by the payoff function w : ® x D — [0, 1], the pair
(D, w) is called a (classical) decision problem. Let A be an a priori probability distribution on ®.
The task is to maximize the average payoff, that is the value of

Le s w(m) =Y hgw(0, dym(by)g (12)

0.d

over all measurements m : B — P(D).

It is quite clear that any measurement m on B is given by a collection {m,, d € D} of elements
in Q* such that m(b); = (my, b) and that we must have ), my; = ep. Similarly as it was shown in
Ref. 13, any measurement is given by a collection {My,d € D} C B(H)" such that my = 7w (M)
and 7 (>_4M,) = eg, that is

ZM,, e Y(ep) N B(H)" = B.
d

Any such collection of positive operators will be called a generalized POVM (with respect to B), or
a B-POVM. It is also clear that any B-POVM defines a measurement on B (but it may happen that
different generalized POVMs define the same measurement, see Ref. 13). If B = &(H), we obtain
a (usual) POVM M = {M,,d € D} C B(H)", Y uM, = 1.

Let us denote by M g(H, D) the set of all generalized POVMs with respect to B with values in
Dandlet{M;,d € D} € Mp(H, D). Let us denote

M=) ld)d®M]eBHp@H)", (13)
deD
where H p is a Hilbert space with dim(# p) = |D|and {|d),d € D} an ONB in H . Then it is clear that
M is a block-diagonal element in Cg(#H, H p). Conversely, it is clear that if X = )", [d){d| ® X, €
Cp(H, Hp), then {X|,d € D} € Mg(H, D). In this way, we identify M z(H, D) with the subset
of block-diagonal elements in Cz(H, Hp).
Let now (D, w) be a decision problem and let m be a decision procedure with corresponding
B-POVM M. Then the average payoff is computed as

Lepw@m) = Lespw(M) =Y Aw(®, d)Tr Myby = Trée; M,
0.d

where

Eeow =) hw® dld)(d @by =) |d)(d|®bs € BHp @ H)",
[4 d d

where by ==Y, how (6, d)by.
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More generally, let D be a Hilbert space, dim(D) = k and let W be a function W : 6 > Wy €
B(D)™*, with W, < I. We call the pair (D, W) a quantum decision problem.'> Mathematically, this
is a natural extension of classical decision problems, but at present its operational relevance is not
clear.

A decision procedure is now a B-channel ® : B(H{) — B(D) and the average payoff of ® is
given by

Leaw(®) =) 2gTr O(by)Wi.
0

If X € Cp(H, D) is the Choi matrix of ®, then the average payoff has the form

Lesw(®) = Le,w(X) =Y rTr(WyTryl(Ip @ bj)X])
0

=) Tr(gWs ® bj)X = Trée, wX', (14)
0

where

Eeaw =Y MW, ®by e BDRH)".
0

It is easy to see that the set of quantum decision problems contains also classical ones: Let
(D, w) be a classical decision problem and let Hp be as before. Let Wy := ZdeD w(l, d)|d){d]|,
then (Hp, W) is a quantum decision problem and &g, w = &c; 0. Let X € Cg(H, Hp) and
X=> caeplc){d @ Xeq Xca € B(H). Since &¢ ;. 4, is block-diagonal, we have

Lew(X) = Le ) wM),

where M = ) _4ld)(d| ® X44 is a B-POVM. In other words, for a classical decision problem one
cannot get better results by considering quantum decision procedures. Conversely, let (D, W) be a
quantum decision problem such that all the operators Wy commute. Then there is a basis of D with
respect to which all the operators W are given by diagonal matrices, and the problem is equivalent
to a classical problem, in the sense that we obtain the same average payoffs. Hence we can view the
set of classical decision problems as the subset of quantum decision problems such that the payoff
function W has commutative range.

Theorem 4. Let £ = (H, B, {by, 0 € O}) be a generalized experiment and let (D, W) be a
quantum decision problem. Then the maximal average payoff is given by

L = max L X) = .
eaw = max e w(X) = lléewllnpes

If (D, W) is classical, then

Le ,.w = inf sup 2 Dinax(ballb)
' beB 4cp

Proof. By (14), the maximal average payoff is given by

Lesw= max Trée, wX' = wwllies,
£, xehax e, Ecawlpe

the last equality follows by Corollary 3 and Proposition 1. If (D, W) is classical, then we may
suppose that the matrices W, are diagonal. Then &g, w = Y, |d)(d| ® b, is block-diagonal. By
Corollary 3, and definition of D,,,,

e 1wl ipes = inf 2PneCeaw o€ — inf inf(y > 0,by < 2Vb,Vd € D}
beB beB

= inf sup 2 Diax(ballb)
beB deD



022201-15 A. Jencova J. Math. Phys. 55, 022201 (2014)

We can also use Corollary 4 to characterize decision procedures that maximize average payoff,
we will call such procedures optimal with respect to (£, A, W).

Corollary 5. Let (D, W) be a decision problem and let X € Cg(H, D). Then X is optimal with
respect to (€, &, W) if and only if there is some element q € span(B) such that &g ; w < Ip @ q and

(I ®q)—Ee,w)X' =0. (15)

If (D, W) is classical, then a B-POVM (M, . .., Mgm)) is optimal if and only if there is some g €
span(B) such that by < q for all d and

qy My=Y biMy. (16)
d d

Proof. The first part follows directly by Theorem 4 and Corollary 4. If (D, W) is classical, then
&g 5w is block-diagonal, so that &¢ , w < I ® ¢ if and only if each block is majorized by ¢, that is,
bs < g. Moreover, (16) implies that

> Tr(g — ba)M, = 0.
d

Since this is a sum of nonnegative elements, it is zero if and only if each summand is equal to zero.
Again by positivity, this is equivalent to (15). a

In particular, in the case B = G(#), we obtain the following optimality condition for POVMs.

Corollary 6. Let £ = {0y, 60 € O} be an experiment and let (D, w) be a classical decision
problem. Then a POVM {My, d € D} is optimal with respect to (€, A, W) ifand only ifq :== )", 64 My
is hermitian and such that 6y < q for all d, here &p ==, Mgopw(9, d).

Remark 1. Sometimes the function W is interpreted as loss rather than payoft, then L¢ ; w(®) is
the average loss of the procedure & which has to be minimized. Let Wy = Ip — Wy, then 0 > W,
is again a payoff (or loss) function and we have

min L ;. = min 29: b Tr @(by) Wy = min 29: Ao Tr D(bg)(I — W)

=1- max Lespw(®) =1~ wlnes.

Moreover, an optimal procedure ® that minimizes the loss is a maximizer for L¢ ; -, hence satisfies
the conditions of Corollary 5, with W replaced by W’. Note that then the condition from Corollary 6
is the same as obtained in Ref. 12.

Let {M;,d e D} bea B-POVMwith ), M; =c € B. Then since 0 < M, < c for all d, we have

My =" Ayc'?, d € D,

where Ay := ¢~ 2My c 12 defines a (usual) POVM on the support supp ¢ of c. It follows that Tr xM,
= Trc"?xc'? A4, that is, we can decompose the measurement defined by {M,} into a cp map x.:
x > cxc'? followed by the usual measurement given by {A,}. Note that x. € Cg(H, supp c)
so that x. maps a generalized experiment £ = (#, B, {by, 6 € ©}) onto an ordinary experiment
& = {suppc, G(suppc), {x.(by), 6 € ®}). We write this decomposition as M = A o .. Such a
decomposition was also used in Ref. 3 in the case of testers and in Ref. 13 for generalized POVMs.

Using this decomposition, we obtain the following optimality condition for B-POVMs.

Corollary 7. Let (D, w) be a classical decision problem and let M € M g(H, D) with decom-
position M = A o x.. Suppose c is invertible and let £, := (H, {0g := x.(by), 0 € O}). Then M is
optimal for (€, X, w) if and only if A is optimal for (&, A, w) and

Z&dAd € span(x.(B)),
d

where G4 =Y, Agw(0, d)oy.
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Proof. Directly by Corollaries 5 and 6. a

Example 2 (Multiple hypothesis testing). Suppose a family {by, . . ., by} of elements in B is given
and the task is to decide which is the true one, moreover, given some A € P({1, ...k}), we want to
minimize the average probability of making an error. In this case, put £ = (H, B, {by, ..., bi}), ®
=D ={1, ..., k} and the loss function is w(i, j) =1 — d;j, where § is the Kronecker symbol. A
decision procedure is a B-POVM {M, ..., My}, where M; corresponds to the choice b;. Then the
average loss is the average error probability

ﬁg,x’w(M) = Z)\l(l — (Sl])Trble = ZA,Trb,M]
i,J i#]
We can use Remark 1 to compute the minimal average error probability T1Z(by, ..., by) :=
miny Lg ; »(M). We obtain & v = Y, i){i| ® A;b;, so that the minimal average error proba-
bility is
NP1, ..., =1— E.wllios =1 — inf sup 2PmibilP),
beB 1<i<k

For B = G(H), the last equality was obtained in Ref. 7, see also Ref. 17.

Let us now look at an optimal decision procedure. Let {M;} be a B-POVM with decomposition
M = A o x. and let us suppose that ¢ = ) ;M; is strictly positive. Let o; = x.(b;) and &,
= (H, B(H), {01, ..., ox}). Suppose that { A;} is optimal for (€., A, w), this is equivalent to the fact
that Y ;A;0;A; =: p is a hermitian element that majorizes A,0; for all i. By Remark 1 and Corollary 7,
{M;} is then optimal for (£, A, w) if and only if p € span(x.(B)), note that o; € x.(B) for all i.

Example 3 (Hypothesis testing). Let k = 2 in the previous example, then we obtain the hypothesis
testing or discrimination problem, considered at the end of Sec. I B. Here we have

1
10){0] ® sbo + [1){1]| ® thill Lo = E(IISbo —thillp + s +1),

for s, t > 0, so that indeed, 1 — ||&¢,, wlLeB = %(1 — [|Abg — (1 — A)b1 || p) is the minimal Bayes
error probability. Let {My, M, } be a B-POVM such that c = My + M, is strictly positive and let o;
= x(b;). Suppose A = 1/2 and let A; = ¢~ >M;c~ "> be a POVM which is optimal for (., A, w),
then A is the projection onto the support of (69 — o)+ and ) ; Aj0; A; = %((O’o —01)+ + 01).
From the previous example, it is clear that { M, M, } is then an optimal test for (£, A, w) if and only
if any of (and therefore all of) (69 — 01)+,(09 — 01)—, |09 — o] is an element in span(x -(B)).

In particular, let B = C(H, K). In this case, the B-POVMs are exactly the quantum 1-testers of
Refs. 3 and 21, see also Ref. 13. More precisely, the B-POVMs M = {M,,d € D} C BIK Q@ H)*
satisfy Y ;M,; = I ® o for some 0 € G(H). Let M = A o x5, be the decomposition of M, then
for Xo,

TrM;Xe =TrAgxi9s(Xo) = Tr Ag(P ®ida)(p),

where p = x;g (V) is a pure state in S(H @ H4) and H 4 = supp (o). This means that the tester M
is implemented by the triple (H 4, p, A). If o = dim(H)~'1, then p = dim(#)~' ¥ is the maximally
entangled state in H ® H. By the results of Example 3, we have the following.

Corollary 8. Let b; = X, be Choi matrices of the channels &, ®; : B(H) — B(K). Consider
the problem of testing the hypothesis ®( against ®, with a priori probability A € [0, 1]. Then there
exists an optimal 1-tester implemented by a triple (H, A, p) with maximally entangled input state p
ifand only if Tr x|A X o, — (1 — X)X ¢, | is a multiple of I.
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