Curriculum Vitae | List of Publications – Articles | Books
| Others
Name and
surname: Oto Strauch
Date and place
of birth: May 15, 1943, Pezinok (
Education: In
1971 I graduated at the Faculty of Natural Sciences,
where I
spent the next fifteen years as graduate student and assistant
professor. In
1980 I defended on
Theory
of Diophantine Approximations under the guidance of Prof.
T. Šalát, obtaining CSc.-degree (Candidatus scientiarum). In
1997
I defended
habilitation thesis and in 2002 doctor thesis (DrSc.-degree)
entitled Distribution of sequences. Since 1986 at
present I work at the
Mathematical
Institute SAV, where I am engaged in the study of
diophantine
approximations and uniform distribution theory.
Address: Mathematical Institute of the
Štefánikova 49, SK-814 73 BRATISLAVA, Slovakia.
E-mail: oto.strauch@mat.savba.sk
[1]
STRAUCH, O.: Minimal covering of a closed
interval (in Slovak),
Acta Fac. Rerum Nat. Univ. Comenian. 28 (1972), 1—15 (MR 47
\#3603).
[2]
STRAUCH, O.: Injective choice functions
(in Slovak), Acta Fac. Rerum
Nat. Univ. Comenian.
33 (1977), 87—95 (MR 81f:04005).
[3]
STRAUCH, O.: A theorem equivalent to the
axiom of choice, Acta Fac. Rerum
Nat. Univ. Comenian.
34 (1980), 121—123 (MR 84b:04003).
[4]
STRAUCH, O.: The decomposition of uncountable
closed sets of real numbers,
Acta Fac. Rerum Nat. Univ. Comenian. 34 (1980), 41—45 (MR 82e:26001).
[5]
STRAUCH, O.: Duffin--Schaeffer conjecture and some new types of
real sequences
Acta Math. Univ. Comenian.
40-41 (1982), 233—265 (MR 84f:10065).
[6]
STRAUCH, O.: A
coherence between the diophantine approximations and the Dini
derivates of some
real functions, Acta Math. Univ. Comenian.
42—43 (1983),
97—109 (MR 86c:11021).
[7]
STRAUCH, O.: Some new criterions for
sequences which satisfy Duffin--Schaeffer
conjecture, I, Acta Math. Univ. Comenian. 42-43 (1983),
87—95 (MR 86a:11031).
[8]
STRAUCH, O.: Some new criterions for
sequences which satisfy Duffin--Schaeffer
conjecture, II, Acta
Math. Univ. Comenian. 44-45
(1984), 55—65 (MR 86d:11059).
[9]
STRAUCH, O.: Two properties of the
sequence nα mod1, Acta Math.
Univ. Comenian. 44-45 (1984), 67—73 (MR 86d:11057).
[10]
STRAUCH, O.: Some new criterions for sequences which satisfy Duffin--Schaeff
conjecture, III, Acta Math. Univ. Comenian. 48-49 (1986),
37—50 (MR 88h:11053).
[11]
STRAUCH, O.: Some application of FraneŚs integral, I, Acta Math. Univ. Comenian.
50-51 (1987/1988), 237—245 ( MR 90d:11028; Zbl 667.10023; RŽ
1989, 10A136).
[12]
PORUBSKÝ, Š.- ŠALÁT, T.-STRAUCH, O.: Transformations that preserve uniform
distribution, Acta Arith. 49 (1988),
459—479 (MR 89m:11072).
[13]
STRAUCH, O.: Some applications of Franel--Kluyver's integral, II, Math. Slovaca
39 (1989), 127—140
(MR 90j:11079; Zbl 671.10002; RŽ 1989, 9A103).
[14]
PORUBSKÝ, Š.- ŠALÁT, T.-STRAUCH, O.: On a class of uniform distributed sequences,
Math. Slovaca 40 (1990), 143—170 (MR 92d:11076).
[15]
STRAUCH, O.: On the L2 discrepancy of distances of points from a finite
sequence,
Math. Slovaca 40 (1990), 245—259 (MR 92c:11078).
[16]
STRAUCH, O.: An improvement of an
inequality of Koksma, Indag.
3 (1992), 113—118 (MR 93b:11098).
[17]
STRAUCH, O.- PORUBSKÝ, Š.: Transformations that preserve uniform distribution, II,
Grazer Math. Ber. 318
(1993), 173—182 (MR 94e:11083).
[18]
STRAUCH, O.: A new moment problem of
distribution functions in the unit interval, Math.
Slovaca 44
(1994), 171—211 (MR 95i:11082).
[19]
STRAUCH, O.: L2 discrepancy,
Math. Slovaca 44 (1994), 601—632 (MR 96c:11085).
[20]
STRAUCH, O.: Uniformly maldistributed sequences in a strict sense, Monatsh.
Math. 120
(1995), 153—164 (MR 96g:11095).
[21]
STRAUCH, O.: On set of distribution
functions of a sequence, in: Proc. Conf. Analytic and
Elementary Number Theory, In Honor of
E. Hlawka's 80th Birthday,
Universität
Vien and Universität für Bodenkultur, Vienn, eds: W. G. Nowak and J. Schoissengeier,
1997, 214—229.
[22]
STRAUCH, O.: On distribution functions of ξ(3/2)n
mod1, Acta Arith. LXXXI
(1997), no. 1,
25—35 (MR 98c:11075).
[23]
GRABNER, P. J. - STRAUCH, O. - TICHY, R. F.: Maldistribution in higher dimensions,
Math. Panonica 8 (1997), no. 2,
215—223 (MR 99a:11094).
[24]
STRAUCH, O.: A numerical integration
method using the Fibonacci numbers, Grazer Math. Ber.
333 (1997), 19—33 (MR 99h:65038).
[25]
STRAUCH, O.- TÓTH, J. T.: Asymptotic density of AN and density of the ratio set R(A),
Acta Arith. LXXXVII (1998), no.1, 67—78 (MR 99k:11020).
[26]
GRABNER, P. J. - STRAUCH, O. - TICHY, R. F.: Lp-discrepancy and statistical independence
of sequences, Czechosl. Math. J. 49 (124)
(1999), 97—110 (MR 2000a:11108).
[27]
STRAUCH, O.: Moment problem of the type
\int_0^1\int_0^1F(x,y)d
g(x)d g(y)=0, in: Algebraic
Number Theory and Diophantine Analysis,
Proceedings of the International Conference held in
[28]
KOSTYRKO, P.- MAČAJ, M.- ŠALÁT, T.-STRAUCH, O.: On statistical limit points,Proc. Amer.
Math. Soc. 129
(2001), 2647—2654 (MR 2002b:40003).
[29]
STRAUCH, O.- TÓTH, J. T.: Distribution functions of ratio sequences, Publ. Math. (
58/4 (2001), 751—778 (MR 2002h:11068).
[30]
STRAUCH, O.- TÓTH, J. T.: Corrigendum to Theorem 5 of the paper "Asymptotic density of AN,
and density of ratio
set R(A), (Acta Arith. 87
(1998), 67--78) Acta Arith.
103.2 (2002), 191—200.
[31]
STRAUCH, O.- PAŠTÉKA, M.- GREKOS, G.: Kloosterman's uniformly distributed sequence,
J. Number Theory 103 (2003), no. 1,
1—15.
[32]
STRAUCH, O.: On distribution functions of
sequences generated by scalar and mixed product,
Math. Slovaca 53
(2003) no. 5, 467—478.
[33]
STRAUCH, O.: Some modifications of
one-time pad cipher, Tatra Mt. Math. Publ. 29 (2004), 157—171.
[34]
BALÁŽ, V. - STRAUCH, O. – ŠALÁT, T.: Remarks
on several types of convergence of bounded
sequences, Acta Mathematica Universitatis Ostraviensis 14 (2006), 3—12.
[35]
STRAUCH, O. - BLAŽEKOVÁ, O.: Distribution
of the sequence pn/n mod1, Uniform
Distribution Theory
1 (2006)
no. 1, 45—63.
[36]
GREKOS, G. - STRAUCH, O.: Distribution
functions of ratio sequences, II, Uniform Distribution Theory
2 (2007), no. 1,
53—77.
[37] BLAŽEKOVÁ, O. -
STRAUCH, O.: Pseudo-randomnes of quadratic generators, Uniform Distribution Theory
2 (2007), no. 2, 105—120.
[38] GIULIANO ANTONINI,
R. - STRAUCH, O.: On weighted distribution functions of sequences, Uniform
Distribution
Theory 3 (2008), no. 1, 1—18.
[39] STRAUCH, O.: Appendix , in: M. Weber, On localization in Kronecker's diophantine theorem, Uniform Distribution
Theory 4 (2009), no. 1, 97—116, 113—115.
[40] PORUBSKÝ, Š. -
STRAUCH, O.: Binary sequences generated by $\{n\alpha\}$, $n=1,2,\dots$, Publ. Math. Debrecen
77 (2010), no. 1—2, 139—170.
[41] BALÁŽ, V. -
NAGASAKA, K. - STRAUCH, O.: Benford's law and distribution functions of sequences
in $(0,1)$,
(Russian) Matematiceskie zametki 88 (2010), no. 4, 485—501, English translation: Mathematical Notes
88 (2010), no. 4, 449—463.
[42] BALÁŽ, V. -
LIARDET, P. - STRAUCH, O.: Distribution functions of the sequence $\phi(M)/M$,
$M\in(K,K+N)$
as K,N, go to infinity, INTEGERS 10 (2010), no. 4, 705—732.
[43] FIALOVÁ, J. -
STRAUCH, O.: On two-dimensional sequences
composed by one-dimensional uniformly distributed
sequences, Uniform Distribution Theory 6 (2011), no. 2, 101—125.
[44] MIŠÍK, L. -
STRAUCH, O.: Diophantine approximation generalized, Proceedings of the Steklov
Institute of Mathematics
276 (2012), no. 1, 193—207.
[45] BALÁŽ, V. - MIŠÍK,
L. - STRAUCH, O. - TÓTH, J.T.: Distribution functions of ratio sequences,
III, Publ. Math.
Debrecen (2012), in print.
[46] BALÁŽ, V. - MIŠÍK,
L. - STRAUCH, O. - TÓTH, J.T.: Distribution functions of ratio sequences, IV,
Periodica
Math. Hungarica (2012), in print.
[1] STRAUCH, O. - PORUBSKÝ, Š.:
Distribution of Sequences: A Sampler, Schriftenreihe der Slowakischen
Akademie der
Wissenschaften, Band 1, Peter Lang, Frankfurt am Main, 2005, pp. 569.
[2] STRAUCH, O. :
Unsolved Problems, Unsolved Problems Section on the home-page of
Uniform Distribution Theory,
http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf,
2012, pp. 85.
[3] STRAUCH, O.: Duffin-Schaeffer conjecture; Gallagher ergodic
theorem, in: Encyclopaedia
of Mathematics,
Supplement II, ed. M. Hazewinkel, Kluwer Academic
Publishers, Dordrecht, 2000, pp. 172—174, 242—243.