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[NUN4] A. Mesiarová-Zemánková (2021). Characterization of n-uninorms with continu-

ous underlying functions via z-ordinal sum construction. International Journal

of Approximate Reasoning 133, pp. 60–79.
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Preface

The probability theory and classical measure theory are based on sigma-additivity, re-

flecting genuine properties of the related objects such as areas and volumes. Humani-

ties, economics and related sciences focus on interaction which cannot be modelled by

(sigma-)additivity and thus require several generalizations of probability (measure) and

related mean values (integrals). While the standard mean values deal with the standard

multiplication (this is forced by the distributivity with respect to the addition necessary

for a sound definition of the Lebesgue-Stieltjes integral), this is no longer the case when

the (sigma-)additivity of measures is relaxed or modified. Therefore the study of inte-

grals based on commutative associative functions on the unit interval is indispensable for

development of generalized theory of probability.

The introduction of statistical metric spaces (probabilistic metric spaces as they are

called today) by Menger in [54] and exploration of related concepts has initiated a deep

study of triangular norms and related operations on [0, 1]. In particular, commutative and

associative binary functions on [0, 1], including t-norms, t-conorms, uninorms, nullnorms

and other special functions were considered and applied in many theoretical and applied

fields, for example in probability, statistic, many-valued logic, decision theory, artificial

intelligence, neural networks, image processing, data fusion, however, also in economics,

social sciences, and many others.

Due to the associativity, t-norms can be comprehended as special semigroups on the

unit interval (special topological semigroups called I-semigroups in the case of continuity)

or ring operations. With 1 as the neutral element, considering the 2-monotonicity (n-

monotonicity), we come to binary (n-ary) copulas, which serve as a tool for modeling

the stochastic dependence of random vectors, in particular, they model the links between

1-dimensional marginal distributions and join distributions.

Although the majority of applications focused on continuous t-norms and their dual

t-conorms because of their easy characterization, the researchers soon realized that relax-

ation or the replacement of some axioms can enhance their performance in real-life appli-

cations. This led to several generalizations as for example non-continuous t-norms, semi

t-operators, pseudo-t-norms, quasi-copulas, semicopulas and overlap functions, among
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others. Relaxation of the monotonicity yielded concepts of directional and weak mono-

tonicity and replacement of the unit interval, which is a bounded chain, by more general

structures yielded t-norms on bounded posets and bounded lattices.

Generalization of the position of the neutral element or the annihilator of a t-norm

yielded the definition of uninorms and nullnorms [17, 82]. Since these operations behave

differently below and above the neutral element (annihilator) it was soon observed that

they can be used in bipolar aggregation, or bipolar many-valued logic [84]. In fact,

uninorms and nullnorms can be taken as bipolar t-norms and t-conorms [56]. From an

algebraic point of view, proper uninorms are the only binary operations ∗ on [0, 1] which

make the structures ([0, 1],max, ∗) and ([0, 1],min, ∗) distributive commutative semi-rings

(see [32]).

Recently, the concept which brings together uninorms and nullnorms – n-uninorms –

was introduced by Prabhakar Akella [5]. This concept on one hand generalizes uninorms

in such a way that the global neutral element is replaced by n local neutral elements. On

the other hand, this concept shares the same idea with the ordinal sum of t-norms (t-

conorms), where on distinct subareas of the unit square the t-norm can behave differently,

i.e., on each such area a different t-norm can be applied. The same can be observed in the

case of n-uninorms, where on distinct subareas of the unit square different uninorms can

be applied. Similarly, we can relate n-uninorms to the idea of k-ary capacities introduced

by Grabisch and Labreuche, which are based on reference levels of interest for scores [33].

The investigation of functions mentioned above contribute to the development of gen-

eralized theory of probability, where for weakening or modifying the properties of proba-

bility we need to introduce integrals based exactly on functions studied in this doctoral

dissertation. First approaches to non-additive measures and integrals were proposed and

studied for example in [61, 77]. Integrals based on uninorms were proposed for example

in [40].

A major part of my research in the last decade was focused on a deep study of uninorms

and n-uninorms, and my main results are summarized in this thesis.

6



My work is dedicated to Professor Erich Peter Klement, a precious man who helped me

and many others to start their academic carrier.

7





Objectives

The aim of this work is to offer a complete characterization of uninorms and n-uninorms

with continuous underlying functions and, particularly, to study their continuity on the

whole unit square and their decomposition into irreducible sets via the ordinal sum (z-

ordinal sum) construction. Therefore the objectives of this thesis are the following:

� Define the ordinal sum construction for uninorms.

� Study semigroups that yield a uninorm via the ordinal sum construction.

� Show one-to-one correspondence between idempotent uninorms and special linear

orders on the unit interval.

� Define a characterizing set-valued function of a uninorm with continuous underlying

functions and show its relation to the set of points of discontinuity of the given

uninorm.

� Show that each uninorm with continuous underlying functions can be expressed

as an ordinal sum of semigroups related to continuous Archimedean t-norms, t-

conorms, representable uninorms and idempotent semigroups.

� Define a z-ordinal sum construction for partially ordered index sets.

� Show one-to-one correspondence between idempotent n-uninorms and special partial

orders on the unit interval.

� Define characterizing (set-valued) functions of an n-uninorm with continuous un-

derlying functions and show their relation to the set of points of discontinuity of the

given n-uninorm.

� Show that each n-uninorm with continuous underlying functions can be expressed

as a z-ordinal sum of semigroups related to continuous Archimedean t-norms, t-

conorms, representable uninorms and idempotent semigroups.
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The thesis consists of 11 research papers, divided into two chapters: the first dedicated

to uninorms with continuous underlying functions and the second dedicated to n-uninorms

with continuous underlying functions. In Part I below, we give a brief overview of the

content of the corresponding works and possibilities of further research. The papers can

be found in Part II.
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Chapter 1

Basic notions and results

In this work we want to extend the characterization known for continuous t-norms and

t-conorms to uninorms and n-uninorms with continuous underlying functions. There-

fore we first recall the most important results on continuous t-norms. The history of

t-norms, an overview of their properties, connection to other aggregations functions, ba-

sic applications, relevant literature and many other related results can be found in the

two monographs [8, 39].

A triangular norm is a binary function T : [0, 1]2 −→ [0, 1] which is commutative,

associative, non-decreasing in both variables and 1 is its neutral element. Due to the

associativity, n-ary form of any t-norm is uniquely given and thus it can be extended

to an aggregation function working on
⋃
n∈N[0, 1]n (see [34]). Dual functions to t-norms

are t-conorms. A triangular conorm is a binary function S : [0, 1]2 −→ [0, 1] which is

commutative, associative, non-decreasing in both variables and 0 is its neutral element.

The duality between t-norms and t-conorms is expressed by the fact that from any t-norm

T we can obtain its dual t-conorm S by the equation

S(x, y) = 1− T (1− x, 1− y)

and vice-versa. Linear transformation of a t-norm (t-conorm) to a non-trivial interval

[a, b] , for a, b ∈ R is called a t-norm (t-conorm) on [a, b]2 . Moreover, a t-norm (t-conorm)

T (S) is called Archimedean if for every x, y ∈ ]0, 1[ there exists n ∈ N such that x
(n)
T < y,

(x
(n)
S > y), where x

(0)
T = 1 and x

(n)
T = T (x, x

(n−1)
T ) for all n ∈ N (and similarly for S).

As we will see later, ordinal sum of t-norms, t-conorms, uninorms and the z-ordinal

sum construction are all based on the following fundamental result of Clifford [19]. We

introduce this result as formulated in [39].

Theorem 1.1.1

Let A 6= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of

semigroups. Assume that for all α, β ∈ A with α < β the sets Xα and Xβ are either
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16 Basic notions and results

disjoint or that Xα ∩Xβ = {xα,β}, where xα,β is both the neutral element of Gα and the

annihilator of Gβ and where for each γ ∈ A with α < γ < β we have Xγ = {xα,β}. Put

X =
⋃
α∈A

Xα and define the binary operation ∗ on X by

x ∗ y =





x ∗α y if (x, y) ∈ Xα ×Xα,

x if (x, y) ∈ Xα ×Xβ and α < β,

y if (x, y) ∈ Xα ×Xβ and α > β.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each

α ∈ A the semigroup Gα is commutative.

Remark 1.1.2

As we see in the previous theorem, the ordinal sum construction assumes that the index

set A is totally (linearly) ordered and therefore if we say that semigroups Gα for α ∈ A
are ordered we are speaking about the order defined on the index set A. Then, if for some

α, β ∈ A we have Xα 6= Xβ and x ∗ y = x for all x ∈ Xα and all y ∈ Xβ, necessarily

α < β.

Vice versa, given a commutative, associative function F : [0, 1]2 −→ [0, 1] assume

that there exists an index set A and semigroups (Gα)α∈A with Gα = (Xα, F |Xα), where

F |Xα : X2
α −→ Xα is the restriction of F to Xα, such that [0, 1] =

⋃
α∈AXα, and for

α, β ∈ A the sets Xα and Xβ are either disjoint, or Xα ∩ Xβ = {xα,β}, and Xα 6= Xβ

whenever α 6= β. We define a partial order on A by α ≤A β for α, β ∈ A if either

α = β, or F (x, y) = x for all x ∈ Xα and all y ∈ Xβ. Then ≤A is evidently reflexive,

the antisymmetry of ≤A follows from the commutativity of F and the fact that Xα 6= Xβ

whenever α 6= β, and the transitivity of ≤A follows from the associativity of F. In the

case when ≤A is a total (linear) order it is easy to check that ([0, 1], F ) is an ordinal sum

of (Gα)α∈A with respect to order ≤A .
Therefore, in order to show that F is an ordinal sum of semigroups (Gα)α∈A it is

enough to show that these semigroups are totally ordered by the order ≤A defined above.

The ordinal sum construction for t-norms and t-conorms is given as follows [48].

Proposition 1.1.3

Let K be a finite or countably infinite index set and let (]ak, bk[)k∈K

((]ck, dk[)k∈K) be a system of open, disjoint subintervals of [0, 1]. Let (Tk)k∈K ((Sk)k∈K)

be a system of t-norms (t-conorms). Then the ordinal sum T = (〈ak, bk, Tk〉 | k ∈ K)

(S = (〈ck, dk, Sk〉 | k ∈ K)) given by

T (x, y) =




ak + (bk − ak)Tk( x−akbk−ak

, y−ak
bk−ak

) if (x, y) ∈ [ak, bk[
2 ,

min(x, y) else
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and

S(x, y) =




ck + (dk − ck)Sk( x−ck

dk−ck
, y−ck
dk−ck

) if (x, y) ∈ ]ck, dk]
2 ,

max(x, y) else

is a t-norm (t-conorm). The t-norm T (t-conorm S) is continuous if and only if all

summands Tk (Sk) for k ∈ K are continuous.

We see that semigroups in the ordinal sum of t-norms are for k ∈ K given by

Gk = ([ak, bk[ , T
∗
k ), where T ∗k is a linear transformation of the t-norm Tk to the inter-

val [ak, bk] (restricted to [ak, bk[) and the remainder of the unit square is filled by the

minimum. Here we can observe two facts. At first, an ordinal sum of t-norms is in

fact an ordinal sum of semigroups Gk and the trivial semigroups Gx = ({x}, Id), where

x ∈ [0, 1] \ ⋃k∈K [ak, bk[ and Id: {x}2 −→ {x} is the unique operation which can be

defined on a trivial semigroup given by Id(x, x) = x. On the other hand, the linear trans-

formation between [0, 1] and [ak, bk] is an increasing isomorphism and thus it preserves the

commutativity, the associativity, the monotonicity as well as the location of the neutral

element (e = 0, or e = 1, or e ∈ ]0, 1[). Moreover, this linear transformation is also a

homeomorphism and thus it preserves the continuity of a t-norm (t-conorm).

The characterization of all continuous t-norms (t-conorms) is based on two construc-

tions [48]. The first result shows that each continuous t-norm (t-conorm) is equal to an

ordinal sum of continuous Archimedean t-norms (t-conorms). Note that a continuous

t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent points 0

and 1. The second result shows that each continuous Archimedean t-norm (t-conorm) has

a continuous additive generator.

Proposition 1.1.4

Let t : [0, 1] −→ [0,∞] (s : [0, 1] −→ [0,∞]) be a continuous strictly decreasing (increasing)

function such that t(1) = 0 (s(0) = 0). Then the binary operation T : [0, 1]2 −→ [0, 1]

(S : [0, 1]2 −→ [0, 1]) given by

T (x, y) = t−1(min(t(0), t(x) + t(y)))

S(x, y) = s−1(min(s(1), s(x) + s(y)))

is a continuous Archimedean t-norm (t-conorm). The function t (s) is called an additive

generator of T (S).

An additive generator of a continuous t-norm T (t-conorm S) is uniquely determined

up to a positive multiplicative constant. A continuous Archimedean t-norm T (t-conorm

S) is either strict, i.e., strictly increasing on ]0, 1]2 (on [0, 1[2), or nilpotent, i.e., there

exists (x, y) ∈ ]0, 1[2 such that T (x, y) = 0 (S(x, y) = 1). For an additive generator t of a
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strict t-norm there is t(0) = +∞, and for an additive generator f of a nilpotent t-norm

there is f(0) < +∞.
If we relax the condition of the neutral element we obtain the notion of a triangular

subnorm [37]. A t-subnorm is a binary function M : [0, 1]2 −→ [0, 1] which is commu-

tative, associative, non-decreasing in both variables and bounded by the minimum from

above, i.e., M(x, y) ≤ min(x, y) for all x, y ∈ [0, 1]. Evidently, each t-norm is also a t-

subnorm. The dual operation to a t-subnorm is a t-superconorm which is a binary function

R : [0, 1]2 −→ [0, 1] that is commutative, associative, non-decreasing in both variables and

bounded by the maximum from below, i.e., R(x, y) ≥ max(x, y) for all x, y ∈ [0, 1]. More

details on t-norms and t-conorms can be found in [8, 39].

The neutral element of a t-norm (t-conorm) is in the point 1 (0). Generalization of

the position of the neutral element yields a uninorm introduced in [82]. A uninorm is a

binary function U : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in

both variables and has a neutral element e ∈ ]0, 1[ (see also [30]). If we take uninorm in a

broader sense, i.e., if for a neutral element we have e ∈ [0, 1], then the class of uninorms

covers also the class of t-norms and the class of t-conorms. In order the stress that we

assume a uninorm with e ∈ ]0, 1[ we will call such a uninorm proper. For each uninorm the

value U(1, 0) ∈ {0, 1} is the annihilator of U. A uninorm is called conjunctive (disjunctive)

if U(1, 0) = 0 (U(1, 0) = 1).

For each uninorm U with the neutral element e ∈ ]0, 1[ , the restriction of U to [0, e]2

is a t-norm on [0, e]2 , i.e., a linear transformation of some t-norm TU on [0, 1]2 and the

restriction of U to [e, 1]2 is a t-conorm on [e, 1]2 , i.e., a linear transformation of some t-

conorm SU . The t-norm TU and a the t-conorm SU are called the underlying functions of

the uninorm U. In the case that for a uninorm U we have e = 1 (e = 0) then its underlying

t-norm (t-conorm) is just U and its underlying t-conorm (t-norm) is degenerated to a

trivial binary operation on a single point 1 (0). We will denote the set of uninorms with

continuous underlying functions by U . Moreover, min(x, y) ≤ U(x, y) ≤ max(x, y) for all

(x, y) ∈ [0, e]× [e, 1] ∪ [e, 1]× [0, e] .

From any pair of a t-norm and a t-conorm we can construct the minimal and the

maximal uninorm with the given underlying functions (see [47]).

Proposition 1.1.5

Let T : [0, 1]2 −→ [0, 1] be a t-norm and S : [0, 1]2 −→ [0, 1] a t-conorm and assume

e ∈ ]0, 1[ . Then the two functions Umin, Umax : [0, 1]2 −→ [0, 1] given by

Umin(x, y) =





e · T (x
e
, y
e
) if (x, y) ∈ [0, e[2 ,

e+ (1− e) · S(x−e
1−e ,

y−e
1−e) if (x, y) ∈ [e, 1]2 ,

min(x, y) otherwise
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and

Umax(x, y) =





e · T (x
e
, y
e
) if (x, y) ∈ [0, e]2 ,

e+ (1− e) · S(x−e
1−e ,

y−e
1−e) if (x, y) ∈ ]e, 1]2 ,

max(x, y) otherwise

are proper uninorms. We will denote the set of all uninorms of the first type by Umin and

of the second type by Umax.

A uninorm U : [0, 1]2 −→ [0, 1] is called

� internal if U(x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2,

� d-internal if it is internal and there exists a continuous and strictly decreasing

function gU : [0, 1] −→ [0, 1] such that U(x, y) = min(x, y) if y < gU(x) and U(x, y) =

max(x, y) if y > gU(x),

� locally internal on A(e) if U is internal on A(e) = [0, e]× [e, 1] ∪ [e, 1]× [0, e] ,

� idempotent if U(x, x) = x for all x ∈ [0, 1].

Observe that if a uninorm U is internal then it is also idempotent and vice-versa.

For example all uninorms from Umin ∪ Umax are locally internal on A(e).

The characterization of idempotent uninorms was given in [67].

Theorem 1.1.6

Let U : [0, 1]2 −→ [0, 1] be a binary function. Then U is an idempotent uninorm with the

neutral element e ∈ ]0, 1[ if and only if there exists a non-increasing function g : [0, 1] −→
[0, 1], which is Id-symmetric, with g(e) = e, such that

U(x, y) =





min(x, y) if y < g(x) or (y = g(x) and x < g(g(x))),

max(x, y) if y > g(x) or (y = g(x) and x > g(g(x))),

x or y if y = g(x) and x = g(g(x)),

being commutative in the points (x, y) such that y = g(x) with x = g(g(x)).

Similarly as in the case of t-norms and t-conorms we can construct uninorms using

additive generators (see [30]).

Proposition 1.1.7

Let f : [0, 1] −→ [−∞,∞] , f(0) = −∞, f(1) = ∞ be a continuous strictly increasing

function. Then the binary function U : [0, 1]2 −→ [0, 1] given by

U(x, y) = f−1(f(x) + f(y)),
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where f−1 : [−∞,∞] −→ [0, 1] is an inverse function to f, with the convention ∞ +

(−∞) = ∞ (∞ + (−∞) = −∞) is a uninorm, which will be called a representable

uninorm. The unique point e ∈ ]0, 1[ such that f(e) = 0 is then the neutral point of U.

Note that if we relax the monotonicity of the additive generator then the neutral

element will be lost and by relaxing the condition f(0) = −∞, f(1) =∞ the associativity

will be lost (if f(0) < 0 and f(1) > 0). In [66] (see also [56]) we can find the following

result.

Proposition 1.1.8

Let U : [0, 1]2 −→ [0, 1] be a uninorm. Then U is representable if and only if it is continuous

on [0, 1]2 \ {(0, 1), (1, 0)}.

This result completely characterizes the set of representable uninorms.

Further results on uninorms with continuous underlying functions offer the characteri-

zations of uninorms with continuous Archimedean underlying functions (see [31, 50, 44, 64]

and [68] for the discrete case), uninorms with underlying functions given as ordinal sums

(see [23]) and uninorms with continuous underlying functions that are locally internal

in A(e) (see [25]). In this work we will generalize these results for any uninorm with

continuous underlying functions.

If we generalize the position of the annihilator of a t-norm (t-conorm) we obtain the

following definition of a nullnorm [17]. Note that t-operators were independently defined

in [53] and in [52] it was shown that t-operators and nullnorms coincide.

A binary function V : [0, 1]2 −→ [0, 1] is called a nullnorm if it is commutative, asso-

ciative, non-decreasing in each variable and there exists a z ∈ [0, 1] such that V (0, x) = x

for all x ≤ z and V (1, x) = x for all x ≥ z. The monotonicity then implies that z is the

annihilator of V.

If z = 0 (z = 1) then V is a t-norm (t-conorm). Observe that for a commutative,

associative and non-decreasing function F : [0, 1]2 −→ [0, 1], with F (0, 0) = 0, F (1, 1) = 1,

the value F (0, 1) is always an annihilator of F. Thus for a nullnorm z = V (0, 1). In [17]

the following result was shown.

Theorem 1.1.9

Let z ∈ ]0, 1[ . Then V : [0, 1]2 −→ [0, 1] is a nullnorm with the annihilator z if and only

if there exists a t-norm TV and a t-conorm SV such that

V (x, y) =





z · SV (x
z
, y
z
) if x, y ∈ [0, z[2 ,

z + (1− z) · TV (x−z
1−z ,

y−z
1−z ) if x, y ∈ ]z, 1]2 ,

z otherwise.

Therefore the characterization of nullnorms with continuous underlying functions is

easy – since they are uniquely given by their underlying functions.
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Further generalization that covers both uninorms and nullnorms was introduced by

Akella [5]. Assume an n ∈ N \ {1}. Let V : [0, 1]2 −→ [0, 1] be a commutative binary

function. Then {e1, . . . , en}z1,...,zn−1 is called an n-neutral element of V if for 0 = z0 <

z1 < · · · < zn = 1 and ei ∈ [zi−1, zi] , i = 1, . . . , n we have V (ei, x) = x for all x ∈ [zi−1, zi] .

A binary function Un : [0, 1]2 −→ [0, 1] is an n-uninorm if it is commutative, associa-

tive, non-decreasing in each variable and has an n-neutral element {e1, . . . , en}z1,...,zn−1 .

Observe that the notation Un should not be confused with the n-th power of U, and we

keep it to follow the original notation of Akella [5].

The basic structure of n-uninorms was described by Akella in [5, 6] and the character-

ization of the five main classes of 2-uninorms was given in [85]. Now we will recall these

five exhaustive and mutually exclusive classes:

� Class 1: 2-uninorms with U2(0, 1) = z1.

� Class 2a: 2-uninorms with U2(0, 1) = 0, U2(1, z1) = z1.

� Class 2b: 2-uninorms with U2(0, 1) = 1, U2(0, z1) = z1.

� Class 3a: 2-uninorms with U2(0, 1) = 0, U2(1, z1) = 1.

� Class 3b: 2-uninorms with U2(0, 1) = 1, U2(0, z1) = 0.

Each n-uninorm has the following building blocks around the main diagonal.

Proposition 1.1.10

Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let {e1, . . . , en}z1,...,zn−1 be its n-neutral

element. Then

(i) Un restricted to [zi−1, ei]
2 , for i = 1, . . . , n, is a linear transformation of a t-norm.

We will denote this t-norm by Ti.

(ii) Un restricted to [ei, zi]
2 for i = 1, . . . , n, is a linear transformation of a t-conorm. We

will denote this t-conorm by Si.

(iii) Un restricted to [zi−1, zi]
2 for i = 1, . . . , n, is a linear transformation of a uninorm.

We will denote this uninorm by Ui.

(iv) Un restricted to [zi, zj]
2 for i, j ∈ {0, 1, . . . , n}, i < j, is a linear transformation of a

(j − i)-uninorm.

Moreover, Un restricted to [ei, ei+1]
2 for i ∈ {1, . . . , n− 1}, is a linear transformation

of a nullnorm. For generality, 1-uninorm will denote the standard uninorm.

For n ∈ N we will denote the set of all n-uninorms such that their underlying t-norms

T1, . . . , Tn and t-conorms S1, . . . , Sn are continuous by Un. Recall that here the linear
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transformation from [0, 1] to [a, b] as well as the backward transformation are homeomor-

phisms and therefore an n-uninorm from Un is continuous on [zi−1, ei]
2 and on [ei, zi]

2 for

i = 1, . . . , n.

If for a 2-uninorm there is e2 = 1 we obtain a uni-nullnorm and if e1 = 0 we obtain

a null-uninorm [78]. Our aim is the characterization of n-uninorms from Un. Note that

the first result in this direction was the characterization of uni-nullnorms with continuous

Archimedean underlying functions given in [79].



Chapter 2

Uninorms with continuous

underlying functions

As we have seen in the previous chapter, there are two main construction methods that

are used for the characterization of continuous t-norms (t-conorms). The ordinal sum con-

struction and the construction via an additive generator. While the concept of an additive

generator was easily introduced also for uninorms and yields representable uninorms, the

ordinal sum construction was not so evident. The results known so far were based merely

on the ordinal sum decomposition of underlying functions of uninorms and not uninorms

themselves. Therefore the natural question arises – which semigroups can yield a uninorm

in the ordinal sum construction? In this chapter we will define ordinal sums of uninorms

and study the semigroups that yield uninorms via the ordinal sum construction. Using

these results we are able to completely characterize uninorms with continuous underlying

functions. We will study characterizing set-valued functions of such uninorms, their rela-

tion to the set of points of discontinuity of such uninorms and finally we will provide their

decomposition into irreducible semigroups with respect to the ordinal sum construction.

This chapter is based on my papers [UNI1,UNI2,UNI3,UNI4,UNI5,UNI6,UNI7].

2.1 Generalized uninorms

Following [41], where it was shown that the most general semigroups that yield a t-norm

via the ordinal sum construction are t-subnorms, we have done the same analysis for

uninorms in [UNI2]. Since below (above) the neutral element the uninorm corresponds to

a t-norm (t-conorm) we immediately see that each such an operation, when restricted to

the points smaller (greater) than the neutral element, yields a t-subnorm (t-superconorm).

Thus, beside trivial elements, t-subnorms and t-supreconorms we have identified four

kinds of operations that can be used for the construction of a uninorm via the ordinal

23
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sum construction. These four operations are generalized sub-uninorms, generalized super-

uninorms, generalized composite uninorms and standard uninorms transformed to the

corresponding subset of the unit interval (see below).

All kinds of generalized uninorms are commutative, associative and non-decreasing

binary functions and have an averaging behaviour when a point below the dividing element

and a point above the dividing element are combined (for uninorms this dividing element is

the neutral element, however, generalized uninorms do not have to have a neutral element).

Moreover, roughly speaking, a generalized sub-uninorm represents an operation whose

underlying functions are a t-subnorm and a t-conorm (without one or both boundary

points). Similarly, a generalized super-uninorm represents an operation whose underlying

functions are a t-norm and a t-superconorm. Finally, a generalized composite uninorm

represents an operation whose underlying functions are a t-subnorm and a t-superconorm.

As we already know, underlying functions of a uninorm are a t-norm and a t-conorm. Note

that since each t-subnorm (t-superconorm) is a t-norm (t-conorm) then uninorms are both

generalized sub-uninorms as well as generalized super-uninorms. The intervals from which

these generalized uninorms arise can be seen on Figure 2.1 (see [UNI2] for more details).

M

S

a b e c d

T

R

a b e c d

M

R

a b e c d

Figure 2.1: Sketch of areas from which generalized uninorms originate: generalized sub-
uninorm (left), generalized super-uninorm (center) and generalized composite uninorm
(right). Here M denotes a t-subnorm, R a t-superconorm, T a t-norm and S a t-conorm.

Before we introduce a proper definition of the three generalized uninorms let us observe

that the class of generalized composite uninorms differ from the other three operations

as it cannot be easily transformed (by a monotone transformation) to an operation on

[0, 1]2. On the other hand, for other three operations it is possible. Obviously, we cannot

use a linear transformation, as in the case of t-norms, as the part below the division point

and above the division point should be transformed separately. Therefore we will use the

following piece-wise linear isomorphism. For any 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c] and a
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point e ∈ ]0, 1[ assume the function f : [0, 1] −→ [a, b[ ∪ {v} ∪ ]c, d] , given by

f(x) =





(b− a) · x
e

+ a if x ∈ [0, e[ ,

v if x = e,

d− (1−x)(d−c)
(1−e) otherwise.

(2.1)

Then f is linear on [0, e[ and on ]e, 1] and thus it is a piece-wise linear isomorphism of

[0, 1] to ([a, b[∪ {v} ∪ ]c, d]). Assume a function GU : [0, 1]2 −→ [0, 1]. Then we can define

the binary function GUa,b,c,d
v : ([a, b[ ∪ {v} ∪ ]c, d])2 −→ ([a, b[ ∪ {v} ∪ ]c, d]) given by

GUa,b,c,d
v (x, y) = f(GU(f−1(x), f−1(y))). (2.2)

Similarly, using the backward transformation f−1 we can transform a binary function de-

fined on ([a, b[∪{v}∪]c, d])2 to a binary function defined on [0, 1]2. Since f is an increasing

isomorphism it preserves the commutativity, the associativity and the monotonicity. Fur-

ther, if e is the neutral element of GU then v is the neutral element of GUa,b,c,d
v . Thus if

GU is a uninorm on [0, 1]2 then GUa,b,c,d
v is a commutative, associative, non-decreasing

function on ([a, b[ ∪ {v} ∪ ]c, d])2 with the neutral element v, which we will call simply

a uninorm on ([a, b[ ∪ {v} ∪ ]c, d])2. Note that in the case when b = c = v then f is a

continuous, piece-wise linear transformation from [0, 1] to [a, d] such that f(e) = v. This

transformation can be used for all kinds of generalized uninorms except of generalized

composite uninorms and therefore we give the following definitions.

Definition 2.1.1

An associative, commutative, binary operation GU : [0, 1]2 −→ [0, 1] which is non-decrea-

sing in each variable will be called

(i) generalized sub-uninorm if there exists an e ∈ [0, 1] such that there is GU(x, y) ≤
min(x, y) for all (x, y) ∈ [0, e]2 , GU(x, y) ≥ max(x, y) for all (x, y) ∈ ]e, 1]2 , and

GU(x, y) ∈ [x, y] for all (x, y) ∈ [0, e]× ]e, 1] ∪ ]e, 1]× [0, e] .

(ii) generalized super-uninorm if there exists an e ∈ [0, 1] such that there is GU(x, y) ≤
min(x, y) for all (x, y) ∈ [0, e[2 , GU(x, y) ≥ max(x, y) for all (x, y) ∈ [e, 1]2 , and

GU(x, y) ∈ [x, y] for all (x, y) ∈ [0, e[× [e, 1] ∪ [e, 1]× [0, e[ .

It can be easily observed that generalized sub-uninorms and generalized super-uni-

norms differ only on the set {e} × [0, 1] ∪ [0, 1]× {e}.
Definition 2.1.2

A binary operation GU : ([a, b]∪ [c, d])2 −→ ([a, b]∪ [c, d]), where a < b < c < d, a, b, c, d ∈
[0, 1] will be called a generalized composite uninorm if it is associative, commutative,

non-decreasing in both coordinates and GU restricted to [a, b]2 is a t-subnorm on [a, b]2 ,

GU restricted to [c, d]2 is a t-superconorm on [c, d]2 , and GU(x, y) ∈ [x, y] for all (x, y) ∈
[a, b]× [c, d] and all (x, y) ∈ [c, d]× [a, b] .
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Several results on the structure of generalized uninorms, especially representable gen-

eralized uninorms, can be found in [UNI2]. However, in our investigation of uninorms

with continuous underlying functions, which necessarily have a continuous diagonal, we

can observe that all components which correspond to a t-subnorm (t-superconorm) reduce

to (a restriction of) a continuous t-norm (t-conorm) and thus in this case it is enough

to assume standard uninorms instead of generalized sub-uninorms and generalized super-

uninorms. Moreover, in this case every generalized composite uninorm GU reduces to

an operation with underlying continuous t-norm – acting on the interval [a, b] , and un-

derlying continuous t-conorm – acting on the interval [c, d] , with an averaging behaviour

on [a, b] × [c, d] ∪ [c, d] × [a, b] . Due to the monotonicity such an operation possesses the

neutral element e ∈ {b, c} \ {GU(b, c)}.
The structure of a generalized composite uninorm GU with continuous underlying

t-norm (t-conorm) can be very simple, for example in the case when it is similar to

Umin (Umax), i.e., when GU(x, y) = min(x, y) (GU(x, y) = max(x, y)) for all (x, y) ∈
[a, b] × [c, d] ∪ [c, d] × [a, b] . In this case GU can be expressed as an ordinal sum of the

corresponding continuous t-norm on [a, b]2 and the corresponding continuous t-conorm on

[c, d]2 . However, the structure of a generalized composite uninorm can be also complicated

as it can be seen in the following example.

Example 2.1.3

Let A = {ai | i ∈ N ∪ {0}}, B = {bi | i ∈ N ∪ {0}}, and let Xai =
]

1
3i+1 ,

1
3i

]
for all i ∈ N,

Xa0 = {0}, Xbi =
[
1− 1

3i
, 1− 1

3i+1 ,
[

for all i ∈ N, Xb0 = {1}. Assume semigroups Gai =

(Xai ,min) and Gbi = (Xbi ,max) for all i ∈ N∪{0} and a linear order on the set A∪B given

by ai >
∗ bi >

∗ ai+1 >
∗ a0 >

∗ b0 for all i ∈ N. Then the ordinal sum (X,F ) of semigroups

(Gα)α∈A∪B with respect to order ≤∗ is a commutative, associative function F : X2 −→ X,

where X =
[
0, 1

3

]
∪
[
2
3
, 1
]

and F restricted to
[
0, 1

3

]
is the minimum, F restricted to[

2
3
, 1
]

is the maximum and F (x, y) ∈ [x, y] for all (x, y) ∈
[
0, 1

3

]
×
[
2
3
, 1
]
∪
[
2
3
, 1
]
×
[
0, 1

3

]
.

Further, we can observe the following facts: F (1, x) = 1 for all x ∈ X. F (0, x) = 0 for

all x ∈ X with x < 1. F (x, y) = min(x, y) for all x ∈ Xai and y ∈ Xbj for i > j and

F (x, y) = max(x, y) for all x ∈ Xai and y ∈ Xbj for i ≤ j. Therefore the monotonicity

of F is easily verified. Thus F is an idempotent generalized composite uninorm with

continuous underlying t-norm and continuous underlying t-conorm (see Figure 2.2). It

is interesting to observe that this generalized composite uninorm was constructed as an

ordinal sum of a countably many semigroups with operations min and max, however, it

cannot be expressed as an ordinal sum of a uninorm (a semigroup isomorphic to a uninorm

via (2.1)) and a finite number of semigroups with operations min and max, i.e., it cannot

be reduced to a uninorm in a finite number of steps.

When we look for building stones for construction of uninorms with continuous un-
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a1

b1

a2

b2

Figure 2.2: The generalized composite uninorm F from Example 2.1.3. On white areas
F is equal to the minimum and on black areas F is equal to the maximum.

derlying functions via the ordinal sum then we should focus on generalized composite

uninorms with continuous Archimedean underlying functions. For better visualization

we add the following result which was not shown in papers from Part II (for proof see

Appendix).

Proposition 2.1.4

Let GU : ([a, b]∪[c, d])2 −→ ([a, b]∪[c, d]), where a < b < c < d, a, b, c, d ∈ [0, 1] be a gener-

alized composite uninorm with underlying functions which are a continuous Archimedean

t-norm and a continuous Archimedean t-conorm, respectively. Then GU can be expressed

either as an ordinal sum of a uninorm with continuous Archimedean underlying functions

and a trivial semigroup, or as an ordinal sum of a continuous Archimedean t-norm (possi-

bly without one or both boundary points), a continuous Archimedean t-conorm (possibly

without one or both boundary points) and few trivial semigroups (corresponding to points

form {a, b, c, d}).

Thus instead of generalized composite uninorms it is enough to assume uninorms

(including t-norms, t-conorms and trivial semigroups) as building stones in our ordinal

sum construction.

Remark 2.1.5

Observe that it is easy to show that generalized composite uninorms with continuous

underlying t-norm (t-conorm) have a similar ordinal sum structure as uninorms with con-

tinuous underlying functions, i.e., they can be expressed as an ordinal sum of Archimedean

t-norms, Archimedean t-conorms, representable uninorms, idempotent uninorms (includ-
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ing the min and the max operator) and trivial semigroups (see Section 2.5). This can be

simply observed from the fact that an ordinal sum of a generalized composite uninorm on

([a, b] ∪ [c, d])2 and any internal proper uninorm linearly transformed to [b, c]2 restricted

to ]b, c[2 (with the respective linear order induced by the monotonicity) is a uninorm (on

[a, d]2) with continuous underlying functions.

Note that generalized composite uninorms will play a role also in the characterization

of n-uninorms (see discussion under Theorem 3.1.6). Although the corresponding general-

ized composite uninorm can be further decomposed via the ordinal sum construction, its

structure can be quite complicated and thus a notion of a generalized composite uninorm

is useful for an easy characterization.

Since in this work we focus on uninorms with continuous underlying functions, we

should investigate the relation between the isomorphism f given by (2.1) and the conti-

nuity of underlying functions. We cannot claim that f is a homeomorphism as in the case

of linear transformations, since it transforms a connected area to four unconnected areas.

On the other hand, observe that f is in fact composed of 3 increasing homeomorphisms:

one acting on [0, e[ , one on {e}, and one on ]e, 1] . For better understanding we add the

following result which was not introduced in papers from Part II (for proof see Appendix).

Proposition 2.1.6

Assume 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c] , e ∈ ]0, 1[ , a binary function U : [0, 1]2 −→ [0, 1]

and the function f given by (2.1). Then U is a uninorm with the neutral element e and

continuous underlying functions if and only if the function U∗ : ([a, b[ ∪ {v} ∪ ]c, d])2 −→
([a, b[ ∪ {v} ∪ ]c, d]) given by U∗(x, y) = f(U(f−1(x), f−1(y))) is a uninorm on ([a, b[ ∪
{v} ∪ ]c, d])2 which is continuous on [a, b[2 and on ]c, d]2 and fulfills lim

t−→b−
U∗(x, t) = x for

all x ∈ [a, b[ and lim
t−→c+

U∗(y, t) = y for all y ∈ ]c, d] .

This result shows us that in order to transform a restriction of a uninorm to a uninorm

with continuous underlying functions this restriction has to fulfill all conditions of the

previous proposition. In other words, U restricted to [a, b]2 has to be a continuous t-

norm (on [a, b]2) and U restricted to [c, d]2 has to be a continuous t-conorm (on [c, d]2).

This condition is obviously fulfilled whenever U is a uninorm with continuous underlying

functions.

2.2 Ordinal sum of uninorms

In the case of an ordinal sum of t-norms (a similarly for t-conorms) the procedure is the

following: define a subdivision of the unit interval into non-empty subintervals [ak, bk[ ;

assume a linear transformation T ∗k of a t-norm Tk, restricted to [0, 1[2 , to the interval



2.2. Ordinal sum of uninorms 29

[ak, bk[ ; apply the ordinal sum of semigroups ([ak, bk[ , T
∗
k ) with the order induced by the

monotonicity; fill the remainder with the minimum.

In [UNI2] we have defined a similar procedure also for uninorms, however, in the

case of uninorms the situation is a bit more complicated. The building stones here are

t-norms, t-conorms, uninorms and trivial semigroups. Using (2.1) each proper uninorm

is transformed to the set ([ak, bk[ ∪ {vk} ∪ ]ck, dk])
2. Note however, that if Uk(x, y) = ek,

where ek is the neutral element of Uk, for some x 6= ek, y 6= ek then ([0, ek[∪ ]ek, 1])2 is not

closed under Uk and thus in order to preserve the associativity vk has to be an annihilator

of U restricted to [bk, ck]
2 . Observe that due to the monotonicity the annihilator of U on

[bk, ck]
2 is equal to U(bk, ck).

To avoid duplication, in the ordinal sum of uninorms the values of respective summands

will be specified on intervals [ak, bk[∪]ck, dk] and in the case that the summand corresponds

to a proper (representable) uninorm the respective vk will be chosen is such a way that

after applying the ordinal sum construction we will obtain vk = U(bk, ck). In the case

that ak = bk (ck = dk) the corresponding summand is isomorphic to a t-conorm (t-norm).

In this case the restriction of the t-conorm Sk (t-norm Tk) to ]0, 1]2 ([0, 1[2) is linearly

transformed to ]ck, dk]
2 ([ak, bk[

2) and the neutral element 0 (1) is transformed to the

neutral element vk. Similarly as above, it is enough to specify this summand on ]ck, dk]
2

([ak, bk[
2).

In order to obtain the monotonicity of the resulting uninorm the order of summands,

denoted by �, has to be compatible with the standard order ≤ on [0, e] and reversed with

respect to the standard order on [e, 1] . This means that k1 ≺ k2 for k1, k2 ∈ K implies

bk1 ≤ ak2 and ck1 ≥ dk2 , i.e.,

[ak2 , dk2 ]
2 ⊆ [bk1 , ck1 ]

2 ⊆ [ak1 , dk1 ]
2 .

Example 2.2.1

� Any uninorm from Umin (Umax) is an ordinal sum of a t-norm on [0, e]2 and a t-conorm

on [e, 1]2 . The order of these two semigroups in the ordinal sum then determines

whether the corresponding uninorm belongs to Umin, or to Umax.

� Assume two proper uninorms U1 and U2, an e ∈ ]0, 1[ and points a, b ∈ [0, 1] such

that 0 < a < e < b < 1. Then the ordinal sum of semigroups G1 and G2, where

G1 corresponds to a uninorm U1 on [a, b]2 , i.e., G1 = ([a, b] , (U1)
a,e,e,b
e ) and G2

corresponds to a uninorm U2 on ([0, a[ ∪ {v} ∪ ]b, 1])2, i.e., G2 = ([0, a[ ∪ {v} ∪
]b, 1] , (U2)

0,a,b,1
v ) is a uninorm with the neutral element e if and only if 2 ≺ 1 and

v = (U1)
a,e,e,b
e (a, b) (see Figure 2.3).

� Assume a proper uninorm U, a t-norm T and points a, b ∈ [0, 1] such that 0 < a <

b < 1. Then the ordinal sum of semigroups G1 and G2, where G1 corresponds to a
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t-norm T on [a, b]2 , i.e., G1 = ([a, b] , (T )a,b), where (T )a,b is a linear transformation

of the t-norm T to the interval [a, b] and G2 corresponds to a uninorm U on ([0, a[∪
{v}∪ ]b, 1])2, i.e., G2 = ([0, a[∪{v}∪ ]b, 1] , (U)0,a,b,1v ), is a uninorm with the neutral

element b if and only if 2 ≺ 1 and v = a.

� Assume a proper uninorm U, a t-norm T, an e ∈ ]0, 1[ and point a ∈ ]0, e[ . Then

the ordinal sum of semigroups G1 and G2, where G1 corresponds to a uninorm U on

[a, 1]2 , i.e., G1 = ([a, 1] , (U)a,e,e,1e ) andG2 corresponds to a respective transformation

of a t-norm T to ([0, a[∪{v}∪ ]1, 1])2, i.e., G2 = ([0, a[∪{v}, (T )0,a,1,1v ), is a uninorm

with the neutral element e if and only if 2 ≺ 1 and v = (U)a,e,e,1e (a, 1) (see Figure

2.3).

Observe, however, that v can be deleted from the semigroup G2 and therefore it

is enough to assume G2 = ([0, a[ , T ∗), where T ∗ is a linear transformation of the

restriction of T to [0, 1[2 to the interval [0, a[ .

This example illustrates the ordinal sum of two uninorms. Further, we want to extend

the ordinal sum of uninorms to a countably many summands.

U∗2

min

min

max

max

U∗2

U∗2 U∗2

U∗1

0 a b 1e0

a

b

1

e

min

minT ∗

U∗

0 a b 1e0

a

b

1

e

Figure 2.3: Ordinal sum of uninorms with two summands from Example 2.2.1 (i), where
U∗2 = (U2)

0,a,b,1
U∗1 (a,b)

, U∗1 = (U1)
a,e,e,b
e (left) and from Example 2.2.1 (iii), where T ∗ is a linear

transformation of T |[0,1[2 to interval [0, a[ and U∗ = (U)a,e,e,1e (right).

In the ordinal sum of t-norms, intervals [ak, bk] need not cover the whole unit interval

as the rest is covered by the minimum. However, in the case of uninorms the remainder

should be covered by a mixture of the minimum and the maximum – more precisely by a

commutative, associative, non-decreasing and idempotent operation, which is not uniquely

determined. Therefore in the case of uninorms we will suppose that
⋃
k∈K

[ak, bk] = [0, e]



2.2. Ordinal sum of uninorms 31

and
⋃
k∈K

[ck, dk] = [e, 1] . Thus the ordinal sum uniquely determines the operation on the

whole unit interval, except for the sets

B1 =
⋃

k∈K

[ak, bk] \
⋃

k∈K

[ak, bk[

C1 =
⋃

k∈K

[ck, dk] \
⋃

k∈K

]ck, dk] .

Note that for all x ∈ [0, 1] there is [x, x[ = ]x, x] = ∅ and therefore if we denote

K∗ = {k ∈ K | ]ak, bk[ 6= ∅} and K∗ = {k ∈ K | ]ck, dk[ 6= ∅} then B1 = {bk | k ∈
K} \ {ak | k ∈ K∗} and C1 = {ck | k ∈ K} \ {dk | k ∈ K∗}. Since K is assumed to

be countable then every b ∈ B1 \ {e} is an accumulation point of {ak | k ∈ K∗} (and

similarly for c ∈ C1 \ {e}). We denote B2 = B1 \ {e}, C2 = C1 \ {e} and define functions

g : B2 −→ [e, 1] , h : C2 −→ [0, e] , such that if for b ∈ B2 we have b = lim
i−→∞

aki for ki ∈ K∗,
then

g(b) = lim
i−→∞

dki . (2.3)

Similarly, if for c ∈ C2 we have c = lim
i−→∞

dki for ki ∈ K∗, then

h(c) = lim
i−→∞

aki . (2.4)

If g(b) /∈ C2 for some b ∈ B2 (h(c) /∈ B2 for some c ∈ C2) then the value of U(b, g(b))

(U(c, h(c))) follows from the monotonicity of U. Therefore we have to separately cover

only the case when g(b) ∈ C2 (h(c) ∈ B2).

Now we can introduce the ordinal sum of uninorms (Proposition 8 in [UNI2]).

Proposition 2.2.2

Assume e ∈ [0, 1]. Let K be an index set which is finite or countably infinite and let

(]ak, bk[)k∈K be a disjoint system of open subintervals (which can be also empty) of [0, e] ,

such that
⋃
k∈K [ak, bk] = [0, e] . Similarly, let (]ck, dk[)k∈K be a disjoint system of open

subintervals (which can be also empty) of [e, 1] , such that
⋃
k∈K [ck, dk] = [e, 1] . Let further

these two systems be anti-comonotone, i.e., bk ≤ ai if and only if ck ≥ di for all i, k ∈ K.We

will denote K∗ = {k ∈ K | ]ak, bk[ 6= ∅} and K∗ = {k ∈ K | ]ck, dk[ 6= ∅}. Assume a family

(Uk)k∈K∗∩K∗ of proper uninorms on [0, 1]2, a family (Uk)k∈K∗\K∗ of t-norms on [0, 1]2 and

a family (Uk)k∈K∗\K∗ of t-conorms on [0, 1]2. Denote B1 = {bk | k ∈ K} \ {ak | k ∈ K∗}
and C1 = {ck | k ∈ K} \ {dk | k ∈ K∗} and let B = {b ∈ B1 \ {e} | g(b) ∈ C1},
C = {c ∈ C1 \ {e} | h(c) ∈ B1}, where the functions g and h are defined by (2.3) and

(2.4). Further assume a function n : B −→ B ∪ C given for all b ∈ B by

n(b) ∈ {b, g(b)}.
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Let the ordinal sum U e = (〈ak, bk, ck, dk, Uk〉 | k ∈ K)e be given by U e(x, y) =





y if x = e,

x if y = e,

(Uk)
ak,bk,ck,dk
vk

(x, y) if (x, y) ∈ ([ak, bk[ ∪ ]ck, dk])
2, k ∈ K∗ ∩K∗,

(Uk)
ak,bk(x, y) if (x, y) ∈ ([ak, bk[ ∪ ]ck, dk])

2, k ∈ K∗ \K∗,
(Uk)

ck,dk(x, y) if (x, y) ∈ ([ak, bk[ ∪ ]ck, dk])
2, k ∈ K∗ \K∗,

x if y ∈ [bk, ck] , x ∈ [ak, dk] \ [bk, ck] , k ∈ K∗ ∪K∗,
y if x ∈ [bk, ck] , y ∈ [ak, dk] \ [bk, ck] , k ∈ K∗ ∪K∗,
min(x, y) if (x, y) ∈ [b, c]2 \ (]b, c[2 ∪ {(b, c), (c, b)}),

where b ∈ B, c = g(b), x+ y < c+ b,

max(x, y) if (x, y) ∈ [b, c]2 \ (]b, c[2 ∪ {(b, c), (c, b)}),
where b ∈ B, c = g(b), x+ y > c+ b,

n(b) if (x, y) = (b, c) or (x, y) = (c, b), b ∈ B, c = g(b),

min(x, y) if (x, y) ∈ {b} × [b, c] ∪ [b, c]× {b} and

b ∈ B1 \ (B ∪ {e}), c = g(b),

max(x, y) if (x, y) ∈ {c} × [b, c] ∪ [b, c]× {c} and

c ∈ C1 \ (C ∪ {e}), b = h(c),

where vk = ck (vk = bk) if there exists an i ∈ K such that bk = ai, ck = di and Ui is

disjunctive (conjunctive); vk = e if bk = ck; and otherwise

vk =





n(bk) if bk ∈ B,
bk if bk ∈ B1 \ (B ∪ {e}),
ck if ck ∈ C1 \ (C ∪ {e}).

Further, (Uk)
ak,bk,ck,dk
vk

is given by the formula (2.2), (Uk)
ak,bk ((Uk)

ck,dk) is a linear trans-

formation of Uk to [ak, bk]
2 ([ck, dk]

2). Then U e is a uninorm.

This result defines the ordinal sum of uninorms. In the following sections we will see

that uninorms with continuous underlying functions can be expressed as an ordinal sum

of semigroups related to uninorms (including t-norms, t-conorms and trivial semigroups),

however, these semigroups need not be uninorms. This is caused by the fact that the

boundary points of a transformed uninorm can behave differently than the remainder of

the respective semigroup (for more details see Section 2.5).
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2.3 Idempotent uninorms and ordinal sums of

representable uninorms

The first step towards characterization of uninorms with continuous underlying functions

was done in papers [UNI1] and [UNI3]. The main results on idempotent uninorms with

respect to the ordinal sum construction are the following (Propositions 2 and 3 in [UNI1]).

Proposition 2.3.1

Let U : [0, 1]2 −→ [0, 1] be an idempotent uninorm. Then ([0, 1], U) is an ordinal sum of

singleton semigroups ({x}, Id) for x ∈ [0, 1].

The total order that yields an idempotent uninorm via an ordinal sum of trivial semi-

groups can be characterized as follows.

Proposition 2.3.2

Let P be an index set isomorphic with [0, 1] via the isomorphism ϕ. For all p ∈ P we put

Xp = {x} if ϕ(p) = x. Let e ∈ [0, 1] and let � be a linear order on P. If ([0, 1], U) is the

ordinal sum of {(Xp, Id)}p∈P with the linear order � then U is an idempotent uninorm

with the neutral element e if and only if the following two conditions are fulfilled:

(i) p1 ≺ p2 for all p1, p2 ∈ P such that Xp1 = {x1}, Xp2 = {x2}, x1 < x2 and x1, x2 ∈
[0, e] ,

(ii) p1 ≺ p2 for all p1, p2 ∈ P such that Xp1 = {y1}, Xp2 = {y2}, y1 > y2 and y1, y2 ∈ [e, 1] .

These two results completely characterize the construction of idempotent uninorms via

the ordinal sum. We see that idempotent uninorms are in one-to-one correspondence with

special linear orders on [0, 1]. In [UNI1] we can further find how are the corresponding

special orders related for dual uninorms and for isomorphic uninorms.

Assume an idempotent uninorm U, a non-increasing function g from Theorem 1.1.6

and the corresponding linear order � on [0, 1]. Then for all x ∈ [0, e] , y ∈ [e, 1] there is

x ≺ y if and only if either y < g(x), or y = g(x), x < g(g(x)), or y = g(x), x = g(g(x))

and U(x, y) = x.

The paper [UNI3] deals with ordinal sums of representable uninorms. If a uninorm

can be expressed as an ordinal sum of representable uninorms then the underlying t-norm

(t-conorm) is an ordinal sum of continuous t-norms (t-conorms) and thus the underlying

functions of such a uninorm are continuous. Observe that if U is a representable uninorm

then for all x ∈ ]0, 1[ there exists a unique y ∈ ]0, 1[ such that U(x, y) = e. Thus we

can define a strictly decreasing function h : ]0, 1[ −→ ]0, 1[ by h(x) = y if U(x, y) = e.

Moreover, each representable uninorm is discontinuous in exactly two points (0, 1) and

(1, 0). After transformation of a representable uninorm to the set ([a, b[∪{v}∪ ]c, d])2 the
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set of all points of discontinuity of this transformed uninorm on [a, b[× ]c, d] corresponds

exactly to the graph of the respective transformation of the function h (restricted to ]0, e[)

to the function h∗ : ]a, b[ −→ ]c, d[ , with additional point (a, d), which corresponds to the

transformation of the point (0, 1) (see Figure 2.4).

For an ordinal sum of representable uninorms we then obtain the following result

(Proposition 7 in [UNI3]).

Proposition 2.3.3

Assume a uninorm U : [0, 1]2 −→ [0, 1]. If U is an ordinal sum of representable uninorms,

i.e., U = (〈ak, bk, ck, dk, Uk〉 | k ∈ K)e, for e ∈ ]0, 1[ and some suitable systems (]ak, bk[)k∈K

and (]ck, dk[)k∈K with ak < bk and ck < dk for all k ∈ K, and a family of (proper)

representable uninorms (Uk)k∈K , then there exists a continuous strictly decreasing function

r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0 such that U is continuous on

[0, 1] \ {(x, r(x)) | x ∈ [0, 1]}. Note that U need not be non-continuous on the whole set

{(x, r(x)) | x ∈ [0, 1]}.

U∗2

U∗1

U∗1max

max

min

min

U∗1

U∗1

U∗1

U∗1

Figure 2.4: The ordinal sum of two representable uninorms. Here U∗1 is a transformation

of U1 to (
[
0, 1

4

[
∪
[
3
4
, 1
]
)2 given by (2.2), and U∗2 is a linear transformation of U2 to

[
1
4
, 3
4

]2
.

The oblique lines denote the points of discontinuity of U.

The function r from the previous result is not unique, however, we usually assume

the function r such that U(x, y) = e implies r(x) = y for all x, y ∈ ]0, 1[ . As we will

observe in the following papers such a function r divides the unit square (except of the

graph of r) into two parts: the set on which the uninorm attains values smaller than the

neutral element e and the set on which the uninorm attains values greater than e. For

more general uninorms with continuous underlying functions we obtain a similar division,

however, here the dividing line needs not be strictly decreasing (see Section 2.4).
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If we denote the set of all uninorms U such that U(x, 0) = 0 for all x ∈ [0, 1[ and

U(x, 1) = 1 for all x ∈ ]0, 1] by N then we get the following result (Proposition 8 in

[UNI3]).

Proposition 2.3.4

Assume a uninorm U : [0, 1]2 −→ [0, 1] such that U ∈ U and U /∈ N . Then U is an ordinal

sum of a uninorm and a non-proper uninorm (i.e., a t-norm or a t-conorm).

This result shows us that an ordinal sum of representable uninorms always belongs to

N .
Observe, however, that both conditions from Propositions 2.3.3 and 2.3.4 are fulfilled

also in the case when some summands in the ordinal sum are d-internal uninorms. We

have the following result (Proposition 12 in [UNI3]).

Proposition 2.3.5

Assume a uninorm U : [0, 1]2 −→ [0, 1], U ∈ U∩N and let there exist a continuous strictly

decreasing function r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0 such that U

is continuous on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]}. Then U is an ordinal sum of representable

uninorms and d-internal uninorms.

From this result we can conclude that a uninorm U ∈ U ∩ N is an ordinal sum of

representable and d-internal uninorms if and only if there exists a continuous strictly

decreasing function r from Proposition 2.3.5.

Moreover, a uninorm U ∈ U ∩ N is an ordinal sum of representable uninorms if and

only if there exists a continuous strictly decreasing function r from Proposition 2.3.5 and

U has countably many idempotent points. Indeed, if U has uncountably many idempotent

points then at least one summand has to be equal to a d-internal uninorm.

Finally note that if for a uninorm U there exists a continuous strictly decreasing

function r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0 such that U is continuous

on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]} then evidently U ∈ U and Proposition 2.3.4 implies that

U ∈ N . Indeed, if U /∈ N then U is an ordinal sum of a uninorm and a t-norm (t-conorm).

Then we can show that the set of the points of discontinuity cannot be covered by the

graph of a strictly decreasing function defined on [0, 1] since this set contains either a

horizontal, or a vertical segment (see Section 2.4).

2.4 Characterizing set-valued functions and the set of

points of discontinuity

In the case of ordinal sums of representable uninorms we have seen that the set of points

of discontinuity of the resulting uninorm is covered by the graph of a strictly decreasing



36 Uninorms with continuous underlying functions

function r such that r(0) = 1, r(e) = e and r(1) = 0. This inspired us to examine the set

of points of discontinuity also for general uninorms with continuous underlying functions

in [UNI5]. However, in a general case, r is not a real-valued function since it can contain

also vertical segments. Therefore we have to work with set-valued functions.

Definition 2.4.1

A mapping p : [0, 1] −→ P([0, 1]) is called a set-valued function on [0, 1]. Such a set-

valued function assigns to every x ∈ [0, 1] a subset of [0, 1], i.e., p(x) ⊆ [0, 1]. Assuming

the standard order on [0, 1], a set-valued function p is called

(i) non-increasing if for all x1, x2 ∈ [0, 1], x1 < x2, we have y1 ≥ y2 for all y1 ∈ p(x1) and

all y2 ∈ p(x2) and thus the cardinality Card(p(x1) ∩ p(x2)) ≤ 1,

(ii) symmetric if y ∈ p(x) if and only if x ∈ p(y) for all x, y ∈ [0, 1].

The graph of a set-valued function p will be denoted by G(p), i.e., (x, y) ∈ G(p) if and

only if y ∈ p(x).

A set-valued function p : [0, 1] −→ P([0, 1]) is called u-surjective if for all y ∈ [0, 1]

there exists an x ∈ [0, 1] such that y ∈ p(x). It is easy to show that a symmetric set-valued

function p is u-surjective whenever p(x) 6= ∅ for all x ∈ [0, 1].

In Theorem 11 from [UNI5] we have shown the following result.

Theorem 2.4.2

Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U . Then there exists a symmetric, u-surjective,

non-increasing set-valued function r on [0, 1] such that U is continuous on [0, 1]2 \ G(r)

and U(x, y) = e implies (x, y) ∈ G(r) for all (x, y) ∈ [0, 1]2.

We have shown that r(x) is a closed interval (including singletons) for all x ∈ [0, 1].

Moreover, U need not be non-continuous in all points from G(r). In fact, U is continuous

in all points (x, y) ∈ [0, 1]2 such that U(x, y) = e. Moreover, U is continuous in all points

(0, x), (x, 0) such that x > inf{t ∈ [0, 1] | U(t, 0) > e} and in all points (1, x), (x, 1) such

that x < sup{t ∈ [0, 1] | U(t, 1) < e} (see Figure 2.5).

However, the claim opposite to the previous result does not hold in general, i.e., the

existence of a set-valued function from Theorem 2.4.2 is not enough to ensure that a

uninorm has continuous underlying functions.

Example 2.4.3

Let U : [0, 1]2 −→ [0, 1] be given by

U(x, y) =





0 if max(x, y) < e,

x if y = e,

y if x = e,

max(x, y) otherwise.
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U∗1

T ∗

S∗max

max

min

min
U∗1

U∗1

T ∗

S∗max

max

min

min

Figure 2.5: The uninorm U which is an ordinal sum of a representable uninorm, a con-
tinuous t-norm and a continuous t-conorm. Left: the bold lines denote the points of
discontinuity of U. Right: the bold lines denote the characterizing set-valued function of
U.

Then U ∈ Umax is a uninorm, where the underlying t-norm is the drastic product

TD : [0, 1]2 −→ [0, 1] given by TD(x, y) = 0 if max(x, y) < 1 and TD(x, y) = min(x, y)

otherwise, and the underlying t-conorm is the maximum. This uninorm is non-continuous

in points from {e}× [0, e]∪ [0, e]×{e}. Thus the corresponding set-valued function is given

by

r(x) =





[e, 1] if x = 0,

e if x ∈ ]0, e[ ,

[0, e] if x = e,

0 otherwise.

Since U(x, y) = e implies x = y = e we see that U is continuous on [0, 1]2 \G(r) and r is a

symmetric, u-surjective, non-increasing set-valued function such that U(x, y) = e implies

(x, y) ∈ G(r). However, the drastic product t-norm is not continuous and thus U /∈ U .

As we see from the previous example, the problem arises whenever G(r) contains

points (x, e), (e, x) for some x ∈ [0, 1], x 6= e. If the underlying t-norm (t-conorm) is con-

tinuous then U is left-(right-)continuous in all points (x, e), (e, x) for x ∈ [0, e] (x ∈ [e, 1]).

However, in the previous example the uninorm U is neither left- nor right continuous in

all points (x, e), (e, x) for x ∈ ]0, e[ . Generally, we were able to show that if U ∈ U then

in each point (x, y) ∈ [0, 1]2 the uninorm U is either left-continuous or right-continuous

(see Proposition 13 in [UNI5]). Therefore the following result completely characterizes

uninorms with continuous underlying functions (see Theorem 14 in [UNI5]).

Theorem 2.4.4

Let U : [0, 1]2 −→ [0, 1] be a uninorm. Then U ∈ U if and only if U is continuous on

[0, 1]2 \ G(r), where r is a symmetric, u-surjective, non-increasing set-valued function
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such that U(x, y) = e implies (x, y) ∈ G(r), and in each point (x, y) ∈ [0, 1]2 the uninorm

U is either left-continuous or right-continuous (or continuous).

The paper [UNI6] studies characterizing functions of uninorms with continuous un-

derlying functions further. Although the paper is quite technical, these properties are

necessary for further results on the characterization of uninorms from U via the ordinal

sum construction.

As we mentioned above, the graph of the characterizing set-valued function of a uni-

norm U ∈ U divides the unit square (except of the graph itself) into two parts: above

the graph of the characterizing set-valued function the uninorm U attains values greater

than e and below this graph the uninorm U attains values smaller than e. Note that this

means that in the case of idempotent uninorms the graph of the characterizing set-valued

function contains the graph of the non-increasing function g from Theorem 1.1.6.

The characterizing set-valued function can be decomposed into maximal horizontal,

maximal vertical and maximal strictly decreasing segments. Moreover, the border points

of these segments are always idempotent points of the corresponding uninorm. Here

horizontal segments correspond to t-norm summands, vertical segments correspond to

t-conorm summands and strictly decreasing segments, as we have seen above (see Section

2.3), correspond to summands composed of representable and d-internal uninorms.

Observe that if a uninorm U is continuous on [0, 1]2 \G(r), where r is a symmetric, u-

surjective, non-increasing set-valued function such that U(x, y) = e implies (x, y) ∈ G(r)

then U is evidently continuous on [0, e[2 ∪ ]e, 1]2 . This inspired us to study uninorms

continuous on [0, e[2 ∪ ]e, 1]2 , see Section 2.6.

2.5 Decomposition of uninorms with continuous

underlying functions via the ordinal sum

In paper [UNI4] we have studied the decomposition of a uninorm with continuous under-

lying functions into Archimedean, representable and idempotent semigroups with respect

to the ordinal sum construction (in the sense of Clifford). Observe that an idempotent

semigroup can be further decomposed via the ordinal sum (see Section 2.3), however,

an Archimedean (representable) semigroup cannot be expressed as a non-trivial ordinal

sum of two (or more) semigroups. Note that if we speak about non-trivial ordinal sum

then each of the summands is a proper subsemigroup of the resulting semigroup. In this

case, i.e., if (X, ∗) cannot be expressed as a non-trivial ordinal sum of two (or more)

semigroups we will say that (X, ∗) (or simply X) is irreducible with respect to the ordinal

sum construction. For the simplicity, in the following we will write (X,U) instead of



2.5. Decomposition of uninorms with continuous underlying functions 39

(X,U |X2).

For better understanding, in [UNI4], we have first described the decomposition for uni-

norms with continuous Archimedean underlying functions. The characterizing formulas

for such uninorms can be found in [44, 45].

Let us start with the case when both underling functions are nilpotent. Then U ∈
Umin ∪ Umax. For a nilpotent t-norm (t-conorm) the interval [0, 1[ (]0, 1]) is an irreducible

set and therefore in this case [0, e[ and ]e, 1] are irreducible sets. Thus each uninorm with

nilpotent underlying functions can be decomposed into three semigroups, G1 = ([0, e[ , U),

G2 = ({e}, U), G3 = (]e, 1] , U). Since e is the neutral element for the corresponding linear

order in the ordinal sum we have 1 < 2 and 3 < 2. Then 1 < 3 implies U ∈ Umin and

3 < 1 implies U ∈ Umax.

In the case that the underlying functions are strict there are two possibilities. If U

is representable then irreducible sets are {0}, ]0, 1[ and {1}. In the opposite case the

irreducible sets are {0}, ]0, e[ , {e}, ]e, 1[ , {1}. Similarly as above we can obtain the

following:

� If U is representable then it can be decomposed into three semigroups, G1 =

({0}, U), G2 = (]0, 1[ , U), G3 = ({1}, U). Here again 1 < 2 and 3 < 2. Then

1 < 3 implies that U is conjunctive and 3 < 1 implies that U is disjunctive.

� If U is not representable and TU is strict and SU is strict then U is an ordinal sum

of five semigroups G1 = ({0}, U), G2 = (]0, e[ , U), G3 = ({e}, U), G4 = (]e, 1[ , U)

and G5 = ({1}, U). Due to the monotonicity we get 1 < 2 < 3 and 5 < 4 < 3. Thus

there are six possible orderings, each corresponding to one form of a uninorm with

strict underlying functions from [44] (see Example 2 in [UNI4]).

� If TU is nilpotent and SU is strict then U is an ordinal sum of four semigroups

G1 = ([0, e[ , U), G2 = ({e}, U), G3 = (]e, 1[ , U) and G4 = ({1}, U). Due to the

monotonicity we get 1 < 2 and 4 < 3 < 2. Then 1 < 4 < 3 < 2 implies U ∈ Umin,

4 < 3 < 1 < 2 implies U ∈ Umax and 4 < 1 < 3 < 2 implies that U(1, x) = 1 for all

x ∈ [0, 1] and U(x, y) = min(x, y) for x < e ≤ y < 1.

� If TU is strict and SU is nilpotent then U is an ordinal sum of four semigroups

G1 = ({0}, U), G2 = (]0, e[ , U), G3 = ({e}, U) and G4 = (]e, 1] , U) and we get

similar results as in the previous case.

From the previous discussion we can observe that even though we have defined sum-

mands in the ordinal sum of uninorms on sets [ak, bk[ ∪ {vk} ∪ ]ck, dk] ([ak, bk[ ∪ ]ck, dk]),

in the case when the underlying t-norm (t-conorm) is strict the semigroup ([ak, bk[ ∪
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{vk}∪ ]ck, dk] , U) can be further decomposed to (]ak, bk[∪{vk}∪ ]ck, dk] , U) and ({ak}, U)(
([ak, bk[ ∪ {vk} ∪ ]ck, dk[ , U) and ({dk}, U)

)
.

In the following definition we describe irreducible subsemigroups of a uninorm with

continuous underlying functions and its internal subsemigroups which we will not de-

compose further. This is motivated by the definition of the ordinal sum of t-norms in

Proposition 1.1.3 (and by the representation of continuous t-norms) where the minimum

is not decomposed further into trivial semigroups.

Definition 2.5.1

Let a, b, c, d ∈ [0, 1] with a < b < c < d, v ∈ [b, c] . Then

(i) a semigroup (]a, b[ ∪ {v} ∪ ]c, d[ , ∗) will be called a representable semigroup if ∗ is

isomorphic via (2.2) to a restriction of a representable uninorm to ]0, 1[2 ,

(ii) a semigroup (]a, b[ , ∗) will be called a t-strict semigroup if ∗ is linearly isomorphic to

a restriction of a strict t-norm to ]0, 1[2 ,

(iii) a semigroup (]c, d[ , ∗) will be called an s-strict semigroup if ∗ is linearly isomorphic

to a restriction of a strict t-conorm to ]0, 1[2 ,

(iv) a semigroup ([a, b[ , ∗) will be called a t-nilpotent semigroup if ∗ is linearly isomorphic

to a restriction of a nilpotent t-norm to [0, 1[2 ,

(v) a semigroup (]c, d] , ∗) will be called an s-nilpotent semigroup if ∗ is linearly isomorphic

to a restriction of a nilpotent t-conorm to ]0, 1]2 ,

(vi) a semigroup (]a, b[ ∪ ]c, d[ , ∗) will be called a d-internal semigroup if ∗ is isomorphic

via (2.2) to a restriction of an d-internal uninorm to (]0, 1[ \ {e})2,
(vii) a semigroup (]a, b[ , ∗) will be called a t-internal semigroup if ∗ = min,

(viii) a semigroup (]c, d[ , ∗) will be called an s-internal semigroup if ∗ = max .

We will denote the set of semigroups from the previous definition and trivial semi-

groups by H. The decomposition of a uninorm U with continuous underlying functions

into semigroups from H is rather technical. Not going much into details, using the or-

dering induced by the characterizing set-valued function of U and the partition of the

unit interval induced by the characterizing set-valued function and the set of idempotent

points of U (see Definition 7 and Lemma 12 in [UNI4]) we were able to show the following

result (see Proposition 11 in [UNI4]).

Theorem 2.5.2

Let U ∈ U . Then U can be expressed as an ordinal sum of a countable number of semi-

groups from H.

An opposite result was shown as well. Using the semigroups from H, with a suitable

linear order on the corresponding index set which preserves the monotonicity, we can
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always construct a uninorm with continuous underlying functions via the ordinal sum

construction (see Proposition 12 in [UNI4]).

Remark 2.5.3

After publishing the paper [UNI4], I have realized that there is a mistake in Remark 1 and

in discussion above Proposition 9. The problem is that the closure of a countable set need

not be countable. As an example we can take rational numbers from the unit interval.

I was misled by the ordinal sum of t-norms which is defined for a countable index set of

summands. However, the ordinal sum of t-norms specifies only non-trivial summands and

the rest is filled by the minimum. Therefore a possible uncountability is hidden in the

area which is not covered by non-trivial summands.

On the other hand, in the ordinal sum of uninorms, as well as for t-norms, each

non-trivial summand contains an interval, which contains at least one rational number.

Thus the number of non-trivial summands is always countable. The correction which

contains an example of a uninorm (t-norm) which cannot be expressed as an ordinal sum

of a countable number of Archimedean, representable and idempotent summands, based

on the Cantor set, will be published in the paper [58] which discusses the ordinal sum

construction for aggregation functions on the real unit interval. Therefore the correct

wording of the main result of [UNI4] is that each uninorm with continuous underlying

functions can be expressed as an ordinal sum of a countable number of eight types of

semigroups from Definition 2.5.1 and a possibly uncountable number of trivial semigroups

defined on singletons. The proof is exactly the same as the proof of Proposition 11 in

[UNI4], the only correction has to be done in the partition of the unit interval which was

given in Definition 7 in [UNI4], where the sets A and D are possibly uncountable and

then also the index sets M3 and O3 are possibly uncountable.

2.6 Uninorms continuous on [0, e[2 ∪ ]e, 1]2

In [UNI7] we extended the results from the previous sections also for uninorms which are

continuous on [0, e[2∪ ]e, 1]2 . In such a case the underlying t-norm (t-conorm) need not be

continuous. Moreover, the following example from [46] shows that a uninorm continuous

on [0, e[2 ∪ ]e, 1]2 cannot be expressed as an ordinal sum of representable, Archimedean

and idempotent semigroups, in general.
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Example 2.6.1

For e ∈ ]0, 1[ , x0 ∈ [0, e[ and a t-conorm S, the operation U : [0, 1]2 −→ [0, 1] given by

U(x, y) =





0 if (x, y) ∈ [0, e[2 ,

e+ (1− e) · S(x−e
1−e ,

y−e
1−e) if (x, y) ∈ [e, 1]2 ,

1 if max(x, y) = 1,

x0 if (x, y) ∈ ]0, x0[× ]e, 1[∪
]e, 1[× ]0, x0[ ,

min(x, y) otherwise

is a uninorm if and only if S(x, y) < 1 for all (x, y) ∈ [0, 1[2 . We see that for x0 > 0

and a continuous t-conorm S with no divisors of 1 the uninorm U can be expressed as

an ordinal sum of a semigroup acting on [0, 1[ and a trivial semigroup defined on {1},
however, it cannot be decomposed further. Observe that TU is the drastic product t-norm

(see Example 2.4.3 for the definition of the drastic product t-norm).

The underlying functions of uninorms continuous on [0, e[2 ∪ ]e, 1]2 are related to

continuous t-subnorms and t-superconorms as follows. For each t-norm (and similarly

for t-conorms) we can define its border continuous projection (see [36] and [UNI7])

MT : [0, 1]2 −→ [0, 1] by

MT (x, y) =





T (x, y) if (x, y) ∈ [0, 1[2 ,

lim
u−→1−

T (u, y) if x = 1, y < 1,

lim
u−→1−

T (x, u) if x < 1, y = 1,

lim
u−→1−

v−→1−

T (u, v) if x = y = 1.

However, such a border continuous projection need not be associative. Therefore we have

shown the following results (see Proposition 5 and Corollary 1 in [UNI7]).

Proposition 2.6.2

For a t-norm T : [0, 1]2 −→ [0, 1] its border-continuous projection MT is a t-subnorm if

and only if the following two conditions are satisfied:

(i) for all x, y ∈ [0, 1[ either T (u0, x) = lim
u−→1−

T (u, x) for some u0 ∈ [0, 1[ , or T (a, y) =

lim
v−→a−

T (v, y), where a = lim
u−→1−

T (u, x),

(ii) either lim
u−→1−

T (u, u) = 1, or T (u0, v0) = lim
u−→1−

T (u, u) for some u0, v0 ∈ [0, 1[ , or for

all x ∈ [0, 1[ there is T (b, x) = lim
v−→b−

T (v, x), where b = lim
u−→1−

T (u, u).
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Corollary 2.6.3

Let T : [0, 1]2 −→ [0, 1] be a t-norm left-continuous on [0, 1[2 . Then its border-continuous

projection MT : [0, 1]2 −→ [0, 1] is a t-subnorm.

Since we focus on uninorms which are continuous on [0, e[2∪ ]e, 1]2 then MTU is always

a t-subnorm and similar result can be obtained also for SU . This means that TU (and

similarly for SU) coincides on [0, 1[2 with a continuous t-subnorm.

If TU is not continuous its border-continuous projection is a continuous proper t-

subnorm, which can be decomposed into an ordinal sum of continuous t-subnorms (see

[38, 55]).

Theorem 2.6.4

A mapping M : [0, 1]2 −→ [0, 1] is a continuous proper t-subnorm if and only if it is an

ordinal sum of continuous Archimedean t-norms and a continuous Archimedean proper

t-subnorm, M = (〈ak, bk,Mk〉 | k ∈ K), where (]ak, bk[)k∈K is a disjoint system of open

subintervals of [0, 1] with bk0 = 1 for some k0 ∈ K, Mk0 is a continuous Archimedean

proper t-subnorm and Mk is a continuous Archimedean t-norm for all k 6= k0, i.e.,

M(x, y) =




ak + (bk − ak)Mk(

x−ak
bk−ak

, y−ak
bk−ak

) if (x, y) ∈ ]ak, bk]
2 ,

min(x, y) else.

Observe that in the ordinal sum of t-subnorms left-open intervals are used, while for

the ordinal sum of t-norms right-open intervals are used, compare Proposition 1.1.3 (see

[38, 55] for more details). Thus we see that if TU is not continuous then it can be ex-

pressed as an ordinal sum of continuous Archimedean t-norms, a continuous Archimedean

proper t-subnorm restricted to [0, 1[2 and a trivial semigroup acting on {1}. We will now

distinguish two cases. First we will assume that border-continuous projections of TU and

SU are Archimedean, and later we will assume the case when one or both of them is not

Archimedean.

As we have seen in Example 2.6.1, generally we cannot extend the results from the

previous sections also for uninorms continuous on [0, e[2∪ ]e, 1]2 , however, under assump-

tion of cancellativity on some subareas of the unit square we can characterize also these

uninorms. For continuous, cancellative border-continuous projections of TU and SU we

obtain Propositions 8, 9 and 10 from [UNI7].

Proposition 2.6.5

Let U : [0, 1]2 −→ [0, 1] be a uninorm such that MTU is a proper, continuous, cancellative

t-subnorm and MSU is a proper, continuous, cancellative t-superconorm. Then there exists

an increasing isomorphism ϕ : [0, 1] −→ [0, 1] such that U(x, y) = ϕ−1(UP (ϕ(x), ϕ(y))) for

all (x, y) ∈ [0, 1]2, where UP is a uninorm such that MTUP = x·y
2

and MSUP = 1+x+y−x·y
2

.
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Proposition 2.6.6

Let U : [0, 1]2 −→ [0, 1] be a uninorm such that MTU is a proper, continuous, cancellative t-

subnorm and MSU is a continuous, cancellative t-conorm. Then there exists an increasing

isomorphism ϕ : [0, 1] −→ [0, 1] such that U(x, y) = ϕ−1(UPT (ϕ(x), ϕ(y))) for all (x, y) ∈
[0, 1]2, where UPT is a uninorm such that MTUPT = x·y

2
and MSUPT = x+ y − x · y.

Proposition 2.6.7

Let U : [0, 1]2 −→ [0, 1] be a uninorm such that MTU is a continuous, cancellative t-

norm and MSU is a proper, continuous, cancellative t-superconorm. Then there exists

an increasing isomorphism ϕ : [0, 1] −→ [0, 1] such that U(x, y) = ϕ−1(UPS(ϕ(x), ϕ(y)))

for all (x, y) ∈ [0, 1]2, where UPS is a uninorm such that MTUPS = x · y and MSUPS =
1+x+y−x·y

2
.

By these results we have characterized uninorms continuous on [0, e[2 ∪ ]e, 1]2 , which

have Archimedean and cancellative underlying functions, on [0, e]2 and on [e, 1]2 . For

the remainder of the unit square we obtain the following result, which is similar to the

corresponding result on uninorms with strict underlying functions from [44] (see Lemma

7 in [UNI7]).

Proposition 2.6.8

Let U : [0, 1]2 −→ [0, 1] be a uninorm with neutral element e ∈ ]0, 1[ , such that MTU and

MSU are continuous and cancellative. Then exactly one of the following seven statements

holds:

(i) U ∈ Umin,

(ii)

U(x, y) =





e · TU(x
e
, y
e
) if (x, y) ∈ [0, e]2 ,

e+ (1− e) · SU(x−e
1−e ,

y−e
1−e) if (x, y) ∈ [e, 1]2 ,

1 if x = 1 or y = 1,

min(x, y) otherwise,

(iii)

U(x, y) =





e · TU(x
e
, y
e
) if (x, y) ∈ [0, e]2 ,

e+ (1− e) · SU(x−e
1−e ,

y−e
1−e) if (x, y) ∈ [e, 1]2 ,

1 if x = 1, y > 0 or y = 1, x > 0,

min(x, y) otherwise,

(iv) U ∈ Umax,
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(v)

U(x, y) =





e · TU(x
e
, y
e
) if (x, y) ∈ [0, e]2 ,

e+ (1− e) · SU(x−e
1−e ,

y−e
1−e) if (x, y) ∈ [e, 1]2 ,

0 if x = 0 or y = 0,

max(x, y) otherwise,

(vi)

U(x, y) =





e · TU(x
e
, y
e
) if (x, y) ∈ [0, e]2 ,

e+ (1− e) · SU(x−e
1−e ,

y−e
1−e) if (x, y) ∈ [e, 1]2 ,

0 if x = 0, y < 1 or y = 0, x < 1,

max(x, y) otherwise,

(vii) U is representable.

This completely characterizes the case when border-continuous projections of both un-

derlying functions are cancellative. For a combination of a (continuous) nilpotent under-

lying function and a non-continuous cancellative underlying function we get Propositions

15 and 16 from [UNI7].

Proposition 2.6.9

Let U : [0, 1] −→ [0, 1]2 be a uninorm with the neutral element e ∈ ]0, 1[ such that MTU

is continuous and cancellative and SU is a nilpotent t-conorm. Then exactly one of the

following three statements holds:

(i) U ∈ Umin,

(ii) U ∈ Umax,

(iii)

U(x, y) =





e · TU(x
e
, y
e
) if (x, y) ∈ [0, e]2 ,

e+ (1− e) · SU(x−e
1−e ,

y−e
1−e) if (x, y) ∈ [e, 1]2 ,

0 if x = 0 or y = 0,

max(x, y) otherwise.

Proposition 2.6.10

Let U : [0, 1] −→ [0, 1]2 be a uninorm with the neutral element e ∈ ]0, 1[ such that MSU

is continuous and cancellative and TU is a nilpotent t-norm. Then exactly one of the

following three statements holds:

(i) U ∈ Umin,

(ii) U ∈ Umax,
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(iii)

U(x, y) =





e · TU(x
e
, y
e
) if (x, y) ∈ [0, e]2 ,

e+ (1− e) · SU(x−e
1−e ,

y−e
1−e) if (x, y) ∈ [e, 1]2 ,

1 if x = 1 or y = 1,

min(x, y) otherwise.

Thus in our investigation of uninorms continuous on [0, e[2 ∪ ]e, 1]2 with Archimedean

underlying functions we did not cover only the cases when the border-continuous projec-

tion of the underlying t-norm (t-conorm) is a proper t-subnorm (t-superconorm) which is

not cancellative.

If MTU is not Archimedean (and similarly for MSU ) we know that TU can be expressed

as an ordinal sum of continuous Archimedean t-norms, a continuous Archimedean proper

t-subnorm restricted to [0, 1[2 and a trivial semigroup acting on {1}. We can now distin-

guish three cases:

1. If SU and TU are not continuous and the respective proper t-subnorm (t-superco-

norm) from the ordinal sum decomposition of MTU (MSU ) is cancellative.

2. If TU is a continuous t-norm, SU is not continuous and the respective proper t-

superconorm from the ordinal sum decomposition of MSU is cancellative.

3. If SU is a continuous t-conorm, TU is not continuous and the respective proper

t-subnorm from the ordinal sum decomposition of MTU is cancellative.

Since all continuous t-norms (t-conorms) can be expressed as an ordinal sum of contin-

uous Archimedean t-norms (t-conorms) in all three cases we can find idempotent points

a ∈ [0, e] , b ∈ [e, 1] such that U on [a, b]2 is a uninorm (or a t-norm, or a t-conorm)

with Archimedean underlying functions (which was characterized above) and U on [0, a]2

is a continuous t-norm (on [0, a]2) and U on [b, 1]2 is a continuous t-conorm (on [b, 1]2).

Moreover, Proposition 13 in [UNI7] shows that ([0, a[∪ {U(a, b)} ∪ ]b, 1])2 is closed under

U. If U(a, b) is the neutral element of U restricted to ([0, a[ ∪ {U(a, b)} ∪ ]b, 1])2 then

([0, 1], U) can be expressed as an ordinal sum of G1 = ([0, a[ ∪ {U(a, b)} ∪ ]b, 1] , U) and

G2 = ([a, b] , U), where 1 < 2 and G1 is isomorphic to a uninorm with continuous under-

lying functions.

If U(a, b) isn’t the neutral element of U restricted to ([0, a[ ∪ {U(a, b)} ∪ ]b, 1])2 the

situation is a bit more complicated and it was not covered in [UNI7]. However, similarly

as in the previous section we can show that in this case U can be expressed as an ordinal

sum of semigroups from H and one or two additional semigroups, one corresponding to
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a restriction of a continuous t-subnorm and second corresponding to a restriction of a

continuous t-superconorm.

If we summarize these results we see that uninorms continuous on [0, e[2 ∪ ]e, 1]2 have

a similar structure as uninorms with continuous underlying functions, except for the

case when the ordinal sum decomposition of MTU (MSU ) contains a proper t-subnorm

(t-superconorm) which is not cancellative.





Chapter 3

n-Uninorms with continuous

underlying functions

n-Uninorms generalize uninorms and are in fact composed of uninorms of lower orders

glued together partially by the local annihilator and partially by the ordinal sum con-

struction. This fact inspired us to introduce the z-ordinal sum construction which ex-

tends Clifford’s ordinal sum also to partially ordered families of semigroups. Using this

construction we were then able to provide a similar characterization as in the previous

chapter also for n-uninorms with continuous underlying functions. As in the case of uni-

norms with continuous underlying functions also here we study characterizing set-valued

functions of such n-uninorms and provide their decomposition into irreducible subsemi-

groups with respect to the z-ordinal sum construction. This chapter is based on papers

[NUN1,NUN2,NUN3,NUN4].

3.1 Z-ordinal sum construction and n-uninorms with

continuous underlying functions

We have described the basic properties of n-uninorms with continuous underlying func-

tions in two papers [NUN1] and [NUN2].

Before we start to describe the properties of n-uninorms, let us turn our attention to

the main result on which the characterization of n-uninorms with continuous underlying

functions is based – the z-ordinal sum construction, which was introduced in Theorem

4.2 from [NUN1].

Theorem 3.1.1

Let A and B be two index sets such that A ∩ B = ∅ and C = A ∪ B 6= ∅. Let (Gα)α∈C

with Gα = (Xα, ∗α) be a family of semigroups and let the set C be partially ordered by

49
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the binary relation � such that (C,�) is a meet semi-lattice. Further suppose that each

semigroup Gα for α ∈ A possesses an annihilator zα, and for all α, β ∈ C such that α and

β are incomparable there is α ∧ β ∈ A. Assume that for all α, β ∈ C, α 6= β, the sets Xα

and Xβ are either disjoint or that Xα ∩Xβ = {xα,β}. In the second case suppose that for

all γ ∈ C which is incomparable with α ∧ β there is α ∧ γ = β ∧ γ and for each γ ∈ C
with α ∧ β ≺ γ ≺ α or α ∧ β ≺ γ ≺ β we have Xγ = {xα,β}. Further,

(i) in the case that α ∧ β ∈ A then xα,β = zα∧β is the annihilator of both Gβ and Gα;

(ii) in the case that α ∧ β = α ∈ B then xα,β is both the annihilator of Gβ and the

neutral element of Gα.

Put X =
⋃
α∈C

Xα and define the binary operation ∗ on X by

x ∗ y =





x ∗α y if (x, y) ∈ Xα ×Xα,

x if (x, y) ∈ Xα ×Xβ, α 6= β, and α ∧ β = α ∈ B,
y if (x, y) ∈ Xα ×Xβ, α 6= β, and α ∧ β = β ∈ B,
zγ if (x, y) ∈ Xα ×Xβ, α 6= β, and α ∧ β = γ ∈ A.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each

α ∈ C the semigroup Gα is commutative.

The set A from the previous theorem will be called the branching set. If the branching

set is empty, i.e., if A = ∅ then the set C = B is linearly ordered and the z-ordinal sum

reduces to the standard ordinal sum construction of Clifford. Further, if each semigroup

Gα for α ∈ C is trivial and A = C then the z-ordinal sum (X, ∗) of Gα is given by

x ∗ y = x ∧∗ y, where the order ≤∗ is given for x ∈ Xα and y ∈ Xβ by x ≤∗ y if α � β.

If x ∈ Xα ∩ Xβ for some α, β ∈ C then the condition α ∧ γ = β ∧ γ for all γ ∈
C incomparable with α ∧ β is necessary, otherwise the associativity could be violated.

However, alternatively we can require that if x ∈ Xα ∩Xβ and for some γ ∈ C, which is

incomparable with α ∧ β, there is α ∧ γ 6= β ∧ γ then Xγ = {zα∧β∧γ}.
Observe that the z-ordinal sum construction enables us to construct non-decreasing

functions F : [0, 1]2 −→ [0, 1], F (0, 0) = 0, F (1, 1) = 1, with an annihilator inside the

unit interval, while in the case of the ordinal sum the annihilator of such functions was

always on its boundary, i.e., at 0 or at 1. For example, we can construct nullnorms and

n-uninorms via the z-ordinal sum construction.

Similarly as in the case of idempotent uninorms also for idempotent n-uninorms we

have the following result (see Proposition 4.16 in [NUN1]).

Proposition 3.1.2

Let Un : [0, 1]2 −→ [0, 1] be an idempotent n-uninorm. Then ([0, 1], Un) is a z-ordinal

sum of singleton semigroups ({x}, Id) for x ∈ [0, 1].



3.1. Z-ordinal sum construction and n-uninorms 51

If we ask which partial orders on [0, 1] yield idempotent n-uninorms we can use the

following result (see Proposition 4.17 in [NUN1]).

Proposition 3.1.3

Let P be an index set isomorphic with [0, 1] via the isomorphism ϕ. For all p ∈ P we put

Xp = {x} if ϕ(p) = x. Let e1, . . . , en, z1, . . . , zn−1 ∈ [0, 1], 0 = z0 < z1 < · · · < zn = 1, ei ∈
[zi−1, zi] for i = 1, . . . , n. Denote A = {q1, . . . , qn−1}, where Xqi = {zi} for i = 1, . . . , n− 1

and B = P \A. Let � be a partial order on P such that all requirements of Theorem 3.1.1

are fulfilled. If ([0, 1], Un) is the z-ordinal sum of {(Xp, Id)}p∈P with the partial order �
then Un is an idempotent n-uninorm with the n-neutral element {e1, . . . , en}z1,...,zn−1 if

and only if the following conditions are fulfilled:

(i) a1 ≺ a2 for all a1, a2 ∈ P such that Xa1 = {x1}, Xa2 = {x2}, x1 < x2 and x1, x2 ∈
[zi−1, ei] , for i = 1, . . . , n.

(ii) b1 ≺ b2 for all b1, b2 ∈ P such that Xb1 = {y1}, Xb2 = {y2}, y1 > y2 and y1, y2 ∈ [ei, zi]

for i = 1, . . . , n.

(iii) For a, b ∈ P, Xa = {x}, Xb = {y}, are a and b incomparable if and only if there

exists an i ∈ {1, . . . , n− 1} such that qi � a, qi � b and zi ∈ ]x, y[ .

(iv) a1 and a2 are comparable for all a1, a2 ∈ P such that Xa1 = {x1}, Xa2 = {x2}, where

(x1, x2) ∈ [zi−1, zi]
2 for i = 1, . . . , n.

From [NUN1] we know that an idempotent n-uninorm induce a partial order which

resembles a binary tree, where nodes of this tree correspond to division points z1, . . . , zn−1

(see Figure 3.1).

In [6, Theorem 2] it was shown that for an idempotent n-uninorm Un and x, y ∈ [0, 1],

x ≤ y there is Un(x, y) ∈ {x, y} ∪ {zi | zi ∈ ]x, y[}. We have shown a similar result for all

n-uninorms with continuous underlying functions in Lemma 5.1 from [NUN2].

Lemma 3.1.4

Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm, Un ∈ Un. If a ∈ [0, 1] is an idempotent point

of Un then Un(a, x) ∈ {x, a} ∪ {zi | zi ∈ ]min(a, x),max(a, x)[} for all x ∈ [0, 1].

We stress this result since it is very useful in decomposition of an n-uninorm Un ∈ Un.
We immediately see that Un(0, 1) ∈ {z0, . . . , zn}. Moreover, if Un(0, 1) = zk for some

k ∈ {1, . . . , n− 1} then Un has a very simple structure: it is a linear transformation of a

k-uninorm from Uk on [0, zk]
2 , a linear transformation of an (n− k)-uninorm from Un−k

on [zk, 1]2 , and otherwise it attains the value zk. In this case, i.e., when 0 < k < n we say

that Un belongs to the Class 1.

For each Un ∈ Un there is Un(e1, en) = zk for some k ∈ {1, . . . , n − 1}. The point

zk is important since it is the annihilator of Un on [e1, en] and for all x ∈ [0, 1] there is

Un(x, zk) ∈ {x, zk} (see Lemmas 5.2 and 5.3 in [NUN2]). The monotonicity of Un then
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Figure 3.1: A lower semi-lattice corresponding to an idempotent 4-uninorm, where k = 3.
For more details see [NUN1].

implies that there exists an x0 ∈ [0, e1] and a y0 ∈ [en, 1] such that Un(x, zk) = x for all

x < x0 and Un(x, zk) = zk for all x0 < x ≤ zk, and Un(y, zk) = y for all y > y0 and

Un(y, zk) = zk for all zk ≤ y < y0. The points x0 and y0 are idempotent points of Un and

if x ∈ ]x0, zk] and y ∈ [zk, y0[ then Un(x, zk) = zk, U
n(y, zk) = zk and the monotonicity of

Un implies Un(x, y) = zk (see Figure 3.2).

Therefore

� If Un(x0, zk) = zk = Un(y0, zk) then Un on [x0, y0]
2 is a linear transformation of an

n-uninorm from Class 1,

� If Un(x0, zk) = zk, U
n(y0, zk) = y0 then Un on [x0, y0[

2 is a linear transformation of

a restriction of an n-uninorm from Class 1 to [0, 1[2 ,

� If Un(x0, zk) = x0, U
n(y0, zk) = zk then Un on ]x0, y0]

2 is a linear transformation of

a restriction of an n-uninorm from Class 1 to ]0, 1]2 ,

� If Un(x0, zk) = x0, U
n(y0, zk) = y0 then Un on ]x0, y0[

2 is a linear transformation of

a restriction of an n-uninorm from Class 1 to ]0, 1[2 .
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Figure 3.2: A 2-uninorm with U2(x0, y0) = z1 (left) and with U2(x0, y0) = x0, y1 > y0,
U2(x0, y1) = x0 (right). Ū1 (Ū2, S̄2) indicates that U2 is on the given area isomorphic to
a restriction of U1 (U2, S2) to a subinterval of [0, 1]. Further, ([0, x0[ ∪ {z1} ∪ ]y0, 1] , U)
(([0, x0] ∪ ]y1, 1] , U)) is isomorphic to a uninorm with continuous underlying functions.

We see that in the core of each n-uninorm from Un there is an n-uninorm from Class

1.

The main result of the paper [NUN1] for idempotent n-uninorms and of [NUN2] for

uninorms with continuous underlying functions shows how is this core composed with the

remainder of the unit square. Since Un(x0, y0) ∈ {x0, y0, zk} we have to discuss several

cases. If Un(x0, y0) = zk we get the following result (see Theorem 5.10 in [NUN2]).

Theorem 3.1.5

Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If Un(x0, y0) = zk then Un is

an ordinal sum of two semigroups G1 = ([0, x0[∪{zk}∪]y0, 1] , Un) and G2 = ([x0, y0] , U
n),

where G2 is isomorphic to an n-uninorm from Class 1 and G1 is isomorphic to a uninorm

with continuous underlying functions. Moreover, the order of semigroups in the ordinal

sum construction is 1 < 2.

For the case when Un(x0, y0) ∈ {x0, y0} we define

� y1 = sup{y ∈ [y0, 1] | Un(x0, y) = x0} if Un(x0, y0) = x0,

� x1 = inf{x ∈ [0, x0] | Un(y0, x) = y0} if Un(x0, y0) = y0.

The following is a summary of Theorems 5.11–5.14 from [NUN2].

Theorem 3.1.6

Let Un ∈ Un, Un(x0, y0) = x0 and Un(y1, x0) = x0 (Un(x0, y0) = y0 and Un(x1, y0) = y0).

Then Un can be expressed as an ordinal sum of a semigroup which is a linear transforma-
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tion of (a restriction of) an n-uninorm from Class 1 to interval [x0, y0]
2 ([x0, y0[

2 , ]x0, y0]
2 ,

]x0, y0[
2) and at most 2 other semigroups.

� The smallest of these semigroups in the corresponding linear order is always a semi-

group which is isomorphic to a uninorm with continuous underlying functions.

� If Un(x0, y0) = x0, U
n(zk, y0) = y0, y1 = y0 then the semigroup ({y0}, Id) is included.

� If Un(x0, y0) = y0, U
n(zk, x0) = x0, x1 = x0 then the semigroup ({x0}, Id) is in-

cluded.

� If Un(x0, y0) = x0 and y1 > y0 (Un(x0, y0) = y0 and x1 < x0) then a semigroup which

is isomorphic to (a restriction of) a continuous t-conorm (t-norm) is included.

In the case when Un(y1, x0) = y1 (Un(x1, y0) = x1) we get a similar result, however,

here the smallest semigroup is not isomorphic to a uninorm, but to a generalized composite

uninorm with continuous underling functions (see Definition 2.1.2). From Remark 2.1.5

we know that such a semigroup can be expressed as an ordinal sum of semigroups from

H (see Theorems 5.15 and 5.16 in [NUN2]).

From these results we can observe that n-uninorms from Class 1 play a major role in

our investigation. Observe that these n-uninorms have a similar structure as nullnorms,

i.e., they have uninorms of lower orders glued together by the global annihilator. Such

a structure can be easily expressed as a z-ordinal sum, where the respective annihilator

corresponds to the bottom element of our partial order. Above the bottom element

we have two branches each corresponding to a respective uninorm of lower order. This

observation yields a question whether each n-uninorm form Un can be expressed as a

z-ordinal sum of Archimedean, representable and idempotent semigroups. This question

will be positively answered in Section 3.3.

3.2 Characterizing functions of n-uninorms with

continuous underlying functions

The characterizing functions of n-uninorms from Un were discussed in paper [NUN3].

Before we start to discuss characterizing functions of n-uninorms we need to clarify several

anomalous situations. At first it can happen that for an n-uninorm there is ei = ej for some

i, j ∈ {1, . . . , n}, i < j. However, in such a situation ei = ek = zm for all k ∈ {i, . . . , j}
and m ∈ {i, . . . , j−1}. Then ei is the neutral element of Un on [zi−1, zj] and thus Un is in

fact a (n−j+ i)-uninorm and neutral elements ei+1, . . . , ej and division points zi, . . . , zj−1

can be omitted. Therefore when investigating characterizing functions of n-uninorms we
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will assume only n-uninorms where e1 < e2 < · · · < en. Further, in the case of uninorms

for each x ∈ [0, 1] there exists at most one point y ∈ [0, 1] such that U(x, y) = e. This is

no longer true for n-uninorms (see Example III.1 in [NUN3]). However, we have shown

the following result (see Proposition III.3 in [NUN3]).

Proposition 3.2.1

Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If Un(x, y1) = Un(x, y2) = ei

for some x, y1, y2 ∈ [0, 1], y1 < y2, and i ∈ {1, . . . , n} then ei ∈ {zi−1, zi}.

In this case, however, we can reduce the order of the given n-uninorm (see Theorem

III.4 in [NUN3]).

Theorem 3.2.2

Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm, Un ∈ Un. If for some i ∈ {1, . . . , n} there

is ei = zj for j ∈ {1, . . . , n − 1} then Un is an (n − 1)-uninorm from U(n−1) with the

(n− 1)-neutral element {e1, . . . , ei−1, ei+1, . . . , en}z1,...,zj−1,zj+1,...,zn−1 .

The previous theorem shows that in this case we can reduce the order of the n-uninorm

by one. Using this procedure repeatedly we see that each n-uninorm Un from Un can be

seen as an m-uninorm Um from Um such that if e∗i is the i-th local neutral element of

Um then e∗i ∈ {z∗i−1, z∗i } implies e∗i ∈ {0, 1}. Then the m-uninorm Um will be called

the reduced form of the n-uninorm Un (reduced m-uninorm for short). Therefore in the

following section it is enough to focus just on reduced n-uninorms. Observe that for

2-uninorms e1 = 0 yields null-uninorms and e2 = 1 yields uni-nullnorms [78].

For a reduced n-uninorm Un and x, y1, y2 ∈ [0, 1], y1 < y2, the equality Un(x, y1) =

Un(x, y2) = ei for some i ∈ {1, . . . , n} implies ei ∈ {0, 1}, i.e., i ∈ {1, n}. However, since

e1 = 0 (en = 1) is the neutral element of Un on [0, z1] ([zn−1, 1]) there is Un(x, 0) > 0

for all x > 0 (Un(x, 1) < 1 for all x < 1). Therefore in the case of reduced n-uninorms

there for any i ∈ {1, . . . , n} and any x ∈ [0, 1] exists at most one y ∈ [0, 1] such that

Un(x, y) = ei.

Now we can define characterizing functions and characterizing set-valued functions for

n-uninorm from Un.

Definition 3.2.3

Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, let Un ∈ Un and assume an i ∈
{1, . . . , n}. Define a function gi : [0, 1] −→ [0, 1] by

gi(x) = sup{t ∈ [0, 1] | Un(x, t) < ei},

where sup ∅ = 0. The function gi will be called the i-th characterizing function of the

n-uninorm Un.
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Note that evidently gi(ei) = ei for all i ∈ {1, . . . , n}. Further, if e1 = 0 then g1(x) = 0

for all x ∈ [0, 1]. Similarly, if en = 1 then gn(x) = 1 for all x ∈ [0, 1].

The characterizing function gi is non-increasing for all i = 1, . . . , n (see Proposition

III.10 in [NUN3]) and from the definition we see that Un(x, t) < ei for all t < gi(x) and

Un(x, t) > ei for all t > gi(x).

Further, if ei /∈ Ran(Un(x, ·)) then evidently Un(x, ·) is non-continuous in gi(x) (or

gi(x) ∈ {0, 1} ). If ei ∈ Ran(Un(x, ·)) then Un(x, ·) is continuous in gi(x) and then

Un(x, gi(x)) = ei. Summarizing, either Un(x, gi(x)) = ei, or Un(x, ·) is non-continuous

in gi(x), or gi(x) ∈ {0, 1}. Observe that if Un(x, ·) is continuous in gi(x) and gi(x) = 0

(gi(x) = 1) then U(x, t) ≥ ei (U(x, t) ≤ ei) for all t ∈ [0, 1].

Definition 3.2.4

Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, Un ∈ Un, and assume an i ∈ {1, . . . , n}.
We define the characterizing set-valued function ri : [0, 1] −→ P([0, 1]) by

ri(x) =





[
lim
t−→0+

gi(t), 1

]
if x = 0,

[
0, lim

t−→1−
gi(t)

]
if x = 1,

[
lim

t−→x+
gi(t), lim

t−→x−
gi(t)

]
otherwise.

Observe that gi(x) ∈ ri(x) for all x ∈ [0, 1], i ∈ {1, . . . , n} and if gi is continuous in

x ∈ ]0, 1[ for some i ∈ {1, . . . , n} then ri(x) = {gi(x)}. For an example of characterizing

set-valued functions see Figure 3.3.
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Figure 3.3: The two 2-uninorms from Figure 3.2 (Figure 1 in [NUN2]). The bold lines
denote characterizing set-valued functions r1 and r2.

In the following theorem we summarize Lemmas III.13, III.14 and III.15 from [NUN3].
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Theorem 3.2.5

The characterizing set-valued function ri of a reduced n-uninorm Un ∈ Un is non-increa-

sing, symmetric and u-surjective (see Definition 2.4.1) for all i = 1, . . . , n. Further, above

(below) the graph of the characterizing set-valued function ri the n-uninorm Un attains

values greater (smaller) than ei.

Each point of discontinuity of a reduced n-uninorm Un ∈ Un can be associated with

at least one local neutral element ei for i ∈ {1, . . . , n} (see Lemma IV.1 in [NUN3]).

Moreover, if Un(x, y) = ei ∈ ]0, 1[ for some x, y ∈ [0, 1], i ∈ {1, . . . , n} then x, y ∈ ]zi−1, zi[ .

It is easy to show that Un(x, y) = ei implies (x, y) ∈ G(ri) (see Lemmas IV.2 and IV.6 in

[NUN3]).

Vice versa, from the definition we easily see that if (x0, y0) ∈ G(ri)∩ ]0, 1[2 then either

Un(x0, y0) = ei, or Un(x0, y0) is a point of discontinuity of Un. On the lower boundary of

the unit square (and similarly on the upper boundary of the unit square) we know that

Un is continuous in point (0, 0) and Un is non-continuous in each point (0, t), (t, 0) such

that t ∈
]

lim
t−→0+

gi(t), gi(0)

]
for some i ∈ {1, . . . , n}, where 1 > ei > 0.

The main result of [NUN3] shows that each point of discontinuity of Un ∈ Un is covered

by the union of the graphs of its characterizing set-valued functions (see Theorem IV.8 in

[NUN3]).

Theorem 3.2.6

Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm and let Un ∈ Un. If (x0, y0) ∈ [0, 1]2 is a

point of discontinuity of Un then (x0, y0) ∈
n⋃
i=1

G(ri).

For a uninorm with continuous underlying functions we have shown that U is in each

point from the unit square either left-continuous, or right-continuous (or continuous).

This is no loner true in the case of n-uninorms from Un. However, this situation can occur

only in the case when the corresponding point of discontinuity belongs to graphs of at

least two characterizing set-valued functions.

Example 3.2.7

Assume 0 < e1 < z1 < e2 < 1 an let a binary function U2 : [0, 1]2 −→ [0, 1] be given by:

U2(x, y) =





min(x, y) if min(x, y) < e1,

max(x, y) if min(x, y)>e1,max(x, y)>e2,

min(x, y) if x, y ∈ [z1, e2] ,

max(x, y) if x, y ∈ [e1, z1] ,

z1 otherwise.
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Then U2 is a 2-uninorm with continuous underlying functions and Un(x, y) = ei implies

x = y = ei. Evidently, U2 is in the reduced form. However, U2(e1, e2) = z1 and Un(s, t) =

s < e1 for all s < e1, e1 < t < e2 and Un(s, t) = t > e2 for all e2 > s > e1, t > e2. Therefore

in point (e1, e2) the 2-uninorm U2 is neither left-continuous, nor right-continuous.

In the previous example point (e1, e2) belongs to graphs of both characterizing set-

valued functions r1 and r2. This holds for all points in which an n-uninorm from Un is

neither left-continuous nor right continuous (see Propostion IV.10 in [NUN3]).

Proposition 3.2.8

Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, Un ∈ Un, and assume a point (x0, y0) ∈
[0, 1]2. If there exists exactly one i ∈ {1, . . . , n} such that (x0, y0) ∈ G(ri) then Un is

left-continuous or right-continuous (or continuous) at point (x0, y0).

Using Lemma IV.11 from [NUN3] which shows that [zi−1, zi]
2 ∩

n⋃
j=1

G(rj) = G(ri) for

all i ∈ {1, . . . , n} we can show Theorem IV.12 in [NUN3].

Theorem 3.2.9

Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm. Suppose that Un is continuous on [0, 1]2\
n⋃
i=1

G(ri), where ri is a symmetric, u-surjective, non-increasing set-valued function on [0, 1],

such that Un(x, y) = ei implies (x, y) ∈ G(ri) for i = 1, . . . , n. Further assume that Un is

either left-continuous, or right-continuous (or continuous) in each point (x0, y0) ∈ [0, 1]2

such that there is exactly one i ∈ {1, . . . , n} for which (x0, y0) ∈ G(ri). Then Un ∈ Un.

In the proof of this theorem we have also shown the connection between the i-th

characterizing set-valued function and the characterizing set-valued function of the i-th

underlying uninorm Ui.

Remark 3.2.10

Observe that if e1 = 0 (en = 1) we claimed that Un is continuous on [0, z1]
2 ([zn−1, 1]2)

since each t-norm (t-conorm) is continuous on the lower (the upper) boundary of the unit

square. However, in such cases we obtain a t-conorm on [0, z1]
2 (a t-norm on [zn−1, 1]2)

and thus it is an exact opposite. For a t-conorm on [0, z1]
2 the graph of the characterizing

set-valued function r1 coincides with the lower boundary and for a t-norm on [zn−1, 1]2

the graph of the characterizing set-valued function rn coincides with the upper boundary.

For e1 = 0 we have r1(0) = [0, 1] and r1(x) = 0 for all x ∈ ]0, 1] . However, in all points

(x, 0), (0, x) for x ∈ [0, 1] the left-sided limit does not exist. Similarly, for en = 1 we have

rn(x) = 1 for all x ∈ [0, 1[ and r(1) = [0, 1] and in all points (x, 1), (1, x) for x ∈ [0, 1] the

right-sided limit does not exist. Since Un is either left-continuous, or right-continuous (or

continuous) in each point (x0, y0) ∈ [0, 1]2 such that there is exactly one i ∈ {1, . . . , n}
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for which (x0, y0) ∈ G(ri), we see that for e1 = 0 the underlying uninorm U1 (which

is a t-conorm) is (right-)continuous in all points (x, 0), (0, x) for x ∈ [0, z1] , i.e., U1 is a

continuous t-conorm. Observe that (0, z1) ∈ G(ri) implies i = 1 since Un is in the reduced

form and i > 1 would imply z1 = ei > e1 = 0, i.e., z1 = ei = 1, which means that Un is a

standard uninorm and i ∈ {1}. Similarly we can show that if en = 1 then the underlying

uninorm Un is a continuous t-norm.

3.3 Decomposition of n-uninorms with continuous

underlying functions via the z-ordinal sum

construction

Our work on characterization of uninorms and n-uninorms with continuous underlying

functions was concluded in [NUN4], where all n-uninorms from Un were characterized.

For better understanding we have started with decomposition of nullnorms with con-

tinuous underlying functions via the z-ordinal sum construction. We have shown that

each such a nullnorm with an annihilator z can be decomposed into three semigroups:

G1 = ([0, z] , S∗), G2 = ([z, 1] , T ∗) and G3 = ({z}, Id), where S∗ (T ∗) is a linear trans-

formation of some t-conorm (t-norm) to the interval [0, z] ([z, 1]), with the branching set

A = {3} and the respective partial order given by 1 ∧ 2 = 3 (see Lemma 1 in [NUN4]).

Each continuous t-norm (t-conorm) can be expressed as an ordinal sum of continuous

Archimedean t-norms (t-conorms). Moreover, each continuous Archimedean t-norm (t-

conorm) can be decomposed via ordinal (z-ordinal) sum only to one non-trivial and one

or two trivial semigroups, which correspond to boundary points 0 and 1. Therefore we say

that a semigroup is related to a continuous Archimedean t-norm (t-conorm) if it can be

obtained from a continuous Archimedean t-norm (t-conorm) by exclusion of one or both

boundary points. Then we obtain Theorem 5 in [NUN4].

Theorem 3.3.1

Let V : [0, 1]2 −→ [0, 1] be a nullnorm with annihilator z ∈ ]0, 1[ and let TV and SV

be continuous. Then V is a z-ordinal sum of a countable number of semigroups related

to continuous Archimedean t-norms, continuous Archimedean t-conorms and idempotent

t-norms and t-conorms (including trivial semigroups).

Observe that all semigroups from the previous theorem, irreducible with respect to the

ordinal sum (the z-ordinal sum), belong to H.
For n-uninorms with continuous underlying functions we have first discussed the in-

teraction of points from different intervals, i.e., for x ∈ ]zi−1, zi[ and y ∈ ]zj−1, zj[ , where
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x < y. Generally we can show that Un(x, y) ∈ [x, ei[∪{Un(e1, ej)}∪ ]ej, y] . Then depend-

ing on the position of x (y) with respect the local neutral element ei (ej) we can describe

the values of Un on the respective regions as depicted on Figure 3.4 (see Proposition 6 in

[NUN4]).
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Figure 3.4: Sketch of n-uninorm Un on selected regions. Bold lines denote the set where
the functions Un(zk, ·) and Un(·, zk) attain value zk = Un(ei, ej).

In papers [NUN1] and [NUN2] we have shown that in the core of each n-uninorm

Un ∈ Un there is an n-uninorm Un
∗ from Class 1, i.e., such that Un

∗ (0, 1) = zk for some

k ∈ {1, . . . , n − 1} (see Theorems 3.1.5, 3.1.6). Observe that an n-uninorm from Class

1 has a similar structure as a nullnorm, i.e., it can be expressed as a z-ordinal sum of a

semigroup acting on [0, zk] (which is a linear transformation of a k-uninorm), a semigroup

acting on [zk, 1] (which is a linear transformation of an (n − k)-uninorm) and a trivial

semigroup ({zk}, Id).

Our aim is to decompose Un into semigroups from H, i.e., semigroups related to con-

tinuous Archimedean t-norms and t-conorms and representable and idempotent uninorms,

via the z-ordinal sum. In the first step we decompose Un into an ordinal sum of (a re-

striction of) an n-uninorm from Class 1 acting on [x0, y0] ([x0, y0[ , ]x0, y0] , ]x0, y0[) and

semigroups from H, according to results from Section 3.1. In the second step we decom-
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pose this n-uninorm from Class 1, via z-ordinal sum, into uninorms of lower orders. For

n = 2 we obtain standard uninorms which, according to Chapter 2, can be expressed as

an ordinal sum of semigroups from H. For n > 2 we will use induction.

Since we will compose the global z-ordinal sum from several local parts we have shown

the following useful results that helped us to shorten proofs considerably (see Lemmas 3,

4 and 5 in [NUN4]).

Definition 3.3.2

Let (C,�) be a partially ordered set. We say that (C,�) has a tree structure if for each

p1, p2 ∈ C such that p1 and p2 are incomparable there is no upper bound for p1 and p2.

Lemma 3.3.3

Let (C,�) be a meet semi-lattice which has a tree structure. For α, β, γ ∈ C, if γ is

incomparable with α ∧ β then α ∧ γ = β ∧ γ.

In the following result we assume a z-ordinal sum of semigroups Gα for α ∈ A∪B, in

which each semigroup Gα for α ∈ B can be expressed as an ordinal sum of semigroups.

Lemma 3.3.4

Let (X, ∗) be a z-ordinal sum of semigroups (Gα)α∈C with respect to sets A and B and

a partial order � . Assume that for each α ∈ B the semigroup Gα is an ordinal sum of

semigroups (Hβ)β∈Bα for some linearly ordered index set (Bα,≤α) and Hβ = Gβ for all

β ∈ A. Then (X, ∗) is a z-ordinal sum of semigroups (Hβ)β∈A′∪B′ with respect to sets

A′ = A, B′ =
⋃
α∈B

Bα and a partial order �′ given by:

(i) If p1, p2 ∈ Bα for some α ∈ B then p1 �′ p2 if p1 ≤α p2.
(ii) If p1 ∈ Bα and p1 ∈ Bβ for some α, β ∈ B then p1 �′ p2 if α � β and p2 �′ p1 if

β � α.

(iii) If p1 ∈ Bα for some α ∈ B and p2 ∈ A. Then p1 �′ p2 if α � p2 and p2 �′ p1 if

p2 � α.

(iv) If p1, p2 ∈ A then p1 �′ p2 if p1 � p2.

Moreover, if (C,�) for C = A∪B has a tree structure then also (C ′,�′) for C ′ = A′ ∪B′
has a tree structure.

In the following result we assume a z-ordinal sum of semigroups which has structure

of a tree with two branches, where each branch can be expressed as a z-ordinal sum of

semigroups.

Lemma 3.3.5

Let (X, ∗) be a z-ordinal sum of semigroups G1, G2, G3 and G4, where A = {3} and � is

given by 1 ∧ 2 = 3 and 4 ≺ 3. Assume that G1 is a z-ordinal sum of semigroups Hα with

respect to A1, B1 and �1, where (C1,�1) for C1 = A1∪B1 has a tree structure. Similarly,
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assume that G2 is a z-ordinal sum of semigroups Hα with respect to A2, B2 and �2, where

(C2,�2) for C2 = A2 ∪ B2 has a tree structure; and H3 = G3, H4 = G4. Then (X, ∗) is

a z-ordinal sum of semigroups (Hα)α∈C1∪C2∪{3,4} with respect to A′ = A1 ∪ A2 ∪ {3},
B′ = B1 ∪B2 ∪ {4} and �′ given by

(i) α �′ β if α, β ∈ C1 and α �1 β.

(ii) α �′ β if α, β ∈ C2 and α �2 β.

(iii) 4 ≺′ 3 ≺′ α for all α ∈ C1 ∪ C2.

(iv) If α ∈ C1 and β ∈ C2 then α and β are incomparable.

Moreover, (C ′,�′) has a tree structure.

The previous results imply that z-ordinal sum decomposition of a 2-uninorm from U2
resembles a tree with two branches and only one node – which corresponds to semigroup

({z1}, Id). Semigroups that are smaller than ({z1}, Id) are those from the ordinal sum de-

composition of semigroups which remain when the 2-uninorm U2
∗ from Class 1 is removed

from the core. Further, one branch corresponds to the first underlying uninorm of U2
∗

and the second branch corresponds to the second underlying uninorm of U2
∗ (see Figure

3.5). If we summarize Theorems 6, 7 and 8 from [NUN4] we get the following. Recall

that the relation A ∼ S expresses that the set A consists of indices that correspond to

trivial semigroups defined on points from S.

Theorem 3.3.6

Let U2 : [0, 1] −→ [0, 1] be a 2-uninorm, U2 ∈ U2. Then U2 can be expressed as a z-ordinal

sum of a countable number of semigroups from H, where A ∼ {z1} and (C,�) has a tree

structure.

Note that a countable number of semigroups in this result was incorrectly transferred

from [UNI4] (see Remark 2.5.3). The corrected result, with exactly the same proof, is

that U2 can be expressed as a z-ordinal sum of a countable number of semigroups from

Definition 2.5.1 and a possibly uncountable number of trivial semigroups, where A ∼ {z1}
and (C,�) has a tree structure.

For an n-uninorm from Un the smallest node from the branching set A in the respec-

tive partial order corresponds to zk = Un(e1, en). Similar to 2-uninorms, for n-uninorms

semigroups that are smaller than ({zk}, Id) are those from the ordinal sum decomposi-

tion of semigroups which remain when the n-uninorm Un
∗ from Class 1 is removed from

the core of Un. Above ({zk}, Id) there are two branches, one corresponds to the linear

transformation of (a restriction of ) a k-uninorm to the interval [x0, zk] (]x0, zk]) and the

second corresponds to the linear transformation of (a restriction of) an (n− k)-uninorm

to the interval [zk, y0] ([zk, y0[). By induction we can then express each branch further as

a z-ordinal sum of semigroups from H. Then we obtain Theorem 10 in [NUN4].
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Figure 3.5: A partial order related to z-ordinal sum decomposition of a 2-uninorm with
U2(x0, y0) = z1. Labeled areas consist of semigroups which contain points from the given
set. Note that e1 and e2 can belong to semigroups which are not trivial.

Theorem 3.3.7

Let Un : [0, 1] −→ [0, 1] be an n-uninorm, Un ∈ Un. Then Un can be expressed as a z-

ordinal sum of a countable number of semigroups from H, where A ∼ {z1, . . . , zn−1} and

(C,�) has a tree structure.

Similarly as before, the correct result, with exactly the same proof, is that Un can be

expressed as a z-ordinal sum of a countable number of semigroups from Definition 2.5.1

and a possibly uncountable number of trivial semigroups, where A ∼ {z1, . . . , zn−1} and

(C,�) has a tree structure.

This result completely characterizes n-uninorms with continuous underlying functions.

3.4 Conclusions

If we summarize our results we see that each n-uninorm from Un can be reduced to an

m-uninorm from Um, where m ≤ n and for the m-neutral element {e1, . . . , em}z1,...,zm−1

of Um there ei = zj for some i ∈ {1, . . . , n}, j ∈ {0, . . . , n} implies ei = zj ∈ {0, 1}.
Moreover, if Um(x, y1) = Um(x, y2) = ei for some x, y1, y2 ∈ [0, 1] and i ∈ {1, . . . , n} then

y1 = y2.

Further, each reduced n-uninorm (including 1-uninorms which are just standard uni-

norms) with continuous underlying functions can be expressed as a z-ordinal sum of
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semigroups related to continuous Archimedean t-norms, t-conorms, representable uni-

norms and idempotent semigroups, where the meet semi-lattice (C,�) resembles a binary

tree and it has an n-top element, i.e., it possesses n top branches. Here we say that a

partially ordered set has an n-top element if there exist k1, . . . , kn ∈ C such that

� ki is incomparable with kj for i 6= j, i, j ∈ {1, . . . , n},

� for each i ∈ {1, . . . , n} there is no k ∈ C such that ki ≺ k,

� for all k ∈ C there is k � ki for some i ∈ {1, . . . , n}.

For an n-uninorm Un and all i ∈ {1, . . . , n} there is ei ∈ Xkj for some j ∈ {1, . . . , n}
and vice versa for all j ∈ {1, . . . , n} there exists an i ∈ {1, . . . , n} such that ei ∈ Xkj .

Therefore we can assume that ei ∈ Xki for all i ∈ {1, . . . , n}. Then ki ∧ ki+1 ∼ {zi} and

for all i, j ∈ {1, . . . , n}, i < j, there is ki ∧ kj ∼ {zk} for some k ∈ {1, . . . , n − 1} such

that zk is the annihilator of Un on [ei, ej]
2 .

The set of points of discontinuity of each reduced n-uninorm can be covered by graphs

of n characterizing set-valued functions, each related to one of the local neutral elements ei

for i ∈ {1, . . . , n}. Thus the structure of n-uninorms with continuous underlying functions

is completely characterized in this work.

A complete characterization of (continuous) t-norms is an important result that fa-

cilitates insight into the structure of the inference apparatus used in many applications,

including probabilistic metric spaces and non-additive measures and integrals, which are

used in generalized theory of probability to model the interaction when calculating the

mean value. In the case of non-additive integrals t-norms and related operations replace

the standard multiplication which is used in the additive case. One class of such opera-

tions are uninorms, which are studied in this doctoral dissertation. The main advantage

of uninorms is that they can be used when working on a bipolar scale.

From the application point of view is probably the most interesting the class of uni-

norms with continuous underlying functions since it is big enough and still has quite nice

properties. That is the reason why this class was studied by many authors, however, the

achieved results covered only a number of special cases. A complete characterization of

this class of uninorms was given solely in the papers that are contained in this doctoral

dissertation.

One of the further generalizations of the bipolar scale yields an approach where the

corresponding binary function in the respective non-additive integral has different prop-

erties depending on the specific subarea of the unit square, i.e., input values are divided

into so-called reference levels. This approach brings us to n-uninorms which generalize

uninorms. The class of n-uninorms with continuous underlying functions is also com-

pletely characterized in this work. Similarly as in the case of uninorms, up to now only
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some special cases of n-uninorms were characterized. Therefore this doctoral dissertation

contributes to the development of generalized theory of probability, specifically to exten-

sion of knowledge of non-additive measures and integrals that model the mean value in

the case when interaction is assumed.

3.5 Future and related work

In our recent work, we have applied results on uninorms with continuous underlying func-

tions in [57] which studies convex combinations of uninorms. Further, we have shown

a close connection between z-ordinal sum, introduced in this thesis, and natural par-

tial ordering introduced in [59] in the case of commutative, associative and idempotent

functions. Based on these results we have developed a method for an easy verification

of associativity of a commutative and idempotent function (or a special commutative

non-idempotent function).

In the future work we will study the z-ordinal sum construction further, especially in

connection with associative functions on the unit interval. We plan to show that each

semigroup that can be expressed as a z-ordinal sum of semigroups can be also expressed

as a z-ordinal sum of semigroups such that α ∈ A implies that Gα is a trivial semigroup.

For simplicity, we will define the basic form of a z-ordinal sum for which α ∈ A implies

that Gα is a trivial semigroup and Xp = Xk for some p, k ∈ A∪B implies p = k. Our aim

is to show that each z-ordinal sum can be reduced to its basic form.

We will also investigate binary functions on the unit interval which can be obtained

as a z-ordinal sum of semigroups from H. It is easy to observe that all such functions are

commutative, associative, have a continuous diagonal and have continuous Archimedean

components. On the other hand, to ensure the monotonicity of a z-ordinal sum is not

so easy. Therefore another important work will be the investigation of the compatibility

of the standard order on the unit interval and the partial order � from the z-ordinal

sum construction. In other words, we will investigate the conditions under which a z-

ordinal sum yields a monotone function, i.e., a function non-decreasing with respect to

the standard order on the unit interval.

Vice versa, we plan to show that each commutative, associative and non-decreasing

function on the unit interval which is continuous on the diagonal and has continuous

Archimedean components can be expressed as a z-ordinal sum of semigroups from H.
As another streaming of our further research, we aim to focus on ordinal sum (z-

ordinal sum) constructions of general aggregation functions [12, 34] or of some particular

aggregation functions, such as overlap and grouping functions [14, 15], particular integrals

[13, 62, 80], and of some related functions, such as fuzzy implications [9].





Appendix

Here we introduce the proof of Proposition 2.1.4 from Section 2.1.

Proposition 2.1.4

Let GU : ([a, b]∪[c, d])2 −→ ([a, b]∪[c, d]), where a < b < c < d, a, b, c, d ∈ [0, 1] be a gener-

alized composite uninorm with underlying functions which are a continuous Archimedean

t-norm and a continuous Archimedean t-conorm, respectively. Then GU can be expressed

either as an ordinal sum of a uninorm with continuous Archimedean underlying functions

and a trivial semigroup, or as an ordinal sum of a continuous Archimedean t-norm (possi-

bly without one or both boundary points), a continuous Archimedean t-conorm (possibly

without one or both boundary points) and few trivial semigroups (corresponding to points

form {a, b, c, d}).

proof: Since GU(b, c) ∈ [b, c] there is GU(b, c) ∈ {b, c}. Further we will assume

that GU(b, c) = b as the case when GU(b, c) = c is analogous. Then also GU(x, c) =

GU(GU(x, b), c) = GU(x,GU(b, c)) = GU(x, b) = x for all x ∈ [a, b] , i.e., c is the neutral

element of GU. Then we can distinguish the following cases:

(i) If GU(b, y) = y for all y ∈ ]c, d[ . In this case the monotonicity implies also GU(b, d) =

d, i.e., b is the neutral element of GU restricted to ([a, b] ∪ ]c, d])2. Therefore GU

restricted to the set ([a, b] ∪ ]c, d])2 is isomorphic to a uninorm with continuous un-

derlying functions. In this case ([a, b] ∪ [c, d] , GU) can be expressed as an ordinal

sum of G1 = ({c}, Id) and G2 = ([a, b] ∪ ]c, d] , GU |([a,b]∪]c,d])2), which is isomorphic

to a uninorm with continuous underlying functions and the order on {1, 2} in this

ordinal sum is 2 < 1.

(ii) If GU(b, y0) 6= y0 for some y0 ∈ ]c, d[ . We have two possibilities: either GU(b, y0) = b,

or GU(b, y0) ≥ c. First we will assume that GU(b, y0) = y1 ≥ c. Then y1 ∈ [b, y0[ ,

i.e., y1 < y0 and

y1 = GU(GU(b, b), y0) = GU(b,GU(b, y0)) = GU(b, y1).

However, since GU on [c, d]2 is a continuous t-conorm there exists a p ∈ [c, d] such

that GU(y1, p) = y0. Then we get

GU(b, y0) = GU(b,GU(y1, p)) = GU(GU(b, y1), p) = GU(y1, p) = y0,
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which is a contradiction.

Thus GU(b, y0) = b. Then the monotonicity gives GU(b, y) = b for all y ∈ [c, y0] and

the associativity gives

b = GU(b, y0) = GU(b,GU(y0, y0)) = · · · = GU(b,GU(y0, . . . , y0︸ ︷︷ ︸
n−times

))

for all n ∈ N. Since GU is on [c, d]2 Archimedean we get GU(b, y) = b for all y ∈ [c, d[ .

Then also

GU(x, y) = GU(GU(x, b), y) = GU(x,GU(b, y)) = GU(x, b) = x

for all x ∈ [a, b] and all y ∈ [c, d[ .

Now we will show that GU(x, d) ∈ {x, d} for all x ∈ [a, b] . Indeed, if GU(x, d) = x1 >

x, x1 6= d for some x ∈ [a, b] then the associativity implies GU(x1, d) = x1 and thus

the monotonicity and GU(c, d) = d imply x1 ≤ b. Since GU is on [a, b]2 a continuous

t-norm there exists a p ∈ [a, b] such that GU(x1, p) = x and then

GU(x, d) = GU(GU(p, x1), d) = GU(p,GU(x1, d)) = GU(p, x1) = x,

which is a contradiction. Therefore GU(x, d) ∈ {x, d} for all x ∈ [a, b] .

Further, ifGU(x2, d) = x2 for some x2 ∈ ]a, b[ then the monotonicity givesGU(x, d) =

x for all x ∈ [a, x2] and the Archimedean property on [a, b]2 gives GU(x, d) = x for

all x ∈ [a, b[ .

Therefore we have the following possibilities:

1. If GU(b, d) = b then also GU(x, d) = x for all x ∈ [a, b] and we see that ([a, b]∪
[c, d] , GU) is an ordinal sum of G1 = ([a, b] , GU |[a,b]2) and G2 = ([c, d] , GU |[c,d]2),
i.e., of a continuous t-norm and a continuous t-conorm, and the order on {1, 2}
in this ordinal sum is given by 1 < 2.

2. If GU(b, d) = d and GU(x, d) = x for all x ∈ [a, b[ then ([a, b] ∪ [c, d] , GU)

is an ordinal sum of semigroups G1 = ([a, b[ , GU |[a,b[2), G2 = ({b}, Id), G3 =

([c, d[ , GU |[c,d[2) and G4 = ({d}, Id). The order on {1, 2, 3, 4} in this ordinal sum

is given by 1 < 4 < 2 < 3.

3. If GU(a, d) = a and GU(x, d) = d for all x ∈ ]a, b] then ([a, b] ∪ [c, d] , GU)

is an ordinal sum of semigroups G1 = (]a, b] , GU |]a,b]2), G2 = ({a}, Id), G3 =

([c, d[ , GU |[c,d[2) and G4 = ({d}, Id). The order on {1, 2, 3, 4} in this ordinal sum

is given by 2 < 4 < 1 < 3.
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4. If GU(a, d) = d then ([a, b] ∪ [c, d] , GU) is an ordinal sum of semigroups G1 =

([a, b] , GU |[a,b]2), G2 = ([c, d[ , GU |[c,d[2) and G3 = ({d}, Id). The order on the

set {1, 2, 3} in this ordinal sum is given by 3 < 1 < 2.

2

Here we introduce the proof of Proposition 2.1.6 from Section 2.1.

Proposition 2.1.6

Assume 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c] , e ∈ ]0, 1[ , a binary function U : [0, 1]2 −→ [0, 1]

and the function f given by (2.1). Then U is a uninorm with the neutral element e and

continuous underlying functions if and only if the function U∗ : ([a, b[ ∪ {v} ∪ ]c, d])2 −→
([a, b[ ∪ {v} ∪ ]c, d]) given by U∗(x, y) = f(U(f−1(x), f−1(y))) is a uninorm on ([a, b[ ∪
{v} ∪ ]c, d])2 which is continuous on [a, b[2 and on ]c, d]2 and fulfills lim

t−→b−
U∗(x, t) = x for

all x ∈ [a, b[ and lim
t−→c+

U∗(y, t) = y for all y ∈ ]c, d] .

proof: Assume that U is a uninorm with continuous underlying functions. Then U∗

is a uninorm on ([a, b[∪ {v} ∪ ]c, d])2. Since f−1 restricted to [a, b[ (]c, d]) is an increasing

homeomorphism we know that U∗ is continuous on [a, b[2 and on ]c, d]2 . Assume x ∈ [a, b[

with f−1(x) = s ∈ [0, e[ and any t ∈ [a, x[ with f−1(t) = s1 ≤ s, s1 ∈ [0, e[ . Since

U is a uninorm with continuous underlying functions we know that U(e, w) = w and

U(0, w) = 0 for all w ∈ [0, e] and the continuity ensures the existence of q ∈ [0, e[ such

that U(s, q) = s1. Then U∗(x, f(q)) = f(U(s, q)) = f(s1) = t. Furthermore, for all

p ∈ [0, e[ there is U(s, p) ≤ s and therefore U∗(x, y) = f(U(s, f−1(y))) ≤ f(s) = x for all

y ∈ [a, b[ . These two facts together with the monotonicity give us

lim
t−→b−

U∗(x, t) = x.

Similarly we can show that

lim
t−→c+

U∗(y, t) = y

for all y ∈ ]c, d] .

Vice versa, assume that U∗ is a uninorm on ([a, b[∪{v}∪ ]c, d])2 which is continuous on

[a, b[2 and on ]c, d]2 and fulfills lim
t−→b−

U∗(x, t) = x for all x ∈ [a, b[ and lim
t−→c+

U∗(y, t) = y

for all y ∈ ]c, d] . Then similarly as above we can show that U is a uninorm with the

neutral element e which is continuous on [0, e[2 and on ]e, 1]2 . Further,

lim
t−→e−

U(x, t) = x

for all x ∈ [0, e[ and

lim
t−→e+

U(y, t) = y
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for all y ∈ ]e, 1] . Since e is the neutral element of U we easily see that U is a uninorm

with continuous underlying functions.
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Birkhäuser, Basel.

[4] J. Aczél J. (1966). Lectures on Functional equations and their applications. Academic

Press, New York.

[5] P. Akella (2007). Structure of n-uninorms. Fuzzy Sets and Systems 158(15), pp. 1631–

1651.

[6] P. Akella (2009), C-sets of n-uninorms. Fuzzy Sets and Systems 160(1), pp. 1–21.

[7] C. Alsina, R. B. Nelsen, B. Schweizer (1993). On the characterization of a class of

binary operations on distribution functions. Statistics & Probability Letters 17 (2),

85–89.

[8] C. Alsina, M. J. Frank, B. Schweizer (2006). Associative Functions: Triangular Norms

and Copulas, World Scientific, Singapore.

[9] M. Baczyński, B. Jayaram (2008). Fuzzy Implications. Studies in Fuzziness and Soft

Computing, volume 231, Springer, Berlin.

[10] B. de Baets (1998). Idempotent uninorms. European Journal of Operational Research

118, pp. 631–642.

[11] B. de Baets, R. Mesiar (1999). Triangular norms on product lattices. Fuzzy Sets and

Systems 104, pp. 61–75.

71



72 Bibliography

[12] G. Beliakov, A. Pradera, T. Calvo (2007). Aggregation Functions: A Guide for Prac-

titioners. New York, Springer-Verlag.

[13] P. Benvenuti, R. Mesiar, D. Vivona (2002). Monotone set functions-based integrals.

In: Handbook of Measure Theory, volume II, E. Pap (Editor), New York: Elsevier,

pp. 1329–1379.

[14] H. Bustince, J. Fernández, R. Mesiar, J. Montero, R. Orduna (2009). Overlap index,

overlap functions and migrativity. In Proc. of IFSA/ EUSFLAT Conference, 2009,

pp. 300—305.

[15] H. Bustince, M. Pagola, R. Mesiar, E. Hüllermeier, E. Herrera (2012). Grouping,
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[58] A. Mesiarová-Zemánková , R. Mesiar, Y. Su. Ordinal sum construction for aggre-

gation functions on the real unit interval. Iranian Journal of Fuzzy Systems (under

review).

[59] H. Mitsch (1986). A natural partial order for semigroup. Proc. of the American

Mathematical Society 97(3), pp. 384–388.

[60] P. S. Mostert, A. L. Shields (1957). On the structure of semi-groups on a compact

manifold with boundary. Annals of Mathematics II. Series 65(1), pp. 117–143.

[61] E. Pap (1990). An integral generated by decomposable measure. Univ. u Novom Sadu

Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1) pp. 135–144.

[62] E. Pap (1995). Null-Additive Set functions. Kluwer Academic Publishers, Dordrecht.

[63] W. Pedrycz, K. Hirota (2007). Uninorm-based logic neurons as adaptive and inter-

pretable processing constructs. Soft Computing 11(1), pp. 41—52.
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[UNI5] A. Mesiarová-Zemánková (2018). Characterization of uninorms with continuous

underlying t-norm and t-conorm by their set of discontinuity points. IEEE Trans-

actions on Fuzzy Systems 26(2), pp. 705–714.
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Abstract

The idempotent uninorms are characterized by means of the ordinal sum of Clifford. It is shown that idempotent uninorms are 
in one-to-one correspondence with special linear orders on [0, 1]. A connection between respective linear order on [0, 1] and the 
characterizing multi-function of the uninorm is also investigated.
© 2016 Elsevier B.V. All rights reserved.

Keywords: Uninorm; Idempotent element; Internal uninorm; Ordinal sum

1. Introduction, basic notions and results

The uninorms (see [10,12,13,17,22]) generalize both t-norms and t-conorms (see [1,14]). A uninorm is a binary 
operation U : [0, 1]2 −→ [0, 1] that is commutative, associative, non-decreasing in both coordinates and has a neutral 
element e ∈ ]0,1[. Due to the associativity, n-ary form of any uninorm is uniquely given and thus it can be extended 
into an aggregation function working on 

⋃
n∈N[0, 1]n.

If we take uninorm in a broader sense, i.e., if for a neutral element we have e ∈ [0, 1], then the class of uninorms 
covers also the class of t-norms (here e = 1) and the class of t-conorms (here e = 0). For each uninorm the value 
U(1, 0) ∈ {0, 1} is the annihilator of U . A uninorm is said to be conjunctive (disjunctive) if U(1, 0) = 0 (U(1, 0) = 1).

For each uninorm U with the neutral element e ∈ ]0,1[ the restriction of U to [0, e]2 is a t-norm on [0, e]2, i.e., 
a linear transformation of some t-norm TU on [0, 1]2 and the restriction of U to [e,1]2 is a t-conorm on [e,1]2, i.e., 
a linear transformation of some t-conorm SU . Moreover, min(x, y) ≤ U(x, y) ≤ max(x, y) for all (x, y) ∈ [0, e] ×
[e,1] ∪ [e,1] × [0, e].

On the other hand, from any pair of a t-norm and a t-conorm we can construct the minimal and the maximal 
uninorm with the given underlying functions.

E-mail address: zemankova@mat.savba.sk.
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Proposition 1. (See [15].) Let T : [0, 1]2 −→ [0, 1] be a t-norm and S : [0, 1]2 −→ [0, 1] a t-conorm and assume 
e ∈ [0, 1]. Then the two functions Umin, Umax : [0, 1]2 −→ [0, 1] given by

Umin(x, y) =

⎧⎪⎨
⎪⎩

e · T (x
e
,

y
e
) if (x, y) ∈ [0, e]2,

e + (1 − e) · S(x−e
1−e

,
y−e
1−e

) if (x, y) ∈ [e,1]2,

min(x, y) otherwise

and

Umax(x, y) =

⎧⎪⎨
⎪⎩

e · T (x
e
,

y
e
) if (x, y) ∈ [0, e]2,

e + (1 − e) · S(x−e
1−e

,
y−e
1−e

) if (x, y) ∈ [e,1]2,

max(x, y) otherwise

are uninorms. We will denote the set of all uninorms of the first type by Umin and of the second type by Umax.

One important subclass of uninorms are idempotent uninorms, i.e., uninorms where U(x, x) = x for all x ∈ [0, 1]. 
In the case of t-norms and t-conorms there is only one idempotent t-norm – the minimum, and only one idempotent 
t-conorm – the maximum. Therefore idempotent uninorms are uniquely given and continuous on [0, e]2 ∪ [e,1]2. 
Idempotent uninorms were studied in several papers (see Refs., [7,9,16,21] and references therein).

Lemma 1. (See [9].) Let U : [0, 1]2 −→ [0, 1] be an idempotent uninorm. Then U is internal, i.e., U(x, y) ∈ {x, y}
holds for all (x, y) ∈ [0, 1]2.

Further, idempotent uninorms that are left-continuous, or right-continuous were characterized in [7]. Idempotent 
uninorms on finite ordinal scales were studied in [5]. The complete characterization of idempotent uninorms from [16]
was later corrected in [21]. In the following a non-increasing function g : [0, 1] −→ [0, 1] is called Id-symmetrical if 
its completed graph Fg is Id-symmetrical, i.e., (x, y) ∈ Fg if and only if (y, x) ∈ Fg . Note that a completed graph was 
defined in [21] as follows: let g : [0, 1] −→ [0, 1] be any decreasing function and let G be the graph of g, that is

G = {(x, g(x)) | x ∈ [0,1]};
for any point of discontinuity s of g, let s− and s+ be the corresponding lateral limits. Then, we define the completed 
graph of g, denoted by Fg , as the set obtained from G by adding the vertical segments in any discontinuity point s, 
from s− to s+.

Theorem 1. (See [21].) Consider e ∈ ]0,1[. The following items are equivalent:

(i) U is an idempotent uninorm with neutral element e.
(ii) There exists a decreasing, Id-symmetrical function g : [0, 1] −→ [0, 1] with fixed point e such that U is for all 

(x, y) ∈ [0, 1]2 given by

U(x, y) =

⎧⎪⎨
⎪⎩

min(x, y) if y < g(x) or y = g(x), x < g(g(x)),

max(x, y) if y > g(x) or y = g(x), x > g(g(x)),

x or y if y = g(x), x = g(g(x)),

being commutative on the set of points (x, g(x)) such that x = g(g(x)).

Note that the function g coincides with the characterizing multi-function of U which we now recall.

Definition 1. (See [18].) A mapping p : [0, 1] −→ P([0, 1]) is called a multi-function if to every x ∈ [0, 1] it assigns 
a subset of [0, 1], i.e., p(x) ⊆ [0, 1]. A multi-function p is called
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(i) non-increasing if for all x1, x2 ∈ [0, 1], x1 < x2 there is p(x1) ≥ p(x2), i.e, for all y1 ∈ p(x1) and all y2 ∈ p(x2)

we have y1 ≥ y2 and thus Card(p(x1) ∩ p(x2)) ≤ 1,
(ii) symmetric if y ∈ p(x) if and only if x ∈ p(y).

The graph of a multi-function p will be denoted by G(p), i.e., (x, y) ∈ G(p) if and only if y ∈ p(x).

Lemma 2. (See [18].) A symmetric multi-function p : [0, 1] −→ P([0, 1]) is surjective, i.e., for all y ∈ [0, 1] there 
exists an x ∈ [0, 1] such that y ∈ p(x), if and only if we have p(x) 	= ∅ for all x ∈ [0, 1]. The graph of a symmetric, 
surjective, non-increasing multi-function p : [0, 1] −→ P([0, 1]) is a connected line.

We will denote the set of all uninorms U : [0, 1]2 −→ [0, 1] such that U is continuous on [0, 1]2 \ R, where 
R = G(r) and r is a symmetric, surjective, non-increasing multi-function such that U(x, y) = e implies (x, y) ∈ R, 
by UR. Further, the corresponding multi-function r will be called the characterizing multi-function of U .

Theorem 2. (See [18].) Let U : [0, 1]2 −→ [0, 1] be a uninorm. Then U is continuous on [0, e]2 and on [e,1]2 if and 
only if U ∈ UR and in each point (x, y) ∈ [0, 1]2 the uninorm U is either left-continuous or right-continuous.

The previous theorem characterizes uninorms with continuous underlying functions via their characterizing multi-
function. In the case of idempotent uninorms the graph of their characterizing multi-function coincides with the 
completed graph of the function g from Theorem 1.

Since uninorms are special semigroups we can use here the result of Clifford.

Theorem 3. (See [8].) Let A 	= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of semigroups. 
Assume that for all α, β ∈ A with α < β the sets Xα and Xβ are either disjoint or that Xα ∩ Xβ = {xα,β}, where xα,β

is both the neutral element of Gα and the annihilator of Gβ and where for each γ ∈ A with α < γ < β we have 
Xγ = {xα,β}. Put X = ⋃

α∈A

Xα and define the binary operation ∗ on X by

x ∗ y =

⎧⎪⎨
⎪⎩

x ∗α y if (x, y) ∈ Xα × Xα ,

x if (x, y) ∈ Xα × Xβ and α < β,

y if (x, y) ∈ Xα × Xβ and α > β.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ A the semigroup Gα is 
commutative.

It is immediate that both uninorms Umin and Umax discussed in Proposition 1 can be seen as ordinal sums. This is (in 
our best knowledge), up to minor generalizations including the ordinal sum construction on [0, e]2 and/or on [e,1]2

subdomains (see [11]), the only application of Clifford’s ordinal sums in construction/representation of uninorms. Our 
results presented in the next section show a novel and surprising fact concerning the construction/representation of 
idempotent uninorms, showing their link through the Clifford ordinal sum construction with particular linear orders 
on the set [0, 1].

2. Main result

In this section we would like to show that each idempotent uninorm can be decomposed to an ordinal sum of 
singleton semigroups. For these semigroups, i.e., semigroups that are defined on singletons, the only possible operation 
is

Id : {x}2 −→ {x} given by Id(x, x) = x.

Proposition 2. Let U : [0, 1]2 −→ [0, 1] be an idempotent uninorm. Then ([0, 1], U) is an ordinal sum of singleton 
semigroups ({x}, Id) for x ∈ [0, 1].
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Proof. Let P be an index set isomorphic with [0, 1] via the isomorphism i. For all p ∈ P we put Xp = {x} if 
i(p) = x. On the set P we define a relation � by p1 � p2 if U(x, y) = x, where Xp1 = {x} and Xp2 = {y}. Now 
we will show that � is a linear order. Since U is idempotent we have U(x, x) = x for all x ∈ [0, 1] and thus � is 
reflexive. If U(x, y) = x and U(y, x) = y then the commutativity of U implies that x = y, i.e., � is anti-symmetric. 
If U(x, y) = x and U(y, z) = y then the associativity of U implies

U(x, z) = U(U(x, y), z) = U(x,U(y, z)) = U(x, y) = x,

i.e., U(x, z) = x and thus � is transitive. Finally, by Lemma 1 we have U(x, y) ∈ {x, y} for all x, y ∈ [0, 1] and thus 
� is a linear order. Now let ([0, 1], U∗) be the ordinal sum of {(Xp, Id)}p∈P with the linear order �. Then it is easy 
to see that U(x, y) = U∗(x, y) for all x, y ∈ [0, 1]. �
Proposition 3. Let P be an index set isomorphic with [0, 1] via the isomorphism i. For all p ∈ P we put Xp = {x} if 
i(p) = x. Let e ∈ [0, 1] and let � be a linear order on P . If ([0, 1], U) is the ordinal sum of {(Xp, Id)}p∈P with the 
linear order � then U is an idempotent uninorm with the neutral element e if and only if the following two conditions 
are fulfilled:

(i) p1 ≺ p2 for all p1, p2 ∈ P if Xp1 = {x1}, Xp2 = {x2}, x1 < x2 and x1, x2 ∈ [0, e],
(ii) p1 ≺ p2 for all p1, p2 ∈ P if Xp1 = {y1}, Xp2 = {y2}, y1 > y2 and y1, y2 ∈ [e,1].

Proof. Let ([0, 1], U) be the ordinal sum of {(Xp, Id)}p∈P with the linear order �. Then U is associative and com-
mutative. If the two conditions are satisfied then p1 ≺ p and p2 ≺ p, where Xp1 = {x}, Xp2 = {y} and Xp = {e}
for all x ∈ [0, e], y ∈ [e,1]. Therefore U(x, e) = x for all x ∈ [0, 1]. Finally, let us show that U is non-decreasing. 
The two conditions imply that U |[0,e]2 = min and U |[e,1]2 = max. Thus we only have to show the monotonicity on 
[0, e] × [e,1] ∪ [e,1] × [0, e]. We will focus on [0, e] × [e,1] as the other case is analogical. Due to the commutativity 
it is enough to show that for x ∈ [0, e] and y1, y2 ∈ [e,1], y1 < y2 there is U(x, y1) ≤ U(x, y2). Denote Xp = {y}, 
Xp1 = {y1} and Xp2 = {y2}. Then the second condition implies that p2 ≺ p1. Now there are three possibilities:

(i) p2 ≺ p1 ≺ p,
(ii) p2 ≺ p ≺ p1,

(iii) p ≺ p2 ≺ p1.

In the first case we have U(x, y1) = y1 < y2 = U(x, y2). In the second case there is U(x, y1) = x < y2 = U(x, y2). 
Finally, in the third case we get U(x, y1) = x = U(x, y2). Thus in all cases U(x, y1) ≤ U(x, y2) and therefore U is 
non-decreasing in both coordinates. Summarizing, U is an internal uninorm.

Vice versa, let U be an idempotent uninorm. From Proposition 2 it then follows that ([0, 1], U) is an ordinal sum 
of {(Xp, Id)}p∈P with the linear order �2 given by p1 �2 p2 if U(x, y) = x for Xp1 = {x}, Xp2 = {y}. Since for 
x1, x2 ∈ [0, e] we have U(x, y) = min(x, y) we get p1 ≺ p2 for all p1, p2 ∈ P such that Xp1 = {x1}, Xp2 = {x2}, 
x1 < x2 and x1, x2 ∈ [0, e]. Similarly, for y1, y2 ∈ [e,1] we have U(x, y) = max(x, y) and thus we get p1 ≺ p2 for all 
p1, p2 ∈ P such that Xp1 = {y1}, Xp2 = {y2}, y1 > y2 and y1, y2 ∈ [e,1]. �

The previous result shows that idempotent uninorms are in one-to-one correspondence with linear orders � on 
[0, 1], such that x1 < x2 implies x1 ≺ x2 for all x1, x2 ∈ [0, e] and y1 > y2 implies y1 ≺ y2 for all y1, y2 ∈ [e,1]. We 
will denote the set of all linear orders on [0, 1] that fulfill this condition by Re.

Example 1.

(i) Let U1 : [0, 1]2 −→ [0, 1] be an idempotent uninorm, U1 ∈ Umin. Then for the linear order �1∈ Re related to the 
decomposition of U1 into singleton semigroups we have 0 ≺1 x ≺1 1 ≺1 y ≺1 e for all x ∈ ]0, e[, y ∈ ]e,1[.

(ii) Let U2 : [0, 1]2 −→ [0, 1] be an idempotent uninorm, U2 ∈ Umax. Then for the linear order �2∈ Re related to the 
decomposition of U2 into singleton semigroups we have 1 ≺2 y ≺2 0 ≺2 x ≺2 e for all x ∈ ]0, e[, y ∈ ]e,1[.
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(iii) Let U3 : [0, 1]2 −→ [0, 1] be an idempotent uninorm given by

U3(x, y) =
{

min(x, y) if x + y < 1,

max(x, y) otherwise.

Then for the linear order �3∈ Re related to the decomposition of U3 into singleton semigroups we have for all 
x ∈ ]0, e[, y ∈ ]e,1[ that x ≺3 y if and only if x + y < 1.

Corollary 1. Let U : [0, 1]2 −→ [0, 1] be an idempotent uninorm and let �∈ Re be the linear order related to the 
decomposition of U into singleton semigroups. If g : [0, 1] −→ [0, 1] is the decreasing, Id-symmetrical function with 
fixed point e from Theorem 1 then for all x ∈ [0, e], y ∈ [e,1] there is x ≺ y if and only if either y < g(x), or y = g(x), 
x < g(g(x)), or y = g(x), x = g(g(x)) and U(x, y) = x.

Proposition 4. Let U1 : [0, 1]2 −→ [0, 1] be an idempotent uninorm and let U2 : [0, 1]2 −→ [0, 1] be the dual uninorm 
of U1, i.e., there is U1(x, y) = 1 − U2(1 − x, 1 − y) for all x, y ∈ [0, 1]. Then for the linear order �1 related to the 
decomposition of U1 into singleton semigroups and the linear order �2 related to the decomposition of U2 into 
singleton semigroups we have x �1 y if and only if 1 − x �2 1 − y for all x, y ∈ [0, 1].

Proof. We have x �1 y if and only if x = U1(x, y) = 1 − U2(1 − x, 1 − y), i.e., U2(1 − x, 1 − y) = 1 − x and thus 
1 − x �2 1 − y for all x, y ∈ [0, 1]. �

Using any increasing isomorphism ϕ : [0, 1] −→ [0, 1] we can construct from a uninorm U a new uninorm Uϕ by

Uϕ(x, y) = ϕ−1(U(ϕ(x),ϕ(y)))

for all (x, y) ∈ [0, 1]2. Then we have the following result.

Proposition 5. Let U : [0, 1]2 −→ [0, 1] be an idempotent uninorm and let ϕ : [0, 1] −→ [0, 1] be an increasing 
isomorphism on [0, 1]. Then Uϕ : [0, 1]2 −→ [0, 1] given for all (x, y) ∈ [0, 1]2 by Uϕ(x, y) = ϕ−1(U(ϕ(x), ϕ(y)))

is an idempotent uninorm. Further, for the linear order � related to the decomposition of U into singleton semigroups 
and the linear order �ϕ related to the decomposition of Uϕ into singleton semigroups we have x �ϕ y if and only if 
ϕ(x) � ϕ(y) for all x, y ∈ [0, 1].

Proof. It is easy to see that Uϕ is an idempotent uninorm. Further, for all x, y ∈ [0, 1] we have x �ϕ y if and only if

x = Uϕ(x, y) = ϕ−1(U(ϕ(x),ϕ(y))),

i.e., U(ϕ(x), ϕ(y)) = ϕ(x) which holds if and only if ϕ(x) � ϕ(y). �
Remark 1. Proposition 3 is valid also for discrete uninorms, i.e., for commutative, associative, non-decreasing op-
erations U : {0, . . . , n − 1}2 −→ {0, . . . , n − 1} with neutral element e ∈ {0, . . . , n − 1}, where n ∈ N. If we fix 
i ∈ {0, . . . , n − 1} then there are exactly i elements smaller than i and n − 1 − i elements bigger than i. There-
fore the number of idempotent discrete uninorms on {0, . . . , n − 1} with the neutral element e = i is equal to the 
number of ways how to divide n − 1 − i elements into i + 1 groups which is the combinatorial number C(n − 1, i). 

Then we immediately see that there are exactly 
n−1∑
i=0

C(n − 1, i) = 2n−1 idempotent uninorms on {0, . . . , n − 1}.

3. Conclusions

In this short contribution we have shown the characterization of idempotent uninorms via the ordinal sum of 
singleton semigroups. Respective linear orders on [0, 1] were also studied. Up to the theoretical importance of our 
results, we expect also their application in several fields, where the uninorms were already successfully applied, 
such as in expert systems [6], approximate reasoning [20], data mining [26], image processing [3,4], fuzzy systems 
modeling [23–25], neural networks [2], etc.
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Our results cover and generalize results known from the literature. For example, Corollary 1 shows transparently 
what is the link of representation of idempotent uninorms by means of Id-symmetrical functions (see Theorem 1) and 
the representation by means of linear orders on [0, 1] (see Proposition 3).

In [19] we will continue to characterize uninorms with continuous underlying functions via the ordinal sum of 
Clifford.
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1. Introduction

The (left-continuous) t-norms and their dual t-conorms play an indispensable role in many domains such as probabilistic 
metric spaces [21], fuzzy logic [4], fuzzy control [22], non-additive measures and integrals [19], multi-criteria-decision mak-
ing [26] and others. Each continuous t-norm is an ordinal sum of continuous Archimedean t-norms, and each continuous 
Archimedean t-norm possesses a continuous additive generator. However, in [9] (see also [10]) it was shown that the most 
general operations that yield a t-norm via the ordinal sum construction are t-subnorms.

In order to model bipolar behavior, uninorms were introduced in [24] (see also [3]). A uninorm U restricted to [0, e]2, 
where e is the neutral element of U is a t-norm on [0, e]2, and U restricted to [e,1]2 is a t-conorm on [e,1]2. Each uninorm 
is isomorphic to a bipolar t-conorm on [−1,1] (see [15]), i.e., a bipolar operation that is disjunctive with respect to the 
neutral point 0 (i.e., aggregated values diverge from the neutral point).

T-norms, t-conorms as well as uninorms are Abelian semigroups and therefore it is possible to apply the ordinal sum 
of Clifford for their construction. As uninorms are closely related to t-norms and t-conorms, it is clear that an ordinal sum 
that yields a uninorm will be closely connected with the ordinal sum that yields the corresponding underlying t-norm 
and t-conorm. In the case of t-norms (t-conorms) the basic stones in the ordinal sum construction are t-subnorms (t-
superconorms). In this paper we investigate which operations can be used in the construction of uninorms via the ordinal 
sum and we call them generalized uninorms.

As we mentioned above, each continuous Archimedean t-norm possesses a continuous additive generator which has a 
range from [0,∞]. Moreover, also t-subnorms can be additively generated. In the case of t-subnorms the strict monotonicity 
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of additive generators of t-norms can be relaxed. If we consider a strictly monotone, continuous additive generator with the 
range [−∞,∞] the generated operation will be a uninorm. Therefore our other interest is whether by relaxing the strict 
monotonicity of the additive generator of a uninorm we can generate a generalized uninorm.

The paper is structured as follows. In Section 2, some basic notions and results are recalled. The ordinal sum construc-
tion of Clifford is used to construct uninorms (Section 3) and a special case when all summands in this ordinal sum are 
isomorphic to uninorms is discussed in Section 4. In Section 5 we show the basic facts on generalized uninorms and in 
Section 6 we then study generated generalized uninorms. We give our conclusions in Section 7.

2. Basic notions and results

We will start with several important definitions (see [8,14]).

Definition 1.

(i) A triangular norm is a binary function T : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in both 
variables and 1 is its neutral element.

(ii) A triangular conorm is a binary function C : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in both 
variables and 0 is its neutral element.

(iii) A triangular subnorm is a binary function M : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in 
both variables and there is M(x, y) ≤ min(x, y) for all (x, y) ∈ [0, 1]2.

(iv) A triangular superconorm is a binary function R : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing 
in both variables and there is R(x, y) ≥ max(x, y) for all (x, y) ∈ [0, 1]2.

Due to the associativity n-ary form of any t-norm (t-conorm) is uniquely given and thus it can be extended to an 
aggregation function working on 

⋃
n∈N[0, 1]n .

The duality between t-norms and t-conorms is expressed by the fact that from any t-norm T we can obtain its dual 
t-conorm C by the equation

C(x, y) = 1 − T (1 − x,1 − y)

and vice-versa. The same duality holds between t-subnorms and t-superconorms.
Now let us recall an ordinal sum construction for t-norms and t-conorms [8].

Proposition 1. Let K be a finite or countably infinite index set and let (]ak,bk[)k∈K ((]ck,dk[)k∈K ) be a system of open disjoint 
subintervals of [0, 1]. Let (Tk)k∈K ((Ck)k∈K ) be a system of t-norms (t-conorms). Then the ordinal sum T = (〈ak, bk, Tk〉 | k ∈ K )

(C = (〈ck, dk, Ck〉 | k ∈ K )) given by

T (x, y) =
{

ak + (bk − ak)Tk(
x−ak

bk−ak
,

y−ak
bk−ak

) if (x, y) ∈ [ak,bk[2 ,

min(x, y) else

and

C(x, y) =
{

ck + (dk − ck)Ck(
x−ck

dk−ck
,

y−ck
dk−ck

) if (x, y) ∈ ]ck,dk]2 ,

max(x, y) else

is a t-norm (t-conorm). The t-norm T (t-conorm C) is continuous if and only if all summands Tk (Ck) for k ∈ K are continuous.

Proposition 2 ([8]). Let t : [0, 1] −→ [0,∞] (c : [0, 1] −→ [0,∞]) be a continuous strictly decreasing (increasing) function such that 
t(1) = 0 (c(0) = 0). Then the binary operation T : [0, 1]2 −→ [0, 1] ( C : [0, 1]2 −→ [0, 1]) given by

T (x, y) = t−1(min(t(0), t(x) + t(y)))

C(x, y) = c−1(min(c(1), c(x) + c(y)))

is a continuous t-norm (t-conorm). The function t (c) is called an additive generator of T (C).

An additive generator of a continuous t-norm T (t-conorm C ) is uniquely determined up to a positive multiplicative 
constant. Each continuous t-norm (t-conorm) is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). 
Note that a continuous t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent points 0 and 1. A con-
tinuous Archimedean t-norm T (t-conorm C ) is either strict, i.e., strictly increasing on ]0,1]2 (on [0,1[2), or nilpotent, i.e., 
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there exists (x, y) ∈ ]0,1[2 such that T (x, y) = 0 (C(x, y) = 1). Moreover, each continuous Archimedean t-norm (t-conorm) 
has a continuous additive generator. More details on t-norms and t-conorms can be found in [1,8].

Definition 2 ([24]). A uninorm is a binary function U : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing 
in both variables and has a neutral element e ∈ ]0,1[.

If the class of uninorms is taken in a broader sense, i.e., if for the neutral element we have e ∈ [0, 1] then the class 
of uninorms covers also t-norms and t-conorms. In the case that we will assume a uninorm with e ∈ ]0,1[ we will call 
such a uninorm proper. For each uninorm the value U (1, 0) ∈ {0, 1} is the annihilator of U . A uninorm is called conjunctive
(disjunctive) if U (1, 0) = 0 (U (1, 0) = 1) (see [3,24]).

For each uninorm U with the neutral element e ∈ [0, 1], the restriction of U to [0, e]2 is a t-norm T ∗
U on [0, e]2, i.e., 

a linear transformation of some t-norm TU on [0, 1]2 and the restriction of U to [e,1]2 is a t-conorm C∗
U on [e,1]2, 

i.e., a linear transformation of some t-conorm CU on [0, 1]2. Moreover, min(x, y) ≤ U (x, y) ≤ max(x, y) for all (x, y) ∈
[0, e] × [e,1] ∪ [e,1] × [0, e].

On the other hand, from [11] we have the following result.

Proposition 3. Let T : [0, 1]2 −→ [0, 1] be a t-norm and C : [0, 1]2 −→ [0, 1] a t-conorm and assume e ∈ [0, 1]. Then the two 
functions Umin, Umax : [0, 1]2 −→ [0, 1] given by

Umin(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

e · T ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · C( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

min(x, y) otherwise

and

Umax(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

e · T ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · C( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

max(x, y) otherwise

are uninorms. We will denote the set of all uninorms of the first type by Umin and of the second type by Umax.

3. Ordinal sum construction for uninorms

At first we recall the basic result of Clifford [2] on which the ordinal sum construction for t-norms, and generally for 
semigroups is based.

Theorem 1. Let A �= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of semigroups. Assume that for all 
α, β ∈ A, α �= β , the sets Xα and Xβ are disjoint. Put X = ⋃

α∈A
Xα and define the binary operation ∗ on X by

x ∗ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∗α y if (x, y) ∈ Xα × Xα ,

x if (x, y) ∈ Xα × Xβ and α < β ,

y if (x, y) ∈ Xα × Xβ and α > β .

(1)

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ A the semigroup Gα is commutative.

Remark 1. Note that the condition that for α, β ∈ A, α �= β , the sets Xα and Xβ are disjoint can be replaced by the condition 
that for all α, β ∈ A with α < β the sets Xα and Xβ are either disjoint or Xα ∩ Xβ = {xα,β}, where xα,β is both the neutral 
element of Gα and the annihilator of Gβ and for each γ ∈ A with α < γ < β we have Xγ = {xα,β}.

In Proposition 1 we see that the ordinal sum construction for t-norms is an ordinal sum construction in the sense of 
Clifford (see [9]), where we have a family (Xk, ∗k)k∈K , with Xk = [ak,bk[ and

x ∗k y = ak + (bk − ak) · Tk(
x − ak

bk − ak
,

y − ak

bk − ak
).
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Further we take

[0,1] \
⋃
k∈K

[ak,bk[ =
⋃
l∈L

Yl,

where the sets Yl are components of [0, 1] \ ⋃
k∈K [ak,bk[ with respect to conectedness, with x ∗l y = min(x, y), i.e., we 

obtain a family (Yl, ∗l)l∈L of semigroups. Equipping the set K ∪ L with the linear order �, which is compatible with the 
usual order ≤ on [0, 1], then the semigroup ([0, 1], T ) from Proposition 1 can be rewritten as an ordinal sum of semigroups 
(Xα, ∗α)α∈K∪L in the sense of Clifford. Note that the sets Yl are either subintervals of [0, 1] or singletons.

In the case of t-conorms we can proceed similarly, however, here the linear order of semigroups will be reversed with 
respect to the usual order on [0, 1], and the operation on the set Yl will be given by x ∗l y = max(x, y).

Let us now focus on the class of uninorms. If a uninorm is an ordinal sum of semigroups (Xα, ∗α) for α ∈ A then U |[0,e]2

is an ordinal sum of semigroups (Xα ∩ [0, e] , ∗α) and U |[e,1]2 is an ordinal sum of semigroups (Xα ∩ [e,1] , ∗α) for α ∈ A. 
Since U |[0,e]2 (U |[e,1]2 ) is linearly isomorphic to the underlying t-norm TU (t-conorm CU ) the structure of Xα for α ∈ A can 
be derived from the respective results on the ordinal sum of semigroups yielding a t-norm (t-conorm) which we will now 
recall.

In [5] Jenei introduced t-subnorms which not only generalize t-norms but are the basic stones in the construction and 
characterization of t-norms (see Definition 1). Continuous t-subnorms were studied in [14]. In [6] the following construction 
of t-norms using t-subnorms was shown.

Proposition 4. Let K be a finite or countably infinite index set and let (]ak,bk[)k∈K be a system of open disjoint subintervals of [0, 1]. 
Let (Mk)k∈K be a family of t-subnorms such that if bk0 = 1 for some k0 ∈ K then Mk0 is a t-norm, and if bk1 = ak2 for some k1, k2 ∈ K
then either Mk1 is a t-norm or Mk2 has no zero divisors. Then the ordinal sum T = (〈ak, bk, Mk〉 | k ∈ K ) given by

T (x, y) =
{

ak + (bk − ak)Mk(
x−ak

bk−ak
,

y−ak
bk−ak

) if (x, y) ∈ ]ak,bk]2 ,

min(x, y) else

is a t-norm.

Thus t-norms are not the most general semigroups that yield a t-norm via the ordinal sum construction. In [9] the most 
general semigroups that can be used for construction of t-norms via the ordinal sum construction (in the sense of Clifford) 
were studied. Let us recall several results from this paper.

Proposition 5. Let (A, �) be a linearly ordered set, A �= ∅ and ((Xα, ∗α))α∈A be a family of semigroups such that (Xα)α∈A is a 
partition of the closed unit interval [0, 1]. If operation ∗: [0, 1]2 −→ [0, 1] given by (1) is a triangular norm then we have:

(i) Each Xα is a subinterval on [0, 1].
(ii) Each semigroup (Xα, ∗α) is a totally ordered Abelian semigroup where the operation ∗α is bounded from above by the minimum, 

i.e., we have x ∗α y ≤ min(x, y) for all x, y ∈ Xα .
(iii) The order � on A is compatible with the usual order ≤ on [0, 1], i.e., for α, β ∈ A we have α ≺ β if and only if x < y for all x ∈ Xα

and y ∈ Xβ .
(iv) For all (x, y) ∈ [0, 1]2 we have

x ∗ y =
{

x ∗α y if (x, y) ∈ X2
α ,

min(x, y) otherwise.

Proposition 6. Let T be a t-norm. Then the following are equivalent:

(i) ([0, 1], T ) is a non-trivial ordinal sum of semigroups.
(ii) T is a non-trivial ordinal sum of t-subnorms.

The previous result shows that t-subnorms are the most general semigroups that can be used in the construction via 
the ordinal sum. This result is based on Proposition 5, which implies that sets Xα in the ordinal sum construction are of 
five kinds: singletons, and then subintervals of the form [aα,bα], or [aα,bα[, or ]aα,bα], or ]aα,bα[. It is easy to see that 
on singletons the corresponding operation ∗α is given by x ∗α y = min(x, y). Further, the interval [aα,bα] corresponds to a 
t-subnorm Mα given by

Mα(x, y) = (aα + (bα − aα) · x) ∗α (aα + (bα − aα) · y) − aα

bα − aα
(2)
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for all x, y ∈ [0, 1]2. The t-subnorm that corresponds to the interval ]aα,bα] is given by (2) for all x, y ∈ ]0,1]2 and 
Mα(x, y) = 0 for all x, y ∈ [0, 1] with min(x, y) = 0. The t-subnorm that corresponds to the interval [aα,bα[ is given by 
(2) for all x, y ∈ [0,1[ and Mα(x, y) = min(x, y) for all x, y ∈ [0, 1] such that max(x, y) = 1. Finally, the t-subnorm that 
corresponds to the interval ]aα,bα[ is given by (2) for all x, y ∈ ]0,1[ and Mα(x, y) = min(x, y) for all x, y ∈ [0, 1] such that 
max(x, y) = 1, Mα(x, y) = 0 for all x, y ∈ [0, 1] with min(x, y) = 0.

As we mentioned above, if for a uninorm U the semigroup ([0, 1], U ) is an ordinal sum of semigroups ((Xα, ∗α))α∈A
then U |[0,e]2 , which is linearly isomorphic to TU , is an ordinal sum of semigroups ((Xα ∩ [0, e] , ∗α))α∈A and U |[e,1]2 , which 
is linearly isomorphic to CU , is an ordinal sum of semigroups ((Xα ∩ [e,1] , ∗α))α∈A . Therefore Proposition 5 easily yields 
the following result.

Proposition 7. Let (A, �) be a linearly ordered set, A �= ∅ and ((Xα, ∗α))α∈A be a family of semigroups such that (Xα)α∈A is a 
partition of the closed unit interval [0, 1]. If operation ∗: [0, 1]2 −→ [0, 1] given by (1) is a uninorm with the neutral element e ∈ [0, 1]
then we have:

(i) Each Xα has a form Xα = Iα ∪ Jα , where Iα is a subinterval of [0, e] and Jα is a subinterval of [e,1].
(ii) Each semigroup (Xα, ∗α) is a totally ordered Abelian semigroup, where for the operation ∗α we have x ∗α y ≤ min(x, y) for all 

x, y ∈ Iα , x ∗α y ≥ max(x, y) for all x, y ∈ Jα , and x ∗α y ∈ [x, y] for all x ∈ Iα, y ∈ Jα and all x ∈ Jα, y ∈ Iα .
(iii) The order � on A is compatible with the usual order ≤ on [0, e] and reversed to the usual order ≤ on [e,1], i.e., for α, β ∈ A we 

have α ≺ β if and only if x < y for all x ∈ Iα and y ∈ Iβ and u > v for all u ∈ Jα and v ∈ Jβ .

Remark 2. Proposition 7 remains valid also in the case that for the family of semigroups ((Xα, ∗α))α∈A the sets Xα are not 
disjoint but fulfill the conditions from Remark 1.

Since Iα is a subinterval of [0, e] and Jα is a subinterval of [e,1], where both Iα and Jα can have one of the five forms 
(singleton, closed interval, open interval, left-open interval, right-open interval), the set Xα can have one of the 25 possible 
forms.

Similarly as in Proposition 6 where we have related corresponding semigroups to t-subnorms which generalize t-norms, 
also here we can relate corresponding semigroups to operations that generalize uninorms and therefore we will call them 
generalized uninorms. We can distinguish here three kinds of generalized uninorms.

Definition 3. An associative, commutative, binary operation V : [0, 1]2 −→ [0, 1] which is non-decreasing in each variable 
will be called

(i) generalized sub-uninorm if there exists an e ∈ [0, 1] such that V (x, y) ≤ min(x, y) for all (x, y) ∈ [0, e]2, V (x, y) ≥
max(x, y) for all (x, y) ∈ ]e,1]2, V (x, y) ∈ [x, y] for all (x, y) ∈ [0, e] × ]e,1] ∪ ]e,1] × [0, e].

(ii) generalized super-uninorm if there exists an e ∈ [0, 1] such that V (x, y) ≤ min(x, y) for all (x, y) ∈ [0, e[2, V (x, y) ≥
max(x, y) for all (x, y) ∈ [e,1]2, V (x, y) ∈ [x, y] for all (x, y) ∈ [0, e[ × [e,1] ∪ [e,1] × [0, e[.

Definition 4. A binary operation V : ([a,b] ∪ [c,d])2 −→ ([a,b] ∪ [c,d]), where a < b < c < d, a, b, c, d ∈ [0, 1] will be called 
a generalized composite uninorm if it is associative, commutative, non-decreasing in both coordinates and V restricted to 
[a,b]2 is a t-subnorm on [a,b]2, V restricted to [c,d]2 is a t-superconorm on [c,d]2, and V (x, y) ∈ [x, y] for all x ∈ [a,b] , y ∈
[c,d] and all x ∈ [c,d] , y ∈ [a,b].

Thus the class of generalized uninorms consists of generalized sub-uninorms, generalized super-uninorms, and general-
ized composite uninorms. The last class, however, differs from the others as it cannot (in general) be transformed to an 
operation on [0, 1]2. Note that uninorms are both generalized sub-uninorms as well as generalized super-uninorms.

The generalized sub-uninorms arise from semigroups defined on sets [aα,bα] ∪ ]cα,dα], ]aα,bα] ∪ ]cα,dα], [aα,bα] ∪
]cα,dα[, and ]aα,bα]∪]cα,dα[. Further, generalized super-uninorms arise from semigroups defined on sets [aα,bα[∪[cα,dα], 
[aα,bα[ ∪ [cα,dα[, ]aα,bα[ ∪ [cα,dα], and ]aα,bα[ ∪ [cα,dα[. The generalized composite uninorms arise from semigroups 
defined on sets [aα,bα] ∪ [cα,dα], ]aα,bα] ∪ [cα,dα], [aα,bα] ∪ [cα,dα[, and ]aα,bα] ∪ [cα,dα[. Finally, standard uninorms 
correspond to semigroups defined on sets [aα,bα[ ∪ ]cα,dα], [aα,bα[ ∪ ]cα,dα[, ]aα,bα[ ∪ ]cα,dα], and ]aα,bα[ ∪ ]cα,dα[.

If Iα and Jα are singletons, Iα = {aα}, Jα = {dα}, then the respective summand is a semigroup ({aα, dα}, ∗α), where for 
∗α we have either

x ∗α y =
{

x if x = y,

aα if x �= y,

or

x ∗α y =
{

x if x = y,

dα if x �= y.
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The last possibility is that Iα is a non-singleton subinterval of [0, e] and Jα = {dα} (or analogically, Iα = {aα} and Jα is 
a non-singleton subinterval of [e,1]). In such a case we obtain a semigroup (Iα ∪ {dα}, ∗α), where dα ∗α dα = dα and ∗α on 
(Iα)2 is isomorphic to a t-subnorm (possibly without one or both border points of the unit interval).

Example 1. Let Iα =
[

0, 1
4

]
and Jα = { 3

4 }. Let ∗α : (Iα ∪ Jα)2 −→ Iα ∪ Jα be a commutative operation which is for x ≤ y

given by

x ∗α y =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3
4 if x = y = 3

4 ,

x if x ∈
[

0, 1
8

]
, y = 3

4 ,

1
4 if x ∈

]
1
8 , 1

4

]
, y = 3

4 ,

min(x, 1
8 ) · min(y, 1

8 ) if (x, y) ∈
[

0, 1
4

]2
.

Then it is easily checked that G1 = (Iα ∪ Jα, ∗α) is a commutative semigroup that fulfills all properties from Proposition 7
and therefore it can be used as a summand in the ordinal sum construction. If we assume additional semigroups G2 =
( 1

2 , min), G3 = (
]

1
4 , 1

2

[
, min), G4 = (

]
1
2 , 3

4

[
, max) and G5 = (

]
3
4 ,1

]
, max), with the linear order 5 ≺ 1 ≺ 3 ≺ 4 ≺ 2 then the 

ordinal sum yields a semigroup ([0, 1], U ), where U : [0, 1]2 −→ [0, 1] is a uninorm given for x ≤ y by

U (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(x, 1
8 ) · min(y, 1

8 ) if (x, y) ∈
[

0, 1
4

]2
,

min(x, y) if (x, y) ∈
[

0, 1
2

]2 \
[

0, 1
4

]2
,

max(x, y) if (x, y) ∈
[

1
2 ,1

]2
,

min(x, y) if x ∈
[

0, 1
2

]
, y ∈

[
1
2 , 3

4

[
,

max(x, y) if x ∈
[

0, 1
2

]
, y ∈

]
3
4 ,1

]
,

x if x ∈
[

0, 1
8

]
, y = 3

4 ,

1
4 if x ∈

]
1
8 , 1

4

]
, y = 3

4 ,

y if x ∈
]

1
4 , 1

2

]
, y = 3

4 .

In the rest of the paper we will first focus on a special case when all summands in the ordinal sum construction are 
standard uninorms and then we will closer study generalized uninorms.

4. Ordinal sum of uninorms

In this section we will focus on a special case when all summands in the ordinal sum construction are either isomorphic 
to uninorms (including t-norms and t-conorms), or they are singletons. The aim is to obtain a construction similar to that 
in Proposition 1, which will be called the ordinal sum of uninorms. In this case the non-singleton summands are defined 
on sets [ak,bk[ ∪ ]ck,dk] and then for the resulting uninorm U and any v ∈ [bk, ck] the ordinal sum construction and 
monotonicity ensures that the restriction of U to [ak,bk[ ∪ {v} ∪ ]ck,dk] is isomorphic to some uninorm Uk on [0, 1]2 with 
the neutral element ek which corresponds to the transformation of v . Note however, that if Uk(x, y) = ek for some x �= ek , 
y �= ek then [0, ek[ ∪ ]ek,1] is not closed under Uk and thus in order to preserve associativity v has to be an annihilator of 
U restricted to [bk, ck]2. Thus we will obtain the ordinal sum construction in the sense of Remark 1.

In the case that ak = bk (ck = dk) then the corresponding summand is isomorphic to a t-conorm (t-norm).
The isomorphism between Uk and the respective semigroup on [ak,bk[ ∪ {v} ∪ ]ck,dk] will be given by the follow-

ing transformation. For any 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c], and a uninorm U with the neutral element e ∈ ]0,1[ let 
f : [0, 1] −→ [a,b[ ∪ {v} ∪ ]c,d] be given by

f (x) =

⎧⎪⎨
⎪⎩

(b − a) · x
e + a if x ∈ [0, e[,

v if x = e,

d − (1−x)(d−c)
(1−e) otherwise.

(3)
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Then f is linear on [0, e[ and on ]e,1] and thus it is a piece-wise linear isomorphism of [0, 1] to ([a,b[ ∪ {v} ∪ ]c,d]) and a 
binary function U a,b,c,d

v : ([a,b[ ∪ {v} ∪ ]c,d])2 −→ ([a,b[ ∪ {v} ∪ ]c,d]) given by

U a,b,c,d
v (x, y) = f (U ( f −1(x), f −1(y))) (4)

is a uninorm on ([a,b[∪{v} ∪]c,d])2. The function f is piece-wise linear, however, more generally, we can use any increasing 
isomorphic transformation.

In the case that Uk is a t-norm (t-conorm) we will take the standard linear isomorphism between [0, 1] and [ak,bk]
([ck,dk]).

In order to obtain the monotonicity of the resulting uninorm the order of summands have to be compatible with the 
standard order on [0, e] and reversed with respect to the standard order on [e,1]. This means that k1 ≺ k2 for k1, k2 ∈ K
implies bk1 ≤ ak2 and ck1 ≥ dk2 , i.e.,

[
ak2 ,dk2

]2 ⊆ [
bk1 , ck1

]2 ⊆ [
ak1 ,dk1

]2
.

Note that 
[
ak2 ,dk2

]2 = [
ak1 ,dk1

]2 implies ak1 = bk1 and ck1 = dk1 which means that the summand corresponding to k1 acts 
on an empty set.

In the ordinal sum of t-norms, intervals [ak,bk[ need not to cover the whole unit interval as the rest is covered by the 
minimum. However, as in the case of uninorms we should have on the remaining semigroups corresponding to Yl a mixture 
of min and max (which corresponds to an internal uninorm) which is not closer determined, in the case of uninorms we 
will suppose that 

⋃
k∈K [ak,bk] = [0, e] and 

⋃
k∈K [ck,dk] = [e,1]. In this way there will be no sets Yl which are subintervals 

of [0, 1], i.e., the sets Yl will be only singletons such that

B1 =
⋃
k∈K

[ak,bk] \
⋃
k∈K

[ak,bk[ =
⋃
l∈L1

Yl,

C1 =
⋃
k∈K

[ck,dk] \
⋃
k∈K

]ck,dk] =
⋃
l∈L2

Yl.

Note that for all x ∈ [0, 1] there is [x, x[ = ]x, x] = ∅ and therefore if we denote K∗ = {k ∈ K | ]ak,bk[ �= ∅} and K ∗ = {k ∈ K |
]ck,dk[ �= ∅} then B1 = {bk | k ∈ K } \ {ak | k ∈ K∗} and C1 = {ck | k ∈ K } \ {dk | k ∈ K ∗}. Since K is assumed to be countable 
then every b ∈ B1 \ {e} is an accumulation point of {ak | k ∈ K∗} (and similarly for c ∈ C1 \ {e}). We denote B2 = B1 \ {e}, 
C2 = C1 \ {e} and define functions g : B2 −→ [e,1], h : C2 −→ [0, e], such that if for b ∈ B2 we have b = lim

i−→∞aki for ki ∈ K∗ , 

then

g(b) = lim
i−→∞

dki . (5)

Similarly, if for c ∈ C2 we have c = lim
i−→∞ dki for ki ∈ K ∗ , then

h(c) = lim
i−→∞

aki . (6)

Now if g(b) /∈ C2 for some b ∈ B2 (h(c) /∈ B2 for some c ∈ C2) then the value of U (b, g(b)) (U (c, h(c))) follows from the 
monotonicity of U . Therefore we have only to solve the case when g(b) ∈ C2 (h(c) ∈ B2).

We summarize the observations made above in the following proposition.

Proposition 8. Assume e ∈ [0, 1]. Let K be an index set which is finite or countably infinite and let (]ak,bk[)k∈K be a system of 
open disjoint subintervals (which can be also empty) of [0, e], such that 

⋃
k∈K [ak,bk] = [0, e]. Similarly, let (]ck,dk[)k∈K be a system 

of open disjoint subintervals (which can be also empty) of [e,1], such that 
⋃

k∈K [ck,dk] = [e,1]. Let further these two systems be 
anti-comonotone, i.e., bk ≤ ai if and only if ck ≥ di for all i, k ∈ K . We will denote K∗ = {k ∈ K | ]ak,bk[ �= ∅} and K ∗ = {k ∈ K |
]ck,dk[ �= ∅}. Assume a family of proper uninorms (Uk)k∈K∗∩K ∗ on [0, 1]2 , a family of t-norms (Uk)k∈K∗\K ∗ on [0, 1]2 and a family 
of t-conorms (Uk)k∈K ∗\K∗ on [0, 1]2 . Denote B1 = {bk | k ∈ K } \ {ak | k ∈ K∗} and C1 = {ck | k ∈ K } \ {dk | k ∈ K ∗} and let B = {b ∈
B1 \ {e} | g(b) ∈ C1}, C = {c ∈ C1 \ {e} | h(c) ∈ B1}, where the functions g and h are defined by (5) and (6). Further assume a function 
n : B −→ B ∪ C given for all b ∈ B by

n(b) ∈ {b, g(b)}.
Let the ordinal sum U e = (〈ak, bk, ck, dk, Uk〉 | k ∈ K )e be given by
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U e(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y if x = e,

x if y = e,

(Uk)
ak,bk,ck,dk
vk

(x, y) if (x, y) ∈ ([ak,bk[ ∪ ]ck,dk])2,k ∈ K∗ ∩ K ∗,

(Uk)
ak,bk (x, y) if (x, y) ∈ ([ak,bk[ ∪ ]ck,dk])2,k ∈ K∗ \ K ∗,

(Uk)
ck,dk (x, y) if (x, y) ∈ ([ak,bk[ ∪ ]ck,dk])2,k ∈ K ∗ \ K∗,

x if y ∈ [bk, ck] , x ∈ [ak,dk] \ [bk, ck] ,k ∈ K∗ ∪ K ∗,

y if x ∈ [bk, ck] , y ∈ [ak,dk] \ [bk, ck] ,k ∈ K∗ ∪ K ∗,

min(x, y) if (x, y) ∈ [b, c]2 \ (]b, c[2 ∪ {(b, c), (c,b)}),

where b ∈ B, c = g(b), x + y < c + b,

max(x, y) if (x, y) ∈ [b, c]2 \ (]b, c[2 ∪ {(b, c), (c,b)}),

where b ∈ B, c = g(b), x + y > c + b,

n(b) if (x, y) = (b, c) or (x, y) = (c,b), b ∈ B, c = g(b),

min(x, y) if (x, y) ∈ {b} × [b, c] ∪ [b, c] × {b} and

b ∈ B1 \ (B ∪ {e}), c = g(b),

max(x, y) if (x, y) ∈ {c} × [b, c] ∪ [b, c] × {c} and

c ∈ C1 \ (C ∪ {e}),b = h(c),

where vk = ck (vk = bk) if there exists an i ∈ K such that bk = ai , ck = di and Ui is disjunctive (conjunctive) and vk = n(bk) if 
bk ∈ B, vk = bk if bk ∈ B1 \ B, vk = ck if ck ∈ C1 \ C , and (Uk)

ak,bk,ck,dk
vk

is given by the formula (4), (Uk)
ak,bk ((Uk)

ck,dk ) is a linear 
transformation of Uk (Uk) to [ak,bk]2 ([ck,dk]2). Then U e is a uninorm.

Proof. The commutativity and the neutral element of U e are obvious. Due to the commutativity, to show the monotonicity 
of U e it is enough to show the monotonicity in the second coordinate. If x = e then monotonicity of U (e, ·) is clear. Now 
assume that x ∈ [ak,bk[ for some k ∈ K (similarly we can show the case when x ∈ ]ck,dk]). Then U (x, y) = min(x, y) if 
bk ≤ y ≤ ck and U (x, y) = max(x, y) if y > dk . Further, U (x, y) ∈ [x, y] if y ∈ ]ck,dk] �= ∅ and monotonicity in this case 
follows from the monotonicity of Uk . If y ∈ [ak,bk[ then U (x, y) ≤ min(x, y) and monotonicity on this interval follows 
from the monotonicity of Uk and U (x, ak) = ak . Finally, if y < ak then U (x, y) = min(x, y). Thus, summarizing, if x ∈ [ak,bk[
then U (x, ·) is non-decreasing. Now suppose that x = b ∈ B1 (similarly we can show the case when x = c ∈ C1). Then 
U (x, y) = min(x, y) if y < g(b), U (x, y) = max(x, y) if y > g(b) and U (x, y) ∈ {x, y} if y = g(b), i.e., the monotonicity holds.

For the associativity it is enough to observe that the above ordinal sum of uninorms is an ordinal sum in the sense 
of Clifford. This ordinal sum consists of six kinds of semigroups: ([ak,bk[ ∪ {vk} ∪ ]ck,dk] , (Uk)

ak,bk,ck,dk
vk

) for k ∈ K∗ ∩ K ∗ , 
([ak,bk[ , (Uk)

ak,bk ) if k ∈ K∗ \ K ∗ , (]ck,dk] , (Uk)
ck,dk ) if k ∈ K ∗ \ K∗ , ({b}, min) for b ∈ B1 \ {e}, ({c}, min) for c ∈ C1 \ {e}, and 

the last semigroup is ({e}, min). These semigroups are equipped with the linear order, where the semigroup ({e}, min) is 
the biggest in this order and k1 ≺ k2 if and only if bk1 ≤ ak2 and ck1 ≥ dk2 . It is easy to observe that if Xk1 and Xk2 for some 
k1, k2 ∈ K , k1 �= k2, are not disjoint then they have just one element in common, which in one semigroup act as a neutral 
element and in the other as the annihilator. Thus according to Remark 1 ([0, 1], U e) is the ordinal sum of semigroups in the 
sense of Clifford, i.e., U e is associative (see Fig. 1). �
Example 2. Assume U1 ∈ Umin and U2 ∈ Umax with respective neutral elements e1, e2. Then U1 and U2 are ordinal sums of 
uninorms, U1 = (〈e1, e1, e1, 1, CU1 〉, 〈0, e1, 1, 1, TU1 〉)e1 and U2 = (〈0, e2, e2, e2, TU2 〉, 〈0, 0, e2, 1, CU2 〉)e2 .

Example 3. Assume the triple � operator from [25] which is a uninorm given by

U P (x, y) = x · y

x · y + (1 − x) · (1 − y)

and we will assume U P (0, 1) = 1. Then the ordinal sum

U = (〈0,
1

3
,

2

3
,1, U P 〉, 〈1

3
,

1

2
,

1

2
,

2

3
, U P 〉) 1

2

is a uninorm given for x ≤ y by
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Fig. 1. Ordinal sum of uninorms from Proposition 8 with two summands, where U∗
2 = (U2)

0,a,b,1
U∗

1 (a,b)
, U∗

1 = (U1)
a,e,e,b
e .

U (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2·(3x−1)(3y−1)+(2−3x)(2−3y)
3·[(3x−1)(3y−1)+(2−3x)(2−3y)] if (x, y) ∈

[
1
3 , 2

3

]2
,

6·x·y
9·x·y+(2−3x)·(2−3y)

if (x, y) ∈
[

0, 1
3

]2
,

3·(3x−1)·(3y−1)+(3−3x)(3−3y)
3·[(3x−1)·(3y−1)+(3−3x)(3−3y)] if (x, y) ∈

[
2
3 ,1

]2
,

6·x·(3y−1)
3·[3·x·(3y−1)+(2−3x)(3−3y)] if x ∈

[
0, 1

3

[
, y ∈

]
2
3 ,1

]
, x + y < 1,

9·x·(3y−1)+(2−3x)(3−3y)
3·[3·x·(3y−1)+(2−3x)(3−3y)] if x ∈

[
0, 1

3

[
, y ∈

]
2
3 ,1

]
, x + y > 1,

1
3 if x ∈

[
0, 1

3

[
, y ∈

]
2
3 ,1

]
, x + y = 1,

1
3 if x = 1

3 , y = 2
3 ,

0 if x = 0, y = 1,

x if x ∈
[

0, 1
3

[
, y ∈

]
1
3 , 2

3

[
,

y if x ∈
]

1
3 , 2

3

[
, y ∈

]
2
3 ,1

]
,

compare Fig. 1.

Remark 3. For the uninorm U e from Proposition 8 which is an ordinal sum of semigroups ((Xk, ∗k))k∈K we see that U e|[0,e]2 , 
which is linearly isomorphic with TU e , is an ordinal sum of semigroups ((Xk ∩ [0, e] , ∗k))k∈K . Then for k ∈ K we have the 
following possibilities:

(i) XK ∩ [0, e] = [ak,bk] for k ∈ K∗ ∩ K ∗ if U e(bk, ck) = bk . Then U e on [ak,bk[2 is linearly isomorphic with TUk on [0,1[2.
(ii) XK ∩ [0, e] = [ak,bk[ for k ∈ K∗ ∩ K ∗ if U e(bk, ck) = ck . Then again U e on [ak,bk[2 is linearly isomorphic with TUk on 

[0,1[2.
(iii) XK ∩ [0, e] = [ak,bk[ for k ∈ K∗ \ K ∗ . Then U e on [ak,bk[2 is linearly isomorphic with Uk on [0,1[2.
(iv) XK ∩ [0, e] = {b} for b ∈ B1.
(v) XK ∩ [0, e] = ∅.

Therefore, since U e|[0,e]2 is linearly isomorphic with TU e , the composition of linear isomorphisms is again a linear isomor-
phism, and since between two semigroups on right-open intervals there can exist only one linear isomorphism, we see that 
TU e is an ordinal sum of t-norms from Proposition 1,

TU e = ((〈ak,bk, TUk 〉)k∈K∗∩K ∗ , (〈ak,bk, Tk〉)k∈K∗\K ∗).

Thus generally we can say that the underlying t-norm of U e is an ordinal sum of the underlying t-norms of the correspond-
ing summands. Similar result can be shown also for the underlying t-conorm CU e .

In [12] several classes of uninorms were summarized. Let us now see how does the class of summands in the ordinal 
sum influence the class of the U e .
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(i) A uninorm U is called idempotent if TU = min and CU = max. It is easy to show that then U is internal, i.e., U (x, y) ∈
{x, y} for all x, y ∈ [0, 1]. If all summands in the ordinal sum are idempotent then evidently also U e is idempotent. 
More on idempotent uninorms and ordinal sum construction can be found in [16].

(ii) As the transformation (3) suggests, the continuity of a uninorm in the open unit square is not preserved by the ordinal 
sum construction.

(iii) If all summands are locally internal in A(e) = [0, e] × [e,1] ∪ [e,1] × [0, e] then again it is easy to see that also U e is 
locally internal in A(e).

(iv) Since ordinal sum of continuous t-norms (t-conorms) is continuous (see Proposition 1), if all summands in the ordinal 
sum have continuous underlying functions then also U e will have continuous underlying functions. More on uninorms 
with continuous underlying functions and ordinal sum construction can be found in [18].

(v) Ordinal sums of representable uninorms were studied in [17].
(vi) Finally, let us assume that Uk ∈ Umin for all k ∈ K . Note that all t-norms and t-conorms belong to the class Umin. This 

class is not closed under ordinal sum construction in general. In order to ensure U e ∈ Umin the condition ak = bk = e
for all k ∈ K ∗ has to be fulfilled, which means that U e is in fact an ordinal sum of a t-conorm and a t-norm which is 
confirmed in Example 2. A similar observation can be made also for the class Umax.

5. Generalized uninorms

As in the case of uninorms, also for a generalized uninorm V (either on [0, 1]2 or on ([0,b] ∪ [c,1])2), the associativity 
and monotonicity together with V (0, 0) = 0 and V (1, 1) = 1 imply that the value V (0, 1) ∈ {0, 1} is the annihilator of V .

Remark 4. Each generalized sub-uninorm (super-uninorm) V on [0, 1]2 with e ∈ ]0,1[ can be isomorphically transformed 
to ([a,b] ∪ ]c,d])2 (([a,b[ ∪ [c,d])2) for any a, b, c, d ∈ [0, 1], a < b < c < d. Then the ordinal sum of ([a,b] ∪ ]c,d] , V ) and 
({c}, min) (([a,b[ ∪ [c,d] , V ) and ({b}, min)) is a generalized composite uninorm.

Vice versa, if for a generalized uninorm G on ([a,b] ∪ [c,d])2 we have G(x, y) = b implies b ∈ {x, y} (G(x, y) = c implies 
c ∈ {x, y}) for all x, y ∈ [a,b] ∪ [c,d] then restriction of G to ([a,b[ ∪ [c,d])2 (([a,b] ∪ ]c,d])2) is isomorphic with some 
generalized super-uninorm (sub-uninorm).

At first we will take a closer look on generalized composite uninorms. If a uninorm U is on some set ([a,b] ∪ [c,d])2

where, a < b ≤ e ≤ c < d, a generalized composite uninorm then since U (b, c) ∈ [b, c] ∩ ([a,b] ∪ [c,d]) we get U (b, c) ∈ {b, c}. 
Further, we have the following easy result.

Lemma 1. Assume a, b, c, d ∈ [0, 1], a < b < c < d and let M be a t-subnorm on [a,b]2 and R a t-superconorm on [c,d]2 . Then the 
binary function V : ([a,b] ∪ [c,d])2 −→ ([a,b] ∪ [c,d]) given by

V (x, y) =

⎧⎪⎨
⎪⎩

M(x, y) if (x, y) ∈ [a,b]2,

R(x, y) if (x, y) ∈ [c,d]2,

A(x, y) otherwise,

where A(x, y) = min(x, y) for all (x, y) ∈ [0, 1]2 or A(x, y) = max(x, y) for all (x, y) ∈ [0, 1]2 is a generalized composite uninorm 
on ([a,b] ∪ [c,d])2 .

We have also the following partial result.

Proposition 9. Let V : ([a,b] ∪ [c,d])2 −→ ([a,b] ∪ [c,d]), where a < b < c < d, a, b, c, d ∈ [0, 1], be a generalized composite 
uninorm, such that V (b, c) = b and V restricted to [a,b]2 is a continuous cancellative t-subnorm on [a,b]2 , and V restricted to [c,d]2

is a nilpotent, Archimedean t-superconorm on [c,d]2 . Then V (x, y) = min(x, y) for all x ∈ [a,b] , y ∈ [c,d] and all x ∈ [c,d] , y ∈
[a,b].

Proof. Since V (b, c) = b then also V (b, c, . . . , c︸ ︷︷ ︸
n-times

) = b for all n ∈ N and since V restricted to [c,d]2 is nilpotent and 

Archimedean we have V (c, . . . , c︸ ︷︷ ︸
N-times

) = d for some N ∈ N. Thus V (b, d) = b and monotonicity implies V (b, y) = b for all 

y ∈ [c,d]. Now let V (b, b) = p ∈ [a,b] then V (p, c) = V (b, V (b, c)) = V (b, b) = p and similarly as before we get V (p, y) = p
for all y ∈ [c,d]. Since V restricted to [a,b]2 is continuous for all x ∈ [a, p] there exists a q ∈ [a,b] such that V (b, q) = x. 
Then V (x, c) = V (q, V (b, c)) = V (q, b) = x and similarly as above we get V (x, y) = x for all y ∈ [c,d]. Finally, assume 
x ∈ ]p,b[. Then V (x, b) ≤ p and thus V (V (x, c), b) = V (x, V (b, c)) = V (x, b). Since a ≤ V (x, c) ≤ V (b, c) = b the cancella-
tivity of V restricted to [a,b]2 gives us V (x, c) = x and similarly as above we get V (x, y) = x for all y ∈ [c,d]. Summarizing, 
V (x, y) = min(x, y) for all x ∈ [a,b] , y ∈ [c,d] and by commutativity V (x, y) = min(x, y) for all x ∈ [c,d] , y ∈ [a,b]. �
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Analogously we can show the following result.

Proposition 10. Let V : ([a,b] ∪ [c,d])2 −→ ([a,b] ∪ [c,d]), where a < b < c < d, a, b, c, d ∈ [0, 1], be a generalized composite 
uninorm, such that V (b, c) = c and V restricted to [a,b]2 is a nilpotent, Archimedean t-subnorm on [a,b]2 , and V restricted to [c,d]2 is 
a continuous cancellative t-superconorm on [c,d]2 . Then V (x, y) = max(x, y) for all x ∈ [a,b] , y ∈ [c,d] and all x ∈ [c,d] , y ∈ [a,b].

Example 4. Let V : (
[

0, 1
4

]
∪

[
3
4 ,1

]
)2 −→ (

[
0, 1

4

]
∪

[
3
4 ,1

]
) be partially given by

V (x, y) =

⎧⎪⎨
⎪⎩

0 if (x, y) ∈
[

0, 1
4

]2
,

1 if (x, y) ∈
[

3
4 ,1

]2
.

Then V ( 1
4 , 34 ) ∈ { 1

4 , 34 }. Let us assume V ( 1
4 , 34 ) = 1

4 . Then V ( 1
4 , 1) = V (V ( 1

4 , 34 ), 34 ) = 1
4 and monotonicity implies V ( 1

4 , y) = 1
4

for all y ∈
[

3
4 ,1

]
. Further, V (0, 1) = V ( 1

4 , V ( 1
4 , 1)) = V ( 1

4 , 14 ) = 0 and monotonicity implies V (0, y) = 0 for all y ∈
[

3
4 ,1

]
. 

Further, if x ∈
]

0, 1
4

[
is such that V (x, 1) = y > x then V (y, 1) = 1 and for all z ∈

[
3
4 ,1

]
there is V (x, z) ∈ [x, y]. As an 

example of such a generalized composite uninorm we can take the one which is on 
[

0, 1
4

]
×

[
3
4 ,1

]
given by

V (x, y) =
⎧⎨
⎩0 if x = 0, y ∈

[
3
4 ,1

]
,

1
2i if x ∈

]
1

2i+1 , 1
2i

]
, i ∈ N \ {1}, y ∈

[
3
4 ,1

]
.

In the following we will focus on the remaining two classes, i.e., generalized sub-uninorms and generalized super-
uninorms. In some cases these operations are convertible uninorms.

Definition 5. Let O : [0, 1]2 −→ [0, 1] be a binary function and let there exists an e ∈ [0, 1] such that the function 
U : [0, 1]2 −→ [0, 1] given by

U (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

x if y = e,

y if x = e,

O (x, y) otherwise,

is a uninorm. Then O will be called a convertible uninorm.

Lemma 2. If for a generalized sub-uninorm (super-uninorm) V : [0, 1]2 −→ [0, 1] there V (x, y) = e implies e ∈ {x, y} then V is a 
convertible uninorm.

Proof. If V (x, y) = e implies e ∈ {x, y} then V can be restricted to ([0, 1] \ {e})2 and it is easy to see that then the ordinal 
sum of ([0, 1] \ {e}, V ) and ({e}, min) is a uninorm. �

Similar results as in Lemma 1 can be shown also for generalized sub-uninorms and generalized super-uninorms.

Lemma 3. Assume e ∈ [0, 1] and let M be a t-subnorm on [0, e]2 and R a t-superconorm on [e,1]2 . Then the binary function 
V 1 : [0, 1]2 −→ [0, 1] given by

V 1(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

M(x, y) if (x, y) ∈ [0, e]2,

R(x, y) if (x, y) ∈ ]e,1]2,

A(x, y) otherwise

is a generalized sub-uninorm and the binary function V 2 : [0, 1]2 −→ [0, 1] given by

V 2(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

M(x, y) if (x, y) ∈ [0, e[2,

R(x, y) if (x, y) ∈ [e,1]2,

A(x, y) otherwise

is a generalized super-uninorm, where A(x, y) = min(x, y) for all (x, y) ∈ [0, 1]2 or A(x, y) = max(x, y) for all (x, y) ∈ [0, 1]2 .

In the following section we will focus on additively generated generalized uninorms.
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6. Generalization of representable uninorms

In this section we will discuss generated generalized uninorms. We will start with representable uninorms (see [3]).

Proposition 11. Let f : [0, 1] −→ [−∞,∞], f (0) = −∞, f (1) = ∞ be a continuous strictly increasing function. Then a binary 
function U : [0, 1]2 −→ [0, 1] given by

U (x, y) = f −1( f (x) + f (y)),

where f −1 : [−∞,∞] −→ [0, 1] is an inverse function to f , is a uninorm, which will be called a representable uninorm.

Since the function f from the previous proposition is continuous and f (0) = −∞, f (1) = ∞, there exists an e ∈ ]0,1[
such that f (e) = 0. Then e is the neutral element of U . The function f in the previous proposition is called an additive 
generator of the uninorm U and it defines an isomorphism between the addition on [−∞,∞] and a uninorm U on [0, 1]. 
An additive generator of the uninorm U is uniquely given up to the positive multiplicative constant.

For a representable uninorm U generated by some function f we then see that f restricted to [0, e] is an additive 
generator of the t-norm T ∗

U on [0, e]2 and f restricted to [e,1] is an additive generator of the t-conorm C∗
U on [e,1]2. Due 

to the boundary conditions and continuity of f both TU and CU are then continuous and strict.
In [13] a generator of a representable uninorm was called a h-generator and authors use such generators for construction 

of implications. The h-generator was further generalized to the generalized h-generator which is a continuous strictly in-
creasing function f with f (e) = 0 for some e ∈ ]0,1[. Thus the condition f (0) = −∞, f (1) = ∞ is relaxed. Here the inverse 
function is replaced by the pseudo-inverse function of f (see [7]).

Definition 6. Let f : [a,b] −→ [c,d] be a non-decreasing function. The function f (−1) : R −→ [a,b] given by

f (−1)(x) = sup{y | f (y) < x},
with the convention sup ∅ = a will be called the pseudo-inverse of f . Additionally, the function f (−1)u : R −→ [a,b] given 
by

f (−1)u(x) = inf{y | f (y) > x},
with the convention inf ∅ = b will be called the upper pseudo-inverse of f .

For pseudo-inverse we have:

f ◦ f (−1)|Ran( f ) = idRan( f ). (7)

However, the following result was shown in [3].

Proposition 12. Let f : [0, 1] −→ [−∞,∞] be a continuous strictly increasing function with f (x) < 0, f (y) = 0 and f (z) > 0 for 
some x, y, z ∈ [0, 1]. Let the binary function O : [0, 1]2 −→ [0, 1] be given by O (x, y) = f (−1)( f (x) + f (y)). Then if f (1) = d < ∞
or if f (0) = c > −∞ the function O is not associative.

The previous result implies that in such a case the function O cannot be a generalized uninorm.
The generated continuous t-subnorms (see [14]) generalize continuous generated t-norms. Although in the case of con-

tinuous generated t-norms the existence of the neutral element force that the respective additive generators are strictly 
monotone, in the case of continuous t-subnorms also generators that are not strictly monotone can be assumed. That is 
why we would like to do the same generalization also in the case of representable uninorms, i.e., examine the binary 
functions generated by a continuous non-decreasing function f with f (e) = 0 for some e ∈ ]0,1[, and study under which 
conditions such a generated function is a generalized uninorm. Since f need not to be strictly monotone, it need not have 
an inverse and therefore pseudo-inverse should be used. However, in order to be more general, we will investigate not only 
construction based on pseudo-inverses, but more generally on quasi-inverses (see [7]).

Definition 7. Let f : [a,b] −→ [c,d] be a non-decreasing function. Then each function f ∗ : R −→ [a,b] satisfying

f ◦ f ∗|Ran( f ) = idRan( f ) (8)

and

f (−1) ≤ f ∗ ≤ f (−1)u (9)

will be called a quasi-inverse of f . The family of all quasi-inverses of f will be denoted by Q ( f ).
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For every non-decreasing function there exists at least one quasi-inverse. The pseudo-inverse of a non-decreasing func-
tion is the weakest quasi-inverse and it is left-continuous. Similarly, the upper pseudo-inverse of a non-decreasing function 
is the strongest quasi-inverse of the given function and it is right-continuous.

Definition 8. Let f : [0, 1] −→ [−∞,∞] be a continuous non-decreasing function with f (e) = 0 for some e ∈ ]0,1[. Let 
g ∈ Q ( f ), i.e., g is a quasi-inverse of f . Then the binary function O : [0, 1]2 −→ [0, 1] given by O (x, y) = g( f (x) + f (y))

will be called generated and ( f , g) will be called a quasi-generating pair of O , and more generally, f will be called a generator
of O .

In the following we will investigate the properties of generated binary functions, and we will focus mainly on generated 
generalized uninorms.

For a generator f , let us define the set

K f = {x ∈ [0,1] | there exists y ∈ [0,1], x �= y, f (x) = f (y)}
and E f = [0, 1] \ K f . Then for e ∈ ]0,1[ such that f (e) = 0 we have O (e, x) = x for all x ∈ E f . We further denote V f = f (K f ), 
i.e., the set of values of the function f on the intervals of constantness. From the properties of quasi-inverses we see that a 
generated binary function O generated by a generator f is uniquely given if we fix the values of the generating quasi-inverse 
g ∈ Q ( f ) on the set V f .

We will categorize generated binary functions based on the properties of their (quasi)-generators.
Class I will be a class of generated binary functions which are generated by generators f , which are strictly increasing.
Class II will be a class of generated binary functions which are generated by generators f such that 0 /∈ V f and K f �= ∅.
Class IIIa will be a class of generated binary functions which are generated by generators f such that V f = {0}.
Class IIIb will be a class of generated binary functions which are generated by generators f such that 0 ∈ V f and 
Card(V f ) > 1.

The generated binary functions from the Class I are just representable uninorms which were covered in the previous text 
and therefore we will study only the generated binary functions from the Class II and III, i.e., such that are generated by 
a (quasi-)generator f that have at least one interval of constantness. As f is continuous, each interval of constantness is 
closed and monotonicity implies that there are at most countably many intervals of constantness of f .

First let us note that if for a, b ∈ [0, 1], a < b, there is f (a) = f (b) then the generated binary function O with generator 
f does not have a neutral element since O (a, x) = O (b, x) for all x ∈ [0, 1]. Thus behavior of points between a and b is 
indistinguishable in the aggregation by O .

Assume that f : [0, 1] −→ [−∞,∞] is a continuous non-decreasing function with f (1) = 0. Then the function 
m : [0, 1] −→ [0,∞] given by m(x) = − f (x) for x ∈ [0, 1] defines a generator of a left-continuous t-subnorm. This is due 
to the following result shown in [14].

Proposition 13. Let m : [0, 1] −→ [0,∞] be a continuous non-increasing mapping. Then the binary function M : [0, 1]2 −→ [0, 1]
given by M(x, y) = m(−1)(m(x) + m(y)) is a left-continuous t-subnorm.

In the case that instead of the pseudo-inverse m(−1) we would use a quasi-inverse, the condition M(x, y) ≤ min(x, y)

could be violated.

Example 5. Let m : [0, 1] −→ [0,∞] be a continuous non-increasing mapping given by

m(x) =

⎧⎪⎪⎨
⎪⎪⎩

3 − 2x if x ∈
[

0, 1
2

]
,

2 if x ∈
]

1
2 , 3

4

]
,

8 − 8x otherwise.

Let us assume a quasi-inverse g ∈ Q (m) of m given by

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x > 3,

3−x
2 if x ∈ ]2,3],

3
5 if x = 2,

8−x
8 if x ∈ [0,2[,

1 otherwise.

Then for the binary function M : [0, 1]2 −→ [0, 1] given by M(x, y) = g(m(x) + m(y)) we have M(1, 12 ) = g(2) = 3
5 >

min(1, 12 ).
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Similar result can be shown for the case when f (0) = 0. Then the generated binary function generated by f is a t-
superconorm if and only if the quasi-inverse is equal to the upper pseudo-inverse. We summarize these observations in the 
following proposition.

Proposition 14.

(i) Let m : [0, 1] −→ [0,∞] be a continuous non-increasing mapping, m(1) = 0, and let g ∈ Q (m). Then the binary function 
M : [0, 1]2 −→ [0, 1] given by M(x, y) = g(m(x) + m(y)) is a t-subnorm if and only if g is the pseudo-inverse of m, i.e., 
g = m(−1) .

(ii) Let r : [0, 1] −→ [0,∞] be a continuous non-decreasing mapping, r(0) = 0, and let q ∈ Q (r). Then the binary function 
R : [0, 1]2 −→ [0, 1] given by R(x, y) = q(r(x) + r(y)) is a t-superconorm if and only if q is the upper pseudo-inverse of r, 
i.e., q = r(−1)u .

Thus we see that if f (1) = 0 ( f (0) = 0) then the generated binary function generated by a quasi-generating pair ( f , g)

is a generalized uninorm if and only if g is a pseudo-inverse (upper pseudo-inverse) of f .
From now on we will assume a general case where we have x, y, z ∈ [0, 1] such that f (x) < 0, f (y) = 0 and f (z) > 0. 

We have the following easy result which we introduce without proof.

Proposition 15. Let f : [0, 1] −→ [−∞,∞] be a continuous non-decreasing function with x, y, z ∈ [0, 1] such that f (x) < 0, 
f (y) = 0 and f (z) > 0 and let g ∈ Q ( f ). Then the binary function O : [0, 1]2 −→ [0, 1] given by O (x, y) = g( f (x) + f (y)) is 
non-decreasing and commutative. Moreover, O is associative if and only if f (0) = −∞ and f (1) = ∞.

For a generated binary function O we will now study when is O |[e,1]2 (O |]e,1]2 , O |[0,e]2 , O |[0,e[2 ) equal to a t-

superconorm on [e,1]2 (on ]e,1]2, t-subnorm on [0, e]2, on [0, e[2). Proposition 14 implies that restriction of a generated 
binary function O , generated by a function f to [e,1]2 (]e,1]2, [0, e]2, [0, e[2) is a t-superconorm (t-subnorm) if and only 
if g is equal to the upper pseudo-inverse of f on [e,1] (]e,1]) (pseudo-inverse of f on [0, e], on [0, e[). For the generated 
binary functions of the Class II we have 0 /∈ V f and thus there is only one e ∈ [0, 1] such that f (e) = 0. Thus for any quasi-
inverse g ∈ Q ( f ), i.e., also for both the pseudo-inverse and the upper pseudo-inverse, we have g(0) = e. Then we get the 
following result.

Proposition 16. Let O : [0, 1]2 −→ [0, 1] be a generated binary function of the Class II generated by a generator f and its quasi-
inverse g. Then O is a generalized sub-uninorm if and only if f (0) = −∞, f (1) = ∞, and g on [−∞,0] is equal to the pseudo-inverse 
of f on [0, e], −∞ /∈ V f and f is increasing on ]e,1].

Proof. Necessity: If O is a generalized sub-uninorm then Proposition 15 implies that f (0) = −∞, f (1) = ∞, and Propo-
sition 14 further implies that g on [−∞,0] is equal to the pseudo-inverse of f on [0, e], and g on ]0,∞] is equal to 
the upper pseudo-inverse of f on [e,1[, and since e is the only point with the functional value of f equal to 0 then g
on [0,∞] is equal to the upper pseudo-inverse of f on [e,1]. If −∞ ∈ V f , where f (0) = f (a) = −∞ for some 0 < a ≤ e
then O (a, y) = 0 < min(a, y) for all y ∈ [e,1] such that f (y) < ∞, i.e., O is not a generalized sub-uninorm. Finally, since 
O (e, y) ∈ [e, y] for all y ∈ ]e,1] and f (e) = 0 we get g( f (y)) ∈ [e, y]. However, g on [0,∞] is equal to the upper pseudo-
inverse of f on [e,1], i.e., g( f (y)) ≥ y. Thus O (e, y) = y = g( f (y)) for all y ∈ ]e,1], which means that f is increasing on 
]e,1].

Sufficiency: Proposition 15 implies that O is monotone, commutative and associative. Further, Proposition 14 implies 
that O on [0, e]2 is a t-subnorm. Since f is continuous on [0,1] and increasing on ]e,1] we see that O on ]e,1]2 is a 
t-conorm. Finally, we have to check the averaging behavior on [0, e] × ]e,1] (and similarly on ]e,1] × [0, e]). Note that 
since f is increasing on ]e,1] then ∞ /∈ V f . If x = e then O (e, y) = g( f (y)) = y for all y ∈ ]e,1]. If x < e and y > e then 
f (x) < f (x) + f (y) < f (y) which means that O (x, y) ∈ [x, y] for all x, y ∈ [0, 1], x < e and y > e. Summarizing, O is a 
generalized sub-uninorm. �

Note that in the previous result since f (e) = 0 and g(0) = e we get O (e, e) = e, i.e., O on [0, e]2 is a boundary weak 
t-norm [23]. O on [e,1]2 is then a t-conorm. However, O is not a convertible uninorm. Indeed, if O is of the Class II 
then corresponding f has at least one interval of constantness and since ∞, −∞ /∈ V f we are able to find x1, x2, y ∈ [0, 1], 
x1 �= x2, such that −∞ < f (x1) = f (x2) = − f (y) < 0. Then O (x1, O (y, x2)) = O (O (x1, y), x2) = g( f (x1)), however, if U is 
a uninorm converted from O then U (x1, U (y, x2)) = U (x1, e) = x1 and U (U (x1, y), x2) = U (e, x2) = x2, i.e., associativity is 
violated.

Analogously we can show the following result.

Proposition 17. Let O : [0, 1]2 −→ [0, 1] be a generated binary function of the Class II generated by a generator f and its quasi-inverse 
g. Then O is a generalized super-uninorm if and only if f (0) = −∞, f (1) = ∞, and g on [0,∞] is equal to the upper pseudo-inverse 
of f on [e,1], ∞ /∈ V f and f is increasing on [0, e[.
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Now we will focus on the Class III.
For a generated binary function O of the Class III we have 0 ∈ V f . Let the preimage of {0} in the mapping f be the 

interval [a,b], 0 ≤ a < b ≤ 1. If g(0) = c ∈ ]a,b[ we would get O (a, a) = c > a O (b, b) = c < b which means that O is not a 
generalized uninorm. Thus we have the following lemma.

Lemma 4. Let O : [0, 1]2 −→ [0, 1] be a generated binary function of the Class III generated by a generator f and its quasi-inverse g. 
Let the interval [a,b], 0 ≤ a < b ≤ 1, be the preimage of {0} in the mapping f . Then if O is a generalized uninorm we have g(0) ∈ {a, b}.

If g(0) = a (g(0) = b) then O (b, b) = a (O (a, a) = b) and thus the t-subnorm part should act on [0,b]2, i.e., O is a 
generalized sub-uninorm with e = b (t-superconorm part should act on [a,1]2, i.e., O is a generalized super-uninorm with 
e = a). We get the following result.

Proposition 18. Let O : [0, 1]2 −→ [0, 1] be a generated binary function of the Class III generated by a generator f and its quasi-
inverse g. Let the interval [a,b], 0 ≤ a < b ≤ 1, be the preimage of {0} in the mapping f . Then O is a generalized sub-uninorm if and 
only if f (0) = −∞, f (1) = ∞, g(0) = a and g on [−∞,0] is equal to the pseudo-inverse of f on [0,b], −∞ /∈ V f and f is increasing 
on ]b,1].

Proof. Necessity: If O is a generalized sub-uninorm then Proposition 15 implies that f (0) = −∞, f (1) = ∞ and similarly 
as in Proposition 16 we can show that −∞ /∈ V f . Further, from above it follows that g(0) = a and O (b, b) = a, i.e., O

should be a t-subnorm on [0,b]2 and a t-superconorm on ]b,1]2. Proposition 14 then implies that g on [−∞,0] is equal 
to the pseudo-inverse of f on [0,b], and g on ]0,∞] is equal to the upper pseudo-inverse of f on ]b,1]. Similarly as in 
Proposition 16 the averaging behavior of O on {b} × ]b,1] then implies that f is increasing on ]b,1].

Sufficiency can be shown similarly as in Proposition 16. Here just instead of averaging behavior on {e} × ]e,1] we have 
to check averaging behavior on [a,b] × ]b,1]. However, for x ∈ [a,b] and y ∈ ]b,1] we have O (x, y) = g( f (y)) = y, i.e., 
O (x, y) ∈ [x, y]. �

In this case, i.e., if O is a generalized sub-uninorm of the Class III we have g( f (x) + f (y)) �= b for all (x, y) ∈ [0, 1]2 and 
therefore O is a convertible uninorm.

Similar result holds also for generalized super-uninorms.

Proposition 19. Let O : [0, 1]2 −→ [0, 1] be a generated binary function of the Class III generated by a generator f and its quasi-
inverse g. Let the interval [a,b], 0 ≤ a < b ≤ 1, be the preimage of {0} in the mapping f . Then O is a generalized super-uninorm if 
and only if f (0) = −∞, f (1) = ∞, g(0) = b and g on [0,∞] is equal to the upper pseudo-inverse of f on [a,1], ∞ /∈ V f and f is 
increasing on [0,a[.

Triangular subnorms (t-superconorms) generated by a continuous additive generator need not to be continuous. In [14]
we can find the following result.

Proposition 20. A continuous non-increasing mapping m : [0, 1] −→ [0,∞] is an additive generator of some continuous t-subnorm 
M if and only if m|[0,m(−1)(2m(1))

] is strictly monotone.

From this we can conclude the following.

Proposition 21. Let O : [0, 1]2 −→ [0, 1] be a generalized sub-uninorm generated by a quasi-generating pair ( f , g) and let the 
preimage of {0} in the mapping f be the interval [a,b], 0 ≤ a ≤ b ≤ 1. If O on [0, e]2 is a continuous t-subnorm then f is strictly 
increasing on [0,a].

Proof. From Proposition 19 we know that g(0) = a and Proposition 20 then implies that O on [0,b]2 is a continuous 
t-subnorm if and only if f is strictly increasing on [0, O (b,b)] = [0,a]. �

If we put Propositions 16, 18 and 21 together we obtain the following.

Proposition 22. Let O : [0, 1]2 −→ [0, 1] be a generalized sub-uninorm generated by a quasi-generating pair ( f , g) and let the 
preimage of {0} in the mapping f be the interval [a,b], 0 ≤ a ≤ b ≤ 1. Then O on [0, e]2 is a continuous t-subnorm if and only if f is 
strictly increasing on [0,a] and on ]b,1].

In this case O is continuous on [0, e]2 and also on ]e,1]2. Similarly we can show the result for generalized super-
uninorms.
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Proposition 23. Let O : [0, 1]2 −→ [0, 1] be a generalized super-uninorm generated by quasi-generating pair ( f , g) and let the 
preimage of {0} in the mapping f be the interval [a,b], 0 ≤ a ≤ b ≤ 1. Then O on [e,1]2 is a continuous t-superconorm if and only if 
f is strictly increasing on [0,a[ and on [b,1].

Thus in both cases we obtain a generator from the class IIIa.

Example 6. Let f : [0, 1] −→ [−∞,∞] be given by

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln 4x if x ∈
[

0, 1
4

]
,

0 if x ∈
]

1
4 , 3

4

[
,

− ln(4 − 4x) otherwise.

Then if g ∈ Q ( f ), g(0) = 1
4 , with the convention ∞ + (−∞) = −∞, the binary operation O : [0, 1]2 −→ [0, 1] generated by 

( f , g) is a generalized sub-uninorm given for x ≤ y by

O (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4xy if (x, y) ∈
[

0, 1
4

]2
,

1
4 if (x, y) ∈

[
1
4 , 3

4

]2
,

1 − 4(1 − x)(1 − y) if (x, y) ∈
[

3
4 ,1

]2
,

x if x ∈
]

0, 1
4

[
, y ∈

]
1
4 , 3

4

]
,

y if y ∈
]

3
4 ,1

[
, x ∈

[
1
4 , 3

4

[
,

1
4 if (x, y) ∈

]
0, 1

4

[
×

]
3
4 ,1

[
, x = 1 − y,

x
4−4y if (x, y) ∈

]
0, 1

4

[
×

]
3
4 ,1

[
, x < 1 − y,

4x+y−1
4x if (x, y) ∈

]
0, 1

4

[
×

]
3
4 ,1

[
, x > 1 − y,

0 if x = 0,

1 if y = 1, x > 0.

If q ∈ Q ( f ), q(0) = 3
4 , with the convention ∞ + (−∞) = −∞, the binary operation O 2 : [0, 1]2 −→ [0, 1] generated by 

( f , q) is a generalized super-uninorm given by

O 2(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

3
4 if (x, y) ∈

[
1
4 , 3

4

]2
,

3
4 if x = 1 − y, x > 0,

O (x, y) otherwise.

7. Conclusions

In our work we have studied the ordinal sum construction yielding uninorms. We have introduced the basic formula 
for ordinal sum of uninorms and then we have examined the most general operations that can be used in the construc-
tion of uninorms via the ordinal sum construction. We have distinguished four kinds of operations: uninorms, generalized 
sub-uninorms, generalized super-uninorms and generalized composite uninorms. The first three types of operations can be 
isomorphically transformed to the unit interval and therefore we have investigated additive generators that yield these oper-
ations. We have generalized generators of uninorms by relaxing the strict monotonicity which means the lost of the neutral 
element. Another possibility of generalization of the generator of a representable uninorm is to keep strict monotonicity 
and relax the continuity condition. In the case when the range of such a generator is contained in the set [0,∞], several 
interesting results can be found in [20].
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Abstract

We investigate properties of an ordinal sum of uninorms in the case that the summands are proper representable uninorms. 
We show sufficient and necessary conditions for a uninorm to be an ordinal sum of representable uninorms. An example is also 
included.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Triangular norms, t-conorms and uninorms [1,7] are applied in many domains and therefore several construction 
methods for such aggregation functions were developed. Among others, let us recall the construction using the additive 
generators and the ordinal sum construction. A triangular norm is a binary function T : [0, 1]2 −→ [0, 1] which is com-
mutative, associative, non-decreasing in both variables and 1 is its neutral element. Due to the associativity the n-ary 
form of any t-norm is uniquely given and thus it can be extended to an aggregation function working on 

⋃
n∈N[0, 1]n. 

Dual functions to t-norms are t-conorms. A triangular conorm is a binary function S : [0, 1]2 −→ [0, 1] which is com-
mutative, associative, non-decreasing in both variables and 0 is its neutral element. The duality between t-norms and 
t-conorms is expressed by the fact that from any t-norm T we can obtain its dual t-conorm S by the equation

S(x, y) = 1 − T (1 − x,1 − y)

and vice versa.

Proposition 1. Let t : [0, 1] −→ [0,∞] be a continuous strictly decreasing function such that t (1) = 0. Then the 
binary operation T : [0, 1]2 −→ [0, 1] given by

T (x, y) = t−1(min(t (0), t (x) + t (y)))

is a continuous t-norm. The function t is called an additive generator of T .
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An additive generator of a continuous t-norm T is uniquely determined up to a positive multiplicative constant. 
Similarly, an additive generator of a continuous t-conorm S is a continuous strictly increasing function c : [0, 1] −→
[0,∞] such that c(0) = 0.

Now let us recall an ordinal sum construction for t-norms and t-conorms [2,7].

Proposition 2. Let K be a finite or countably infinite index set and let (]ak, bk[)k∈K ((]ck, dk[)k∈K ) be a disjoint 
system of open subintervals of [0, 1]. Let (Tk)k∈K ((Sk)k∈K ) be a system of t-norms (t-conorms). Then the ordinal sum 
T = (〈ak, bk, Tk〉 | k ∈ K) (S = (〈ck, dk, Sk〉 | k ∈ K)) given by

T (x, y) =
{

ak + (bk − ak)Tk(
x−ak

bk−ak
,

y−ak

bk−ak
) if (x, y) ∈ [ak, bk[2,

min(x, y) else

and

S(x, y) =
{

ck + (dk − ck)Sk(
x−ck

dk−ck
,

y−ck

dk−ck
) if (x, y) ∈ ]ck, dk]2,

max(x, y) else

is a t-norm (t-conorm). The t-norm T (t-conorm S) is continuous if and only if all summands Tk (Sk) for k ∈ K are 
continuous.

More details on t-norms and t-conorms can be found in [1,7]. In order to model bipolar behaviour, uninorms were 
introduced in [16] as binary functions on [0, 1] which are commutative, associative, non-decreasing in both variables 
and have a neutral element e ∈ ]0,1[ (see also [5]). A uninorm can be also taken as a bipolar t-conorm on [−1,1] (see 
[13]), i.e., a bipolar operation that is disjunctive with respect to the neutral point 0 (i.e., aggregated values diverge 
from the neutral point). If we take a uninorm in a broader sense, i.e., if for a neutral element we have e ∈ [0, 1], then 
the class of uninorms covers also the class of t-norms and the class of t-conorms. In order to stress that we assume 
a uninorm with e ∈ ]0,1[ we will call such a uninorm proper. For each uninorm the value U(1, 0) ∈ {0, 1} is the 
annihilator of U . A uninorm is called conjunctive (disjunctive) if U(1, 0) = 0 (U(1, 0) = 1). Due to the associativity 
we can uniquely define the n-ary form of any uninorm for any n ∈ N and therefore in some proofs we will use its 
ternary form instead of binary, where suitable.

For each uninorm U with neutral element e ∈ [0, 1], the restriction of U to [0, e]2 is a t-norm on [0, e]2 (i.e., 
a linear transformation of some t-norm TU ) and the restriction of U to [e,1]2 is a t-conorm on [e,1]2 (i.e., a linear 
transformation of some t-conorm SU ). Moreover, min(x, y) ≤ U(x, y) ≤ max(x, y) for all (x, y) ∈ [0, e] × [e,1] ∪
[e,1] × [0, e].

Definition 1. A uninorm U : [0, 1]2 −→ [0, 1] is called internal if U(x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2.

Lemma 1 ([3]). Let U : [0, 1]2 −→ [0, 1] be a uninorm such that TU = min and SU = max. Then U is internal.

For more details and a survey on other classes of uninorms we recommend [12].
In the following result we see that from any pair of a t-norm and a t-conorm we can construct the minimal and the 

maximal uninorm with the given underlying functions.

Proposition 3 ([9]). Let T : [0, 1]2 −→ [0, 1] be a t-norm and S : [0, 1]2 −→ [0, 1] a t-conorm and assume e ∈ [0, 1]. 
Then the two functions Umin, Umax : [0, 1]2 −→ [0, 1] given by

Umin(x, y) =

⎧⎪⎨
⎪⎩

e · T (x
e
,

y
e
) if (x, y) ∈ [0, e]2 ,

e + (1 − e) · S(x−e
1−e

,
y−e
1−e

) if (x, y) ∈ [e,1]2 ,

min(x, y) otherwise

and
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Umax(x, y) =

⎧⎪⎨
⎪⎩

e · T (x
e
,

y
e
) if (x, y) ∈ [0, e]2 ,

e + (1 − e) · S(x−e
1−e

,
y−e
1−e

) if (x, y) ∈ [e,1]2 ,

max(x, y) otherwise

are uninorms. We will denote the set of all uninorms of the first type by Umin and of the second type by Umax.

Similarly as in the case of t-norms and t-conorms we can construct uninorms using additive generators (see [5]).

Proposition 4. Let f : [0, 1] −→ [−∞,∞], f (0) = −∞, f (1) = ∞ be a continuous strictly increasing function. 
Then a binary function U : [0, 1]2 −→ [0, 1] given by

U(x, y) = f −1(f (x) + f (y)),

where f −1 : [−∞,∞] −→ [0, 1] is an inverse function to f , is a uninorm, which will be called a representable 
uninorm. This uninorm is conjunctive if we take the convention ∞ + (−∞) = −∞ and it is disjunctive if we take the 
convention ∞ + (−∞) = ∞.

Note that if we relax the monotonicity of the additive generator then the neutral element will be lost and by relaxing 
the condition f (0) = −∞, f (1) = ∞ the associativity will be lost. In [15] (see also [13]) we can find the following 
result.

Proposition 5. Let U : [0, 1]2 −→ [0, 1] be a uninorm continuous everywhere on the unit square except of the two 
points (0, 1) and (1, 0). Then U is representable, i.e., there exists such a function u : [0, 1] −→ [−∞,∞] with 
u(e) = 0, u(0) = −∞, u(1) = ∞ that U(x, y) = u−1(u(x) + u(y)).

Thus a uninorm U is representable if and only if it is continuous on [0, 1]2 \ {(0, 1), (1, 0)}, which completely 
characterises the set of representable uninorms.

Definition 2. We will denote the set of all uninorms U such that TU and SU are continuous by U , and the set of all 
uninorms V such that V (x, 0) = 0 for all x ∈ [0,1[ and V (x, 1) = 1 for all x ∈ ]0,1] by N . Further, we will denote by 
Nmax (Nmin) the set of all uninorms U ∈ N such that there exists a uninorm U1 ∈ Umax (U1 ∈ Umin) such that U = U1
on ]0,1[2.

Note that the class of representable uninorms belongs to the intersection U ∩ N .
In the case of t-norms (t-conorms), each continuous t-norm (t-conorm) is an ordinal sum of continuous generated 

t-norms (t-conorms). The aim of this paper is the characterisation of the uninorms that are ordinal sums of proper 
representable uninorms. In the following section we will investigate properties of ordinal sums of proper representable 
uninorms and in Section 3 we will completely characterise uninorms which are ordinal sums of proper representable 
uninorms. We give our conclusions in Section 4.

2. Ordinal sum of representable uninorms

An ordinal sum of uninorms was introduced in [14] (see also [2]). We will use the following transformation. For 
any 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c], and a uninorm U with neutral element e ∈ [0, 1] let f : [0, 1] −→ [a, b[ ∪{v} ∪
]c, d] be given by

f (x) =

⎧⎪⎨
⎪⎩

(b − a) · x
e

+ a if x ∈ [0, e[,

v if x = e,

d − (1−x)(d−c)
(1−e)

otherwise.

(1)

Then f is linear on [0, e[ and on ]e,1] and thus it is a piece-wise linear isomorphism of [0, 1] to ([a, b[ ∪ {v} ∪ ]c, d])
and a function Ua,b,c,d

v : ([a, b[ ∪ {v} ∪ ]c, d])2 −→ ([a, b[ ∪ {v} ∪ ]c, d]) given by

Ua,b,c,d
v (x, y) = f (U(f −1(x), f −1(y))) (2)
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Fig. 1. The function f (left) and its inverse f −1 (right) from Example 1.

is an operation on ([a, b[ ∪ {v} ∪ ]c, d])2 which is commutative, associative, non-decreasing in both variables (with 
respect to the standard order) and v is its neutral element. The function f is piece-wise linear, however, more generally 
we can assume any increasing isomorphic transformation.

Example 1. Let a = 0, b = 1
4 , v = c = 3

4 , d = 1, e = 1
2 . Then the function f : [0, 1] −→

[
0, 1

4

[
∪

[
3
4 ,1

]
from (1) is 

given by

f (x) =
{

x
2 if x ∈

[
0, 1

2

[
,

1+x
2 otherwise,

see Fig. 1. If we assume uninorm U1 from Example 3 the operation (U1)
0, 1

4 , 3
4 ,1

3
4

(x, y) can be then found in Example 3

as that part of the uninorm Ue which is defined on (
[
0, 1

4

[
∪

[
3
4 ,1

]
)2.

Proposition 6 ([14]). Assume e ∈ [0, 1]. Let K be an index set which is finite or countably infinite and let (]ak, bk[)k∈K

be a system of open disjoint subintervals (including empty subintervals) of [0, e], such that 
⋃

k∈K [ak, bk] = [0, e]. 
Similarly, let (]ck, dk[)k∈K be a system of open disjoint subintervals (including empty subintervals) of [e,1], such 
that 

⋃
k∈K [ck, dk] = [e,1]. Further, let these two systems be anti-comonotone, i.e., bk ≤ ai if and only if ck ≥ di

for all i, k ∈ K . We will denote by K∗ = {k ∈ K | ]ak, bk[ �= ∅} and by K∗ = {k ∈ K | ]ck, dk[ �= ∅}. Assume a 
family of proper uninorms (Uk)k∈K∗∩K∗ on [0, 1]2, a family of t-norms (Tk)k∈K∗\K∗ on [0, 1]2 and a family of t-
conorms (Sk)k∈K∗\K∗ on [0, 1]2. Denote B1 = {bk | k ∈ K} \ {ak | k ∈ K∗} and C1 = {ck | k ∈ K} \ {dk | k ∈ K∗}
and let g : B1 \ {e} −→ [e,1], h : C1 \ {e} −→ [0, e] be two functions given for b ∈ B1 \ {e} and c ∈ C1 \ {e}
by

g(b) = lim
i−→∞dki

,

where b = lim
i−→∞aki

for ki ∈ K∗ and

h(c) = lim
i−→∞aki

,

where c = lim
i−→∞dki

for ki ∈ K∗. We further denote B = {b ∈ B1 \ {e} | g(b) ∈ C1}, C = {c ∈ C1 \ {e} | h(c) ∈ B1} and 

we assume a function n : B −→ B ∪ C given for all b ∈ B by

n(b) ∈ {b,g(b)}.
Let the ordinal sum Ue = (〈ak, bk, ck, dk, Uk〉 | k ∈ K) be given by
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Ue(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y if x = e,

x if y = e,

(Uk)
ak,bk,ck,dk
vk

if (x, y) ∈ ([ak, bk[ ∪ ]ck, dk])2, k ∈ K∗ ∩ K∗,

(Tk)
ak,bk if (x, y) ∈ ([ak, bk[ ∪ ]ck, dk])2, k ∈ K∗ \ K∗,

(Sk)
ck,dk if (x, y) ∈ ([ak, bk[ ∪ ]ck, dk])2, k ∈ K∗ \ K∗,

x if y ∈ [bk, ck] , x ∈ [ak, dk] \ [bk, ck] , k ∈ K∗ ∪ K∗,

y if x ∈ [bk, ck] , y ∈ [ak, dk] \ [bk, ck] , k ∈ K∗ ∪ K∗,

min(x, y) if (x, y) ∈ [b, c]2 \ (]b, c[2 ∪ {(b, c), (c, b)}),
where b ∈ B,c = g(b), x + y < c + b,

max(x, y) if (x, y) ∈ [b, c]2 \ (]b, c[2 ∪ {(b, c), (c, b)}),
where b ∈ B,c = g(b) x + y > c + b,

n(b) if (x, y) = (b, c) or (x, y) = (c, b), b ∈ B,c = g(b),

min(x, y) if (x, y) ∈ {b} × [b, c] ∪ [b, c] × {b}, b ∈ B1 \ (B ∪ {e}), c = g(b),

max(x, y) if (x, y) ∈ {c} × [b, c] ∪ [b, c] × {c}, c ∈ C1 \ (C ∪ {e}), b = h(c),

where vk = ck (vk = bk) if there exists an i ∈ K such that bk = ai , ck = di and Ui is disjunctive (conjunctive) and 
vk = n(bk) if bk ∈ B , vk = bk if bk ∈ B1 \ B , vk = ck if ck ∈ C1 \ C and (Uk)

ak,bk,ck,dk
vk

is given by the formula (2), 
(Tk)

ak,bk ((Sk)
ck,dk ) is a linear transformation of Tk (Sk) to [ak, bk]2 ([ck, dk]2). Then Ue is a uninorm.

An example of an ordinal sum of two uninorms can be found in Example 3.

Remark 1. It is evident that ordinal sum of uninorms Ue = (〈ak, bk, ck, dk, Uk〉 | k ∈ K) is on [0, e]2 equal 
to an ordinal sum of t-norms, i.e., TU = (〈ak, bk, TUk

〉 | k ∈ K) and on [e,1]2 to an ordinal sum of t-conorms 
SU = (〈ck, dk, SUk

〉 | k ∈ K). In the case that we assume an ordinal sum of uninorms such that 
⋃

k∈K [ak, bk] �= [0, e]
(
⋃

k∈K [ck, dk] �= [e,1]) this can be given by the above ordinal sum, where the missing summands are covered by 
internal uninorms. Later we will see that this holds also vice versa, i.e., if U is an ordinal sum of uninorms and 
TU = (〈ak, bk, Tk〉 | k ∈ K) and SU = (〈ck, dk, Sk〉 | k ∈ K) and [a, b[∪ ]c, d] is a missing summand support, i.e., such 
that is not covered by 

⋃
k∈K [ak, bk] ∪ ⋃

k∈K [ck, dk], then U(x, y) = min(x, y) on [a, b]2 and U(x, y) = max(x, y)

on [c, d]2. Moreover, similarly as in Lemma 1 we get that U is internal on ([a, b] ∪ [c, d])2.

Example 2. Assume U1 ∈ Umin and U2 ∈ Umax then U1 and U2 are ordinal sums of uninorms, U1 = (〈e, e, e, 1, SU1〉,〈0, e, 1, 1, TU1〉) and U2 = (〈0, e, e, e, TU2〉, 〈0, 0, e, 1, SU2〉).

Assume a uninorm U : [0, 1]2 −→ [0, 1] such that U = (〈ak, bk, ck, dk, Uk〉 | k ∈ K), where all conditions from 
Proposition 6 are satisfied and both ]ak, bk[ and ]ck, dk[ are non-empty for all k ∈ K . We will call such an ordinal sum 
complete. Let each Uk for k ∈ K be a representable uninorm. Then by Proposition 5 the uninorm Uk is continuous on 
[0, 1] \ {(0, 1), (1, 0)}. Since the summand corresponding to Uk acts on [ak, bk[∪ ]ck, dk] the uninorm U is continuous 
on ([ak, bk[ ∪ ]ck, dk])2 except the set {(fk(x), fk(y)) | Uk(x, y) = ek} ∪ {(ak, dk), (dk, ak)}, where ek is the neutral 
element of Uk and fk is the transformation given by (2) respective to the summand corresponding to Uk . Here let 
us note that for a representable uninorm Uk there exists a strictly decreasing function rk : ]0,1[ −→ ]0,1[ with 
rk(ek) = ek such that Uk(x, y) = ek if and only if rk(x) = y.

The ordinal sum construction further implies that for x ∈ {ak, bk, ck, dk} and y ∈ [0, 1] we have U(x, y) ∈ {x, y}. 
Moreover, U(ak, y) = ak and U(dk, y) = dk for y ∈ ]ak, dk[ and U(bk, y) = bk and U(ck, y) = ck for y ∈ ]bk, ck[. 
Since also Uk(z, e) = max(z, e) for z > e and Uk(z, e) = min(z, e) for z < e we see that U is continuous on {bk} ×
[ak, bk], [ak, bk] × {bk}, {ck} × [ck, dk], [ck, dk] × {ck}, {bk} × [ck, dk] \ {(bk, ck)}, [ck, dk] × {bk} \ {(ck, bk)} and on 
{ck} × [ak, bk] \ {(ck, bk)}, [ak, bk] × {ck} \ {(bk, ck)}. If we summarise this over all summands for k ∈ K we obtain 
the following result.

Proposition 7. Assume a uninorm U : [0, 1]2 −→ [0, 1]. If U is a complete ordinal sum of representable uninorms, i.e., 
U = (〈ak, bk, ck, dk, Uk〉 | k ∈ K), for some suitable systems (]ak, bk[)k∈K and (]ck, dk[)k∈K and a family of (proper) 
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Fig. 2. The uninorm Ue from Example 3. Here U∗
1 is a transformation of U1 to (

[
0, 1

4

[
∪

[
3
4 ,1

]
)2 given by (2), and U∗

2 is a linear transformation 

of U2 to 
[

1
4 , 3

4

]2
. The oblique lines denote the points of discontinuity of U .

representable uninorms (Uk)k∈K then there exists a continuous strictly decreasing function r : [0, 1] −→ [0, 1] with 
r(0) = 1, r(e) = e and r(1) = 0 such that U is continuous on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]}. Note that U need not be 
non-continuous on the whole set {(x, r(x)) | x ∈ [0, 1]}.

Example 3. Let U1, U2 : [0, 1]2 −→ [0, 1] with U1 = U2 be representable uninorms generated by

f (x) =
{

ln(2x) if x ≤ 1
2

− ln(2 − 2x) otherwise,

with U1(1, 0) = 1. Then the ordinal sum Ue = (〈0, 14 , 34 , 1, U1〉, 〈 1
4 , 12 , 12 , 34 , U2〉), with e = 1

2 is given in the following 
table

x\y
[
0, 1

4

[ [
1
4 , 1

2

] ]
1
2 , 3

4

] ]
3
4 ,1

]
[
0, 1

4

[ x
4−4y

if x + y < 1
max(x, y) max(x, y) 1 − 4(1 − x)(1 − y)

4x−1+y
4x

if x + y > 1

[
1
4 , 1

2

]
min(x, y)

x−y+ 1
2

3−4y
if x + y < 1 3

4 − 4( 3
4 − x)( 3

4 − y) max(x, y)
3x+y− 3

2
4x−1 if x + y > 1

]
1
2 , 3

4

]
min(x, y)

4(x − 1
4 )(y − 1

4 ) + 1
4

y−x+ 1
2

3−4x
if x + y < 1

max(x, y)
3y+x− 3

2
4y−1 if x + y > 1]

3
4 ,1

]
4xy min(x, y) min(x, y)

y
4−4x

if x + y < 1
4y−1+x

4y
if x + y > 1

where if x +y = 1 then U(x, y) = 1
2 for (x, y) ∈

]
1
4 , 3

4

[2
and otherwise U(x, y) = 3

4 . Thus here Ue is non-continuous 

only in the points from the set {(x, 1 − x) | x ∈
[
0, 1

4

]
∪

[
3
4 ,1

]
}. Moreover, evidently Ue ∈ U ∩ N . The uninorm Ue

can be seen in Fig. 2.

Further we will show some general properties of uninorms that we will use later.

Proposition 8. Assume a uninorm U : [0, 1]2 −→ [0, 1] such that U ∈ U and U /∈ N . Then U is an ordinal sum of a 
uninorm and a non-proper uninorm (i.e., a t-norm or a t-conorm).
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Proof. Assume U(1, 0) = 1, the case when U(1, 0) = 0 can be shown analogically. Then U(x, 1) = 1 for all x ∈ [0, 1]
and U(x, 0) = 0 for all x ∈ [0, e]. If U /∈ N then there exists a y ∈ ]e,1[ such that U(0, y) = z > 0, i.e., z ∈ ]

0, y
]
. If 

z ≤ e we get 0 = U(0, e) ≥ U(0, z) = U(0, 0, y) = z what is a contradiction, i.e., z ∈ ]
e, y

]
. Moreover, U(0, z) = z. 

Since SU is continuous then for all x ∈ [z,1] there exists a u ∈ [e,1] such that U(z, u) = x. Then

U(0, x) = U(0, z, u) = U(z,u) = x.

Thus if U(0, y) > 0 for some y ∈ ]e,1[ then U(0, y) = y. Let b = inf{y ∈ [e,1] | U(0, y) > 0}. Then b is an idem-
potent point of U , since otherwise the continuity of SU implies existence of x1 ∈ ]e, b[ such that U(x1, x1) = v > b

which means

b < v = U(0, v) = U(0, x1, x1) = U(0, x1) = 0

what is a contradiction. Further, if U(0, y) = y for some y ∈ [e,1] then U(x, y) = U(x, 0, y) = U(0, y) = y for all 
x ∈ [0, e] and thus U(x, y) = max(x, y) if (x, y) ∈ [0, e] × ]b,1] ∪ ]b,1] × [0, e].

Since b is an idempotent point, SU (its transformation onto [e,1]2) is an ordinal sum SU = (〈e, b, S1〉, 〈b, 1, S2〉)
and thus U on [b,1]2 corresponds to S2 and U(x, y) = max(x, y) for all (x, y) ∈ [0, b] × ]b,1] ∪ ]b,1] × [0, b]. Also, 
[0, b]2 is closed under U . Thus

U = (〈0, e, e, b,U∗〉, 〈0,0, b,1, S2〉),
where U∗ is uninorm which is a linear transformation of U on [0, b]2. �
Definition 3. Let p be a relation on X ×Y and denote p(x) = {y ∈ Y | (x, y) ∈ p}. Then p will be called a continuous 
non-increasing pseudo-function if

(i) for all x1, x2 ∈ X, x1 < x2 there is p(x1) ≥ p(x2), i.e., for all y1 ∈ p(x1) and all y2 ∈ p(x2) we have y1 ≥ y2 and 
thus Card(p(x1) ∩ p(x2)) ≤ 1,

(ii) for all x ∈ X and all y ∈ Y there exist y1 ∈ Y and x1 ∈ X such that (x, y1) ∈ p and (x1, y) ∈ p,
(iii) if y1, y2 ∈ p(x) for some x ∈ X then y ∈ p(x) for all y ∈ [

y1, y2
]
.

A relation p is called symmetric if (x, y) ∈ p if and only if (y, x) ∈ p.

Remark 2.

(i) In the case that U is an ordinal sum of representable uninorms which is not complete, then the function that 
determine the non-continuity points need not be strictly decreasing, just non-increasing. If there is a non-proper 
summand such that ak = bk = 0 (ck = dk = 1) then for rk we have rk(0) = ck (rk(1) = bk). Further if there is a 
non-proper summand, i.e., ak = bk > 0 (ck = dk < 1) for some k ∈ K then U is non-continuous on {ak} × [ck, dk]
({ck} × [ak, bk]). Thus in such a case rk is no longer a function since it contains also some vertical segments, 
however, rK is a symmetric continuous non-increasing pseudo-function.

(ii) If we assume an ordinal sum, where some summands are representable uninorms and some summands are in-
ternal uninorms then again we can obtain a symmetric continuous non-increasing pseudo-function r such that 
U is continuous on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]}. This follows from the fact that for an internal uninorm V
the monotonicity implies existence of a symmetric continuous non-increasing pseudo-function pV such that 
V (x, y) = max(x, y) if y > pV (x) and V (x, y) = min(x, y) if y < pV (x).

In the following section we will discuss the characterisation of uninorms that are ordinal sums of proper repre-
sentable uninorms.

3. Characterisation of uninorms that are equal to an ordinal sum of proper representable uninorms

For a given uninorm U : [0, 1]2 −→ [0, 1] and each x ∈ [0, 1] we define a function ux(z) = U(x, z) for z ∈ [0, 1]. 
We will start with the following useful result.
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Lemma 2. Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ N ∩ U . If for some a ∈ ]0, e[ ∪ ]e,1[, a is an idempotent 
element of U , then ua is non-continuous.

The above result follows from the fact that if a is an idempotent element of U different from 0, e, resp. 1, then 
e /∈ Ran(ua). Indeed, if U(a, b) = e for some b ∈ [0, 1] then e = U(a, a, b) = a what is a contradiction.

Proposition 9. Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ N ∩ U . Then if U(a, b) = e for some a, b ∈ [0, 1], a < e

then U is continuous on [0, 1]2 \ ([0, a[ ∪ ]b,1])2.

Proof. If U(a, b) = e then a /∈ {0, 1}. Also if U(a, b) = U(a, c) = e then b = U(b, a, c) = c, i.e., b = c. First we 
show that ua is continuous on [0, 1]. Since U is monotone and ua(0) = 0, ua(1) = 1 the continuity of ua is equivalent 
with the equality Ran(ua) = [0, 1]. Assume that Ran(ua) �= [0, 1], i.e., there exists a c ∈ [0, 1] such that c /∈ Ran(ua). 
However, we have U(a, b, c) = c, i.e., for z = U(b, c) we have ua(z) = c what is a contradiction.

Thus ua and similarly ub are continuous functions. Next we will show that for all x ∈ ]a, b[ there exists a vx ∈
[0, 1] such that U(x, vx) = e. Assume f ∈ ]a, e] (for f ∈ [e, b[ the proof is analogous). Since TU is continuous and 
U(a, f ) ≤ a, U(f, e) = f there exists a af ∈ [0, e] such that U(f, af ) = a. Then

e = U(a,b) = U(f,af , b)

and if wf = U(af , b) then U(f, wf ) = e. Summarising we get that all sections ux with x ∈ [a, b] are continuous. 
From the previous lemma we see that a and b are not idempotent elements, i.e., there exist g, h with g < a < b < h

such that U(g, h) = e, i.e., all ux for x ∈ [
g,h

]
are continuous. Now the monotonicity of U implies the continuity on 

[0, 1]2 \ ([0, a[ ∪ ]b,1])2 (see [8]). �
From the previous proposition we see that if U ∈ N ∩ U and U is non-continuous in some point (c, d) ∈ [0, 1]2

then ux is non-continuous for all x ∈ [0, c] ∪ [d,1].

Lemma 3. Assume a uninorm U : [0, 1]2 −→ [0, 1], U ∈ U ∩ N . If a ∈ [0, 1] is an idempotent element of U then U
is internal on {a} × [0, 1].

Proof. If a ∈ {0, 1, e} the result is evident. Otherwise we will assume a < e (the proof for a > e is analogous). 
Since a is an idempotent point we have U(a, x) = min(x, y) for all x ∈ [0, e]. From Lemma 2 it follows that ua is 
non-continuous and e /∈ Ran(ua). Assume y > e and let U(a, y) = v ≤ y. Then if v ≤ e we have v = U(a, a, y) =
U(a, v) ≤ a, i.e., v = a. Thus if v > a also v > e. Denote

b = inf{y ∈ [0,1] | U(a,y) > a}.
Then U(a, y) > a for y > b and U(a, y) = min(a, y) for y < b. For v = U(a, y) > a we further have v =
U(a, a, y) = U(a, v). Since U ∈ U the continuity of SU ensures for any y2 > v existence of y1 such that S(v, y1) = y2. 
Then

U(a,y2) = U(a, v, y1) = U(v,y1) = y2.

Summarising, for all y > b we have U(a, y) = y and for all x < b we have U(x, a) = min(a, x). To conclude the 
proof we have only to check the value U(a, b). Assume U(a, b) = c ∈ ]a, b[. Then c ≥ e and U(a, c) = c < b, what 
is a contradiction since U(a, x) = min(a, x) for all x < b. �

The above lemma shows, that if we denote the set of all idempotent points of U by IU , then U restricted to I 2
U is 

an internal uninorm.

Lemma 4. Each uninorm U : [0, 1]2 −→ [0, 1] with U ∈ U is continuous in (e, e).

Proof. If TU and SU are continuous, since U is commutative, we only have to check that for two monotone sequences 
{an}n∈N and {bn}n∈N with lim

n−→∞an = e = lim
n−→∞bn and an < e, bn > e for n ∈ N there is lim

n−→∞U(an, bn) = e. 

However, monotonicity gives us an ≤ U(an, bn) ≤ bn and thus e ≤ lim
n−→∞U(an, bn) ≤ e. �
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From now on we will investigate uninorms such that there exists a continuous strictly decreasing function 
r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0 such that U is continuous on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]}. 
Then if U is non-continuous only in (0, 1), (1, 0) the uninorm U is representable. Thus if U is not representable 
then due to Proposition 9 there exist a, b ∈ [0, 1] such that U is non-continuous in all points of {(x, r(x)) | x ∈
[0, a] ∪ [b,1]}, where a > 0 and b < 1.

Each continuous t-norm (t-conorm) is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). 
Note that a continuous t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent points 0 and 1. 
A continuous Archimedean t-norm T (t-conorm S) is either strict, i.e., strictly increasing on ]0,1]2, (on [0,1[2) or 
nilpotent, i.e., there exist (x, y) ∈ ]0,1[2 such that T (x, y) = 0 (S(x, y) = 1).

For Archimedean underlying functions we can show the following result (compare [6,10,11]).

Proposition 10. Assume a uninorm U : [0, 1]2 −→ [0, 1], U ∈ U ∩ N . If TU and SU are Archimedean then either U
is a representable uninorm or U ∈ Nmin ∪ Nmax.

Proof. If for all x ∈ ]0,1[ there exists a y ∈ [0,1] such that U(x, y) = e then since TU and SU are continuous and 
Archimedean U is continuous on [0,1]2 except points (0, 1) and (1, 0) and thus U is a representable uninorm. If for 
any x ∈ ]0,1[, x �= e there exists a y ∈ [0,1] such that U(x, y) = e then also U(x, x, y, y) = e and since TU and 
SU are continuous and Archimedean Proposition 9 implies that for all x ∈ ]0,1[ there exists a y ∈ [0,1] such that 
U(x, y) = e and thus U is representable. Therefore we will suppose that U(x, y) = e for (x, y) ∈ [0,1]2 if and only 
if x = y = e.

If U(x, y) = x = U(x, e) (or similarly if U(x, y) = y) for some x, y ∈ ]0,1[, x < e and y > e then 
U(x, y, . . . , y︸ ︷︷ ︸

n-times

) = x for all n ∈ N and since SU is continuous and Archimedean we have U(x, z) = x for all z ∈ [e,1[. 

Further, since TU is continuous and Archimedean for all 0 < q ≤ x there exists x1 ∈ [0, e] such that U(x, x1) = q and 
thus U(q, z) = U(x1, x, z) = U(x1, x) = q for all z ∈ [e,1[. Let

b = inf{x ∈ [0, e] | U(x,
1 + e

2
) > x}.

Then U(x, y) = x for all x < b and y ∈ [e,1[ and U(x, y) > x for all x > b and y ∈ [e,1[. If b is not an idempotent 
point then since TU is continuous and Archimedean there exists b1, b < b1 < e such that U(b1, b1) = v < b. Then 
for a y ∈ [e,1[ and U(b1, y) = w > b1 we have U(b1, w) = U(b1, b1, y) = U(v, y) = v = U(b1, b1) what is possible 
only if there is an idempotent point in [b1,w]. However, then

b > v = U(b1, b1) = U(b1,w) = b1 > b

what is a contradiction. Thus b is an idempotent point. Since TU and SU are Archimedean we have b ∈ {0, e}. Thus we 
get that either U(x, y) = x for all (x, y) ∈ ]0, e[ × ]e,1[, i.e., U ∈ Nmin, or U(x, y) = y for all (x, y) ∈ ]0, e[ × ]e,1[, 
i.e., U ∈ Nmax, or there is U(x, y) ∈ ]

x, y
[

for all (x, y) ∈ ]0, e[× ]e,1[. From now on we will suppose that U(x, y) ∈]
x, y

[
for all (x, y) ∈ ]0, e[ × ]e,1[.

Take any (x, y) ∈ ]0, e[ × ]e,1[ and then U(x, y) = c ∈ ]
x, y

[
. Without loss of generality assume c < e (the case 

when c > e is analogous). Then since x < c < e and TU is continuous and Archimedean there exists a x1 ∈ ]0, e[ such 
that U(c, x1) = x. Then

c = U(x, y) = U(c, x1, y)

which is a contradiction if U(x1, y) ∈ ]e,1[. Since U(x1, y) ≤ y and U(x1, y) �= e we have x1 ≤ U(x1, y) = z < e. 
Then since z ∈ ]0, e[ and TU is Archimedean the equality c = U(c, z) implies that z is an idempotent point what is a 
contradiction. Summarising, U is either a representable uninorm or U ∈ Nmin ∪ Nmax. �
Corollary 1. Assume a uninorm U : [0, 1]2 −→ [0, 1], U ∈ U ∩ N and let there exist a continuous strictly decreasing 
function r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0 such that U is continuous on [0, 1] \ {(x, r(x)) |
x ∈ [0, 1]}. Then if there exist a ∈ [0, e[ and b ∈ ]e,1] such that U is an Archimedean (i.e., nilpotent or strict) t-norm 
on [a, e]2 and U is an Archimedean (i.e., nilpotent or strict) t-conorm on [e, b]2 then U on [a, b]2 is a representable 
uninorm.

113



A. Mesiarová-Zemánková / Fuzzy Sets and Systems 308 (2017) 42–53 51

Proof. Since U is a t-norm on [a, e]2 and a t-conorm on [e, b]2 then a and b are idempotent points of U and U is 
closed on [a, b]2, i.e., U on [a, b]2 is isomorphic to a uninorm which we denote by U∗. The previous proposition and 
Proposition 8 imply that either U∗ is a representable uninorm or U∗ ∈ Nmin ∪ Nmax. However, if U∗ ∈ Nmin then 
U∗ is non-continuous in all points from the set ]0, e[ × {1}, i.e., r is not strictly decreasing what is a contradiction. 
Similarly, if U∗ ∈ Nmax then U∗ is non-continuous in all points from the set ]e,1[×{0}. Thus U∗ is representable. �

Before we introduce another result we recall the claim of [4, Theorem 5.1]. Here U(e) = {U : [0, 1]2 −→
[0,1] | U is associative, non-decreasing, with the neutral element e ∈ [0, 1]}. Thus U ∈ U(e) is a uninorm if it is com-
mutative.

Theorem 1. Let U ∈ U(e) and a, b, c, d ∈ [0, 1], a ≤ b ≤ e ≤ c ≤ d be such that U |[a,b]2 is associative, non-
decreasing, with the neutral element b and U |[c,d]2 is associative, non-decreasing, with the neutral element c. Then 
the set ([a, b] ∪ [c, d])2 is closed under U .

Now we can show the following.

Proposition 11. Assume a uninorm U : [0, 1]2 −→ [0, 1], U ∈ U ∩N and let there exist a continuous strictly decreas-
ing function r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0 such that U is continuous on [0, 1] \ {(x, r(x)) |
x ∈ [0, 1]}. Then

(i) if a, b ∈ [0, e] are idempotent elements such that U(x, x) < x for all x ∈ ]a, b[ then also c = r(b) and d = r(a)

are idempotent elements and U(y, y) > y for all y ∈ ]c, d[;
(ii) if c, d ∈ [e,1] are idempotent elements such that U(y, y) > y for all y ∈ ]c, d[ then also b = r(c) and a = r(d)

are idempotent elements and U(x, x) < x for all x ∈ ]a, b[.

Proof. We will only show the first part, the second part is analogous. Let a, b ∈ [0, e] be idempotent elements of U
such that U(x, x) < x for all x ∈ ]a, b[ and let c = r(b) and d = r(a). Let g be the smallest idempotent element of U
such that g ≥ d . Then according to Theorem 1 interval 

[
a,g

]2 is closed under U , i.e., it is a linear transformation of 
some uninorm U∗, U∗ ∈ U . If U∗ ∈ N then U is non-continuous in (a, g) which means that g = d . If U∗ /∈ N then 
Proposition 8 implies that U∗ is an ordinal sum of a uninorm and a non-proper uninorm and since U is non-continuous 
in (a, d) where d ≤ g we have U(a, z) < e for z < d and U(a, z) > e for z > d , i.e., U∗ is an ordinal sum of a uninorm 
and a t-conorm and d is an idempotent point, i.e., d = g. Thus in all cases d is an idempotent element of U .

Further, ub is non-continuous exactly in the point x = c and since b is idempotent Lemma 3 implies U(b, x) =
min(x, b) for x < c and U(b, x) = x for x > c, U(b, c) ∈ {b, c}. If U(b, c) = b then also U(b, c, c) = b which implies 
U(c, c) ≤ c, i.e., c is an idempotent point of U . Assume U(b, c) = c. Then for x ∈ ]e, c[ we have

c = U(b, c) = U(b,x, c) = U(x, c)

which means that there is an idempotent point in [x, c]. Since SU is continuous, i.e., the set of all idempotent points 
is closed we see that c is an idempotent point of U . Thus both c and d are idempotent points.

Assume that h ∈ ]c, d[ is an idempotent point. Then similarly as above we can show that r(h) is also an idem-
potent point of U and a = r(d) < r(h) < r(c) = b, i.e., there is an idempotent point between a and b what is a 
contradiction. �
Definition 4. An internal uninorm U : [0, 1]2 −→ [0, 1] will be called s-internal if there exists a continuous and strictly 
decreasing function vU : [0, 1] −→ [0, 1] such that U(x, y) = min(x, y) if y < vU(x) and U(x, y) = max(x, y) if 
y > vU(x).

Proposition 12. Assume a uninorm U : [0, 1]2 −→ [0, 1], U ∈ U ∩ N and let there exist a continuous strictly 
decreasing function r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0 such that U is continuous on 
[0, 1] \ {(x, r(x)) | x ∈ [0, 1]}. Then U is an ordinal sum of representable uninorms and s-internal uninorms, i.e., 
U = (〈am, bm, cm, dm, Um〉 | m ∈ M), where (]am,bm[)m∈M and (]cm, dm[)m∈M are two anti-comonotone systems of 
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disjoint non-empty open intervals such that 
⋃

m∈M [am,bm] = [0, e] and 
⋃

m∈M [cm, dm] = [e,1], and (Um)m∈m is a 
family of (proper) representable uninorms and s-internal uninorms on [0, 1]2.

Proof. Since TU and SU are continuous the set of idempotent elements IU of U is closed and thus [0, e] \ IU =⋃
m∈M

]am,bm[ and [e,1] \ IU = ⋃
l∈L

]cl, dl[ for some countable index sets M, L and two systems of open non-empty 

disjoint intervals (]am,bm[)m∈M and (]cl, dl[)l∈L. From Proposition 11 it follows that each interval ]am,bm[ can 
be paired with the interval ]cl, dl[ for some l ∈ L such that r(am) = dl and r(bm) = cl and vice versa, i.e., we 
can set L = M and obtain two anti-comonotone systems of open non-empty disjoint intervals (]am,bm[)m∈M and 
(]cm, dm[)m∈M , where ]am,bm[ ⊂ [0, e] and ]cm, dm[ ⊂ [e,1] for all m ∈ M . Since am, bm, cm, dm are idempotent 
points, Lemma 3 and monotonicity of U implies that U(x, y) = y if x ∈ [bm, cm] and y ∈ [am,dm] \ [bm, cm].

Further, ([am,bm] ∪ [cm, dm])2 is closed under U and U on [am,bm]2 is a continuous Archimedean t-norm and U
on [cm, dm]2 is a continuous Archimedean t-conorm. In order to use backward transformation inverse to (2) we have 
only to show that

Card(Ran(U |[am,bm[∪]cm,dm]) ∩ [bm, cm]) < 2.

Assume U(x1, y1) = q for some x1 ∈ [am,bm[, y1 ∈ ]cm, dm] and q ∈ [bm, cm]. Then for any z ∈ [bm, cm] we have 
U(q, z) = U(x1, y1, z) = U(x1, y1) = q . Thus q is the annihilator of U on [bm, cm], i.e., q = U(bm, cm). Now if we 
transform U on ([am,bm[ ∪ {U(bm, cm)} ∪ ]cm, dm])2 using f −1, where f is given in (2), where c = am, a = bm, 
v = U(bm, cm), b = cm and d = dm and e ∈ ]0,1[ we obtain a uninorm Um on [0, 1]2 with the neutral element e such 
that TUm and SUm are Archimedean and Um ∈ N ∩ U . Then by Proposition 1 the uninorm Um is representable.

If 
⋃

m∈M

[am,bm] = [0, e] and 
⋃

m∈M

[cm, dm] = [e,1] the proof is finished. In the opposite case we have [0, e] \⋃
m∈M

[am,bm] = ⋃
o∈O

]
go,ho

[
, where (

]
go,ho

[
)o∈O is a system of non-empty open intervals, i.e., O is a countable index 

set. Then we have [e,1] \ ⋃
m∈M

[cm, dm] = ⋃
o∈O

]
r(ho), r(go)

[
. The set (

[
go,ho

[ ∪ {U(ho, r(ho))} ∪
]
r(ho), r(go)

]
)2 is 

closed under U and thus it is isomorphic to some uninorm Uo such that TUo = min and SUo = max. Thus by Lemma 1
Uo is internal. Moreover, since r is continuous and strictly decreasing there exists a continuous and strictly decreasing 
function vUo : [0, 1] −→ [0, 1] such that Uo(x, y) = min(x, y) if y < vUo(x) and Uo(x, y) = max(x, y) if y > vUo(x), 
i.e., Uo is an s-internal uninorm. �
Corollary 2. A uninorm U : [0, 1]2 −→ [0, 1], U ∈ U ∩ N is a complete ordinal sum of representable and s-internal 
uninorms if and only if there exists a continuous strictly decreasing function r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) =
e and r(1) = 0 such that U is continuous on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]}.

Corollary 3. A uninorm U : [0, 1]2 −→ [0, 1], U ∈ U ∩N is a complete ordinal sum of representable uninorms if and 
only if there exists a continuous strictly decreasing function r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0
such that U is continuous on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]} and U has countably many idempotent points.

This result follows from the fact that if there are countably many idempotent points then there is no interval of 
idempotent points, i.e., 

⋃
m∈M

[am,bm] = [0, e] and 
⋃

m∈M

[cm, dm] = [e,1]. On the other hand, if 
⋃

m∈M

[am,bm] = [0, e]

and 
⋃

m∈M

[cm, dm] = [e,1] then idempotent points are only am, bm, cm, dm for m ∈ M and since M is countable also 

the set of idempotent points is countable.
Finally, let us note that if we have a uninorm U : [0, 1]2 −→ [0, 1], U ∈ U and U /∈ N then according to Propo-

sition 8 the uninorm U is an ordinal sum of a uninorm and a t-norm (t-conorm). This means that u1 (u0) is non-
continuous in some point x > 0 (x < 1) which means that there cannot exist a continuous strictly decreasing function 
r : [0, 1] −→ [0, 1] with r(0) = 1, r(e) = e and r(1) = 0 such that U is continuous on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]}.

4. Conclusions

In this paper we have shown that a uninorm is equal to a complete ordinal sum of representable uninorms and s-
internal uninorms if and only if there exists a continuous strictly decreasing function r : [0, 1] −→ [0, 1] with r(0) = 1, 
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r(e) = e and r(1) = 0 such that U is continuous on [0, 1] \ {(x, r(x)) | x ∈ [0, 1]}. Moreover, such a uninorm U is a 
complete ordinal sum of representable uninorms if the set of all idempotent elements of U is countable. We conjecture 
that a similar result can be shown for all uninorms, where TU and SU are continuous. In such a case we conjecture 
that the set of all points of non-continuity is characterised by a symmetric continuous non-decreasing pseudo-function 
and each such a uninorm can be decomposed into an ordinal sum of representable uninorms, continuous Archimedean 
t-norms, t-conorms and internal uninorms. However, any uninorm U ∈ Nmin such that SU has no non-trivial elements 
is irreducible with respect to the ordinal sum construction, i.e., can be expressed only as a trivial ordinal sum with 
summand on ([0, e[ ∪ ]e,1])2, and thus modification of the ordinal sum construction, such where summands will be 
defined on (]am,bm[∪ ]cm, dm[)2 should be assumed in this case. However, we leave this research for the future work.
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1. Introduction

The (left-continuous) t-norms and their dual t-conorms play an indispensable role in many domains [10,32,33]. Each 
continuous t-norm (t-conorm) can be expressed as an ordinal sum of continuous Archimedean t-norms (t-conorms), while 
each Archimedean t-norm (t-conorm) is generated by an additive generator (see [1,12]). Generalizations of t-norms and 
t-conorms that can model bipolar behavior are uninorms (see [9,22,34]). The class of uninorms is widely used both in theory 
[5,7,19,29] and in applications [28,35]. The complete characterization of uninorms with continuous underlying t-norm and 
t-conorm has been in the center of the interest for a long time, however, only partial results were achieved (see [6,8,11,18,
15,20,31]).

Ordinal sum of uninorms was introduced in [23], where also the most general operations yielding a uninorm via the 
ordinal sum construction were studied (see also [25]). This paper is a continuation of the paper [26], where we have 
characterized uninorms with continuous underlying operations by properties of their set of discontinuity points. Our aim 
is to completely characterize all uninorms with continuous underlying functions and obtain a similar representation as in 
the case of t-norms and t-conorms. In this paper we will therefore show that each uninorm with continuous underlying 
t-norm and t-conorm can be decomposed into an ordinal sum of semigroups related to representable uninorms, continuous 
Archimedean t-norms, continuous Archimedean t-conorms and internal uninorms.

The paper is structured as follows. In Section 2 we will recall all necessary notions and results. We will recall the 
ordinal sum construction of Clifford (Section 3) and show several examples of basic uninorms that are constructed using 
this construction. In Section 4 we will recall some results on the characterizing set-valued function of a uninorm with 
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continuous underlying functions and add several new. Section 5 then contains the main result of the paper. We give our 
conclusions in Section 6.

2. Basic notions and results

Let us now recall all necessary basic notions.
A triangular norm is a binary function T : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in both 

variables and 1 is its neutral element. Due to the associativity, n-ary form of any t-norm is uniquely given and thus it 
can be extended to an aggregation function working on 

⋃
n∈N[0, 1]n . Dual functions to t-norms are t-conorms. A triangular 

conorm is a binary function S : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in both variables and 0
is its neutral element. The duality between t-norms and t-conorms is expressed by the fact that from any t-norm T we can 
obtain its dual t-conorm S by the equation

S(x, y) = 1 − T (1 − x,1 − y)

and vice-versa.
Now let us recall an ordinal sum construction for t-norms and t-conorms [12].

Proposition 1. Let K be a finite or countably infinite index set and let (]ak,bk[)k∈K ((]ck,dk[)k∈K ) be a system of open, disjoint 
subintervals of [0, 1]. Let (Tk)k∈K ((Sk)k∈K ) be a system of t-norms (t-conorms). Then the ordinal sum T = (〈ak, bk, Tk〉 | k ∈ K )

(S = (〈ak, bk, Sk〉 | k ∈ K )) given by

T (x, y) =
{

ak + (bk − ak)Tk(
x−ak

bk−ak
,

y−ak
bk−ak

) if (x, y) ∈ [ak,bk[2,

min(x, y) else

and

S(x, y) =
{

ck + (dk − ck)Sk(
x−ck

dk−ck
,

y−ck
dk−ck

) if (x, y) ∈ ]ck,dk]2,

max(x, y) else

is a t-norm (t-conorm). The t-norm T (t-conorm S) is continuous if and only if all summands Tk (Sk) for k ∈ K are continuous.

Each continuous t-norm (t-conorm) is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). Note that 
a continuous t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent points 0 and 1. A continuous 
Archimedean t-norm T (t-conorm S) is either strict, i.e., strictly increasing on ]0,1]2 (on [0,1[2), or nilpotent, i.e., there 
exists (x, y) ∈ ]0,1[2 such that T (x, y) = 0 (S(x, y) = 1). Moreover, each continuous Archimedean t-norm (t-conorm) has a 
continuous additive generator.

Proposition 2. Let t : [0, 1] −→ [0,∞] (s : [0, 1] −→ [0,∞]) be a continuous strictly decreasing (increasing) function such that 
t(1) = 0 (s(0) = 0). Then the binary operation T : [0, 1]2 −→ [0, 1] (S : [0, 1]2 −→ [0, 1]) given by

T (x, y) = t−1(min(t(0), t(x) + t(y)))

S(x, y) = s−1(min(s(1), s(x) + s(y)))

is a continuous Archimedean t-norm (t-conorm). The function t (s) is called an additive generator of T (S).

An additive generator of a continuous t-norm T (t-conorm S) is uniquely determined up to a positive multiplicative 
constant. More details on t-norms and t-conorms can be found in [1,12].

A uninorm (introduced in [34]) is a binary function U : [0, 1]2 −→ [0, 1] which is commutative, associative, non-
decreasing in both variables and have a neutral element e ∈ ]0,1[ (see also [9]). If we take uninorm in a broader sense, 
i.e., if for a neutral element we have e ∈ [0, 1], then the class of uninorms covers also the class of t-norms and the 
class of t-conorms. In order the stress that we assume a uninorm with e ∈ ]0,1[ we will call such a uninorm proper. For 
each uninorm the value U (1, 0) ∈ {0, 1} is the annihilator of U . A uninorm is called conjunctive (disjunctive) if U (1, 0) = 0
(U (1, 0) = 1). Due to the associativity we can uniquely define n-ary form of any uninorm for any n ∈ N and therefore in 
some proofs we will use ternary form instead of binary, where suitable.

For each uninorm U with the neutral element e ∈ ]0,1[, the restriction of U to [0, e]2 is a t-norm on [0, e]2, i.e., a 
linear transformation of some t-norm TU on [0, 1]2 and the restriction of U to [e,1]2 is a t-conorm on [e,1]2, i.e., a linear 
transformation of some t-conorm SU . Moreover, min(x, y) ≤ U (x, y) ≤ max(x, y) for all (x, y) ∈ [0, e] × [e,1] ∪ [e,1] × [0, e].

From any pair of a t-norm and a t-conorm we can construct the minimal and the maximal uninorm with the given 
underlying functions (see [17]).
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Proposition 3. Let T : [0, 1]2 −→ [0, 1] be a t-norm and S : [0, 1]2 −→ [0, 1] a t-conorm and assume e ∈ [0, 1]. Then the two 
functions Umin, Umax : [0, 1]2 −→ [0, 1] given by

Umin(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

e · T ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · S( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

min(x, y) otherwise

and

Umax(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

e · T ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · S( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

max(x, y) otherwise

are uninorms. We will denote the set of all uninorms of the first type by Umin and of the second type by Umax.

Definition 1. A uninorm U : [0, 1]2 −→ [0, 1] is called internal if U (x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2. Moreover, U is called 
d-internal if it is internal and there exists a continuous and strictly decreasing function gU : [0, 1] −→ [0, 1] such that 
U (x, y) = min(x, y) if y < gU (x) and U (x, y) = max(x, y) if y > gU (x). Finally, U is called locally internal on A(e) if U is 
internal on A(e) = [0, e] × [e,1] ∪ [e,1] × [0, e].

For example all uninorms from Umin ∪ Umax are locally internal on A(e). More results on internal and locally internal 
uninorms can be found in [2,4,8,21,30].

Similarly as in the case of t-norms and t-conorms we can construct uninorms using additive generators (see [9]).

Proposition 4. Let f : [0, 1] −→ [−∞,∞], f (0) = −∞, f (1) = ∞ be a continuous strictly increasing function. Then the binary 
function U : [0, 1]2 −→ [0, 1] given by

U (x, y) = f −1( f (x) + f (y)),

where f −1 : [−∞,∞] −→ [0, 1] is an inverse function to f , is a uninorm, which will be called a representable uninorm. The unique 
point e ∈ ]0,1[ such that f (e) = 0 is then the neutral point of U .

Note that if we relax the monotonicity of the additive generator then the neutral element will be lost and by relaxing 
the condition f (0) = −∞, f (1) = ∞ the associativity will be lost (if f (0) < 0 and f (1) > 0). In [29] (see also [22]) we can 
find the following result.

Proposition 5. Let U : [0, 1]2 −→ [0, 1] be a uninorm. Then U is representable if and only if it is continuous on [0, 1]2 \{(0, 1), (1, 0)}.

This result completely characterizes the set of representable uninorms.

Definition 2. We will denote the set of all uninorms U such that TU and SU are continuous by U . Further, for a given 
uninorm U : [0, 1]2 −→ [0, 1] and each x ∈ [0, 1] we define a function ux : [0, 1] −→ [0, 1] by ux(z) = U (x, z) for z ∈ [0, 1].

3. Ordinal sum construction of Clifford

Our aim in this paper is to decompose each uninorm U ∈ U using the ordinal sum construction. Therefore we have to 
first recall the fundamental result of Clifford [3].

Theorem 1. Let A 	= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of semigroups. Assume that for all 
α, β ∈ A with α < β the sets Xα and Xβ are either disjoint or that Xα ∩ Xβ = {xα,β}, where xα,β is both the neutral element of Gα

and the annihilator of Gβ and where for each γ ∈ A with α < γ < β we have Xγ = {xα,β}. Put X = ⋃
α∈A

Xα and define the binary 

operation ∗ on X by

x ∗ y =

⎧⎪⎨
⎪⎩

x ∗α y if (x, y) ∈ Xα × Xα ,

x if (x, y) ∈ Xα × Xβ and α < β ,

y if (x, y) ∈ Xα × Xβ and α > β .

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ A the semigroup Gα is commutative.
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Note that ordinal sum construction of t-norms, t-conorms and uninorms are all based on this result (see [13,14,23]). 
Next we will recall several results on uninorms with continuous Archimedean underlying operations and show how are 
these related to the ordinal sum construction.

For uninorms with continuous nilpotent underlying operations the following result was shown in [15].

Theorem 2 ([15]). Let U : [0, 1] −→ [0, 1]2 be a uninorm with the neutral element e ∈ ]0,1[ such that both TU and SU are nilpotent. 
Then either one of the following two statements holds:

(i) U ∈ Umin ,
(ii) U ∈ Umax .

Example 1. If ([0, 1], U ) is an ordinal sum of semigroups {Gα}α∈A with Gα = (Xα, ∗α) for α ∈ A then TU is an ordinal 
sum of semigroups {G1

α}α∈A with G1
α = (Xα ∩ [0, e] , ∗α) for α ∈ A and SU is an ordinal sum of semigroups {G2

α}α∈A with 
G2

α = (Xα ∩ [e,1] , ∗α) for α ∈ A. From [13] we know that then each Xα ∩ [0, e] (Xα ∩ [e,1]) is a subinterval of [0, e] ([e,1]). 
If TU (SU ) are nilpotent then each support of a subsemigroup of ([0, 1], U ) contains at least one point from the set {0, e, 1}. 
Therefore as the respective sets in the ordinal sum should cover the whole interval [0, 1], the finest partition which we 
can make is to divide [0, 1] into [0, e[, {e} and ]e,1]. Thus we have three semigroups Ga1 = ([0, e[ , U ), Ga2 = ({e}, U ) and 
Ga3 = (]e,1] , U ). Let 
 be an order on the set A = {a1, a2, a3}. Since e is the neutral element it is obvious that a1 ≺ a2 and 
a3 ≺ a2. Further, if U ∈ Umin then a1 ≺ a3 and if U ∈ Umax then a3 ≺ a1. It is easy to verify that U ∈ Umin is an ordinal sum 
of Ga1 , Ga2 and Ga3 with the order on the set A given by a1 ≺ a3 ≺ a2 and U ∈ Umax is an ordinal sum of Ga1 , Ga2 and Ga3

with the order on the set A given by a3 ≺ a1 ≺ a2.

For uninorms with continuous strict underlying operations the following result was shown in [15] (see also [11]).

Theorem 3 ([15]). Let U : [0, 1]2 −→ [0, 1] be a uninorm with the neutral element e ∈ ]0,1[ such that both TU and SU are strict. 
Then one of the following seven statements holds:

(i) U ∈ Umin ,
(ii)

U (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e · TU ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · SU ( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

1 if x = 1 or y = 1,

min(x, y) otherwise,

(iii)

U (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e · TU ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · SU ( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

1 if x = 1, y > 0 or y = 1, x > 0,

min(x, y) otherwise,

(iv) U ∈ Umax ,
(v)

U (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e · TU ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · SU ( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

0 if x = 0 or y = 0,

max(x, y) otherwise,

(vi)

U (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e · TU ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · SU ( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

0 if x = 0, y < 1 or y = 0, x < 1,

max(x, y) otherwise,

(vii) U is representable.
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Example 2. In the case when for a uninorm U operations TU and SU are strict we have two possibilities:

Case 1. There exist x, y ∈ [0, 1], x < e < y, such that U (x, y) = e. From [11] we know that then U is representable. In such 
a case for all x ∈ ]0,1[ there exists a y ∈ ]0,1[ such that U (x, y) = e. Then the finest possible partition that we can get is 
to divide [0, 1] into {0}, ]0,1[, and {1}. Thus we have three semigroups Ga1 = ({0}, U ), Ga2 = (]0,1[ , U ), and Ga3 = ({1}, U ). 
Let 
 be an order on the set A = {a1, a2, a3}. Then the monotonicity implies a1 ≺ a2 and a3 ≺ a2. Therefore we have two 
possible orders on the set A: either a1 ≺ a3 ≺ a2, which corresponds to a conjunctive representable uninorm, or a3 ≺ a1 ≺ a2, 
which corresponds to a disjunctive representable uninorm. Thus in both cases, i.e., whether U is conjunctive or disjunctive, 
it is easy to see that U is equal to an ordinal sum of Ga1 , Ga2 and Ga3 .

Case 2. For all (x, y) ∈ [0, 1]2 the equality U (x, y) = e implies x = y = e. Similarly as above we can show that then the 
finest partition which we can make is to divide [0, 1] into {0}, ]0, e[, {e}, ]e,1[ and {1}. Thus we have five semigroups 
Ga1 = ({0}, U ), Ga2 = (]0, e[ , U ), Ga3 = ({e}, U ), Ga4 = (]e,1[ , U ) and Ga5 = ({1}, U ). Let 
 be an order on the set A =
{a1, a2, a3, a4, a5}. Since e is the neutral element we have ai ≺ a3 for i = 1, 2, 4, 5. Further, the monotonicity implies a1 ≺ a2
and a5 ≺ a4. Then we have the following six possible orders on the set A:

(i) a1 ≺ a2 ≺ a5 ≺ a4 ≺ a3,
(ii) a1 ≺ a5 ≺ a2 ≺ a4 ≺ a3,

(iii) a1 ≺ a5 ≺ a4 ≺ a2 ≺ a3,
(iv) a5 ≺ a1 ≺ a2 ≺ a4 ≺ a3,
(v) a5 ≺ a1 ≺ a4 ≺ a2 ≺ a3,

(vi) a5 ≺ a4 ≺ a1 ≺ a2 ≺ a3.

Again it is easy to see that an ordinal sum of Ga1 , Ga2 , Ga3 , Ga4 and Ga5 with the first order corresponds to the form (i) 
from Theorem 3, the second to the form (iii), the third to the form (v), the fourth to the form (ii), the fifth to the form (vi) 
and the last to the form (iv).

Similarly as Theorems 2 and 3 we have the following.

Theorem 4 ([16]). Let U : [0, 1] −→ [0, 1]2 be a uninorm with the neutral element e ∈ ]0,1[ such that TU is strict and SU is nilpotent. 
Then either one of the following three statements holds:

(i) U ∈ Umin ,
(i) U ∈ Umax ,

(iii)

U (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e · TU ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · SU ( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

0 if x = 0 or y = 0,

max(x, y) otherwise.

In this case the corresponding semigroups act on {0}, ]0, e[, {e}, ]e,1].

Theorem 5 ([16]). Let U : [0, 1] −→ [0, 1]2 be a uninorm with the neutral element e ∈ ]0,1[ such that TU is nilpotent and SU is strict. 
Then either one of the following three statements holds:

(i) U ∈ Umin ,
(ii) U ∈ Umax ,

(iii)

U (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e · TU ( x
e ,

y
e ) if (x, y) ∈ [0, e]2,

e + (1 − e) · SU ( x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e,1]2,

1 if x = 1 or y = 1,

min(x, y) otherwise.

In this case the corresponding semigroups act on [0, e[, {e}, ]e,1[, {1}.
In the previous we can see several examples of semigroups that can be used for construction of uninorms via the ordinal 

sum. In order to characterize them we will use the following transformation.
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For any 0 ≤ a ≤ b < c ≤ d ≤ 1, v ∈ [b, c], with [a,b[ ∪ ]c,d] 	= ∅ and a uninorm U with the neutral element e ∈ [0, 1] we 
will use a transformation f : [0, 1] −→ [a,b[ ∪{v} ∪ ]c,d], where if a = b then e = 0 and v = c, if c = d then e = 1 and v = b, 
given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

(b − a) · x
e + a if x ∈ [0, e[,

v if x = e,

d − (1−x)(d−c)
(1−e) otherwise.

(1)

Then f is linear on [0, e[ and on ]e,1] and thus it is a piece-wise linear isomorphism of [0, 1] to ([a,b[ ∪ {v} ∪ ]c,d]) and 
the binary function U a,b,c,d

v : ([a,b[ ∪ {v} ∪ ]c,d])2 −→ ([a,b[ ∪ {v} ∪ ]c,d]) given by

U a,b,c,d
v (x, y) = f (U ( f −1(x), f −1(y))) (2)

is a uninorm on ([a,b[ ∪ {v} ∪ ]c,d])2. Backward transformation f −1 can then transform a uninorm on ([a,b[ ∪ {v} ∪ ]c,d])2

to a uninorm on [0, 1]2.
Now we are able to give the following definition.

Definition 3. Let a, b, c, d ∈ [0, 1] with a < b < c < d. Then

(i) a semigroup (]a,b[ ∪ {v} ∪ ]c,d[ , ∗) will be called a representable semigroup if ∗ is isomorphic via (2) to a restriction 
of a representable uninorm on [0, 1]2 to ]0,1[2,

(ii) a semigroup (]a,b[ , ∗) will be called a t-strict semigroup if ∗ is linearly isomorphic to a restriction of a strict t-norm 
on [0, 1]2 to ]0,1[2,

(iii) a semigroup (]c,d[ , ∗) will be called an s-strict semigroup if ∗ is linearly isomorphic to a restriction of a strict t-
conorm on [0, 1]2 to ]0,1[2,

(iv) a semigroup ([a,b[ , ∗) will be called a t-nilpotent semigroup if ∗ is linearly isomorphic to a restriction of a nilpotent 
t-norm on [0, 1]2 to [0,1[2,

(v) a semigroup (]c,d] , ∗) will be called an s-nilpotent semigroup if ∗ is linearly isomorphic to a restriction of a nilpotent 
t-conorm on [0, 1]2 to ]0,1]2,

(vi) a semigroup (]a,b[ ∪ ]c,d[ , ∗) will be called a d-internal semigroup if ∗ is isomorphic via (2) to a restriction of an 
d-internal uninorm on [0, 1]2 to (]0,1[ \ {e})2,

(vii) a semigroup (]a,b[ , ∗) will be called a t-internal semigroup if ∗ is linearly isomorphic to the min on ]0,1[2,
(viii) a semigroup (]c,d[ , ∗) will be called an s-internal semigroup if ∗ is linearly isomorphic to the max on ]0,1[2.

Results on related operations can be found in the following literature: for strict and nilpotent t-norms see [12], for 
representable uninorms see [9,11], for internal uninorms see [2,8,21,30].

For semigroups that are defined on singletons we will further use an operation

Id : {x}2 −→ {x} given by Id(x, x) = x.

Proposition 6 ([24]). Let U : [0, 1]2 −→ [0, 1] be an internal uninorm. Then ([0, 1], U ) is an ordinal sum of singleton semigroups 
({x}, Id) for all x ∈ [0, 1].

Proposition 7 ([24]). Let P be an index set isomorphic with [0, 1] via the isomorphism i. For all p ∈ P we put X p = {x} if i(p) = x. Let 
e ∈ [0, 1] and let 
 be a linear order on P . Then the ordinal sum of {(Xp, Id)}p∈P with the linear order 
 is an internal uninorm with 
the neutral element e if and only if the following two conditions are fulfilled:

(i) p1 ≺ p2 for all p1, p2 ∈ P such that Xp1 = {x1}, Xp2 = {x2}, x1 < x2 and x1, x2 ∈ [0, e],
(ii) p1 ≺ p2 for all p1, p2 ∈ P such that Xp1 = {y1}, Xp2 = {y2}, y1 > y2 and y1, y2 ∈ [e,1].

Remark 1. In the rest of the paper we will show that each uninorm U ∈ U can be decomposed into ordinal sum of the 
nine types of semigroups, eight from Definition 3 plus semigroups defined on singletons. Due to Proposition 6 we see that 
internal semigroups can be decomposed further to singletons, however, our aim is to perform such a decomposition where 
the number of summands is countable. Therefore we include also internal semigroups. It is clear that if ([0, 1], U ) is an 
ordinal sum of the above mentioned semigroups then from each of the eight types of semigroups from Definition 3 we can 
have only a countable number (since each subinterval of [0, 1] contains some rational number). Thus in our decomposition 
a singleton semigroup will be always between two non-singleton semigroups (or it will be an accumulation point of the set 
of their end points) which will ensure that the number of summands is countable.

Further we recall several useful results. The first is the result of [6, Theorem 5.1]. Here U(e) = {U : [0, 1]2 −→ [0, 1] |
U is associative, non-decreasing, with the neutral element e ∈ [0, 1]}. Thus U ∈ U(e) is a uninorm if it is commutative.
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Theorem 6. Let U ∈ U(e) and a, b, c, d ∈ [0, 1], a ≤ b ≤ e ≤ c ≤ d be such that U |[a,b]2 is associative, non-decreasing, with the neutral 
element b and U |[c,d]2 is associative, non-decreasing, with the neutral element c. Then the set ([a,b] ∪ [c,d])2 is closed under U .

Moreover, we have the following result.

Lemma 1 ([26]). Let U ∈ U . Then if a ∈ [0, 1] is an idempotent element of U then U (a, x) ∈ {a, x} for all x ∈ [0, 1], i.e., U is internal 
on {a} × [0, 1].

Using these results we can show the following.

Proposition 8. Let U ∈ U . If a, b ∈ [0, e] and c, d ∈ [e,1] are idempotent elements, a ≤ b and c ≤ d, then ([a,b[ ∪ {U (b, c)} ∪ ]c,d])2

is closed under U .

Proof. Since U ∈ U we know that b is the neutral element of U on [a,b]2 and c is the neutral element of U on [c,d]2. Thus 
by Theorem 6 we know that the set ([a,b] ∪ [c,d])2 is closed under U . Since b and c are idempotent points by Lemma 1 we 
have U (b, c) ∈ {b, c}. If b = c = e then the claim evidently holds. Suppose b 	= c and U (b, c) = b (the case when U (b, c) = c
is analogous). Assume that there are x, y ∈ ([a,b] ∪ ]c,d])2 such that U (x, y) = c. If x ∈ [a,b] (similarly if y ∈ [a,b]) then

b = U (c,b) = U (U (y, x),b) = U (y, U (x,b)) = U (y, x) = c

what is a contradiction. Thus both x, y ∈ ]c,d]. Then, however,

c = U (x, y) ≥ max(x, y) > c

what is again a contradiction. Thus ([a,b[ ∪ {U (b, c)} ∪ ]c,d])2 is closed under U . �
Lemma 2. Let U ∈ U and let ([a,b[∪{v} ∪]c,d])2 for a < b ≤ v ≤ c < d, with a, b, c, d, v ∈ [0, 1] be closed under U . Then U restricted 
to ([a,b[ ∪ {v} ∪ ]c,d])2 is isomorphic with a uninorm U∗ on [0, 1]2 , via the backward transformation f −1 to the transformation f
given in (1), if and only if v is the neutral element of U restricted to ([a,b[ ∪ {v} ∪ ]c,d])2 .

Proof. Since f −1 is an isomorphism U∗ is commutative, associative and non-decreasing in each variable. Further, e is the 
neutral element of U∗ if and only if v is the neutral element of U restricted to ([a,b[ ∪ {v} ∪ ]c,d])2. �
Lemma 3. Let U ∈ U and let a, b ∈ [0, e] and c, d ∈ [e,1] be idempotent elements, a < b and c < d, such that there is no idempotent 
in ]a,b[ neither in ]c,d[. If there exist (x1, y1), (x2, y2) ∈ ]a,b[ × ]c,d[ such that U (x1, y1) < e and U (x2, y2) > e then U (b, c) is the 
neutral element of U restricted to ([a,b[ ∪ {U (b, c)} ∪ ]c,d])2 .

Proof. Since b, c are idempotents U (b, c) ∈ {b, c}. Assume U (b, c) = b (the proof for U (b, c) = c is analogous). Then 
U (b, x) = x for all x ∈ [a,b]. Further, since b is idempotent U (b, y) ∈ {b, y} for all y ∈ ]c,d]. If U (b, y) = b for some y ∈ ]c,d]
then monotonicity implies U (b, z) = b for all z < y and b = U (b, y, . . . , y︸ ︷︷ ︸

n-times

), i.e., since U is Archimedean on [c,d] we get 

U (b, z) = b for all z ∈ ]c,d[. Now since U (x2, y2) > e we have b = U (b, y2) ≥ U (x2, y2) > e ≥ b what is a contradiction. Thus 
U (b, y) = y for all y ∈ ]c,d]. �
Lemma 4. Let U ∈ U and let a, b ∈ [0, e] and c, d ∈ [e,1] be idempotent elements, a < b and c < d, such that there is no idempotent in 
]a,b[ neither in ]c,d[. If ([a,b[∪ ]c,d])2 is not closed under U then U (b, c) is the neutral element of U restricted to ([a,b[∪{U (b, c)} ∪
]c,d])2 .

Proof. Similarly as in the previous proof we have U (b, c) ∈ {b, c} since b, c are idempotents. Assume U (b, c) = b (the proof 
for U (b, c) = c is analogous). Then U (b, x) = x for all x ∈ [a,b]. Further, since b is idempotent U (b, y) ∈ {b, y} for all y ∈ ]c,d]. 
If ([a,b[ ∪ ]c,d])2 is not closed under U then there exist x1 ∈ [a,b[, y1 ∈ ]c,d] such that U (x1, y1) = b. If U (b, y) = b for 
some y ∈ ]c,d] then b = U (b, y, . . . , y︸ ︷︷ ︸

n-times

), i.e., U (b, q) = b for all q ∈ ]c,d]. Then, however,

b = U (b,b) = U (x1, U (y1,b)) = U (x1,b) = x1,

what is a contradiction. Therefore U (b, q) = q for all q ∈ ]c,d]. Summarizing, U (b, c) is the neutral element of U restricted 
to ([a,b[ ∪ {U (b, c)} ∪ ]c,d])2. �
Remark 2. A uninorm U from Lemma 4 (as well as from Lemma 3) is on ([a,b[ ∪ {U (b, c)} ∪ ]c,d])2 isomorphic to a 
representable uninorm.
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Before we will show the main result we should recall the characterizing set-valued function of a uninorm U ∈ U which 
will help us to divide U into respective semigroups.

4. Characterizing set-valued function

In this section we will recall several results from [26,27].

Definition 4. A mapping p : [0, 1] −→ P([0, 1]) is called a set-valued function on [0, 1] if to every x ∈ [0, 1] it assigns a 
subset of [0, 1], i.e., p(x) ⊆ [0, 1]. Assuming the standard order on [0, 1], a set-valued function p is called

(i) non-increasing if for all x1, x2 ∈ [0, 1], x1 < x2, we have y1 ≥ y2 for all y1 ∈ p(x1) and all y2 ∈ p(x2) and thus the 
cardinality Card(p(x1) ∩ p(x2)) ≤ 1,

(ii) symmetric if y ∈ p(x) if and only if x ∈ p(y).

The graph of a set-valued function p will be denoted by G(p), i.e., (x, y) ∈ G(p) if and only if y ∈ p(x).

Definition 5. A set-valued function p : [0, 1] −→ P([0, 1]) is called u-surjective if for all y ∈ [0, 1] there exists an x ∈ [0, 1]
such that y ∈ p(x),

Lemma 5 ([26]). A symmetric set-valued function p : [0, 1] −→ P([0, 1]) is u-surjective if and only if we have p(x) 	= ∅ for all 
x ∈ [0, 1].

The graph of a symmetric, u-surjective, non-increasing set-valued function p : [0, 1] −→ P([0, 1]) is a connected line (i.e., 
a connected set with no interior) containing points (0, 1) and (1, 0) (see [27]).

We will denote the set of all uninorms U : [0, 1]2 −→ [0, 1] such that U is continuous on [0, 1]2 \ R , where R = G(r)
and r is a symmetric, u-surjective, non-increasing set-valued function such that U (x, y) = e implies (x, y) ∈ R , by UR. The 
function r will be called the characterizing set-valued function of U .

Theorem 7 ([26]). Let U : [0, 1]2 −→ [0, 1] be a uninorm. Then U ∈ U if and only if U ∈ UR and in each point (x, y) ∈ [0, 1]2 the 
uninorm U is either left-continuous or right-continuous.

Remark 3. Note that although for U ∈ U the previous theorem implies that U is continuous on [0, 1]2 \ R for R = G(r)
it does not mean that all points of R are points of discontinuity of U . In fact, in [26] it was shown that for a uninorm 
U ∈ U either U (x, y) = e implies x = y = e or there exists a non-empty interval ]a,d[ such that U (x, y) = e if and only if 
x, y ∈ ]a,d[. In the later case U is continuous in all points from [0, 1]2 \ ([0,a]∪ [d,1])2. Moreover, for a conjunctive uninorm 
U ∈ U (similarly for a disjunctive uninorm U ∈ U ) we have either U (x, 1) = 1 for all x > 0 or U (x, 1) < e for some 0 < x < e. 
In the later case U is continuous in all points from [0, x[ × [0, 1] ∪ [0, 1] × [0, x[.

Definition 6. Let U ∈ U and let r : [0, 1] −→ P([0, 1]) be its characterizing set-valued function. Then

(i) the set I ⊂ [0, 1] is called a maximal horizontal segment of r if Card(I) > 1 and there exists a y ∈ [0, 1] such that 
y ∈ p(x) if and only if x ∈ I ,

(ii) if for x ∈ [0, 1] there is Card(r(x)) > 1 then the set {x} is called a maximal vertical segment of r,
(iii) the interval [a,b] is called a strictly decreasing segment of r if for all x ∈ ]a,b[ we have

Card(r(x)) = 1,Card(r(max(r(x))) = 1, (3)

(iv) the interval [a,b] is called a maximal strictly decreasing segment of r if there is no interval [c,d] which is a strictly 
decreasing segment of r such that [a,b] � [c,d].

The monotonicity of r implies that all maximal segments are intervals. Further, a subinterval of a maximal horizontal 
segment will be called a horizontal segment.

The symmetry of r implies that a maximal horizontal segment I can be paired with a maximal vertical segment {y} for 
which we have

y ∈ r(x) for all x ∈ I.

Then I × {y} as well as {y} × I belong to the graph of r.

Lemma 6 ([27]). Let U ∈ U and let r : [0, 1] −→ P([0, 1]) be its characterizing set-valued function. Then all maximal segments of r
are closed intervals.
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Fig. 1. The uninorm U from Example 3. Left: the bold lines denote the points of discontinuity of U . Right: the oblique and bold lines denote the character-
izing set-valued function of U .

Due to the symmetry of r the previous result implies that for every x ∈ [0, 1] the set r(x) is a closed interval and 
therefore min(r(x)) and max(r(x)) always exist. Let us now recall an example from [26].

Further we will denote by Sr the set of end points of all maximal segments of r and by S̄r its closure. Note that there 
is a countable number of maximal horizontal and strictly decreasing segments and due to the symmetry of r there is also a 
countable number of maximal vertical segments. Therefore S̄r is countable. Then we have the following result.

Proposition 9 ([27]). Let U ∈ U , let r : [0, 1] −→ P([0, 1]) be its characterizing set-valued function and assume x ∈ [0, 1]. Then either 
x ∈ S̄r or x is an interior point of exactly one maximal segment of r.

Example 3. Assume a representable uninorm U1 : [0, 1]2 −→ [0, 1] and a continuous t-norm T : [0, 1]2 −→ [0, 1] and a 
continuous t-conorm S : [0, 1]2 −→ [0, 1]. Let U∗

1 be a linear transformation of U1 to 
[ 1

3 , 2
3

]2
, T ∗ a linear transformation of 

T |[0,1[2 to 
[
0, 1

3

[2
and S∗ a linear transformation of S|]0,1]2 to 

] 2
3 ,1

]2
. Then the ordinal sum of Ga1 = ([

0, 1
3

[
, T ∗), Ga2 =([ 1

3 , 2
3

]
, U∗

1

)
and Ga3 = (] 2

3 ,1
]
, S∗) with the order a3 ≺ a1 ≺ a2 is a uninorm U ∈ U . For simplicity we will assume that 1

2
is the neutral element of U1 and that U1(x, 1 − x) = 1

2 for all x ∈ ]0,1[. On Fig. 1 we can see the characterizing set-valued 
function r of U as well as its set of discontinuity points.

Remark 4. From Theorems 2, 3, 4 and 5 we see that if U ∈ U is such that both TU and SU are Archimedean then either 
its characterizing set-valued function is strictly decreasing on [0, 1] – in which case it is a representable uninorm, or the 
interval [0, e] ([e,1]) is a horizontal segment, i.e., there is y ∈ [0, 1] such that r(x) = {y} for all x ∈ ]0, e[ (x ∈ ]e,1[). For the 
value y we then have y ∈ {1, e} (y ∈ {0, e}).

Now we recall the result which will be important for the division of U ∈ U into respective semigroups.

Proposition 10 ([27]). Let U ∈ U and let r be its characterizing set-valued function. Then end points of all types of maximal segments 
of r are idempotent points.

Further we will recall a relation between nilpotent components of U and maximal horizontal segments of the character-
izing set-valued function.

Lemma 7 ([27]). Let U ∈ U and let r be its characterizing set-valued function. Then if a, b ∈ [0, 1], a < b, are idempotent elements of 
U such that there is no idempotent in ]a,b[ and there exists x ∈ ]a,b[ such that U (x, x) = a (U (x, x) = b) then r on [a,b] corresponds 
to a horizontal segment.

In the following two lemmas we recall how does a maximal strictly decreasing segment of the characterizing set-valued 
function relate the components of [0, e] to the components of [e,1].

Lemma 8 ([27]). Let U ∈ U and let r be its characterizing set-valued function.

(i) If a, b ∈ [0, 1], a < b ≤ e, are idempotent elements of U such that there is no idempotent in ]a,b[ and r on [a,b] corresponds to a 
strictly decreasing segment then d = min(r(a)) and c = max(r(b)) are idempotent elements of U such that there is no idempotent 
in ]c,d[ and r on [c,d] corresponds to a strictly decreasing segment. Further, a = max(r(min(r(a)))) and b = min(r(max(r(b)))).

(ii) If c, d ∈ [0, 1], e ≤ c < d, are idempotent elements of U such that there is no idempotent in ]c,d[ and r on [c,d] corresponds to a 
strictly decreasing segment then b = min(r(c)) and a = max(r(d)) are idempotent elements of U such that there is no idempotent 
in ]a,b[ and r on [a,b] corresponds to a strictly decreasing segment. Further, c = max(r(min(r(c)))) and d = min(r(max(r(d)))).
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Lemma 9 ([27]). Let U ∈ U and let r be its characterizing set-valued function.

(i) If a, b ∈ [0, 1], a < b ≤ e, are such that U (x, x) = x for all x ∈ [a,b] and r on [a,b] corresponds to a strictly decreasing segment then 
for d = min(r(a)) and c = max(r(b)) we have U (y, y) = y for all y ∈ [c,d] and r on [c,d] corresponds to a strictly decreasing 
segment. Further, a = max(r(min(r(a)))) and b = min(r(max(r(b)))).

(ii) If c, d ∈ [0, 1], e ≤ c < d, are such that U (y, y) = y for all y ∈ [c,d] and r on [c,d] corresponds to a strictly decreasing segment 
then for b = min(r(c)) and a = max(r(d)) we have U (x, x) = x for all x ∈ [a,b] and r on [a,b] corresponds to a strictly decreasing 
segment. Further, c = max(r(min(r(c)))) and d = min(r(max(r(d)))).

We conclude this section with the following useful result.

Lemma 10. Let U ∈ U .

(i) If U (x, y) = x for some x ∈ ]0, e[, y ∈ ]e,1[ then U (x1, y1) = x1 for all x1 ∈ [0, x], y1 ∈ [e, y].
(ii) If U (x, y) = y for some x ∈ ]0, e[, y ∈ ]e,1[ then U (x2, y2) = y2 for all x2 ∈ [x, e], y2 ∈ [y,1].

Proof. We will show only the first part as the second is analogous. If U (x, y) = x for some x ∈ ]0, e[, y ∈ ]e,1[ then since 
U (x, e) = x the monotonicity of U implies U (x, y1) = x for all y1 ∈ [e, y]. Since U ∈ U for each x1 ∈ [0, x] there exists a 
q ∈ [0, e] such that U (q, x) = x1. Then we have

U (x1, y1) = U (U (q, x), y1) = U (q, U (x, y1)) = U (q, x) = x1. �
Now we are ready to show the main result.

5. Decomposition of uninorm with continuous underlying functions via ordinal sum

In this section we will successively show that each uninorm U ∈ U can be decomposed into an ordinal sum, with a 
countable number of summands, of the nine types of semigroups, eight from Definition 3 plus semigroups defined on 
singletons.

In the following definition we will define a partition of [0, 1] related to the given U ∈ U .

Definition 7. Let U ∈ U and let r be its characterizing set-valued function. We will proceed in three steps.

Step 1: Definition of Archimedean segments.
Since U is continuous on the diagonal u : [0, 1] −→ [0, 1] given by u(x) = U (x, x), then the set of all idempotent points 

of U is a closed set – we will denote it by IU . Then [0, e] \ IU = ⋃
k∈K ]ak,bk[, where (]ak,bk[)k∈K is a system of a countable 

number of open and disjoint subintervals of [0, e] for some index set K (see [13]). Similarly, [e,1] \ IU = ⋃
l∈L ]cl,dl[, where 

(]cl,dl[)l∈L is a system of a countable number of open and disjoint subintervals of [e,1] for some index set L. Note that we 
will select L in such a way that K ∩ L = ∅.

Now we denote K1 = {k ∈ K | ak = U (x, x) for some x ∈ [0, 1], x 	= ak} and K2 = {k ∈ K | r on [ak,bk] corresponds to a
strictly decreasing segment }, Lemma 7 implies that K1 ∩ K2 = ∅. Let K3 = K \ (K1 ∪ K2). Further L1 = {l ∈ L | dk =
U (x, x) for some x ∈ [0, 1], x 	= dk} and L2 = {l ∈ L | r on [cl,dl] corresponds to a strictly decreasing segment } and L3 =
L \ (L1 ∪ L2). Similarly as above, Lemma 7 implies that L1 ∩ L2 = ∅.

Due to Lemma 8 each k ∈ K2 can be paired with some l ∈ L2 and vice-versa. Therefore instead of l ∈ L2 we will assume 
the corresponding k ∈ K2.

Step 2: Definition of idempotent segments.
Denote

X = {x ∈ [0,1] | x is an end point of a maximal segment of r}
and

B =
⋃
k∈K

]ak,bk[ ∪
⋃

k∈K1

{ak} ∪
⋃

k∈K2

{U (bk, ck)}.

Let

[0, e] \ (B ∪ X) =
⋃

m∈M

Ym,

where the sets Ym are components of [0, e] \ (B ∪ X) with respect to connectedness. Note that we can select such an M that 
K , L, M are mutually disjoint. We denote

A∗ = {sup Ym, inf Ym | m ∈ M} \ (B ∪ {e})
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and define Zm = Ym \ A∗ for all m ∈ M , i.e., Zm = ]am,bm[ for some am, bm ∈ [0, e] for all m ∈ M . Denote M∗ = {m ∈ M |
Zm 	= ∅},

M1 = {m ∈ M∗ | r on ]am,bm[ corresponds to a horizontal segment},
M2 = {m ∈ M∗ | r on ]am,bm[ corresponds to a strictly decreasing segment}. Then M∗ is countable. Further denote

A = [0, e[ \ (B ∪
⋃

m∈M∗
Zm).

Then A is countable since between any two points from A there is a rational number from [0, e]. Therefore there exists an 
isomorphism i between A and some countable index set M3 which again can be selected to be mutually disjoint with all 
previous index sets. We set Zm = {i(m)} for all m ∈ M3, i.e., Zm = {bm} for some bm ∈ [0, e] for all m ∈ M3.

Similarly, let

C =
⋃
l∈L

]cl,dl[ ∪
⋃
l∈L1

{dk} ∪
⋃

k∈K2

{U (bk, ck)}

and let

[e,1] \ (C ∪ X) =
⋃
o∈O

Yo,

where the sets Yo are components of [e,1] \ (C ∪ X) with respect to connectedness. Note that we can select such an O that 
O , K , L, M, M3 are mutually disjoint. We denote

D∗ = {sup Yo, inf Yo | o ∈ O } \ (C ∪ {e}).
We define Zo = Yo \ D for all o ∈ O , i.e., Zo = ]co,do[ for some co, do ∈ [e,1] for all o ∈ O . Denote O ∗ = {o ∈ O  | Zo 	= ∅},

O 1 = {o ∈ O ∗ | r on ]co,do[ corresponds to a horizontal segment},
O 2 = {o ∈ O ∗ | r on ]co,do[ corresponds to a strictly decreasing segment}. Then O ∗ is countable. Further, denote

D = ]e,1] \ (C ∪
⋃

o∈O∗
Zo).

Then D is countable and there exists an isomorphism j between D and some countable index set O 3 which again can 
be selected to be mutually disjoint with all previous index sets. We set Zo = { j(o)} for all o ∈ O 3, i.e., Zo = {co} for some 
co ∈ [e,1] for all o ∈ O 3.

Due to Lemma 9 each m ∈ M2 can be paired with some o ∈ O 2 and vice-versa. Therefore instead of o ∈ O 2 we will 
assume the corresponding m ∈ M2.

If U (x, y) = e for some x 	= e then the point e is already covered in our partition, however, if U (x, y) = e implies x = y = e
then we should add a separate set {e}.

Step 3: Summarization.
Thus we have a partition of [0, e] into sets: [ak,bk[ for k ∈ K1, ]ak,bk[ ∪ ({U (bk, ck)} ∩ [0, e]) for k ∈ K2, ]ak,bk[ for k ∈ K3, 

]am,bm[ for m ∈ M1 ∪ M2, {am} for m ∈ M3 and eventually {e}.
Similarly, we have a partition of [e,1] into sets: ]cl,dl] for l ∈ L1, ]ck,dk[∪ ({U (bk, ck)} ∩ [e,1]) for k ∈ K2, ]cl,dl[ for l ∈ L3, 

]co,do[ for o ∈ O 1 ∪ M2, {do} for o ∈ O 3 and eventually {e}.
For simplicity we denote P∗ = K1 ∪ K2 ∪ K3 ∪M1 ∪M2 ∪M3 ∪ L1 ∪ L3 ∪ O 1 ∪ O 3 and for p ∈ P we will denote corresponding 

sets described above by Xp . If U (x, y) = e implies x = y = e then we additionally assume an index p∗ /∈ P∗ and the set 
Xp∗ = {e}. Then P = P∗ ∪ {p∗}. In the other case we put P = P∗ . Note that Xp1 ∩ Xp2 = ∅ for p1, p2 ∈ P , p1 	= p2.

Lemma 11. Let U ∈ U and let r be its characterizing set-valued function. Assume the partition from Definition 7. Let q : [0, 1] −→ [0, 1]
be a function given by

q(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x ∈ [0, e[ and ux is continuous,

y if ux is non-continuous in y,

e if x = e,

0 if x ∈ ]e,1] and ux is continuous.
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We will define two functions L, H : P −→ [0, 1] by

L(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ap+bp
2 if p ∈ K1,

ap+bp
2 if p ∈ K2,

ap+bp
2 if p ∈ K3,

ap+bp
2 if p ∈ M1,

ap+bp
2 if p ∈ M2,

bp if p ∈ M3,

q(
cp+dp

2 ) if p ∈ L1,

q(
cp+dp

2 ) if p ∈ L3,

q(
cp+dp

2 ) if p ∈ O 1,

q(cp) if p ∈ O 3,

e else,

H(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(
ap+bp

2 ) if p ∈ K1,

q(
ap+bp

2 ) if p ∈ K2,

q(
ap+bp

2 ) if p ∈ K3,

q(
ap+bp

2 ) if p ∈ M1,

q(
ap+bp

2 ) if p ∈ M2,

q(bp) if p ∈ M3,
cp+dp

2 if p ∈ L1,
cp+dp

2 if p ∈ L3,
cp+dp

2 if p ∈ O 1,

cp if p ∈ O 3,

e else.

Then there are no such p1, p2 ∈ P that either L(p1) < L(p2) and H(p1) < H(p2), or L(p1) > L(p2) and H(p1) > H(p2). Further, if 
L(p1) = L(p2) and H(p1) = H(p2) for some p1 	= p2 then p1, p2 ∈ M3 ∪ O 3 .

Proof. The monotonicity of the characterizing set-valued function r ensures that L(p1) < L(p2) implies H(p1) ≥ H(p2), 
H(p1) < H(p2) implies L(p1) ≥ L(p2), H(p1) > H(p2) implies L(p1) ≤ L(p2) and L(p1) > L(p2) implies H(p1) ≤ H(p2) for 
all p1, p2 ∈ P . Further, if L(p1) = L(p2) and H(p1) = H(p2) for some p1 	= p2 then both L(p1) and H(p1) are idempotent 
points and thus either p1 ∈ M3 and p2 ∈ O 3, or p1 ∈ O 3 and p2 ∈ M3. �
Lemma 12. Let U ∈ U and assume functions L, H from Lemma 11. We will define a relation 
 on the set P as follows: for any 
p1, p2 ∈ P there is p1 
 p2 if one of the following is fulfilled:

(i) p1 = p2
(ii) L(p1) ≤ L(p2) and H(p1) > H(p2),

(iii) L(p1) < L(p2) and H(p1) ≥ H(p2),
(iv) L(p1) = L(p2), H(p1) = H(p2), p1 	= p2 and U (b, c) = b, where b ∈ Xp1 and c ∈ Xp2 .

Then 
 is a linear order on P .

Proof. To show that 
 is an order on P we have to show that it is reflexive, anti-symmetric and transitive. Reflexivity 
is evident. Assume that p1 
 p2 and p2 
 p1. If p1 	= p2 we get L(p1) = L(p2), H(p1) = H(p2) and thus by (iv) we have 
b = U (b, c) = c what is a contradiction. Therefore p1 = p2.

For transitivity assume that p1 
 p2 and p2 
 p3. If p1 = p2 or p2 = p3 the transitivity is clear. Further if L(p1) < L(p2)

or L(p2) < L(p3), or H(p1) > H(p2), or H(p2) > H(p3) the transitivity is also easily shown. Suppose that L(p1) = L(p2) =
L(p3), H(p1) = H(p2) = H(p3) and p1, p2 and p3 are mutually different. Then p1, p2, p3 ∈ M3 ∪ O 3. Let a ∈ Xp1 , b ∈ Xp2

and c ∈ Xp3 . Then U (a, b) = a and U (b, c) = b. The associativity of U then gives

U (a, c) = U (a, U (b, c)) = U (a,b) = a.

Thus p1 
 p3 and the relation 
 is transitive. Finally we have to show that 
 is linear, i.e., that for all p1, p2 ∈ P we have 
either p1 
 p2 or p2 
 p1. Assume any p1, p2 ∈ P . If p1 = p2 then we have both p1 
 p2 and p2 
 p1. Let now p1 	= p2. 
If L(p1) = L(p2) and H(p1) = H(p2) then U (b, c) ∈ {b, c} for b ∈ Xp1 and c ∈ Xp2 and p1 
 p2 if U (b, c) = b and p2 
 p1 if 
U (b, c) = c. In the other case we have one of the following four inequalities:

(i) L(p1) < L(p2),
(ii) L(p1) > L(p2),

(iii) H(p1) < H(p2),
(iv) H(p1) > H(p2).

In the first case Lemma 11 implies H(p1) ≥ H(p2) and thus p1 
 p2. Similarly, in the fourth case we get p1 
 p2 and in the 
second and the third case we get p2 
 p1. Thus 
 is a linear order. �
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Remark 5. Note that the order 
 from previous lemma is compatible with the standard order ≤ on [0, e] and reversed to 
the standard order ≤ on [e,1].

Before we will show the main result we introduce two useful results.

Lemma 13. Let U ∈ U and let q : [0, 1] −→ [0, 1], L, H : P −→ [0, 1] be the functions from Lemma 11. Then for any p1, p2 ∈ P we 
have:

(i) if H(p1) > H(p2) then for all x ∈ Xp1 ∩ [0, e], y ∈ Xp2 ∩ [e,1] there is q(x) > y.
(ii) if L(p1) < L(p2) then for all x ∈ Xp1 ∩ [0, e], y ∈ Xp2 ∩ [e,1] there is x < q(y).

Proof. We will show only the first part as the second is analogous. If p1 ∈ K1 ∪ K3 ∪ M1 ∪ M3 or x = e then H(p1) = q(x)
and q(x) is an idempotent point of U . On the other hand, H(p2), y ∈ Xp2 ∩ [e,1]. Thus H(p1) > H(p2) implies q(x) > y. 
If p1 ∈ K2 ∪ M2 then H(p1), q(x) ∈ Xp1 ∩ [e,1] and since H(p2), y ∈ Xp2 ∩ [e,1] the inequality H(p1) > H(p2) implies 
q(x) > y. �
Lemma 14. Let U ∈ U and assume the partition from Definition 7. Then for all p ∈ P

(i) x ∈ Xp ∩ [0, e] and y ∈ [e,1] \ Xp implies U (x, y) ∈ {x, y}.
(ii) x ∈ Xp ∩ [e,1] and y ∈ [0, e] \ Xp implies U (x, y) ∈ {x, y}.

Proof. We will show only the first part as the second is analogous. If x = e then the claim is trivial. Otherwise p ∈ K1 ∪
K2 ∪ K3 ∪ M1 ∪ M2 ∪ M3. If p ∈ M1 ∪ M2 ∪ M3 then x is an idempotent point and the result is trivial. Assume p ∈ K2. Then 
Xp = ]

ap,bp
[ ∪ {U (bp, cp)} ∪ ]

cp,dp
[

and for x ∈ ]
ap,bp

[
we have e > U (x, cp) ∈ {x, cp}, i.e., U (x, cp) = x. Moreover, e <

U (x, dp) ∈ {x, dp}, i.e., U (x, dp) = dp . Then Lemma 10 implies U (x, y) ∈ {x, y} for all y ∈ [e,1] \ Xp . If x ∈ {U (bp, cp)} ∩ [0, e], 
i.e., x = bp = U (bp, cp) then x is an idempotent element and the claim is trivial.

Finally assume p ∈ K1 ∪ K3. Then Xp = ]
ap,bp

[
or Xp = [

ap,bp
[

and either uz is continuous for all z ∈ [
0,bp

[
or there 

exists an idempotent point y ∈ [e,1] such that uz is non-continuous in y for all z ∈ ]
ap,bp

[
. In the first case we take y = 1.

Let y1 = sup{z ∈ [e, y[ | U (z, z) = z} and let y2 = inf{z ∈ ]y,1] | U (z, z) = z}. Then Lemma 10 implies that U (x, z) ∈ {x, z}
for all z ∈ [e, y1] ∪ [y2,1]. If y1 = y = y2 the proof is finished. Suppose the opposite.

First we will show that 
[
ap,bp

[ ∪ [e,1] is closed under U . From Theorem 6 we know that 
[
ap,bp

] ∪ [e,1] is closed 
under U . It is evident that if U (x, z) = bp for some x, z ∈ [

ap,bp
[ ∪ [e,1] then we can select x < bp and z > e. Then z < y. 

However, then also U (x2, z) = bp for all x2 ∈ ]
x,bp

[
. Since TU is continuous there exists a q ∈ ]

ap,bp
[

such that U (x2, q) = x. 
Then

q = U (q,bp) = U (x2,q, z) = U (x, z) = bp

what is a contradiction.
If y1 < y then 

[
ap,bp

[ ∪ [y1, y] is closed under U and U (x, y1) = x for all x ∈ [
ap,bp

[ ∪ [y1, y]. Thus U restricted to 
(
[
ap,bp

[∪ [y1, y])2 is isomorphic to a uninorm with continuous Archimedean underlying operations and thus U (x, z) ∈ {x, z}
for all x ∈ Xp , z ∈ [y1, y].

Now assume y < y2. Here we will proceed as above. We first show that 
[
ap,bp

] ∪ ]y, y2] is closed under U and then 
since U (bp, z) = z for all z ∈ [

ap,bp
] ∪ ]y, y2] by isomorphism with a uninorm with continuous Archimedean underlying 

operations we can show that U (x, z) ∈ {x, z} for all x ∈ Xp , z ∈ [y, y2]. �
Proposition 11. Let U ∈ U and let r be its characterizing set-valued function. Assume the partition from Definition 7. Then U is an 
ordinal sum of the following semigroups:

(i) a t-nilpotent semigroup on [ak,bk[ for all k ∈ K1 ,
(ii) a representable semigroup on ]ak,bk[ ∪ {U (bk, ck)} ∪ ]ck,dk[ for all k ∈ K2 ,

(iii) a t-strict semigroup on ]ak,bk[ for all k ∈ K3 ,
(iv) an s-nilpotent semigroup on ]cl,dl] for all l ∈ L1 ,
(v) an s-strict semigroup on ]cl,dl[ for all l ∈ L3 ,

(vi) a t-internal semigroup on ]am,bm[ for all m ∈ M1 ,
(vii) a d-internal semigroup on ]am,bm[ ∪ ]cm,dm[ for all m ∈ M2 ,

(viii) a semigroup defined on {am} for all m ∈ M3 ,
(ix) an s-internal semigroup on ]co,do[ for all o ∈ O 1 ,
(x) a semigroup defined on {do} for all o ∈ O 3 ,

(xi) eventually a semigroup defined on {e}.
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Proof. It is evident the U restricted to

(i) ([ak,bk[)2 for all k ∈ K1 is a t-nilpotent semigroup,
(ii) (]ak,bk[)2 for all k ∈ K3 is a t-strict semigroup,

(iii) (]cl,dl])2 for all l ∈ L1 is an s-nilpotent semigroup,
(iv) (]cl,dl[)2 for all l ∈ L3 is an s-strict semigroup,
(v) (]am,bm[)2 for all m ∈ M1 is a t-internal semigroup,

(vi) ({bm})2 for all m ∈ M3 is a singleton semigroup,
(vii) (]co,do[)2 for all o ∈ O 1 is an s-internal semigroup,

(viii) ({co})2 for all o ∈ O 3 is a singleton semigroup,
(ix) ({e})2 is a singleton semigroup.

Further we will focus on K2 and M2. For any k ∈ K2 Lemmas 2, 3 and 8 imply that U restricted to ([ak,bk[ ∪ {U (bk, ck)} ∪
]ck,dk])2 is isomorphic to a representable uninorm. Thus U restricted to (]ak,bk[ ∪ {U (bk, ck)} ∪ ]ck,dk[)2 is a representable 
semigroup.

Further, for any m ∈ M2 Lemmas 2 and 9 imply that U restricted to ([am,bm[ ∪ {e} ∪ ]cm,dm])2 is isomorphic to a 
d-internal uninorm, i.e., U restricted to (]am,bm[ ∪ ]cm,dm[)2 is a d-internal semigroup.

Now assume the order from Lemma 12. To conclude the proof we should show that if p1, p2 ∈ P , p1 	= p2, with p1 
 p2
then for any x ∈ Xp1 and any y ∈ Xp2 we have U (x, y) = x. If both x, y ∈ [0, e] then x < y since L(p1) ≤ L(p2) and since 
there is an idempotent point in [x, y] then continuity of TU implies U (x, y) = min(x, y) = x. Similarly, if x, y ∈ [e,1] then 
U (x, y) = x.

Now suppose that x ∈ [0, e] and y ∈ [e,1] (the case when x ∈ [e,1] and y ∈ [0, e] can be shown analogously). If L(p1) =
L(p2) and H(p1) = H(p2) then U (x, y) = x.

If H(p1) > H(p2) then Lemma 13 implies q(x) > y and Lemma 14 implies U (x, y) ∈ {x, y}. Thus U (x, y) = x.
Finally suppose L(p1) < L(p2). Then Lemma 13 implies x < q(y) and Lemma 14 implies U (x, y) ∈ {x, y}. Thus 

U (x, y) = x. �
Remark 6. Due to the ordinal sum structure and monotonicity of U it is easy to see that restriction of U

(i) to [ak,bk] for all k ∈ K1 is isomorphic to a nilpotent t-norm,
(ii) to [ak,bk[ ∪ {U (bk, ck)} ∪ ]ck,dk] for all k ∈ K2 is isomorphic to a representable uninorm,

(iii) to [ak,bk] for all k ∈ K3 is isomorphic to a strict t-norm,
(iv) to [cl,dl] for all l ∈ L1 is isomorphic to a nilpotent t-conorm,
(v) to [cl,dl] for all l ∈ L3 is isomorphic to a strict t-conorm,

(vi) to [am,bm] for all m ∈ M1 is isomorphic to the minimum t-norm,
(vii) to [am,bm[ ∪ {U (bm, cm)} ∪ ]cm,dm] for all m ∈ M2, is isomorphic to a d-internal uninorm.

(viii) to [co,do] for all o ∈ O 1 is isomorphic to the maximum t-conorm.

Despite this fact, U need not to be an ordinal sum of representable uninorms (including continuous Archimedean t-norms) 
and internal uninorms (including the min and the max). Indeed, it can happen that the end point of the set where the 
respective uninorm is transformed is ‘separated’ from the remainder of the semigroup support and there exists a p3 ∈ P
such that p1 < p3 < p2 (or p2 < p3 < p1), where p1 corresponds to the singleton semigroup of the end point and p2 to the 
remaining semigroup. Due to the given order this is possible only if p3 /∈ K2 ∪ M2. Sketch of this situation can be seen on 
Fig. 2.

To conclude our characterization we have to show also an opposite result.

Proposition 12. Assume e ∈ ]0,1[ and let K1, K2, K3, L1, L3, M1, M2, M3, O 1, O 3 be mutually disjoint countable index sets and let 
P∗ = K1 ∪ K2 ∪ K3 ∪ L1 ∪ L3 ∪ M1 ∪ M2 ∪ M3 ∪ O 1 ∪ O 3 . Further assume

(i) a t-nilpotent semigroup on [ak,bk[ for all k ∈ K1 ,
(ii) a representable semigroup on ]ak,bk[ ∪ {U (bk, ck)} ∪ ]ck,dk[ for all k ∈ K2 ,

(iii) a t-strict semigroup on ]ak,bk[ for all k ∈ K3 ,
(iv) an s-nilpotent semigroup on ]cl,dl] for all l ∈ L1 ,
(v) an s-strict semigroup on ]cl,dl[ for all l ∈ L3 ,

(vi) a t-internal semigroup on ]am,bm[ for all m ∈ M1 ,
(vii) a d-internal semigroup on ]am,bm[ ∪ ]cm,dm[ for all m ∈ M2 ,

(viii) a semigroup defined on {am} for all m ∈ M3 ,
(ix) an s-internal semigroup on ]co,do[ for all o ∈ O 1 ,
(x) a semigroup defined on {do} for all o ∈ O 3 ,
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Fig. 2. Sketch of a uninorm U ∈ U which is an ordinal sum with m + 1 non-singleton summands, P = {1, . . . , m, m + 1} ∪ Ps , where Ps are indices related to 
singleton semigroups. Here 1, m + 1 ∈ K2 ∪ M2 and 2, . . . , m /∈ K2 ∪ M2. The rounded area (the line in the center) designates the place where U can differ 
from an ordinal sum of representable and internal uninorms.

and if e 	= U (bk, ck) for all k ∈ K2 also a semigroup defined on {e}, such that [0, e] is partitioned into sets: [ak,bk[ for k ∈ K1 , ]ak,bk[ ∪
({U (bk, ck)} ∩ [0, e]) for k ∈ K2 , ]ak,bk[ for k ∈ K3 , ]am,bm[ for m ∈ M1 ∪ M2 , {am} for m ∈ M3 and eventually {e}, and [e,1] is 
partitioned into sets: ]cl,dl] for l ∈ L1 , ]ck,dk[ ∪ ({U (bk, ck)} ∩ [e,1]) for k ∈ K2 , ]cl,dl[ for l ∈ L3 , ]co,do[ for o ∈ O 1 ∪ M2 , {do} for 
o ∈ O 3 and eventually {e}.

If there is a separate semigroup on {e} we will take p∗ /∈ P∗ and set P = P∗ ∪ {p∗}. Otherwise P = P∗ .
Let L, H : P −→ [0, 1] be two functions partially given by

L(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ap+bp
2 if p ∈ K1,

ap+bp
2 if p ∈ K2,

ap+bp
2 if p ∈ K3,

ap+bp
2 if p ∈ M1,

ap+bp
2 if p ∈ M2,

bp if p ∈ M3,

e if p = p∗,

H(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cp+dp
2 if p ∈ K2,

cp+dp
2 if p ∈ M2,

cp+dp
2 if p ∈ L1,

cp+dp
2 if p ∈ L3,

cp+dp
2 if p ∈ O 1,

cp if p ∈ O 3,

e if p = p∗

such that for all p1, p2 ∈ P there is neither L(p1) < L(p2) and H(p1) < H(p2), nor L(p1) > L(p2) and H(p1) > H(p2). Assume a 
linear order 
 on P such that if p1 
 p2 one of the following is satisfied:

(i) p1 = p2
(ii) L(p1) ≤ L(p2) and H(p1) > H(p2),

(iii) L(p1) < L(p2) and H(p1) ≥ H(p2),
(iv) L(p1) = L(p2) and H(p1) = H(p2).

Then the ordinal sum of the above described semigroups with the order 
 on the set P is a uninorm U ∈ U .

Proof. Let ([0, 1], U ) be an ordinal sum of the above described semigroups. First observe that U restricted to [0, e]2 is iso-
morphic to an ordinal sum of continuous t-norms and U restricted to [e,1]2 is isomorphic to an ordinal sum of continuous 
t-conorms.

Since each of the respective semigroups is commutative also U is commutative. The associativity follows from Theorem 1. 
Further, if P 	= P∗ Then p∗ = max(P ) and thus U (e, x) = x for all x ∈ [0, 1]. If P = P∗ then there is a p ∈ K2 such that 
bp = cp = e, i.e., Xp = ]

ap,dp
[
. Then e is the neutral point of the semigroup corresponding to p and p = max(P ). Thus 

U (e, x) = x for all x ∈ [0, 1].
Now we will focus on monotonicity. Since U is monotone on [0, e]2 ∪ [e,1]2 the monotonicity has to be shown on 

[0, e] × [e,1] and on [e,1] × [0, e]. We will focus on [0, e] × [e,1] as the other part is analogous. Due to commutativity of U
it is enough to show that for all x ∈ [0, e] and all y1, y2 ∈ [e,1], y1 < y2 we have U (x, y1) ≤ U (x, y2). Let x ∈ Xp , y1 ∈ Xp1

and y2 ∈ Xp2 . If p = p1 = p2 then monotonicity follows from monotonicity of the semigroup corresponding to p.
Let p = p1 	= p2. Since y1 < y2 we have p2 ≺ p1 = p, i.e., U (x, y2) = y2 > y1 ≥ U (x, y1). If p = p2 	= p1 then y1 < y2

implies p = p2 ≺ p1, i.e., U (x, y2) ≥ x = U (x, y1). Suppose p 	= p1 = p2 then either U (x, y1) = x = U (x, y2) or U (x, y2) =
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y2 > y1 = U (x, y1). Finally suppose that p, p1 and p2 are mutually different. Then y1 < y2 implies p2 ≺ p1 and we have 
the following possibilities:

(i) p ≺ p2 ≺ p1,
(ii) p2 ≺ p ≺ p1,

(iii) p2 ≺ p1 ≺ p.

In the first case we get U (x, y2) = x = U (x, y1). In the second case we get U (x, y2) = y2 > x = U (x, y1). Finally, in the 
third case we get U (x, y2) = y2 > y1 = U (x, y1). Thus in all possible cases we get U (x, y1) ≤ U (x, y2) and the monotonicity 
holds. �
6. Conclusions

Each continuous t-norm (t-conorm) is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). In this 
paper we have extended this characterization onto uninorms with continuous underlying t-norm and t-conorm. Using the 
characterizing set-valued function we have shown that such a uninorm can be decomposed into an ordinal sum of a count-
able number of semigroups related to representable uninorms, continuous Archimedean t-norms, continuous Archimedean 
t-conorms and internal uninorms (including the min and the max). However, we have shown that not every uninorm with 
continuous underlying t-norm and t-conorm can be decomposed into an ordinal sum of representable uninorms(including 
continuous Archimedean t-norms and t-conorms) and internal uninorms (including the min and the max). This result to-
gether with the properties of the characterizing set-valued function offer a complete characterization of uninorms from U , 
i.e., of uninorms with continuous underlying t-norm and t-conorm. The applications of these results are expected in all 
domains where uninorms are used.
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Characterization of Uninorms With Continuous
Underlying T-norm and T-conorm by Their Set of

Discontinuity Points
Andrea Mesiarová-Zemánková

Abstract—Uninorms with continuous underlying t-norm and t-
conorm are discussed and properties of the set of discontinuity
points of such a uninorm are shown. This set is proved to be a subset
of the graph of a special symmetric, u-surjective, nonincreasing set-
valued function, which gives us a necessary condition for a uninorm
to have continuous underlying functions. A sufficient condition for
a uninorm to have continuous underlying operations is also given.
Several examples are included.

Index Terms—Continuous t-conorm, continuous t-norm, ordinal
sum, set-valued function, uninorm.

I. INTRODUCTION

THE (left-continuous) t-norms and their dual t-conorms
have an indispensable role in many domains [9], [31],

[32]. Generalizations of t-norms and t-conorms that can model
bipolar behavior are uninorms (see [7], [23], [33]). The class of
uninorms is widely used both in theory [18], [29] and in appli-
cations [13], [34]. The complete characterization of uninorms
with continuous underlying t-norm and t-conorm has been in the
center of the interest for a long time, however, only partial re-
sults were achieved (see [4]–[6], [8], [10], [15]–[17], [19]–[21],
[28], [30]).

In [24], we have introduced ordinal sum of uninorms and
in [25] we have characterized uninorms that are ordinal sums
of representable uninorms. We would like to characterize all
uninorms with continuous underlying functions and obtain a
similar representation as in the case of t-norms and t-conorms.
In this paper, we will show that underlying operations of a
uninorm U are continuous if and only if U is continuous on
[0, 1]2 \ G(r), where G(r) is the graph of a special symmetric,
u-surjective, nonincreasing set-valued function, and U is in each
point (x, y) ∈ [0, 1]2 either left-continuous or right-continuous
(or both, in which case it is continuous). We will then continue
and in [26] and [27] we will show that each uninorm with contin-
uous underlying t-norm and t-conorm can be decomposed into
an ordinal sum of semigroups related to representable uninorms,
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continuous Archimedean t-norms and t-conorms, internal uni-
norms, and singleton semigroups.

In Section II, we will recall all necessary basic notions and
results. We will characterize uninorms with continuous under-
lying functions via the properties of their set of discontinuity
points (see Section III). We give our conclusions in Section IV.

II. BASIC NOTIONS AND RESULTS

Let us now recall all necessary basic notions.
A triangular norm is a function T : [0, 1]2 −→ [0, 1] which is

commutative, associative, nondecreasing in both variables and
1 is its neutral element. Note that in this paper we stick to the
definition from [11], where a nondecreasing function means an
increasing function that need not to be strictly increasing. Due
to the associativity, n-ary form of any t-norm is uniquely given
and thus it can be extended to an aggregation function work-
ing on

⋃
n∈N [0, 1]n . Dual functions to t-norms are t-conorms.

A triangular conorm is a function S : [0, 1]2 −→ [0, 1] which
is commutative, associative, nondecreasing in both variables
and 0 is its neutral element. The duality between t-norms and
t-conorms is expressed by the fact that from any t-norm T
we can obtain its dual t-conorm S by the equation S(x, y) =
1 − T (1 − x, 1 − y) and vice-versa.

Proposition 1 ([11]): Let t : [0, 1] −→ [0,∞] (s : [0, 1] −→
[0,∞]) be a continuous strictly decreasing (increasing) func-
tion, such that t(1) = 0 (s(0) = 0). Then, the operation T :
[0, 1]2 −→ [0, 1] ( S : [0, 1]2 −→ [0, 1]) given by

T (x, y) = t−1(min(t(0), t(x) + t(y)))

S(x, y) = s−1(min(s(1), s(x) + s(y)))

is a continuous t-norm (t-conorm). The function t (s) is called
an additive generator of T (S).

An additive generator of an Archimedean continuous
t-norm T (t-conorm S) is uniquely determined up to a positive
multiplicative constant. Each continuous t-norm (t-conorm) is
equal to an ordinal sum of continuous Archimedean t-norms
(t-conorms). Note that a continuous t-norm (t-conorm) is
Archimedean if and only if it has only trivial idempotent
points 0 and 1. A continuous Archimedean t-norm T (t-
conorm S) is either strict, that is, strictly increasing on ]0, 1]2

(on [0, 1[2), or nilpotent, that is, there exists (x, y) ∈]0, 1[2 ,
such that T (x, y) = 0 (S(x, y) = 1). Moreover, each continu-
ous Archimedean t-norm (t-conorm) has a continuous additive

1063-6706 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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generator. More details on t-norms and t-conorms can be found
in [1] and [11].

A uninorm (introduced in [33]) is a function U : [0, 1]2 −→
[0, 1] which is commutative, associative, nondecreasing in both
variables, and has a neutral element e ∈]0, 1[ (see also [7]). If we
take a uninorm in a broader sense, that is, if for a neutral element
we have e ∈ [0, 1], then the class of uninorms covers also the
class of t-norms and the class of t-conorms. In order to stress that
we assume a uninorm with e ∈]0, 1[, we will call such a uninorm
proper. For each uninorm, the value U(1, 0) ∈ {0, 1} is the
annihilator of U. A uninorm is called conjunctive (disjunctive)
if U(1, 0) = 0 (U(1, 0) = 1). Due to the associativity, we can
uniquely define n-ary form of any uninorm for any n ∈ N and
therefore in some proofs we will use ternary form instead of
binary, where suitable.

For each uninorm U with the neutral element e ∈ [0, 1],
the restriction of U to [0, e]2 is a t-norm on [0, e]2 , that is,
a linear transformation of some t-norm TU on [0, 1]2 and
the restriction of U to [e, 1]2 is a t-conorm on [e, 1]2 , that
is, a linear transformation of some t-conorm SU on [0, 1]2 .
Moreover, min(x, y) ≤ U(x, y) ≤ max(x, y) for all (x, y) ∈
[0, e] × [e, 1] ∪ [e, 1] × [0, e] . We will denote the set of all uni-
norms U , such that TU and SU are continuous by U .

From any pair of a t-norm and a t-conorm, we can construct
the minimal and the maximal uninorm with the given underlying
functions.

Proposition 2 ([14]): Let T : [0, 1]2 −→ [0, 1] be a t-
norm and S : [0, 1]2 −→ [0, 1] a t-conorm and assume e ∈
]0, 1[. Then, the two functions Umin , Umax : [0, 1]2 −→ [0, 1]
given by

Umin(x, y)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e · T
(x

e
,
y

e

)
if (x,y)∈ [0, e]2

e + (1 − e) · S

(
x − e

1 − e
,
y − e

1 − e

)
if(x,y)∈ [e, 1]2

min(x, y) otherwise

and

Umax(x, y)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e · T
(x

e
,
y

e

)
if(x, y) ∈ [0, e]2

e + (1 − e) · S

(
x − e

1 − e
,
y − e

1 − e

)
if(x, y) ∈ [e, 1]2

max(x, y) otherwise

are uninorms. We will denote the set of all uninorms of the first
type by Umin and of the second type by Umax .

Similarly as in the case of t-norms and t-conorms, we can
construct uninorms using additive generators (see [7]).

Proposition 3 ([7]): Let f : [0, 1] −→ [−∞,∞] , f(0) =
−∞, f(1) = ∞ be a continuous strictly increasing function.
Then, a function U : [0, 1]2 −→ [0, 1] given by

U(x, y) = f−1(f(x) + f(y))

where f−1 : [−∞,∞] −→ [0, 1] is an inverse function to f,
with the convention ∞ + (−∞) = ∞ (or ∞ + (−∞) = −∞),
is a uninorm, which will be called a representable uninorm.

Since f is continuous and f(0) = −∞, f(1) = ∞, there
exists an e ∈]0, 1[ such that f(e) = 0. The point e is then the
neutral element of the uninorm U. Note that if we relax the strict
monotonicity of the additive generator, then the neutral element
will be lost and by relaxing the condition f(0) = −∞, f(1)
= ∞ the associativity will be lost (if f(0) < 0 and f(1) > 0).
In [29] (see also [23]) we can find the following result.

Proposition 4 ([29]): Let U : [0, 1]2 −→ [0, 1] be a uninorm
continuous everywhere on the unit square except of the two
points (0, 1) and (1, 0). Then, U is representable.

For our examples we will use the following ordinal sum con-
struction introduced by Clifford.

Theorem 1 ([3]): Let A �= ∅ be a totally ordered set and
(Gα )α∈A with Gα = (Xα, ∗α ) be a family of semigroups. As-
sume that for all α, β ∈ A with α < β the sets Xα and Xβ are
either disjoint or that Xα ∩ Xβ = {xα,β }, where xα,β is both
the neutral element of Gα and the annihilator of Gβ and where
for each γ ∈ A with α < γ < β we have Xγ = {xα,β }. Put
X =

⋃
α∈A Xα and define the binary operation ∗ on X by

x ∗ y =

⎧
⎨
⎩

x ∗α y if (x, y) ∈ Xα × Xα,
x if (x, y) ∈ Xα × Xβ and α < β,
y if (x, y) ∈ Xα × Xβ and α > β.

Then, G = (X, ∗) is a semigroup. The semigroup G is com-
mutative if and only if for each α ∈ A the semigroup Gα is
commutative.

Therefore, in our examples, the commutativity and the asso-
ciativity of the corresponding ordinal sum uninorm will follow
from Theorem 1. Monotonicity and the neutral element can be
then easily checked by the reader.

Furthermore, we will use the following transformation. For
any 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c] , and a uninorm U with
the neutral element e ∈]0, 1[ let f : [0, 1] −→ [a, b[∪{v}∪]c, d]
be given by

f(x) =

⎧
⎨
⎩

(b − a) · x
e + a if x ∈ [0, e[,

v if x = e,

d − (1−x)(d−c)
(1−e) otherwise.

(1)

Then, f is linear on [0, e[ and on ]e, 1] and thus it is a piece-
wise linear isomorphism of [0, 1] to ([a, b] [∪{v}∪] [c, d]) and a
function Ua,b,c,d

v : ([a, b[∪{v}∪]c, d])2 −→ ([a, b[∪{v}∪]c, d])
given by

Ua,b,c,d
v (x, y) = f(U(f−1(x), f−1(y))) (2)

is an operation on ([a, b[∪{v}∪]c, d])2 which is commutative,
associative, nondecreasing in both variables (with respect to the
standard order) and v is its neutral element.

Example 1: Assume U1 ∈ Umin and U2 ∈ Umax with re-
spective neutral elements e1 , e2 . Then, U1 is an ordinal sum
of semigroups Gα = ([0, e[, T ∗

U1
) and Gβ = ([e, 1] , S∗

U1
) with

α < β, where T ∗
U1

= U1 |[0,e1 ]2 and S∗
U1

= U1 |[e1 ,1]2 . Similarly,
U2 is an ordinal sum of semigroups Gα = ([0, e] , T ∗

U2
) and

Gβ = (]e, 1], S∗
U2

) with α > β. If all underlying operations are
continuous, then the set of discontinuity points of U1 is equal to
the set S1 = {e}×]e, 1]∪]e, 1] × {e} and the set of discontinu-
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Fig. 1. Uninorm U1 (left) and the uninorm U2 (right) from Example 1. The
bold lines denote the points of discontinuity of U1 and U2 .

ity points of U2 is equal to the set S2 = {e} × [0, e[∪[0, e[×{e}.
Both uninorms can be seen in Fig. 1 .

More detailed discussion on the ordinal sum construction for
uninorms can be found in [26].

III. CHARACTERIZATION OF UNINORMS U ∈ U BY MEANS OF

SPECIAL SET-VALUED FUNCTIONS

In this section, we will show that for a uninorm U we
have U ∈ U if and only if U is continuous on [0, 1]2 \G(r),
where G(r) is the graph of a special symmetric, u-surjective,
nonincreasing set-valued function r and U is in each point
(x, y) ∈ [0, 1]2 either left-continuous, or right-continuous (or
both, in which case it is continuous). In the first part, we will fo-
cus on the necessity part, that is, we will show that each uninorm
U ∈ U is continuous on [0, 1]2 \G(r), where G(r) is the graph
of some symmetric, u-surjective, nonincreasing set-valued func-
tion r (see Theorem 2). We will also show (see Theorem 3) that
U ∈ U implies that U is in each point (x, y) ∈ [0, 1]2 either
left-continuous, or right-continuous (or both, in which case it is
continuous).

A. Necessity Part

The following lemmas and propositions are necessary for the
proofs of Theorems 2 and 3.

Lemma 1 ([25]): Each uninorm U : [0, 1]2 −→ [0, 1],
U ∈ U , is continuous in (e, e).

Next, we show that for x, y ∈ [0, 1] we have U(x, y) =
min(x, y) or U(x, y) = max(x, y) if x is an idempotent ele-
ment of U.

Lemma 2: Let U : [0, 1]2 −→ [0, 1] be a uninorm and let
U ∈ U . If a ∈ [0, 1] is an idempotent point of U then U is inter-
nal on {a} × [0, 1], that is, U(a, x) ∈ {x, a} for all x ∈ [0, 1].

Proof: If a = e the result is obvious. Suppose a < e (the
case when a > e is analogous). Since TU is continuous, we
have U(a, x) = min(a, x) if x ∈ [0, e] . Suppose that there ex-
ists y ∈ [e, 1], such that U(a, y) = c ∈]a, y[. Then, U(a, c) =
U(a, a, y) = U(a, y) = c and if c ≤ e then c = U(a, c) ≤ a
which is a contradiction. Thus, y > c > e. Then, since SU is
continuous, there exists a y1 such that U(c, y1) = y. Then,
however,

U(a, y) = U(a, c, y1) = U(c, y1) = y

which is again a contradiction. Thus, U is internal on {a} ×
[0, 1]. �

For a given uninorm U : [0, 1]2 −→ [0, 1] and each x ∈ [0, 1],
we define a function ux : [0, 1] −→ [0, 1] by ux(z) = U(x, z)
for z ∈ [0, 1].

Lemma 3: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U ,
and assume x ∈ [0, 1]. The function ux is continuous if and
only if one of the following conditions:

1) ux(1) < e;
2) ux(0) > e;
3) e ∈ Ran(ux)
is satisfied.
Proof: If e ∈ Ran(ux), then there exists a y ∈ [0, 1], such

that U(x, y) = e. Since U is monotone continuity of ux is equiv-
alent with the equality Ran(ux) = [a, b] for some a = U(0, x)
and b = U(1, x). Assume c ∈ [0, 1]. Then, U(x, y, c) = c and
for z = U(y, c) we have ux(z) = c, that is, Ran(ux) = [0, 1].
If ux(1) = v < e (the case when ux(0) > e can be shown simi-
larly), then due to the monotonicity the continuity of ux is equiv-
alent with the equality Ran(ux) = [0, v] . Assume w ∈ [0, v] .
Since TU is continuous there exists a q ∈ [0, e] such that
U(v, q) = w, that is, U(x, 1, q) = w and then ux(U(1, q)) = w.
Therefore, Ran(ux) = [0, v] .

Vice versa, if ux is continuous and ux(0) ≤ e ≤ ux(1) then
evidently e ∈ Ran(ux). �

Example 2: For a representable uninorm U , the function ux

is continuous for all x ∈]0, 1[. Moreover, if U is conjunctive
(disjunctive), then u0 (u1) is continuous and u1 (u0) is non-
continuous in 0 (1). For a uninorm U ∈ Umax (U ∈ Umin ) ux is
continuous for all x ∈ [e, 1] (x ∈ [0, e]) and ux is noncontinuous
in e for all x ∈ [0, e[ (x ∈]e, 1]).

Now we recall a result [12, Proposition 1] which shows a
connection between continuity on cuts and joint continuity of a
monotone function.

Proposition 5: Let f(x, y) be a real-valued function defined
on an open set G in the plane. Suppose that f(x, y) is continuous
in x and y separately and is monotone in x for each y. Then,
f(x, y) is (jointly) continuous on the set G.

Proposition 6: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
U . Then, for each x ∈ [0, 1], there is at most one point of discon-
tinuity of ux. Furthermore, if ux is noncontinuous in y ∈ [0, 1],
then U(x, z) < e for all z < y and U(x, z) > e for all z > y.

Proof: If ux is noncontinuous, then Lemma 3 implies e /∈
Ran(ux), ux(0) < e and ux(1) > e. We will denote

f = sup{U(x, y) | y ∈ [0, 1], U(x, y) ≤ e}
and

g = inf{U(x, y) | y ∈ [0, 1], U(x, y) ≥ e}.

Note that the inequality ux(0) < e (ux(1) > e) implies that f
is the supremum (g is the infimum) of a nonempty set. Fix ar-
bitrary f1 < f. Then, there exist an s > 0 and yf , such that
f1 ≤ f − s ≤ U(x, yf ) ≤ f < e because f is the supremum.
Since U(U(x, yf ), 0) = 0, U(U(x, yf ), e) = U(x, yf ) and TU

is continuous, there exists an f3 such that U(U(x, yf ), f3) =
f1 . Therefore, U(x,U(yf , f3)) = f1 and f1 ∈ Ran(ux). Sim-
ilarly, for each g1 > g, there is g1 ∈ Ran(ux). Therefore,
[0, 1] \ Ran(ux) is a connected set. Since ux is mono-
tone it has only one point of discontinuity. Also, if ux is
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noncontinuous in y ∈ [0, 1], then U(x, z) < e for all z < y and
U(x, z) > e for all z > y. �

The following result shows that if U(a, b) = e, then U is
continuous in the point (a, b). First, however, we introduce three
useful lemmas.

Lemma 4: Let U : [0, 1]2 −→ [0, 1] be a uninorm with the
neutral element e ∈ [0, 1]. Then, if U(a, b) = e, for some a, b ∈
[0, 1], there is either a = b = e, or a and b are not idempotent
elements of U.

Proof: If a is an idempotent point (similarly for b), then

e = U(a, b) = U(a, U(a, b)) = U(a, e) = a

and

e = U(a, b) = U(e, b) = b

i.e., a = b = e. �
Lemma 5: Let U : [0, 1]2 −→ [0, 1] be a uninorm with the

neutral element e ∈ [0, 1]. Then, if U(a, b) = e, for some a, b ∈
[0, 1], there is either a = b = e, or a < e, b > e, or a > e, b < e.

Proof: If a = e, then evidently also b = e. If a < e, then
b �= e and we have

e = U(a, b) ≤ U(e, b) = b

i.e., e < b. Finally, if a > e, then b �= e and we have

e = U(a, b) ≥ U(e, b) = b

i.e., e > b. �
Lemma 6: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U ,

with the neutral element e ∈ [0, 1]. If ux(y) < e (ux(y) > e)
for some x, y ∈ [0, 1], then ux is continuous on [0, y] ([y, 1]).

Proof: We will show only that ux(y) < e implies the conti-
nuity of ux on [0, y] . The continuity of ux on [y, 1] following
from ux(y) > e can be shown analogously. If ux(y) < e the
continuity of TU ensures (similarly as in Proposition 6) that the
range of ux on [0, y] is a connected set. Since ux is monotone,
this means that ux is continuous on [0, y] . �

Proposition 7: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
U . If U(a, b) = e for some a, b ∈ [0, 1], a < e, then U is con-
tinuous on [0, 1]2 \ ([0, a] ∪ [b, 1])2 . �

Proof: Since a < e Lemma 4 implies that a and b are not
idempotent elements of U and Lemma 5 implies that b > e.
From Lemma 3 we know that ua and ub are continuous func-
tions. Next, we will show that for all f ∈]a, b[ there exists
a vf ∈ [0, 1], such that U(f, vf ) = e. Assume f ∈]a, e] (for
f ∈ [e, b[ the proof is analogous). Since TU is continuous and
U(a, f) ≤ a, U(f, e) = f there exists an af ∈ [0, e] such that
U(f, af ) = a. Then

e = U(a, b) = U(f, af , b)

and if vf = U(af , b), then U(f, vf ) = e. Summarizing, we get
that for all x ∈ [a, b] the function ux is continuous. Now, since a
and b are not idempotents, we have U(a, a) = p < a, U(b, b) =
q > b and U(a, a, b, b) = e. Therefore, also all ux for x ∈ [p, q]
are continuous and thus U is continuous separately in x and
in y on [p, q]2 . Moreover, since U(p − ε, q) < e for all ε > 0
with ε ≤ p, Lemma 6 implies that U is continuous separately
in x and in y also on [0, p] × [p, q] (and by symmetry also on

[p, q] × [0, p]). Furthermore, U(p, q + ε) > e for all ε > 0 with
ε ≤ 1 − q and Lemma 6 implies that U is continuous separately
in x and in y on [p, q] × [q, 1] (and by symmetry also on [q, 1] ×
[p, q]). Summarizing, U is continuous separately in x and in y
on [p, q] × [0, 1] ∪ [0, 1] × [p, q] and then Proposition 5 implies
the result.

Proposition 8: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
U . Then, there exist idempotent points a, d ∈ [0, 1], a ≤ e ≤ d,
such that for an x ∈ [0, 1] there exists a y ∈ [0, 1] with U(x, y) =
e if and only if x ∈]a, d[∪{e}. Moreover, U is continuous on
]a, d[×[0, 1] ∪ [0, 1]×]a, d[.

Proof: For U ∈ U there either U(x, y) = e implies x = y
= e, or there exists an x �= e such that U(x, y) = e for some y ∈
[0, 1]. We will focus on the second case. Then, Lemma 5 implies
that either x < e, y > e, or x > e, y < e. We will suppose that
x < e and y > e (as the other case is analogous). Lemma 4
shows that the points x and y are not idempotents. Since both
underlying functions are continuous, the points a, d ∈ [0, 1],
given by

a = lim
n−→∞

U(x, . . . , x︸ ︷︷ ︸
n -times

)

and

d = lim
n−→∞

U(y, . . . , y︸ ︷︷ ︸
n -times

)

are idempotent. Furthermore, the monotonicity of U implies
U(x, . . . , x︸ ︷︷ ︸

n -times

) < e < U(y, . . . , y︸ ︷︷ ︸
n -times

) for all n ∈ N and therefore we

have a < e < d.
First we will show that if b ∈]a, d[∪{e}, then there exists a

c ∈ [0, 1] such that U(b, c) = e. Since b ∈]a, d[∪{e} there exists
an n ∈ N such that

b ∈

⎡
⎣U(x, . . . , x︸ ︷︷ ︸

n -times

), U(y, . . . , y︸ ︷︷ ︸
n -times

)

⎤
⎦ .

Furthermore, associativity implies

U(x, . . . , x︸ ︷︷ ︸
n -times

, y, . . . , y︸ ︷︷ ︸
n -times

) = e

for all n ∈ N and similarly as in the proof of Proposition 7 we
can show that for all

z ∈

⎡
⎣U(x, . . . , x︸ ︷︷ ︸

n -times

), U(y, . . . , y︸ ︷︷ ︸
n -times

)

⎤
⎦

there exists a q ∈ [0, 1] such that U(z, q) = e. Thus, there exists
a c ∈ [0, 1], such that U(b, c) = e.

Now we will show that if for an b ∈ [0, 1] there exists a
c ∈ [0, 1] such that U(b, c) = e, then b ∈]a, d[∪{e}. Suppose
that b < a (the case when b > d is analogous). Then, similarly
as in the proof of Proposition 7 we can show that there exists
a z ∈ [0, 1] such that U(a, z) = e, which is not possible due to
Lemma 4. Therefore, b ∈]a, d[∪{e}.

Proposition 7 implies that U is continuous on ]x, y[×[0, 1] ∪
[0, 1]×]x, y[ for any x, y ∈]a, d[ and thus, taking the union, we
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Fig. 2. Uninorm U from Example 3. The oblique lines denote the points of
discontinuity of U.

see that U is continuous on ]a, d[×[0, 1] ∪ [0, 1]×]a, d[. In order
to include also the case when U(x, y) = e implies x = y = e,
we can generally say that for an x ∈ [0, 1] there exists a y ∈
[0, 1] such that U(x, y) = e if and only if x ∈]a, d[∪{e}. Note
that in the case when U(x, y) = e implies x = y = e, we take
a = e = d. �

Example 3: Assume two representable uninorms U1 , U2 :
[0, 1]2 −→ [0, 1] with respective neutral elements e1 , e2 . Let
U ∗

1 be a transformation of U1 to ([0, 1
3 [∪{v}∪] 2

3 , 1])2 given by
(2), where v = 1

3 (v = 2
3 ) if U2 is conjunctive (disjunctive), and

let U ∗
2 be a linear transformation of U2 to

[
1
3 , 2

3

]2
. Then, the or-

dinal sum of semigroups Gα = ([0, 1
3 [∪{v}∪] 2

3 , 1], U ∗
1 ),Gβ =

(
[

1
3 , 2

3

]
, U ∗

2 ), with α < β, is a semigroup ([0, 1], U), where U

is a uninorm with the neutral element e = e2 +1
3 . We can find

the structure of U on Fig. 2 . All points of discontinuity of
U except (0, 1), (0, 1) correspond to the transformation of the
points (x, y) ∈ [0, 1]2 such that U1(x, y) = e1 . For simplicity,
we will assume that U1(x, 1 − x) = e1 = 1

2 for all x ∈ [0, 1] .
Moreover, for every a ∈] 1

3 , 2
3 [ there exists a b ∈] 1

3 , 2
3 [ such that

U(a, b) = e. The previous result then implies that U is contin-
uous in every point from ] 1

3 , 2
3 [×[0, 1] and from [0, 1]×] 1

3 , 2
3 [.

In the following results we will continue to investigate prop-
erties of the function ux.

Proposition 9: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
U . Then, for all x ∈ [0, 1] the function ux is either left-
continuous or right-continuous (or both, in which case it is
continuous).

Proof: Assume x ∈ [0, 1]. From Proposition 6 we know that
ux is noncontinuous in at most one point, and thus we will
suppose that ux is noncontinuous in the point p ∈ [0, 1]. Fur-
thermore, from the proof of the same proposition, we know that
[0, 1] \ Ran(ux) is a connected set, that is, an interval I, and
ux(p) is an end point of the interval I. Then, it is evident that
if ux(p) = inf I then ux is left-continuous and ux(p) < e, and
if ux(p) = sup I then ux is right-continuous and ux(p) > e. �

Remark 1: From the proof of Proposition 9 we see that if
ux(p) < e for some p ∈ [0, 1], then ux is left-continuous on
[0, p] and if ux(p) > e then ux is right-continuous on [p, 1] .

Next we will show that the points of discontinuity of ux are
nonincreasing with respect to x ∈ [0, 1].

Proposition 10: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
U . Suppose that for x, x1 ∈ [0, 1], x1 < x, the functions ux and
ux1

are noncontinuous in points y and y1 , respectively. Then
y1 ≥ y.

Fig. 3. Uninorm U from Example 4. The oblique and bold lines denote the
points of discontinuity of U.

Proof: From the proof of Proposition 6 we see that if ux

is noncontinuous in y, then U(x, z) < e for all z < y and
U(x, z) > e for all z > y. The monotonicity implies U(x1 , z) ≤
U(x, z) < e for z < y. However, if ux1

is noncontinuous in y1 ,
then by Proposition 6 there is U(x1 , z) > e for all z > y1 and
therefore y1 ≥ y. �

Corollary 1: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U .
If ux1

is noncontinuous in y and ux2
is noncontinuous in y

for some x1 < x2 , then ux is noncontinuous in y for all x ∈
[x1 , x2 ] .

Proof: Assume x ∈ [x1 , x2 ] . Since ux1
is noncontinuous

in y, we have U(x1 , z) > e for all z > y and the monotonicity
gives U(x, z) > e for all z > y. Since ux2

is noncontinuous in y,
we have U(x2 , z) < e for all z < y and the monotonicity gives
U(x, z) < e for all z < y. Thus, ux is either noncontinuous in
y or U(x, y) = e. Assume that U(x, y) = e. If x = y = e, then
x1 < e < x2 and we get

e < U(x1 , x2) < e

which is a contradiction. Therefore, by Lemma 4, the points x
and y are not idempotent elements of U and x �= e, y �= e.

Suppose that y > e. Then, U(x, x, y, y) = e with
U(x1 , y, y) > e implies U(x, x) < x1 < x and by Proposition
7 U is continuous on [0, 1]2 \ ([0, U(x, x)] ∪ [U(y, y), 1])2 .
Then, however, ux1

is continuous, which is a contradiction.
In the case when y < e then U(x, x, y, y) = e with

U(x2 , y, y) < e implies x < x2 < U(x, x) and using Propo-
sition 7 again we obtain that ux2

is continuous, which is a
contradiction. Therefore, in both cases U(x, y) �= e and thus ux

is noncontinuous in y. �
Example 4: Assume a representable uninorm U1 : [0, 1]2

−→ [0, 1] with the neutral element e1 and a uninorm U2 ∈ Umax

with the neutral element e2 = 1
2 . Let U ∗

1 be a transformation of
U1 to ([0, 1

3 [∪
[

2
3 , 1
]
)2 given by (2), and let U ∗

2 be a linear trans-

formation of U2 to
[

1
3 , 2

3

]2
. Then, the ordinal sum of semigroups

Gα = ([0, 1
3 [∪

[
2
3 , 1
]
, U ∗

1 ),Gβ = (
[

1
3 , 2

3

]
, U ∗

2 ), with α < β, is
a semigroup ([0, 1], U), where U is a uninorm. We can find
the structure of U in Fig. 3 . Here, u 1

2
is continuous and u0

(u1) is continuous if U1 is conjunctive (disjunctive). In all other
cases, ux is noncontinuous. Furthermore, u 1

3
is noncontinuous

in e = 1
2 and u 2

3
is noncontinuous in 1

3 .
Now we will show how can be a point of discontinuity of a

uninorm U related to the noncontinuity of corresponding func-
tions ux.
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Proposition 11: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
U . Then, U is noncontinuous in (x0 , y0) ∈ [0, 1]2 , (x0 , y0) �=
(e, e), if and only if one of the following is satisfied.

1) ux0
is noncontinuous in y0 .

2) uy0
is non-continuous in x0 .

3) There exist ε1 > 0 and ε2 > 0, such that uz is non-
continuous in x0 and uv is noncontinuous in y0 ei-
ther for all z ∈]y0 , y0 + ε1 ], v ∈]x0 , x0 + ε2 ], or for all
z ∈ [y0 − ε1 , y0 [, v ∈ [x0 − ε2 , x0 [.

Proof: Suppose that U is noncontinuous in (x0 , y0) ∈
[0, 1]2 . Then, due to Proposition 8 and Lemma 1 there
is U(x0 , y0) �= e. Since TU and SU are continuous, we
have (x0 , y0) ∈ [0, e] × [e, 1] ∪ [e, 1] × [0, e] . We will assume
(x0 , y0) ∈ [0, e] × [e, 1] (the other case is analogous). From
Proposition 5 it follows that if U is noncontinuous in (x0 , y0) ∈
[0, 1]2 , then for all δ1 > 0 and all δ2 > 0 there exist x ∈
]x0 − δ1 , x0 + δ1 [ and y ∈]y0 − δ2 , y0 + δ2 [ such that either ux

is noncontinuous in y or uy is noncontinuous in x. Thus, U
on [x0 − δ1 , x0 + δ1 ] × [y0 − δ2 , y0 + δ2 ] attain values smaller
than e and bigger than e as well. Let W be a subset of [0, 1]2 ,
such that (x, y) ∈ W if U(x1 , y1) < e for all x1 < x, y1 <
y and U(x2 , y2) > e for all x2 > x, y2 > y. Then, the set
[x0 − δ1 , x0 + δ1 ] × [y0 − δ2 , y0 + δ2 ] ∩ W is nonempty for
all δ1 > 0 and all δ2 > 0. Thus, (x0 , y0) ∈ W.

If ux0
is continuous in y0 , then there exists an ε1 > 0,

such that either ux0
(z) < e for all z ∈ [y0 − ε1 , y0 + ε1 ] or

ux0
(z) > e for all z ∈ [y0 − ε1 , y0 + ε1 ] . Similarly, if uy0

is
continuous in x0 , then there exists an ε2 > 0, such that ei-
ther uy0

(v) < e for all v ∈ [x0 − ε2 , x0 + ε2 ] or uy0
(v) > e

for all v ∈ [x0 − ε2 , x0 + ε2 ] . Since we cannot have both
U(x0 , y0) < e and U(x0 , y0) > e we have either uy0

(v) < e
and ux0

(z) < e for all z ∈ [y0 − ε1 , y0 + ε1 ] and all v ∈
[x0 − ε2 , x0 + ε2 ] , or uy0

(v) > e and ux0
(z) > e for all z ∈

[y0 − ε1 , y0 + ε1 ] and all v ∈ [x0 − ε2 , x0 + ε2 ] . As these two
cases are analogous, we will assume uy0

(v) < e and ux0
(z) < e

for all z ∈ [y0 − ε1 , y0 + ε1 ] and all v ∈ [x0 − ε2 , x0 + ε2 ] .
Then, U(x0 , y) < e for y ∈ [y0 − ε1 , y0 + ε1 ] and U(x, y0) <
e for x ∈ [x0 − ε2 , x0 + ε2 ] . However, since (x0 , y0) ∈ W,
U(f, g) > e for all f > x0 , g > y0 . Thus, uz is noncontinu-
ous in x0 and uv is noncontinuous in y0 for all z ∈]y0 , y0 + ε1 ],
v ∈]x0 , x0 + ε2 ].

Vice versa, if ux0
is noncontinuous in y0 , or if uy0

is noncon-
tinuous in x0 , then evidently U is noncontinuous in (x0 , y0).
Suppose that there exist ε1 > 0 and ε2 > 0, such that uz is non-
continuous in x0 and uv is noncontinuous in y0 either for all
z ∈]y0 , y0 + ε1 ], v ∈]x0 , x0 + ε2 ], or for all z ∈ [y0 − ε1 , y0 [,
v ∈ [x0 − ε2 , x0 [. Then, (x0 , y0) ∈ W and either U(x0 , y0) =
e, or U is noncontinuous in (x0 , y0). However, if U(x0 , y0) = e
then since (x0 , y0) �= (e, e) Lemma 4 implies that x0 and y0 are
not idempotents and Proposition 7 implies that U is continuous
on [0, 1]2 \ ([0, U(x0 , x0)[∪]U(y0 , y0), 1])2 if x0 < e < y0 and
on [0, 1]2 \ ([0, U(y0 , y0)[∪]U(x0 , x0), 1])2 if x0 > e > y0 . In
both cases, we obtain a contradiction with the noncontinuity of
uz and uv . Therefore, U(x0 , y0) �= e and thus U is noncontin-
uous in (x0 , y0). �

Example 5: Assume two t-norms T1 , T2 : [0, 1]2 −→ [0, 1],
such that T2 has no zero divisors, and a t-conorm S : [0, 1]2 −→

Fig. 4. Uninorm U from Example 5. The bold lines denote the points of
discontinuity of U.

[0, 1]. Let T ∗
1 (T ∗

2 ) be a linear transformation of T1 (T2) to
[
0, 1

3

]2

(
[

1
3 , 2

3

]2
), and let S∗

2 be a linear transformation of S2 to
[

2
3 , 1
]2

.
Then, the ordinal sum of semigroups Gα = ([0, 1

3 [, T ∗
1 ),Gβ =

(
[

1
3 , 2

3

]
, T ∗

2 ),Gγ = (
[

2
3 , 1
]
, S∗

2), with α < γ < β, is a semi-
group ([0, 1], U), where U is a uninorm (see Fig. 4 ). If we
define an operation V : [0, 1]2 −→ [0, 1] by

V =

⎧
⎪⎨
⎪⎩

min(x, y) if x = 1
3 , y ∈

[
2
3 , 1
]
,

min(x, y) if y = 1
3 , x ∈

[
2
3 , 1
]
,

U(x, y) otherwise

then V is also a uninorm. Here, V is noncontinuous in the
point ( 1

3 , 2
3 ), however, both v 1

3
and v 2

3
are continuous. Note

that ([0, 1], V ) is an ordinal sum of semigroups Gα,Gγ and
Gβ ∗ = (] 1

3 , 2
3 ], T ∗

2 ),Gδ = ({ 1
3 }, T ∗

2 ), where α < δ < γ < β∗.
The following two results show that the set of discontinuity

points of a uninorm U ∈ U from the set [0, e] × [e, 1] ([e, 1] ×
[0, e]) is connected.

Proposition 12: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
U . Let ux1

be noncontinuous in y1 and ux2
be noncontinuous

in y2 for x1 < x2 ≤ e (e ≤ x1 < x2). Then, for all y ∈ [y2 , y1 ]
either there exists x∗ ∈ [x1 , x2 ] such that ux∗ is noncontinuous
in y or there is an interval [c, d] , where y ∈ [c, d] ⊂ [0, 1], and
p ∈ [x1 , x2 ], such that uz is noncontinuous in p for all z ∈ [c, d] .

Proof: If ux1
is noncontinuous in y1 and ux2

is noncon-
tinuous in y2 for x1 < x2 ≤ e (the case when e ≤ x1 < x2 is
analogous), then U(x2 , z) < e for all z < y2 and U(x1 , z) >
e for all z > y1 and the monotonicity implies that for all
x ∈ [x1 , x2 ] the function ux is noncontinuous in some point
z ∈ [y2 , y1 ] . Note that e /∈ Ran(ux) since otherwise by Propo-
sition 7 either ux1

or ux2
would be continuous. Assume the

function g : [x1 , x2 ] −→ [y2 , y1 ] which assigns to v ∈ [x1 , x2 ]
a point w ∈ [y2 , y1 ] such that uv is noncontinuous in w.
Then, by Proposition 10, the function g is nonincreasing. If
q ∈ [y2 , y1 ] \ Ran(g), then by the monotonicity there exists a
p ∈ [x1 , x2 ], such that g(d) > q if d < p and g(d) < q if d > p.
Furthermore, since g is monotone, there exists an interval [c, d] ,
such that q ∈ [c, d] ⊂ [y2 , y1 ] \ Ran(g). Then, for z ∈ [c, d], we
have U(z, v) < e for all v < p and U(z, v) > e for all v > p
thus uz has a point of discontinuity in p. �

Lemma 7: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U .
Let ux be noncontinuous in y1 and uy2

be noncontinuous in x
for some y1 �= y2 . Then, for all y ∈ [y1 , y2 ] (y ∈ [y2 , y1 ]), the
function uy is noncontinuous in x.
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MESIAROVÁ-ZEMÁNKOVÁ: CHARACTERIZATION OF UNINORMS WITH CONTINUOUS UNDERLYING T-NORM AND T-CONORM 711

Proof: We will assume y1 < y2 (the case when y1 > y2 is
analogous). Then, U(x, y) > e for all y > y1 and U(z, y) ≤
U(z, y2) < e for all z < x,y ≤ y2 . Then, since U(x, y) �= e,
the function uy is noncontinuous in x. �

In the following result, we show that the set of discontinuity
points of a uninorm U ∈ U has a nonempty intersection with
the border of the unit square.

Lemma 8: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U .
Assume x < e (x > e) such that ux is continuous on [0, 1] and
let uy be noncontinuous in x. Then, for all q ∈ [y, 1] (q ∈ [0, y]),
the function uq is noncontinuous in x.

Proof: We will assume x < e (the case for x > e is analo-
gous). If U(x, z) = e for some z ∈ [0, 1], then by Lemma 4 the
points x, z are not idempotents and Proposition 7 implies that
U is continuous on [0, 1]2 \ ([0, a[∪]b, 1])2 for some a < x and
b > z. Therefore, for all y ∈ [0, 1], the function uy is continuous
in x, which is impossible. Since x < e, by Lemma 3, we have
ux(1) < e, that is, U(x, z) < e for all z ∈ [0, 1]. If uy is noncon-
tinuous in x, then U(p, y) > e for all p > x and U(p, y) < e for
all p < x. Assume any q ∈ [y, 1] . Then, U(p, q) ≤ U(x, q) < e
if p < x and U(p, q) ≥ U(p, y) > e if p > x, that is, uq is non-
continuous in x. �

Lemma 9: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U
and let U be noncontinuous in (x0 , y0) ∈ [0, 1]2 . Then

1) for all ε > 0 such that (x0 − ε, y0 − ε) ∈ [0, 1]2 there is
U(x0 − ε, y0 − ε) < e;

2) for all ε > 0 such that (x0 + ε, y0 + ε) ∈ [0, 1]2 there is
U(x0 + ε, y0 + ε) > e.

Proof: The result easily follows from the monotonicity of
U, Proposition 11, and the fact that if ux is noncontinuous in y,
then ux(y − ε) < e and ux(y + ε) > e for all ε > 0, such that
y − ε ∈ [0, 1] (y + ε ∈ [0, 1]). �

Next we define a set-valued function.
Definition 1: A mapping p : [0, 1] −→ P([0, 1]) is called a

set-valued function on [0, 1] if to every x ∈ [0, 1] it assigns a
subset of [0, 1], that is, p(x) ⊆ [0, 1]. Assuming the standard
order on [0, 1], a set-valued function p is called

1) non-increasing if for all x1 , x2 ∈ [0, 1], x1 < x2 , we have
y1 ≥ y2 for all y1 ∈ p(x1) and all y2 ∈ p(x2) and thus the
cardinality Card(p(x1) ∩ p(x2)) ≤ 1,

2) symmetric if y ∈ p(x) if and only if x ∈ p(y).
The graph of a set-valued function p will be denoted by G(p),

that is, (x, y) ∈ G(p) if and only if y ∈ p(x).
Definition 2: A set-valued function p : [0, 1] −→ P([0, 1]) is

called u-surjective if for all y ∈ [0, 1] there exists an x ∈ [0, 1]
such that y ∈ p(x).

The following is evident.
Lemma 10: A symmetric set-valued function p : [0, 1] −→

P([0, 1]) is u-surjective if and only if we have p(x) �= ∅ for all
x ∈ [0, 1].

The graph of a symmetric, u-surjective, nonincreasing set-
valued function p : [0, 1] −→ P([0, 1]) is a connected line (i.e.,
a connected set with no interior) containing points (0, 1) and
(1, 0). Indeed, the monotonicity of such a set-valued function
ensures that the graph of p has no interior. Furthermore, since p
is u-surjective, monotone, and symmetric the graph of p contains
points (0, 1) and (1, 0). If G(p) is not a connected set, then either

p(x) is not a connected set for some x ∈ [0, 1], which, however,
due to the monotonicity implies that p is not u-surjective, or due
to the monotonicity there exists an x ∈ [0, 1] such that either

inf

(⋃

q<x

p(q)

)
> sup(p(x))

or

sup

(⋃

q>x

p(q)

)
< inf(p(x))

which, however, due to the symmetry implies that p is not
u-surjective.

The previous results can be summarized in the following
theorem. First, however, we introduce important remark and
lemma.

Remark 2: For any uninorm U : [0, 1]2 −→ [0, 1], U ∈ U
denote A = inf{x | U(x, 0) > 0}, B = sup{x | U(x, 1) < 1}
and let a, d ∈ [0, 1] be such that U(x, y) = e for some y ∈ [0, 1]
if and only if x ∈]a, d[∪{e} (see Proposition 8). If U is con-
junctive, i.e., U(0, 1) = 0, then A is the infimum of an empty
set on [0, 1], i.e., A = 1. If U is disjunctive, i.e., U(0, 1) = 1,
then B is the supremum of an empty set on [0, 1], i.e., B = 0.
Therefore, we have either A = 1, B �= 0, or A �= 1, B = 0, or
A = 1, B = 0. Furthermore, U(x, 0) ≤ e for some x ∈ [0, 1]
implies

0 = U(e, 0) ≥ U(x, 0, 0) = U(x, 0)

and thus for all x ∈ [0, 1] either U(x, 0) = 0 or U(x, 0) > e (see
also [22]). Therefore, U is noncontinuous in (0, A) if A �= 1.
Similarly, U(x, 1) ≥ e for some x ∈ [0, 1] implies

1 = U(e, 1) ≤ U(x, 1, 1) = U(x, 1)

and thus for all x ∈ [0, 1] either U(x, 1) = 1 or U(x, 1) < e (see
also [22]). Therefore U is noncontinuous in (B, 1) if B �= 0.
Finally, if A = 1, B = 0, then U(x, 0) = 0 for all x < 1 and
U(x, 1) = 1 for all x > 0 and therefore U is noncontinuous in
(0, 1). Due to Proposition 8 either a = d = e, or U is continuous
on ]a, d[×[0, 1] ∪ [0, 1]×]a, d[ and therefore we have 0 ≤ B ≤
a ≤ e ≤ d ≤ A ≤ 1.

Lemma 11: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U .
If U is noncontinuous in (x0 , y0) ∈ [0, 1]2 , then (x0 , y0) ∈
[B, a] × [d,A] ∪ [d,A] × [B, a] , where a, d are defined in
Proposition 8 and A,B are defined in Remark 2.

Proof: Let U be noncontinuous in (x0 , y0) ∈ [0, 1]2 . Since
U ∈ U we see that (x0 , y0) /∈ [0, e]2 ∪ [e, 1]2 . Due to Proposi-
tion 8 (x0 , y0) /∈]a, d[×[0, 1] ∪ [0, 1]×]a, d[. Furthermore, due
to Lemma 3, we see that ux is continuous for all x ∈
[0, 1], such that either x > A or x < B. Thus, Proposition
5 and Lemma 6 imply (x0 , y0) /∈]A, 1] × [0, 1] ∪ [0, 1]×]A, 1]
and (x0 , y0) /∈ [0, B[×[0, 1] ∪ [0, 1] × [0, B[. Summarizing,
(x0 , y0) ∈ [B, a] × [d,A] ∪ [d,A] × [B, a] . �

Theorem 2: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U .
Then, there exists a symmetric, u-surjective, nonincreasing set-
valued function r on [0, 1] such that U is continuous on [0, 1]2 \
G(r) and U(x, y) = e implies (x, y) ∈ G(r) for all (x, y) ∈
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[0, 1]2 . Note that U need not to be noncontinuous in all points
from G(r).

Proof: We will define the set R∗ = {(x, y) ∈ [0, 1]2 | U
is noncontinuous in (x, y)}. Then, due to the commutativity of
U the set R∗ is symmetric, that is, (x, y) ∈ R∗ if and only if
(y, x) ∈ R∗. If we define a set-valued function r : [0, 1] −→
P([0, 1]) by

r(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{1} if x ∈]0, B[,
{0} if x ∈]A, 1[,
[0, B] if x = 1,
[A, 1] if x = 0,
{y | U(x, y) = e} if x ∈]a, d[∪{e},
{y | (x, y) ∈ R∗} otherwise

(3)

then r is a symmetric set-valued function (see Remark 2).
Evidently, U(x, y) = e implies (x, y) ∈ G(r) for all (x, y) ∈
[0, 1]2 .

Next we will show that r is u-surjective. Assume a y ∈ [0, 1].
If uy is noncontinuous in point x ∈ [0, 1], then due to the sym-
metry of r, we have (x, y), (y, x) ∈ G(r), that is, y ∈ r(x).
Now suppose that uy is continuous. Then, due to Lemma 3
and Proposition 7, there is y ∈ [0, B[∪]a, d[∪{e}∪]A, 1]. If
y ∈]a, d[∪{e}, then Proposition 8 ensure the existence of an
x ∈]a, d[∪{e}, such that U(x, y) = e and then y ∈ r(x). Sup-
pose now that y ∈]A, 1] (the case when y ∈ [0, B[ is analogous).
Then, A < 1 and B = 0 and y ∈ r(0). Summarizing all cases
we see that r is u-surjective.

It is evident that if U is noncontinuous in (x0 , y0), then
x0 ∈ r(y0).

Now we only have to show that r is nonincreasing. Note that
(e, e) ∈ G(r) and thus it is easy to see that if r is nonincreasing
on [0, e] by symmetry it is nonincreasing on the whole [0, 1].

1) First we will show that r is nonincreasing on [0, B] . If
B = 0 the result is trivial. If B > 0, then due to Remark
2 there is A = 1 and r(x) = {1} for all x ∈ [0, B[ . Since
y ≤ 1 for all y ∈ r(B) we see that r is nonincreasing on
[0, B] .

2) Now we will show that r is nonincreasing on [a, e] . Due
to Proposition 8, there is Card(r(x)) = 1 for all x ∈]a, e[
and since U is continuous on ]a, d[×[0, 1] ∪ [0, 1]×]a, d[
there is min(r(a)) = d. The monotonicity of U implies
monotonicity of r on ]a, d[ and the fact that y ≤ d for all
y ∈ r(x) for all x ∈]a, d[. Therefore, r is nonincreasing
on [a, e] .

3) Finally, we will show that r is nonincreasing on
[B, a]. From the definition of r, we see that if
x1 , x2 ∈ [B, a] , x1 < x2 and y1 ∈ r(x1), y2 ∈ r(x2),
then (x1 , y1), (x2 , y2) ∈ R∗. Suppose that y1 < y2 . Then,
for any δ ∈]0, min(x2 −x1 ,y2 −y1 )

2 [ Lemma 9 and the mono-
tonicity of U give

e < U(x1 + δ, y1 + δ) ≤ U(x2 − δ, y2 − δ) < e

which is a contradiction. Therefore, if x1 < x2 , then y1 ≥
y2 which means that r is nonincreasing on [B, a] .

If we summarize results for all partial intervals we obtain the
main result, that is, that r is nonincreasing. �

Fig. 5. Uninorm U from Example 6. Left: the bold lines denote the points of
discontinuity of U. Right: the oblique and bold lines denote the characterizing
set-valued function of U.

Remark 3: U need not to be noncontinuous in all points of
G(r). From the previous proof we see that U is continuous in all
points from {x} × [0, 1] for all x ∈ [0, B[∪]a, d[∪{e}∪]A, 1].
The symmetric nonincreasing set-valued function from the pre-
vious theorem will be called the characterizing set-valued func-
tion of a uninorm U for U ∈ U .

Example 6: Assume a representable uninorm U1 : [0, 1]2

−→ [0, 1] and a continuous t-norm T : [0, 1]2 −→ [0, 1] and a
continuous t-conorm S : [0, 1]2 −→ [0, 1]. For simplicity, we
will assume that 1

2 is the neutral element of U1 and that
U1(x, 1 − x) = 1

2 for all x ∈ [0, 1] . Let U ∗
1 be a linear transfor-

mation of U1 to
[

1
3 , 2

3

]2
, let T ∗ be a linear transformation of T

to
[
0, 1

3

]2
and let S∗ be a linear transformation of S to

[
2
3 , 1
]2

.

Then, the ordinal sum of semigroups Gα = (
[
0, 1

3

]
, T ∗),Gβ =

(
[

1
3 , 2

3

]
, U ∗

1 ),Gγ = (
[

2
3 , 1
]
, S∗), with γ < α < β, is a semi-

group ([0, 1], U), where U is a uninorm, U ∈ U . In Fig. 5 , we
can see the characterizing set-valued function r of U as well as
its set of discontinuity points.

Remark 4: It is easy to see that for U ∈ U its characterizing
set-valued function r divides the uninorm U into two parts: U
on points below the characterizing set-valued function attains
values smaller than e, and U on points above the characterizing
set-valued function attains values bigger than e.

Proposition 13: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
U . Then, in each point (x0 , y0) ∈ [0, 1]2 the uninorm U is either
left-continuous or right-continuous (or continuous).

Proof: From Proposition 9, we know that for all x ∈ [0, 1]
the function ux is either left-continuous or right-continuous.
If (x0 , y0) is the point of continuity of U the claim is trivial.
Suppose that (x0 , y0) is not the point of continuity of U. If
U(x0 , y0) = e, then by Proposition 7 the uninorm U is continu-
ous in (x0 , y0), which is impossible, and thus either U(x0 , y0) <
e or U(x0 , y0) > e. If U(x0 , y0) < e, then for all x ≤ x0 , y ≤
y0 also U(x, y) < e and thus ux is left-continuous in y and uy is
left-continuous in x (see Remark 1). Now for any ε > 0 there ex-
ists δ1 > 0, such that |U(x0 − δ1 , y0) − U(x0 , y0)| < ε

2 . Since
also ux0 −δ1

is left-continuous in y0 there exists δ2 > 0, such
that |U(x0 − δ1 , y0 − δ2) − U(x0 − δ1 , y0)| < ε

2 . The mono-
tonicity of U then implies that

0 ≤ U(x0 , y0) − U(x0 − δ1 , y0 − δ2) = U(x0 , y0)−
U(x0 − δ1 , y0) + U(x0 − δ1 , y0) − U(x0 − δ1 , y0 − δ2) < ε.

Taking δ = min(δ1 , δ2), by the monotonicity of U we have
shown that for each ε > 0 there exists a δ > 0 such that
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Fig. 6. Uninorm U from Example 7. The bold lines denote the characterizing
set-valued function r of U.

if x ∈ [x0 − δ, x0 ] and y ∈ [y0 − δ, y0 ] we have |U(x, y) −
U(x0 , y0)| < ε, that is, that U is left-continuous in (x0 , y0).
Similarly, if U(x0 , y0) > e, then U is right-continuous in
(x0 , y0). �

The previous proposition and the construction of the char-
acterizing set-valued function r of a uninorm U implies the
following.

Corollary 2: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈ U .
Then, there exists a symmetric, u-surjective, nonincreasing set-
valued function r on [0, 1] such that U is continuous on [0, 1]2 \
G(r) and if U(x, y) = e then (x, y) ∈ G(r). Moreover, in each
point (x, y) ∈ [0, 1]2 the uninorm U is either left-continuous or
right-continuous.

B. Sufficiency Part

In this part, we will show that if for a uninorm U there exists a
symmetric, u-surjective, nonincreasing set-valued function r on
[0, 1], such that U is continuous on [0, 1]2 \ G(r), and U(x, y) =
e implies (x, y) ∈ G(r), then U ∈ U if and only if in each point
(x, y) ∈ [0, 1]2 the uninorm U is either left-continuous or right-
continuous (or continuous).

We will denote the set of all uninorms U : [0, 1]2 −→ [0, 1]
such that U is continuous on [0, 1]2 \ G(r) and r is a symmet-
ric, u-surjective, nonincreasing set-valued function, such that
U(x, y) = e implies (x, y) ∈ G(r), by UR. First, we will show
that there exists a uninorm U ∈ UR such that U /∈ U .

Example 7: Let U : [0, 1]2 −→ [0, 1] be given by

U(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if max(x, y) < e,
x if y = e,
y if x = e,
max(x, y) otherwise.

Then, Proposition 2 implies that U ∈ Umax is a uninorm, where
the underlying t-norm is the drastic product and the underlying
t-conorm is the maximum. This uninorm is noncontinuous in
points from {e} × [0, e] ∪ [0, e] × {e}. Thus, the corresponding
set-valued function is given by (see Fig. 6 )

r(x) =

⎧
⎪⎪⎨
⎪⎪⎩

[e, 1] if x = 0,
e if x ∈]0, e[,
[0, e] if x = e,
0 otherwise.

Since U(x, y) = e implies x = y = e, we see that U is con-
tinuous on [0, 1]2 \ G(r) and r is a symmetric, u-surjective,
nonincreasing set-valued function, such that U(x, y) = e im-

plies (x, y) ∈ G(r). However, the drastic product t-norm is not
continuous and thus U /∈ U .

Assume U ∈ UR. Then, for the corresponding characterizing
set-valued function r, we have (e, e) ∈ G(r). Denote

D = {e} × [0, 1] ∪ [0, 1] × {e}.

We have two possibilities: either G(r) ∩ D = {(e, e)}, or
Card(G(r) ∩ D) > 1. First, we will assume the case when
G(r) ∩ D = {(e, e)}. Then, TU (SU ) is continuous in all points
from [0, e]2 ([e, 1]2) except possibly the point (e, e) and we have
the following result.

Lemma 12: Let T : [0, 1]2 −→ [0, 1] be a t-norm which is
continuous on [0, 1]2 \{(1, 1)}. Then, T is continuous on [0, 1]2 .

Proof: Assume that T is not continuous in the
point (1, 1). Then, there exist two sequences {an}n∈N ,
an ∈ [0, 1] and {bn}n∈N , bn ∈ [0, 1], such that limn−→∞
an = limn−→∞ bn = 1 and limn−→∞ T (an , bn ) < 1. Since
T (an , bn ) ≥ T (min(an , bn ),min(an , bn )), we see that there
exists a sequence {cn}n∈N , cn ∈ [0, 1] , limn−→∞ cn = 1,
such that limn−→∞ T (cn , cn ) = 1 − δ < 1, for some δ > 0.
Since T is a t-norm, we have T (1 − δ

2 , 1) = 1 − δ
2 and

necessarily T (1 − δ
2 , 1 − δ

2 ) ≤ 1 − δ. Since T is continuous on
[0, 1]2 \ {(1, 1)}, there exists an ε > 0 such that T (1 − δ

2 , 1 −
ε) = 1 − 2δ

3 and the monotonicity of T implies ε < δ
2 . Thus,

1 − 2δ

3
= T

(
1 − δ

2
, 1 − ε

)
≤ T (1 − ε, 1 − ε) ≤ 1 − δ

which is a contradiction. �
By duality between t-norms and t-conorms we get the follow-

ing.
Lemma 13: Let S : [0, 1]2 −→ [0, 1] be a t-conorm which

is continuous on [0, 1]2 \ {(0, 0)}. Then, S is continuous on
[0, 1]2 .

From the two previous results, we see that if U ∈ UR and
G(r) ∩ D = {(e, e)}, then U ∈ U .

Furthermore, we will suppose that Card(G(r) ∩ D) > 1.
Then, we obtain the following result.

Lemma 14: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
UR, U /∈ U . Then there exists a point (x, y) ∈ [0, 1]2 such that
U is neither left-continuous nor right-continuous in (x, y).

Proof: Since U /∈ U Lemmas 12 and 13 imply that
Card(G(r) ∩ D) > 1. Then there exists an x1 ∈ [0, 1], x1 �= e,
such that (x1 , e) ∈ G(r). We will suppose that x1 < e (the case
when x1 > e is analogous). Let

x0 = inf{x ∈ [0, e] | (x, e) ∈ G(r)}.

Then, the monotonicity of r implies that SU is contin-
uous and ]x0 , e] × {e} ⊂ G(r). Moreover, U(x, y) = e im-
plies x = y = e for all x, y ∈ [0, 1]. Since U is continuous
on ]x0 , e]×]e, 1]∪]e, 1]×]x0 , e] we see that U(x, y) > e for
all x ∈]x0 , e], y ∈]e, 1]. On the other hand, the neutral ele-
ment e and the monotonicity of U implies U(x, y) ∈ [x, y]
for all x ∈]x0 , e], y ∈]e, 1]. Thus, for all x ∈]x0 , e[, we have
lims−→e+ U(x, s) = e. Therefore, on ]x0 , e[ the uninorm U is
not right-continuous. Since U /∈ U and TU is continuous on
[0, 1[2 we see that U is not left-continuous in some point (x, e)
for x ∈ [x0 , e] . Now similarly as in Lemma 12 we can show that
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U is not left-continuous in some point (x, e) for x ∈ [x0 , e[. Fi-
nally, the neutral element and the monotonicity of U imply that
U is not left-continuous in some point (x, e) for x ∈]x0 , e[.
Summarizing, there exists a point (x, y) ∈ [0, 1]2 , such that U
is neither left-continuous nor right-continuous in (x, y). �

All previous results can be compiled into the following
theorem.

Theorem 3: Let U : [0, 1]2 −→ [0, 1] be a uninorm, U ∈
UR. Then, U ∈ U if and only if in each point (x, y) ∈ [0, 1]2

the uninorm U is either left-continuous or right-continuous (or
continuous).

Corollary 3: Let U : [0, 1]2 −→ [0, 1] be a uninorm. Then,
U ∈ U if and only if U ∈ UR and in each point (x, y) ∈ [0, 1]2

the uninorm U is either left-continuous or right-continuous (or
continuous).

IV. CONCLUSION

We have shown that a uninorm with continuous underlying
t-norm and t-conorm is continuous on [0, 1]2 \ G(r), where
G(r) is the graph of some symmetric, u-surjective, nonincreas-
ing set-valued function. On the other hand, we have shown also a
sufficient condition for a uninorm to have continuous underlying
operations. In the follow-up papers [26], [27], we will employ
these results, and using the characterizing set-valued function
of a uninorm, we will show that each uninorm with continuous
underlying t-norm and t-conorm can be decomposed into an
ordinal sum of semigroups related to representable uninorms,
continuous Archimedean t-norms, continuous Archimedean
t-conorms, internal uninorms and singleton semigroups. Thus,
these three papers together offer a complete characterization of
uninorms from U , that is, of uninorms with continuous under-
lying t-norm and t-conorm. The applications of these results are
expected in all domains where uninorms are used.
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Abstract

The uninorms with continuous underlying functions were characterized by their set of discontinuity points in the previous work 
of the author, using the characterizing set-valued function. In this paper properties of this characterizing set-valued function are 
studied. It is shown that the type of the monotonicity of such a set-valued function is always changed in idempotent points of 
the corresponding uninorm. Several additional properties of the characterizing set-valued function of a uninorm with continuous 
underlying functions are shown and an example is included. Results shown in this paper are used for a complete characterization 
of uninorms with continuous underlying functions via the ordinal sum construction, which is shown in the consecutive paper.
© 2017 Elsevier B.V. All rights reserved.

Keywords: Uninorm; Continuous t-norm; Continuous t-conorm; Set-valued function

1. Introduction

The uninorm operators generalize both the t-norm and the t-conorm operators and they can be used to model 
bipolar behaviour (see [1,6,9,17,25]). The uninorms with continuous underlying t-norm and t-conorm were in the 
centre of the interest for a long time (see [3–5,7,8,11–16,22,24]). In [18] we have introduced ordinal sum of uninorms 
and in [19] we have characterized uninorms that are ordinal sums of representable uninorms. Further, in [20] we 
have characterized uninorms with continuous underlying t-norm and t-conorm as those whose set of discontinuity 
points is a subset of the graph of a special symmetric, u-surjective, non-increasing set-valued function. In this paper 
we will investigate properties of the characterizing set-valued function of a uninorm with continuous underlying 
functions and we will show that the graph of this function can be divided into maximal horizontal, vertical and 
strictly decreasing segments, and special accumulation points, and that border points of all such maximal segments 
are idempotent elements of the corresponding uninorm. We will also show how does these maximal segments indicate 
the decomposition of the given uninorm into components. These results will be further used in [21] where we will 
show that each uninorm with continuous underlying t-norm and t-conorm can be decomposed into an ordinal sum 
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of semigroups related to representable uninorms, continuous Archimedean t-norms and t-conorms, internal uninorms 
and singleton semigroups.

We will start with several basic notions and then we will recall some useful results from [20]. The main result will 
be discussed in the next section. The last section then contains our conclusions.

A triangular norm is a function T : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in both 
variables and 1 is its neutral element. Due to the associativity, n-ary form of any t-norm is uniquely given and thus 
it can be extended to an aggregation function working on 

⋃
n∈N[0, 1]n. Dual functions to t-norms are t-conorms. 

A triangular conorm is a function S : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in both 
variables and 0 is its neutral element. The duality between t-norms and t-conorms is expressed by the fact that from 
any t-norm T we can obtain its dual t-conorm S by the equation

S(x, y) = 1 − T (1 − x,1 − y)

and vice-versa.
A uninorm (introduced in [25]) is a function U : [0, 1]2 −→ [0, 1] which is commutative, associative, non-

decreasing in both variables and have a neutral element e ∈ [0, 1] (see also [6]). Therefore the class of uninorms 
covers also the class of t-norms and the class of t-conorms. If for a uninorm U there is e ∈ ]0,1[ we will call such 
a uninorm proper. For each uninorm the value U(1, 0) ∈ {0, 1} is the annihilator of U . A uninorm is called conjunc-
tive if U(1, 0) = 0 and disjunctive if U(1, 0) = 1. Due to the associativity we can uniquely define n-ary form of any 
uninorm for any n ∈ N and therefore in some proofs we will use ternary form instead of binary, where suitable.

For each uninorm U with the neutral element e ∈ ]0,1[, the restriction of U to [0, e]2 is isomorphic to a t-norm, 
and the restriction of U to [e,1]2 is isomorphic to a t-conorm.

Definition 1. Let U : [0, 1]2 −→ [0, 1] be a uninorm with the neutral element e ∈ [0, 1]. If e > 0 then the operation 
TU : [0, 1]2 −→ [0, 1] given by

TU(x, y) = U(e · x, e · y)

e

for all (x, y) ∈ [0, 1]2 is a t-norm which will be called the underlying t-norm of U . If e < 1 then the operation 
SU : [0, 1]2 −→ [0, 1] given by

SU(x, y) = U(e + (1 − e) · x, e + (1 − e) · y) − e

1 − e

for all (x, y) ∈ [0, 1]2 is a t-conorm which will be called the underlying t-conorm of U .

Definition 2. We will denote the set of all uninorms U such that TU and SU are continuous by U .

From any pair of a t-norm and a t-conorm we can construct the minimal and the maximal uninorm with the given 
underlying functions.

Proposition 3 ([10]). Let T : [0, 1]2 −→ [0, 1] be a t-norm and S : [0, 1]2 −→ [0, 1] a t-conorm and assume e ∈ [0, 1]. 
Then the two functions Umin, Umax : [0, 1]2 −→ [0, 1] given by

Umin(x, y) =

⎧⎪⎨
⎪⎩

e · T (x
e
,

y
e
) if (x, y) ∈ [0, e]2,

e + (1 − e) · S(x−e
1−e

,
y−e
1−e

) if (x, y) ∈ [e,1]2,

min(x, y) otherwise

and

Umax(x, y) =

⎧⎪⎨
⎪⎩

e · T (x
e
,

y
e
) if (x, y) ∈ [0, e]2,

e + (1 − e) · S(x−e
1−e

,
y−e
1−e

) if (x, y) ∈ [e,1]2,

max(x, y) otherwise

are uninorms. We will denote the set of all uninorms of the first type by Umin and of the second type by Umax.
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Since the structure of continuous t-norms and t-conorms is already known, in the rest of the paper we will focus on 
proper uninorms.

Similarly as in the case of t-norms and t-conorms we can construct uninorms using additive generators (see [6]).

Proposition 4 ([6]). Let f : [0, 1] −→ [−∞,∞], f (0) = −∞, f (1) = ∞ be a continuous strictly increasing func-
tion. Then a function U : [0, 1]2 −→ [0, 1] given by

U(x, y) = f −1(f (x) + f (y)),

where f −1 : [−∞,∞] −→ [0, 1] is an inverse function to f , with the convention ∞ + (−∞) = ∞ (or ∞ + (−∞) =
−∞), is a uninorm, which will be called a representable uninorm.

In [23] (see also [17]) we can find the following result.

Proposition 5 ([23]). Let U : [0, 1]2 −→ [0, 1] be a uninorm continuous everywhere on the unit square except of the 
two points (0, 1) and (1, 0). Then U is representable.

For our examples we will use the following ordinal sum construction introduced by Clifford.

Theorem 6 ([2]). Let A �= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of semigroups. 
Assume that for all α, β ∈ A with α < β the sets Xα and Xβ are either disjoint or that Xα ∩ Xβ = {xα,β}, where 
xα,β is both the neutral element of Gα and the annihilator of Gβ and where for each γ ∈ A with α < γ < β we have 
Xγ = {xα,β}. Put X = ⋃

α∈A

Xα and define the binary operation ∗ on X by

x ∗ y =

⎧⎪⎨
⎪⎩

x ∗α y if (x, y) ∈ Xα × Xα ,

x if (x, y) ∈ Xα × Xβ and α < β,

y if (x, y) ∈ Xα × Xβ and α > β.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ A the semigroup Gα is 
commutative.

Therefore in our examples the commutativity and the associativity of the corresponding ordinal sum uninorm will 
follow from Theorem 6. The monotonicity and the existence of the neutral element can be easily checked by the 
reader.

Further we will use the following transformation. For any 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c], and a uninorm U with 
the neutral element e ∈ ]0,1[ let f : [0, 1] −→ [a, b[ ∪ {v} ∪ ]c, d] be given by

f (x) =

⎧⎪⎨
⎪⎩

(b − a) · x
e

+ a if x ∈ [0, e[,

v if x = e,

d − (1−x)(d−c)
(1−e)

otherwise.

(1)

Then f is an isomorphism of [0, 1] to ([a, b[ ∪ {v} ∪ ]c, d]) and a function Ua,b,c,d
v : ([a, b[ ∪ {v} ∪ ]c, d])2 −→

([a, b[ ∪ {v} ∪ ]c, d]) given by

Ua,b,c,d
v (x, y) = f (U(f −1(x), f −1(y))) (2)

is an operation on ([a, b[ ∪ {v} ∪ ]c, d])2 which is commutative, associative, non-decreasing in both variables (with 
respect to the standard order) and v is its neutral element. Indeed, since f is increasing then the non-decreasingness 
of U implies the non-decreasingness of Ua,b,c,d

v . Further, the commutativity and the existence of the neutral element 
is preserved by isomorphism. Finally,

Ua,b,c,d
v (x,Ua,b,c,d

v (y, z)) = f (U(f −1(x),U(f −1(y), f −1(z)))) =
f (U(f −1(x), f −1(y)), f −1(z)) = Ua,b,c,d

v (Ua,b,c,d
v (x, y), z)

for all x, y, z ∈ [0, 1] which gives us the associativity of Ua,b,c,d
v .
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Next we will recall the definition of a set-valued function from [20]. Note that P(X) in the following definition 
denotes the power set of X.

Definition 7. A mapping p : [0, 1] −→ P([0, 1]) is called a set-valued function on [0, 1]. Assuming the standard order 
on [0, 1], a set-valued function p is called

(i) non-increasing if for all x1, x2 ∈ [0, 1], x1 < x2, we have y1 ≥ y2 for all y1 ∈ p(x1) and all y2 ∈ p(x2) and thus 
p(x1) and p(x2) intersect in, at most, a single point,

(ii) symmetric if for x, y ∈ [0, 1] there is y ∈ p(x) if and only if x ∈ p(y).

The graph of a set-valued function p will be denoted by G(p), i.e., for x, y ∈ [0, 1] there is (x, y) ∈ G(p) if and only 
if y ∈ p(x).

Definition 8 ([20]). A set-valued function p : [0, 1] −→ P([0, 1]) is called u-surjective if for all y ∈ [0, 1] there exists 
an x ∈ [0, 1] such that y ∈ p(x).

Lemma 9 ([20]). A symmetric set-valued function p : [0, 1] −→ P([0, 1]) is u-surjective if and only if we have 
p(x) �= ∅ for all x ∈ [0, 1].

The graph of a symmetric, u-surjective, non-increasing set-valued function p : [0, 1] −→ P([0, 1]) is a connected 
bounded curve (i.e., a connected bounded set with no interior) containing points (0, 1) and (1, 0) (see [20]).

Remark 10. For any uninorm U ∈ U the following results were shown in [20]:

(i) There exist idempotent points a, d ∈ [0, 1], a ≤ e ≤ d , such that if U(x, y) = e for some x, y ∈ [0, 1] then x, y ∈
]a, d[ ∪ {e}. Here either U(x, y) = e implies x = y = e, in which case a = d = e, or otherwise U can attain the 
value e only on the set ]a, d[2. Further, for all x ∈ ]a, d[ ∪{e} there exists a y ∈ ]a, d[ ∪{e} such that U(x, y) = e. 
Note that if a < e then U is on [a, d]2 isomorphic to a representable uninorm.

(ii) If we denote A = inf{x | U(x, 0) > 0}, B = sup{x | U(x, 1) < 1} then A and B are idempotent elements of U
and either A = 1, B �= 0, or A �= 1, B = 0, or A = 1, B = 0. In the first case U is non-continuous in (B, 1), in the 
second case U is non-continuous in (0, A), and in the third case U is non-continuous in (1, 0). We also have

0 ≤ B ≤ a ≤ e ≤ d ≤ A ≤ 1.

Theorem 11 ([20]). Assume a uninorm U ∈ U . Then there exists a symmetric, u-surjective, non-increasing set-valued 
function r on [0, 1] such that U is continuous on [0, 1]2 \ G(r) and U(x, y) = e implies (x, y) ∈ G(r) for all (x, y) ∈
[0, 1]2. Note that U need not to be non-continuous in all points from G(r).

The set-valued function from Theorem 11 will be called the characterizing set-valued function of a uninorm U for 
U ∈ U . This function is given by (see Remark 10)

r(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1} if x ∈ ]0,B[,

{0} if x ∈ ]A,1[,

[0,B] if x = 1,

[A,1] if x = 0,

{y | U(x, y) = e} if x ∈ ]a, d[ ∪ {e},
{y | (x, y) ∈ R∗} otherwise,

(3)

where R∗ = {(x, y) ∈ [0, 1]2 | U is non-continuous in (x, y)}.

Definition 12. For a uninorm U : [0, 1]2 −→ [0, 1] and each x ∈ [0, 1] we will define a function ux : [0, 1] −→ [0, 1]
by ux(z) = U(x, z) for z ∈ [0, 1].
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Fig. 1. The uninorm U from Example 15. Left: the bold lines denote the points of discontinuity of U . Right: the oblique and bold lines denote the 
characterizing set-valued function of U .

Remark 13. Let r be the characterizing set-valued function of a uninorm U ∈ U . Then

(i) U is not non-continuous in all points of G(r). In fact, U is continuous in all points from {x} × [0, 1] for all 
x ∈ [0,B[ ∪ ]a, d[ ∪ {e} ∪ ]A,1]. This means that ux is continuous for all x ∈ [0,B[ ∪ ]a, d[ ∪ {e} ∪ ]A,1]. On 
the other hand, ux is non-continuous for all x ∈ [B,a] ∪ [d,A] \ {e},

(ii) the characterizing set-valued function r divides the uninorm U into two parts: U on points below the characteriz-
ing set-valued function attains values smaller than e, and U on points above the characterizing set-valued function 
attains values bigger than e.

The main result of [20] is the following theorem.

Theorem 14 ([20]). Let U : [0, 1]2 −→ [0, 1] be a uninorm. Then U ∈ U if and only if there exists a symmetric, 
u-surjective, non-increasing set-valued function r on [0, 1] such that U is continuous on [0, 1]2 \ G(r), and in each 
point (x, y) ∈ [0, 1]2 the uninorm U is either left-continuous or right-continuous, or continuous.

Example 15 ([20]). Assume a representable uninorm U1 : [0, 1]2 −→ [0, 1] and a continuous t-norm T : [0, 1]2 −→
[0, 1] and a continuous t-conorm S : [0, 1]2 −→ [0, 1]. For simplicity we will assume that 1

2 is the neutral element of 

U1 and that U1(x, 1 − x) = 1
2 for all x ∈ ]0,1[. Let U∗

1 be a linear transformation of U1 to 
[

1
3 , 2

3

]2
, let T ∗ be a linear 

transformation of T to 
[
0, 1

3

]2
and let S∗ be a linear transformation of S to 

[
2
3 ,1

]2
. Then the ordinal sum of semi-

groups Gα =
([

0, 1
3

]
, T ∗

)
, Gβ =

([
1
3 , 2

3

]
,U∗

1

)
, Gγ =

([
2
3 ,1

]
, S∗

)
, with γ < α < β , is a semigroup ([0, 1], U), 

where U is a uninorm, U ∈ U . On Fig. 1 we can see the characterizing set-valued function r of U as well as its set of 
discontinuity points.

In this paper we will continue to investigate properties of the characterizing set-valued function of a uninorm 
U ∈ U . However, before we show that main result we will recall some useful results from [20].

Definition 16. A uninorm U : [0, 1]2 −→ [0, 1] is called internal if U(x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2.

Lemma 17 ([20]). Let U ∈ U . If x1 ∈ [0, 1] is an idempotent point of U then U is internal on {x1} × [0, 1], i.e., 
U(x1, x) ∈ {x, x1} for all x ∈ [0, 1].

Proposition 18 ([20]). Let U ∈ U . Then for each x ∈ [0, 1] there is at most one point of discontinuity of ux . Further, 
if ux is non-continuous in y ∈ [0, 1] then U(x, z) < e for all z < y and U(x, z) > e for all z > y.

2. Main result

In this section we will show several useful results which will be used in [21]. The main aim is to study the structure 
of the characterizing set-valued function and to show that its graph can be divided into maximal horizontal, vertical and 
strictly decreasing segments (and special accumulation points), and that border points of all such maximal segments 

148



88 A. Mesiarová-Zemánková / Fuzzy Sets and Systems 334 (2018) 83–93

of the characterizing set-valued function r of a uninorm U ∈ U are idempotent. Indeed, it is easy to observe that the 
graph of the characterizing set-valued function is a connected bounded curve that contains horizontal line segments, 
vertical line segments, and segments on which it coincides with the graph of some strictly decreasing function. For 
the decomposition into the ordinal sum summands (which will be done in [21]) we are interested in maximal such 
segments and their projection to the first coordinate. For simplicity, in the definition we will instead of projection of a 
maximal segment to the first coordinate write just maximal segment.

Before we introduce the following definition let us note that for an x ∈ [0, 1] with y ∈ r(x), and the cardinality 
Card(r(x)) the following are equivalent:

(i) r(x) is a singleton,
(ii) Card(r(x)) = 1,

(iii) r(x) = {y},
(iv) max(r(x)) = y,
(v) min(r(x)) = y.

Definition 19. Let U ∈ U and let r : [0, 1] −→ P([0, 1]) be its characterizing set-valued function. Then

(i) the set I ⊂ [0, 1] is called a maximal horizontal segment of r if Card(I ) > 1, i.e., if I contains at least two 
different points from [0, 1], and there exists a y ∈ [0, 1] such that y ∈ p(x) if and only if x ∈ I ,

(ii) if for x ∈ [0, 1] there is Card(r(x)) > 1 then the set {x} is called a maximal vertical segment of r ,
(iii) the interval [a, b] is called a strictly decreasing segment of r if for all x ∈ ]a, b[ we have

Card(r(x)) = 1,Card(r(max(r(x))) = 1, (4)

i.e., if r(x) is a singleton and if r(x) = {y} for some y ∈ [0, 1] then r(y) is a singleton as well,
(iv) the interval [a, b] is called a maximal strictly decreasing segment of r if there is no interval [c, d] which is a 

strictly decreasing segment of r such that [a, b] � [c, d].

The non-increasingness of r implies that all maximal segments are intervals. Further, a subinterval of a maximal 
horizontal segment will be called a horizontal segment.

The symmetry of r implies that a maximal horizontal segment I can be paired with a maximal vertical segment 
{y} for which we have

y ∈ r(x) for all x ∈ I.

Then I × {y} as well as {y} × I belong to the graph of r .

Remark 20.
(i) If I ⊂ [0, 1] is a maximal horizontal segment of r then

⋃
x∈I

(x, y),

for the corresponding y ∈ [0, 1] from the previous definition, is a horizontal line segment.
(ii) If {x} for some x ∈ [0, 1] is a maximal vertical segment of r then

⋃
y∈r(x)

(x, y)

is a vertical line segment.
(iii) If [a, b] is a maximal strictly decreasing segment of r for some a, b ∈ [0, 1], a < b, then

(a,min(r(a))) ∪ (b,max(r(b))) ∪
⋃

x∈]a,b[

(x,max(r(x)))

coincides with the graph of some strictly decreasing function on [a, b].
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Now we will show that all maximal segments of the characterizing set-valued function of U ∈ U are closed inter-
vals.

Lemma 21. Let U ∈ U and let r : [0, 1] −→ P([0, 1]) be its characterizing set-valued function. Then all maximal 
segments of r are closed intervals.

Proof. Any maximal strictly decreasing segment of r is a closed interval by the definition. Similarly, any maximal 
vertical segment is a trivial closed interval. Further we will show that any maximal horizontal segment is a closed 
interval. Let X1 ∈ [0, 1] be the left border point of some maximal horizontal segment I such that y ∈ p(x) if and 
only if x ∈ I (for the right border point the proof is analogous). Then by Proposition 18 for each ε > 0 (small 
enough) we have U(X1 + ε, y + ε) > e and U(X1, y − ε) ≤ U(X1 + ε, y − ε) < e. Thus either U(X1, y) = e, or U is 
non-continuous in (X1, y). In both cases we get y ∈ r(X1), i.e., X1 ∈ I . �

Due to the symmetry of r the previous result implies that for every x ∈ [0, 1] the set r(x) is a closed interval and 
therefore min(r(x)) and max(r(x)) always exist.

Definition 22. We will denote by Sr the set of border points of all maximal segments of r and by S̄r its closure.

Note that there is a countable number of maximal horizontal and strictly decreasing segments and due to the 
symmetry of r there is also a countable number of maximal vertical segments. Therefore S̄r is countable. Then we 
have the following result.

Proposition 23. Let U ∈ U and let r : [0, 1] −→ P([0, 1]) be its characterizing set-valued function and assume x ∈
[0, 1]. Then either x ∈ S̄r or x is an interior point of exactly one maximal segment of r .

Proof. If x is an interior point of some maximal (horizontal or strictly decreasing) segment of r then the non-
increasingness of r implies that x doesn’t belong to any other maximal segment. Further, if x is a border point of 
some maximal segment then evidently x ∈ Sr . Suppose that x doesn’t belong to any maximal segment. Then

Card(r(x)) = 1 and Card(r(max(r(x))) = 1.

Since x is not an interior point of a strictly decreasing segment there are two possibilities:

Case 1. For all ε > 0 (small enough) there exists a q ∈ [x − ε, x + ε] such that Card(r(q)) > 1. In this case x is an 
accumulation point of the set of border points corresponding to maximal vertical segments and therefore x ∈ S̄r .

Case 2. For all ε > 0 (small enough) there exists a q ∈ [x − ε, x + ε] such that q belongs to a horizontal segment. 
Since x does not belong to a horizontal segment this means that in every neighbourhood of x there is a border point 
of a maximal horizontal segment and therefore x ∈ S̄r . �

Now we introduce two useful lemmas which will be used in the succeeding results.

Lemma 24. Let U ∈ U . If x1 is an idempotent element of U then ux1 is either continuous or it is non-continuous in 
point y1, such that y1 is an idempotent element of U .

Proof. If x1 is an idempotent element and ux1 is non-continuous in y1 then Proposition 18 implies that U(x1, y) < e

for y < y1 and U(x1, y) > e for y > y1. If x1 = e then ux1 is evidently continuous, thus we will assume x1 < e

(the case for x1 > e is analogous). Then since U ∈ U we have y1 ≥ e. If y1 is not an idempotent element then there 
exists a y2 ∈ [0, 1] with e < y2 < y1 such that U(y2, y2) > y1 and since by Lemma 17 we know that U is internal on 
{x1} × [0, 1] we have

e > x1 = U(x1, y2) = U(x1, y2, y2) = U(y2, y2) > y1 ≥ e

which is a contradiction. �
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Lemma 25. Let U ∈ U and assume an x ∈ [0,1]. If ux is non-continuous in some y ∈ [0, 1] then for all n ∈ N the 
function u

x
(n)
U

is non-continuous in y(n)
U , where

x
(n)
U = U(x, . . . , x︸ ︷︷ ︸

n-times

).

Proof. If x is an idempotent point then the result follows from Lemma 24. Assume that x is not idempotent and that 
x < e (the case when x > e can be shown analogously). Then U(x, z) < e for z < y implies U(x

(n)
U , z(n)

U ) < e and 

the continuity of SU ensures that for all q < y
(n)
U there exists such a z < y that z(n)

U = q . Therefore U(x
(n)
U , q) < e

for all q < y
(n)
U . Similarly we can show that U(x

(n)
U , q) > e for all q > y

(n)
U . Thus either U(x

(n)
U , y(n)

U ) = e, or u
x

(n)
U

is 

non-continuous in y(n)
U . However, since U(x, y) �= e the first case is not possible and therefore u

x
(n)
U

is non-continuous 

in y(n)
U . �

Proposition 26. Let U ∈ U . If for some x1, x2 ∈ [0, 1], x1 < x2, both functions ux1 and ux2 are non-continuous in 
y ∈ [0, 1] then y is an idempotent element of U .

Proof. Assume that y is not an idempotent element. Since U ∈ U we have either x1 < x2 ≤ e or e ≤ x1 < x2. We will 
suppose x1 < x2 ≤ e as the other case is analogous. Then also for all f ∈ [x1, x2] the function uf is non-continuous 
in y and thus if there is an idempotent in [x1, x2] Lemma 24 implies that y is an idempotent element. Assume the 
opposite and let X1, X2 ∈ [0, e] be two idempotent elements such that x1, x2 ∈ ]X1,X2[ and there is no idempotent 
element in ]X1,X2[. Then since the points a, d, A, B from Remark 10 are idempotent we have ]X1,X2[ ∩ ]a, d[ = ∅, 
]X1,X2[ ∩ ]0,B[ = ∅ and ]X1,X2[ ∩ ]A,1[ = ∅. Therefore Remark 13 implies that ux is non-continuous for all 
x ∈ ]X1,X2[. Since TU is continuous it is possible to select a w ∈ ]X1,X2[ such that w(m)

U , w(m+1)
U ∈ [x1, x2] for 

some m ∈ N. If uw is non-continuous in r then by Lemma 25 we have y = r
(m)
U = r

(m+1)
U which is possible only if y

is an idempotent point. �
Proposition 27. Let U ∈ U and let r be its characterizing set-valued function. Then border points of all types of 
maximal segments of r are idempotent points.

Proof. Since r is symmetric Proposition 26 implies the result for all vertical segments. Further, let the interval 
[X1,X2] correspond to some maximal horizontal segment of r , i.e., for some y ∈ [0, 1] we have r(x) = {y} for all 
x ∈ ]X1,X2[. Also y /∈ r(x) for all x ∈ [0, 1] \ [X1,X2]. We will suppose X1 < X2 ≤ e (the case when e ≤ X1 < X2
is analogous). From Proposition 26 it follows that y is an idempotent element of U . Suppose first that X1 is not 
an idempotent element. Since TU is continuous there exists ε > 0 (small enough) such that X1 + ε ∈ ]X1,X2[, 
U(X1 + ε, X1 + ε) < X1. Then since uX1+ε is non-continuous in y Lemma 25 implies that uU(X1+ε,X1+ε) is non-
continuous in U(y, y) = y, i.e., y ∈ r(U(X1 +ε, X1 +ε)) which is a contradiction. Thus X1 is an idempotent element.

Now suppose that X2 is not idempotent. Here we have two possibilities. Either U(p, p) = y for some p ∈ [0, 1], 
p �= y, or U(p, p) = y implies p = y for all p ∈ [0, 1]. First suppose the second case. Since TU is continuous there 
exists ε > 0 (small enough) such that U(X2 + ε, X2 + ε) ∈ ]X1,X2[. Similarly as before we can show that ux is 
non-continuous for all x ∈ ]X1,X3[, where X3 is the smallest idempotent element bigger than X2. Then since X2 + ε

does not belong to the given horizontal segment the non-increasingness of r implies that uX2+ε is non-continuous in 
some p ∈ [0, 1] with p < y. However, the function uU(X2+ε,X2+ε) is non-continuous in y and Lemma 25 then implies 
U(p, p) = y which is a contradiction.

Finally suppose that U(p, p) = y for some p ∈ [0, 1], p < y. Since SU is continuous we can assume that p is the 
smallest point with this property. Then U(p, z) < y for all z < p. Since y is an idempotent element for x ∈ ]X1,X2[
there is either U(x, p, p) = x or U(x, p, p) = y. Since U(x, p) ∈ [

x,p
]

and U(p, p) > p the monotonicity of U
ensures in the first case that U(x, p) = x. In the second case, if U(x, p) < p then U(x, p, p) < y and therefore 
U(x, p) = p. Further, p < y and therefore we get U(x, p) < e, i.e., U(x, p) = x, for all x ∈ ]X1,X2[. Let us assume 
an ε > 0 such that U(X2 + ε, X2 + ε) ∈ ]X1,X2[. Since X2 + ε does not belong to the given horizontal segment the
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non-increasingness of r ensures that U(X2 + ε, y) > e. On the other hand we have

U(U(X2 + ε,X2 + ε), y) = U(X2 + ε,X2 + ε)

and as y is idempotent we get U(X2 + ε, y) = X2 + ε < e which is a contradiction. Therefore X2 is an idempotent 
element of U . We have shown that border points of all horizontal segments are idempotents.

Now assume that X1 is a border point of a maximal strictly decreasing segment. Then either X1 is a border point 
of a maximal vertical or a maximal horizontal segment as well, in which case it is an idempotent point, or it is an 
accumulation point of a set of border points of maximal vertical or maximal horizontal segments. Since U ∈ U the set 
of idempotent points of U is closed and thus also in the second case X1 is an idempotent point of U . Summarizing, 
border points of all maximal segments are idempotents. �

From the previous proof it follows that all points from the set S̄r are idempotent elements of U .
Further we will show the relation between nilpotent components of U and horizontal segments of the characterizing 

set-valued function.

Lemma 28. Let U ∈ U and let r be its characterizing set-valued function. If X1, X2 ∈ [0, 1], X1 < X2, are idempotent 
elements of U such that there is no idempotent in ]X1,X2[ and there exists x ∈ ]X1,X2[ such that U(x, x) = X1 or 
U(x, x) = X2 then r on [X1,X2] corresponds to a horizontal segment.

Proof. Let U(x, x) = X1 (the case for U(x, x) = X2 is analogous). Then X1 < X2 ≤ e and we can assume that x is 
the biggest point with this property, i.e., U(x, z) > X1 for all z > x. Since X1 is idempotent e does not belong to the 
range of uX1 . If uX1 is continuous then U(X1, 1) < e, i.e., U(X1, 1) = X1 due to Lemma 17. Then U(x, x, 1) = X1

and thus U(x, 1) ≤ x. Using Lemma 17 again we get U(x, 1) = x and therefore due to Proposition 27 the set-valued 
function r corresponds to a horizontal segment on [0,X2].

Now suppose that uX1 is non-continuous in y. Then U(X1, y) ∈ {X1, y} and we will first suppose that 
U(X1, y) = X1. We have U(x, x, y) = X1 and therefore U(x, y) ≤ x, i.e., U(x, y) = x. Further, U(X1, z) = z for 
all z > y and therefore U(x, x, z) = z which implies U(x, z) ≥ z. Since U(x, z) ∈ [x, z] we get U(x, z) = z. Thus ux

is non-continuous in y and Proposition 27 implies the result.
Finally suppose that U(X1, y) = y. Then e < y and due to the monotonicity also U(x, y) = y. Further, U(X1, z) =

X1 for all e ≤ z < y, i.e., U(x, x, z) = X1 which implies U(x, z) ≤ x. Since U(x, z) ∈ [x, z] we get U(x, z) = x. 
Thus again ux is non-continuous in y and Proposition 27 implies the result. �

In the following two lemmas we show how does a strictly decreasing segment of the characterizing set-valued 
function relate the components of [0, e] to the components of [e,1].

Lemma 29. Let U ∈ U . If X1, X2 ∈ [0, 1] are idempotent elements of U such that there is no idempotent in ]X1,X2[
and r on [X1,X2] corresponds to a strictly decreasing segment then Y2 = min(r(X1)) and Y1 = max(r(X2)) are 
idempotent elements of U such that there is no idempotent in ]Y1, Y2[ and r on [Y1, Y2] corresponds to a strictly 
decreasing segment. Further, X1 = max(r(min(r(X1)))) and X2 = min(r(max(r(X2)))).

Proof. There is either r(X1) = {Y2} or Card(r(X1)) > 1. Similarly, either r(X2) = {Y1} or Card(r(X2)) > 1. If 
Card(r(X1)) > 1 then r on r(X1) corresponds to a horizontal segment, which has a left border point Y2 and therefore 
Proposition 27 implies that Y2 is an idempotent element. If Card(r(X1)) = 1 then either Y2 = 1 or Y2 is an idempotent 
element of U due to Lemma 24. Similarly we can show that Y1 is an idempotent element.

The commutativity of U implies that r on [Y1, Y2] corresponds to a strictly decreasing segment. If there is an 
idempotent element x in ]Y1, Y2[ then ux is non-continuous in y for some y ∈ ]X1,X2[. Lemma 24 implies that y is 
an idempotent element which is a contradiction.

Finally, since Y2 = min(r(X1)) and Y1 = max(r(X2)) then (X1, Y2) and (X2, Y1) belong to the graph of the char-
acterizing set-valued function r . Then also (Y2, X1) and (Y1, X2) belong to the graph of the characterizing set-valued 
function r and since r is non-increasing we have X1 = max(r(min(r(X1)))) and X2 = min(r(max(r(X2)))). �

152



92 A. Mesiarová-Zemánková / Fuzzy Sets and Systems 334 (2018) 83–93

Lemma 30. Let U ∈ U . If X1, X2 ∈ [0, 1] are such that U(x, x) = x for all x ∈ [X1,X2] and r on [X1,X2] corre-
sponds to a strictly decreasing segment then for Y2 = min(r(X1)) and Y1 = max(r(X2)) we have U(y, y) = y for all 
y ∈ [Y1, Y2] and r on [Y1, Y2] corresponds to a strictly decreasing segment. Further, X1 = max(r(min(r(X1)))) and 
X2 = min(r(max(r(X2)))).

Proof. Similarly as in the previous lemma Y1 and Y2 are idempotents. Further, since for each y ∈ ]Y1, Y2[ there 
exists an x ∈ ]X1,X2[ such that ux is non-continuous in y Lemma 24 implies that y is an idempotent element. 
The rest follows from the commutativity of U . The symmetry and the non-increasingness of r further imply X1 =
max(r(min(r(X1)))) and X2 = min(r(max(r(X2)))). �
3. Conclusions

We have investigated properties of the characterizing set-valued function of a uninorm with continuous underlying 
functions. We have shown that the graph of this function can be divided into maximal horizontal, vertical and strictly 
decreasing segments, and special accumulation points. Further, we have shown that border points of all such maxi-
mal segments are idempotent elements of the corresponding uninorm. We have also shown how does horizontal and 
strictly decreasing segments indicate the decomposition of the given uninorm into components. These results will be 
further used in [21] where we will show that each uninorm with continuous underlying t-norm and t-conorm can be 
decomposed into an ordinal sum of semigroups related to representable uninorms, continuous Archimedean t-norms 
and t-conorms, internal uninorms and singleton semigroups.
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1. Introduction 

The (left-continuous) t-norms and their dual t-conorms have an indispensable role in many domains [8,28,29] . Each 

continuous t-norm (t-conorm) can be expressed as an ordinal sum of continuous Archimedean t-norms (t-conorms), while 

each Archimedean t-norm (t-conorm) is generated by an additive generator (see [2,11] ). Generalizations of t-norms and 

t-conorms that can model bipolar behaviour are uninorms (see [6,21,30] ). The class of uninorms is widely used both in 

theory [18,27] and in applications [26,31] . The complete characterization of uninorms with continuous underlying t-norm 

and t-conorm has been an open problem for a long time. We plan to solve this problem in our future work in [23,24] (see 

also [5,15] ). In this paper we would like to focus on uninorms continuous on [0, e [ 2 ∪ ] e , 1] 2 . 

In Section 2 we will first recall all important notions and results and we will discuss general uninorms continuous on 

[0, e [ 2 ∪ ] e , 1] 2 in Section 3 . In Section 4 we will recall several known results and show some new results on continuous 

cancellative t-subnorms. We will show the characterization of Archimedean uninorms continuous and cancellative on ]0, 

e [ 2 ∪ ] e , 1[ 2 ( Section 5 ) and discuss related non-Archimedean uninorms. We give our conclusions in Section 6 . 

2. Basic notions and results 

Let us now recall all necessary basic notions. 

A triangular norm is a binary function T : [0 , 1] 2 −→ [0 , 1] which is commutative, associative, non-decreasing in both 

variables and 1 is its neutral element. Due to the associativity, n -ary form of any t-norm is uniquely given and thus it 

can be extended to an aggregation function working on 

⋃ 

n ∈ N [0 , 1] n . Dual functions to t-norms are t-conorms. A triangular 

conorm is a binary function C : [0 , 1] 2 −→ [0 , 1] which is commutative, associative, non-decreasing in both variables and 0 

is its neutral element. The duality between t-norms and t-conorms is expressed by the fact that from any t-norm T we can 
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obtain its dual t-conorm C by the equation 

C(x, y ) = 1 − T (1 − x, 1 − y ) 

and vice-versa. 

Proposition 1 ( [11] ) . Let t : [0 , 1] −→ [ 0 , ∞ ] ( c : [0 , 1] −→ [ 0 , ∞ ] ) be a continuous strictly decreasing (increasing) function such 

that t(1) = 0 ( c(0) = 0 ). Then the binary operation T : [0 , 1] 2 −→ [0 , 1] ( C : [0 , 1] 2 −→ [0 , 1] ) given by 

T (x, y ) = t −1 ( min (t (0) , t (x ) + t(y ))) 

C(x, y ) = c −1 ( min (c(1) , c(x ) + c(y ))) 

is a continuous t-norm (t-conorm). The function t (c) is called an additive generator of T (C). 

Proposition 2 ( [11] ) . Let K be a finite or countably infinite index set and let (] a k , b k [) k ∈ K ( (] c k , d k [) k ∈ K ) be a disjoint system 

of open subintervals of [0, 1]. Let ( T k ) k ∈ K ( ( C k ) k ∈ K ) be a system of t-norms (t-conorms). Then the ordinal sum T = (〈 a k , b k , T k 〉 | 
k ∈ K) ( C = (〈 c k , d k , C k 〉 | k ∈ K) ) given by 

T (x, y ) = 

{
a k + (b k − a k ) T k ( 

x −a k 
b k −a k 

, 
y −a k 
b k −a k 

) if (x, y ) ∈ [ a k , b k [ 
2 , 

min ( x, y ) else 

and 

C(x, y ) = 

{
c k + (d k − c k ) C k ( 

x −c k 
d k −c k 

, 
y −c k 
d k −c k 

) if (x, y ) ∈ ] c k , d k ] 
2 , 

max ( x, y ) else 

is a t-norm (t-conorm). The t-norm T (t-conorm C) is continuous if and only if all summands T k (C k ) for k ∈ K are continuous. 

An additive generator of a continuous t-norm T (t-conorm C ) is uniquely determined up to a positive multiplicative 

constant. Each continuous t-norm (t-conorm) is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). 

Note that a continuous t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent points 0 and 1. A 

continuous Archimedean t-norm T (t-conorm C ) is either strict, i.e., strictly increasing on ]0, 1] 2 (on [0, 1[ 2 ), or nilpotent, 

i.e., there exists ( x , y ) ∈ ]0, 1[ 2 such that T (x, y ) = 0 ( C(x, y ) = 1 ). Moreover, each continuous Archimedean t-norm (t-conorm) 

has a continuous additive generator. More details on t-norms and t-conorms can be found in [2,11] . 

A uninorm (introduced in [30] ) is a binary function U : [0 , 1] 2 −→ [0 , 1] which is commutative, associative, non- 

decreasing in both variables and has the neutral element e ∈ ]0, 1[ (see also [6] ). If we take a uninorm in a broader sense, 

i.e., if for a neutral element we have e ∈ [0, 1], then the class of uninorms covers also the class of t-norms and the class of t- 

conorms. In order to stress that we assume a uninorm with e ∈ ]0, 1[ we will call such a uninorm proper . For each uninorm 

the value U (1, 0) ∈ {0, 1} is the annihilator of U . A uninorm is called conjunctive ( disjunctive ) if U(1 , 0) = 0 ( U(1 , 0) = 1 ). Due 

to the associativity we can uniquely define n -ary form of a uninorm for any n ∈ N and therefore in some proofs we will use 

ternary form instead of binary, where it is suitable. 

For each uninorm U with the neutral element e ∈ [0, 1], the restriction of U to [0, e ] 2 is a t-norm on [0, e ] 2 , i.e., a 

linear transformation of some t-norm T U on [0, 1] 2 and the restriction of U to [ e , 1] 2 is a t-conorm on [ e , 1] 2 , i.e., a linear 

transformation of some t-conorm C U on [0, 1] 2 . Moreover, min ( x , y ) ≤ U ( x , y ) ≤ max ( x , y ) for all ( x , y ) ∈ [0, e ] × [ e , 1] ∪ [ e , 

1] × [0, e ]. 

From any pair of a t-norm and a t-conorm we can construct the minimal and the maximal uninorm with the given 

underlying functions. 

Proposition 3 ( [16] ) . Let T : [0 , 1] 2 −→ [0 , 1] be a t-norm and C : [0 , 1] 2 −→ [0 , 1] a t-conorm and assume e ∈ [0, 1]. Then the 

two functions U min , U max : [0 , 1] 2 −→ [0 , 1] given by 

U min (x, y ) = 

⎧ ⎨ 

⎩ 

e · T ( x 
e 
, 

y 
e 
) if (x, y ) ∈ [ 0 , e ] 2 , 

e + ( 1 − e ) · C( x −e 
1 −e 

, 
y −e 
1 −e 

) if ( x, y ) ∈ [ e, 1 ] 2 , 

min ( x, y ) otherwise 

and 

U max (x, y ) = 

⎧ ⎨ 

⎩ 

e · T ( x 
e 
, 

y 
e 
) if (x, y ) ∈ [ 0 , e ] 2 , 

e + ( 1 − e ) · C( x −e 
1 −e 

, 
y −e 
1 −e 

) if ( x, y ) ∈ [ e, 1 ] 2 , 

max ( x, y ) otherwise 

are uninorms. We will denote the set of all uninorms of the first type by U min and of the second type by U max . 

Proposition 4 ( [6] ) . Let f : [0 , 1] −→ [ −∞ , ∞ ] , f (0) = −∞ , f (1) = ∞ be a continuous strictly increasing function. Then a bi- 

nary function U : [0 , 1] 2 −→ [0 , 1] given by 

U(x, y ) = f −1 ( f (x ) + f (y )) , 

156



132 A. Mesiarová-Zemánková / Information Sciences 393 (2017) 130–143 

where f −1 : [ −∞ , ∞ ] −→ [0 , 1] is an inverse function to f , is a uninorm, which will be called a representable uninorm. 

This uninorm is conjunctive if we take the convention ∞ + (−∞ ) = −∞ and it is disjunctive if we take the convention 

∞ + (−∞ ) = ∞ . 

Note that if U is a representable uninorm with the neutral element e then for every x ∈ ]0, 1[ there exists a y ∈ ]0, 1[ 

such that U(x, y ) = e. 

3. Uninorms continuous on [0, e [ 2 ∪ ] e , 1] 2 

Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm continuous on [0, e [ 2 ∪ ] e , 1] 2 . First we will focus on T U (similar observations can 

be obtained for C U by duality) and we will now show that T U can be obtained by lifting of a continuous t-subnorm (see 

[10] ) to a t-norm (see [9] ). Let us recall that a binary operation M : [0 , 1] 2 −→ [0 , 1] is a t-subnorm if it is commutative, 

associative, non-decreasing in both variables and M ( x , y ) ≤ min ( x , y ) for all ( x , y ) ∈ [0, 1] 2 . Evidently, each t-norm is also a 

t-subnorm. In order to stress that a t-subnorm is not a t-norm we will call such a t-subnorm proper . A dual operation to a t- 

subnorm is t-superconorm. A binary operation R : [0 , 1] 2 −→ [0 , 1] is a t-superconorm if it is commutative, associative, non- 

decreasing in both variables and R ( x , y ) ≥ max ( x , y ) for all ( x , y ) ∈ [0, 1] 2 . A t-subnorm M : [0 , 1] 2 −→ [0 , 1] (t-superconorm 

R : [0 , 1] 2 −→ [0 , 1] ) is cancellative if M(x, y ) = M(x, z) ( R (x, y ) = R (x, z) ) implies y = z for all x > 0 ( x < 1), x , y , z ∈ [0, 1]. 

Further, a continuous t-subnorm M is proper and Archimedean if and only if 0 is the unique idempotent element of M . More 

details on t-subnorms can be found in [19,20] . 

From each t-subnorm M : [0 , 1] 2 −→ [0 , 1] we can define a function T : [0 , 1] 2 −→ [0 , 1] by 

T (x, y ) = 

{
M(x, y ) if (x, y ) ∈ [ 0 , 1 [ 2 , 

min ( x, y ) otherwise 

for all ( x , y ) ∈ [0, 1] 2 . Then the function T is a t-norm. This process is called lifting of a t-subnorm to a t-norm. Then T = M

if and only if M is a t-norm. 

Vice versa, in [9] a border-continuous projection M T : [0 , 1] 2 −→ [0 , 1] of a t-norm was defined by 

M T (x, y ) = 

⎧ ⎨ 

⎩ 

T (x, y ) if (x, y ) ∈ [ 0 , 1 [ 2 , 

lim 

u −→ x −

v −→ y −

T ( u, v ) if max ( x, y ) = 1 . 

The idea of this border-continuous projection was to obtain a reverse process to the lifting of a t-subnorm to a t-norm. 

However, such a border-continuous projection need not to be monotone. 

Example 1. Let T : [0 , 1] 2 −→ [0 , 1] be given by 

T (x, y ) = 

⎧ ⎨ 

⎩ 

min (x, y ) if max (x, y ) = 1 , 

max (0 , 2 
3 
(x + y ) − 5 

6 
) if (x, y ) ∈ [ 1 

2 
, 1 ] 2 , max (x, y ) < 1 , 

0 otherwise. 

Evidently, T is commutative, non-decreasing in both variables and 1 is its neutral element. Further, for any x , y , z ∈ [0, 1], if 

max (x, y, z) = 1 then since 1 is the neutral element of T we easily get 

T (x, T (y, z)) = T (T (x, y ) , z) . 

If max ( x , y , z ) < 1 then T (y, z) < 

1 
2 , T (x, y ) < 

1 
2 and 

T (x, T (y, z)) = T (T (x, y ) , z) = 0 . 

Thus T is associative and therefore it is a t-norm. 

For M T given above we then obtain M T ( 
1 
2 , 1) = 0 and M T ( 

1 
2 , 

7 
8 ) = 

1 
12 , i.e., M T is not non-decreasing in both variables. 

Therefore the proper definition of a border-continuous projection is 

M T (x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

T (x, y ) if (x, y ) ∈ [ 0 , 1 [ 2 , 

lim 

u −→ 1 −
T ( u, y ) if x = 1 , y < 1 , 

lim 

u −→ 1 −
T ( x, u ) if x < 1 , y = 1 , 

lim 

u −→ 1 −

v −→ 1 −

T ( u, v ) if x = y = 1 . 
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For a t-conorm C the border-continuous projection of C is given by 

M C (x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C(x, y ) if (x, y ) ∈ ] 0 , 1 ] 2 , 

lim 

u −→ 0 + 
C( u, y ) if x = 0 , y > 0 , 

lim 

u −→ 0 + 
C( x, u ) if x > 0 , y = 0 , 

lim 

u −→ 0 + 

v −→ 0 + 

T ( u, v ) if x = y = 0 . 

In this case the border-continuous projection of a t-norm is commutative, bounded by minimum and non-decreasing in both 

variables. Note that a border-continuous projection is not border-continuous in the sense that each point from the border 

of the unit square is a point of continuity of M T (as it is defined in [11] ), but in the sense that lim 

u −→ 1 −
M T (x, u ) = M T (x, 1) , 

while the function M T ( ·, 1) can be non-continuous. 

Example 2. If we take the t-norm T from Example 1 then 

M T (x, y ) = 

{
max (0 , 2 

3 
(x + y ) − 5 

6 
) if (x, y ) ∈ [ 1 

2 
, 1 ] 2 , 

0 otherwise 

and M T (M T (1 , 1) , x ) = 

2 ·x 
3 − 1 

2 for all x ≥ 3 
4 , however, M T (1 , M T (1 , x )) = 0 for all x < 1. Therefore M T is not associative, i.e., 

not a t-subnorm. 

The previous example shows that there is a need to characterize all t-norms such that their border-continuous projection 

is a t-subnorm. 

It is evident that if T is border-continuous then M T = T . 

Lemma 1. For a t-norm T : [0 , 1] 2 −→ [0 , 1] and x , y ∈ [0, 1[ there is 

M T (1 , M T (x, y )) = M T (M T (1 , x ) , y ) 

if and only if there is: either 

T (u 0 , x ) = lim 

u −→ 1 −
T (u, x ) 

for some u 0 ∈ [0, 1[, or 

T (a, y ) = lim 

v −→ a −
T (v , y ) 

where a = lim 

u −→ 1 −
T (u, x ) . 

Proof. Assume any x , y ∈ [0, 1[ and denote a = lim 

u −→ 1 −
T (u, x ) = M T (1 , x ) . Then 

M T (1 , M T (x, y )) = lim 

u −→ 1 −
T (u, T (x, y )) = lim 

u −→ 1 −
T (T (u, x ) , y ) . 

The monotonicity of T implies 

lim 

u −→ 1 −
T (T (u, x ) , y ) ≤ T ( lim 

u −→ 1 −
T (u, x ) , y ) = M T (M T (1 , x ) , y ) . 

Case 1: Suppose that T (u 0 , x ) = a for some u 0 ∈ [0, 1[. Then 

lim 

u −→ 1 −
T (T (u, x ) , y ) ≥ T (T (u 0 , x ) , y ) = T (a, y ) = T ( lim 

u −→ 1 −
T (u, x ) , y ) , 

i.e., the two opposite inequalities give us M T (1 , M T (x, y )) = M T (M T (1 , x ) , y ) . 

Case 2: Suppose that T ( u , x ) < a for all u ∈ [0, 1[. Then due to the monotonicity of T there is T (a, y ) = lim 

v −→ a −
T (v , y ) if 

and only if 

T ( lim 

u −→ 1 −
T (u, x ) , y ) = T (a, y ) = lim 

v −→ a −
T (v , y ) = lim 

u −→ 1 −
T (T (u, x ) , y ) , 

which means that M T (1 , M T (x, y )) = M T (M T (1 , x ) , y ) . �

Proposition 5. For a t-norm T : [0 , 1] 2 −→ [0 , 1] its border-continuous projection M T : [0 , 1] 2 −→ [0 , 1] is a t-subnorm if and 

only if the following two conditions are satisfied: 

(i) for all x , y ∈ [0, 1[ either T (u 0 , x ) = lim 

u −→ 1 −
T (u, x ) for some u 0 ∈ [0, 1[, or T (a, y ) = lim 

v −→ a −
T (v , y ) , where a = 

lim 

u −→ 1 −
T (u, x ) , 

(ii) either lim 

u −→ 1 −
T (u, u ) = 1 , or T (u 0 , v 0 ) = lim 

u −→ 1 −
T (u, u ) for some u 0 , v 0 ∈ [ 0 , 1 [ , or for all x ∈ [0, 1[ there is T (b, x ) = 

lim 

v −→ b −
T (v , x ) , where b = lim 

u −→ 1 −
T (u, u ) . 

158



134 A. Mesiarová-Zemánková / Information Sciences 393 (2017) 130–143 

Proof. The commutativity, monotonicity and boundedness by the minimum of M T are obvious. The associativity of M T for x , 

y , z ∈ [0, 1] with max ( x , y , z ) < 1 follows from the associativity of T . Further, from Lemma 1 it follows that for all x , y ∈ [0, 

1[ there is M T (1 , M T (x, y )) = M T (M T (1 , x ) , y ) and thus also M T (1 , M T (x, y )) = M T (M T (1 , y ) , x ) if and only if the condition (i) 

is satisfied. If x = y = z = 1 the associativity is clear. 

Finally, assume x ∈ [0, 1[, y = z = 1 and denote 

b = lim 

u −→ 1 −
T (u, u ) = M T (1 , 1) = lim 

u −→ 1 −
v −→ 1 −

T (u, v ) . 

We have to show that M T (1 , M T (1 , x )) = M T (M T (1 , 1) , x ) . Here 

M T (1 , M T (1 , x )) = lim 

u −→ 1 −
T (u, lim 

v −→ 1 −
T (v , x )) 

and 

M T (M T (1 , 1) , x ) = T ( lim 

u −→ 1 −
v −→ 1 −

T (u, v ) , x ) . 

Due to Lemma 1 we have 

T (u, lim 

v −→ 1 −
T (v , x )) = lim 

v −→ 1 −
T (T (u, v ) , x ) 

for all u ∈ [0, 1[ and thus 

lim 

u −→ 1 −
T (u, lim 

v −→ 1 −
T (v , x )) = lim 

u −→ 1 −
v −→ 1 −

T (T (u, v ) , x ) . (1) 

Case 1: Suppose that M T (1, 1) < 1 and T (u 0 , v 0 ) = lim 

u −→ 1 −
v −→ 1 −

T (u, v ) = M T (1 , 1) for some u 0 , v 0 ∈ [ 0 , 1 [ . Then 

lim 

u −→ 1 −
v −→ 1 −

T (T (u, v ) , x ) = M T (M T (1 , 1) , x ) . 

Case 2: Suppose that M T (1, 1) < 1 and T (u, v ) < M T (1 , 1) for all u, v ∈ [ 0 , 1 [ . Then 

lim 

u −→ 1 −
v −→ 1 −

T (T (u, v ) , x ) = T ( lim 

u −→ 1 −
v −→ 1 −

T (u, v ) , x ) 

if and only if T (b, x ) = lim 

w −→ b −
T (w, x ) . 

Case 3: Suppose that M T (1 , 1) = 1 = lim 

u −→ 1 −
T (u, u ) . Then 

M T (M T (1 , 1) , x ) = M T (1 , x ) 

and we have to show that 

lim 

u −→ 1 −
T (u, lim 

v −→ 1 −
T (v , x )) = M T (1 , x ) = lim 

u −→ 1 −
T (u, x ) . 

It is evident that M T (1, M T (1, x )) ≤ M T (1, x ). Thus if M T (1, M T (1, x )) 
 = M T ( M T (1, 1), x ) then (1) implies 

lim 

u −→ 1 −
v −→ 1 −

T (T (u, v ) , x ) = lim 

u −→ 1 −
T (u, lim 

v −→ 1 −
T (v , x )) < lim 

u −→ 1 −
T (u, x ) = c. 

In such a case there exists an ε > 0 such that for all u, v ∈ [ 0 , 1 [ we have T (T (u, v ) , x ) < c − ε. On the other hand, there 

exists a u 0 ∈ [0, 1[ such that T (u 0 , x ) ≥ c − ε 
2 . Since lim 

u −→ 1 −
T (u, u ) = 1 there exists a u 1 ∈ [0, 1[ such that T ( u 1 , u 1 ) > u 0 

which implies 

c − ε > T (T (u 1 , u 1 ) , x ) ≥ T (u 0 , x ) ≥ c − ε 

2 

what is a contradiction. Thus M T (1 , M T (1 , x )) = M T (1 , x ) . �

As an easy corollary of the previous result we get the following. 

Corollary 1. Let T : [0 , 1] 2 −→ [0 , 1] be a t-norm left-continuous on [0, 1[ 2 . Then its border-continuous projection M T : 

[0 , 1] 2 −→ [0 , 1] is a t-subnorm. 

Since we focus on uninorms which are continuous on [0, e [ 2 ∪ ] e , 1] 2 then M T U 
is always a t-subnorm and similar result 

can be obtained also for C U . 

Further we recall a result from [20] (see also [10] ). 

159



A. Mesiarová-Zemánková / Information Sciences 393 (2017) 130–143 135 

Theorem 1. A mapping M : [0 , 1] 2 −→ [0 , 1] is a continuous proper t-subnorm if and only if it is an ordinal sum of continuous 

Archimedean t-norms and a continuous Archimedean proper t-subnorm, M = (〈 a k , b k , M k 〉 | k ∈ K) , where (] a k , b k [) k ∈ K is a dis- 

joint system of open subintervals of [0, 1] with b k 0 = 1 for some k 0 ∈ K , and M k 0 
is a continuous Archimedean proper t-subnorm 

and M k is a continuous Archimedean t-norm for all k 
 = k 0 , i.e., 

M(x, y ) = 

{
a k + (b k − a k ) M k ( 

x −a k 
b k −a k 

, 
y −a k 
b k −a k 

) if (x, y ) ∈ ] a k , b k ] 
2 , 

min ( x, y ) else. 

Remark 1. If U is continuous on [0, e [ 2 ∪ ] e , 1] 2 then M T U 
is an ordinal sum of continuous Archimedean t-norms and the 

last continuous Archimedean t-subnorm (which can be also a t-norm if T U is a continuous t-norm) and M C U 
is an ordinal 

sum of the first continuous Archimedean t-superconorm (which can be also a t-conorm if C U is a continuous t-conorm) 

and continuous Archimedean t-conorms. Thus there exist a b ∗ ∈ [0, e ] and a c ∗ ∈ [ e , 1] such that U is Archimedean on [ b ∗, 

e ] 2 and on [ c , b ∗] 2 (note that on singletons a uninorm is trivially Archimedean). Here, if T U ( C U ) is not continuous then b ∗

< e ( c ∗ > e ) Further, M T U 
on [0, b ∗] 2 is a continuous t-norm (on [0, b ∗] 2 ) and M C U 

on [ c ∗, 1] 2 is a continuous t-conorm 

(on [ c ∗, 1] 2 ). 

As the first step we will focus on Archimedean uninorms, i.e., uninorms with Archimedean underlying functions, which 

are continuous on [0, e [ 2 ∪ ] e , 1] 2 . The set of continuous Archimedean t-subnorms can be divided into three parts: continu- 

ous cancellative t-subnorms, continuous nilpotent t-subnorms, continuous t-subnorms with no nilpotent element which are 

not cancellative. Here continuous nilpotent t-subnorms are such that posses a nilpotent element x ∈ ]0, 1] with M(x, x ) = 0 . 

Although the structure of uninorms such that M T U 
( M C U 

) is not cancellative is quite complicated, in the case that M T U 
( M C U 

) 

is a continuous cancellative t-subnorm (t-superconorm) several results similar as in the case of uninorms with strict under- 

lying functions can be shown. First we recall the result for uninorms with strict underlying functions from [7] , which was 

later corrected in [17] . 

Theorem 2. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm with the neutral element e ∈ ]0, 1[ such that both T U and C U are strict then 

one of the following seven statements holds: 

(i) U ∈ U min , 

(ii) 

U(x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

e · T U ( 
x 
e 
, 

y 
e 
) if (x, y ) ∈ [ 0 , e ] 2 , 

e + ( 1 − e ) · C U ( 
x −e 
1 −e 

, 
y −e 
1 −e 

) if ( x, y ) ∈ [ e, 1 ] 2 , 

1 if x = 1 or y = 1 , 

min ( x, y ) otherwise, 

(iii) 

U(x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

e · T U ( 
x 
e 
, 

y 
e 
) if (x, y ) ∈ [ 0 , e ] 2 , 

e + ( 1 − e ) · C U ( 
x −e 
1 −e 

, 
y −e 
1 −e 

) if ( x, y ) ∈ [ e, 1 ] 2 , 

1 if x = 1 , y > 0 or y = 1 , x > 0 , 

min ( x, y ) otherwise, 

(iv) U ∈ U max , 

(v) 

U(x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

e · T U ( 
x 
e 
, 

y 
e 
) if (x, y ) ∈ [ 0 , e ] 2 , 

e + ( 1 − e ) · C U ( 
x −e 
1 −e 

, 
y −e 
1 −e 

) if ( x, y ) ∈ [ e, 1 ] 2 , 

0 if x = 0 or y = 0 , 

max ( x, y ) otherwise, 

(vi) 

U(x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

e · T U ( 
x 
e 
, 

y 
e 
) if (x, y ) ∈ [ 0 , e ] 2 , 

e + ( 1 − e ) · C U ( 
x −e 
1 −e 

, 
y −e 
1 −e 

) if ( x, y ) ∈ [ e, 1 ] 2 , 

0 if x = 0 , y < 1 or y = 0 , x < 1 , 

max ( x, y ) otherwise, 

(vii) U is representable. 

In Section 5 we will show that a similar representation holds also for Archimedean uninorms continuous and cancellative 

on ]0, e [ 2 ∪ ] e , 1[ 2 . 
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Let us now recall the fundamental result of Clifford [3] . 

Theorem 3. Let A 
 = ∅ be a totally ordered set and ( G α) α ∈ A with G α = (X α, ∗α) be a family of semigroups. Assume that for all 

α, β ∈ A with α < β the sets X α and X β are either disjoint or that X α ∩ X β = { x α,β} , where x α, β is both the neutral element of 

G α and the annihilator of G β and where for each γ ∈ A with α < γ < β we have X γ = { x α,β} . Put X = 

⋃ 

α∈ A 
X α and define the 

binary operation ∗ on X by 

x ∗ y = 

⎧ ⎨ 

⎩ 

x ∗α y if (x, y ) ∈ X α × X α, 

x if (x, y ) ∈ X α × X β and α < β, 

y if (x, y ) ∈ X α × X β and α > β. 

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ A the semigroup G α is commutative. 

Note that ordinal sum constructions of t-norms, t-conorms and uninorms are all based on this result (see [12,13,22] ). 

Example 3. In the case when for a uninorm U operations T U and C U are strict we have two possibilities: either U(x, y ) = e 

implies x = y = e for all ( x , y ) ∈ [0, 1] 2 , or there exist x , y ∈ [0, 1], x < e < y such that U(x, y ) = e . From the previous 

result we see that then U is representable. In such a case for all x ∈ ]0, 1[ there exists a y ∈ ]0, 1[ such that U(x, y ) = e. 

If we assume a division into sets on which U is closed then the finest possible partition that we can get is to divide [0, 

1] into {0}, ]0, 1[, and {1}. Thus we have three semigroups G a 1 = ({ 0 } , U) , G a 2 = (] 0 , 1 [ , U) , and G a 3 = ({ 1 } , U) . Let � be an 

order on the set A = { a 1 , a 2 , a 3 } . Then the monotonicity implies a 1 ≺a 2 and a 3 ≺a 2 . Thus there are two possible orders on 

the set A : either a 1 ≺a 3 ≺a 2 , which corresponds to a conjunctive representable uninorm, or a 3 ≺a 1 ≺a 2 , which corresponds to 

a disjunctive representable uninorm. Thus in both cases, i.e., whether U is conjunctive or disjunctive, it is easy to see that U 

is equal to an ordinal sum of G a 1 , G a 2 and G a 3 . 

Assume now that U(x, y ) = e implies x = y = e for all ( x , y ) ∈ [0, 1] 2 . Similarly as above we can show that then the 

finest partition which we can make is to divide [0, 1] into {0}, ]0, e [, { e }, ] e , 1[ and {1}. Thus we have five semi- 

groups G a 1 = ({ 0 } , U) , G a 2 = (] 0 , e [ , U) , G a 3 = ({ e } , U) , G a 4 = (] e, 1 [ , U) and G a 5 = ({ 1 } , U) . Let � be an order on the set 

A = { a 1 , a 2 , a 3 , a 4 , a 5 } . Since e is the neutral element we have a i ≺a 3 for i = 1 , 2 , 4 , 5 . Further the monotonicity implies a 1 ≺a 2 
and a 5 ≺a 4 . Then we have the following six possible orders on the set A : 

(i) a 1 ≺a 2 ≺a 5 ≺a 4 ≺a 3 , 

(ii) a 1 ≺a 5 ≺a 2 ≺a 4 ≺a 3 , 

(iii) a 1 ≺a 5 ≺a 4 ≺a 2 ≺a 3 , 

(iv) a 5 ≺a 1 ≺a 2 ≺a 4 ≺a 3 , 

(v) a 5 ≺a 1 ≺a 4 ≺a 2 ≺a 3 , 

(vi) a 5 ≺a 4 ≺a 1 ≺a 2 ≺a 3 . 

Again it is easy to see that an ordinal sum of G a 1 , G a 2 , G a 3 , G a 4 and G a 5 with the first order corresponds to the form (i) 

from Theorem 2 , the second to the form (iii), the third to the form (v), the fourth to the form (ii), the fifth to the form (vi) 

and the last to the form (iv). 

Theorem 3 and Example 3 show that all uninorms with strict underlying functions can be expressed as an ordinal sum 

of semigroups related to trivial uninorms (t-norms and t-conorms), representable uninorms and singletons. The same con- 

struction can be used also for uninorms continuous on [0, e [ 2 ∪ ] e , 1] 2 . 

4. Continuous cancellative t-subnorms 

In this section we will recall several known results and show some new results on continuous cancellative t-subnorms 

that we will use in the next section. 

From [20] we know that a continuous t-subnorm M is proper if and only if M (1, 1) < 1. Moreover, a continuous t-subnorm 

M is proper and Archimedean if and only if M (1, x ) < x for all x > 0. 

The following result [19, Theorem 27] (see also [25] ) is based on results of Aczél [1] . 

Theorem 4. Let S : [0 , 1] 2 −→ [0 , 1] be a continuous, Archimedean, proper t-subnorm which is cancellative on ]0, 1] 2 . Then S 

has a continuous additive generator. 

The proof of this result is based on the definition of powers x (m ) 
S 

= S( x, S(x, . . . ) ︸ ︷︷ ︸ 
m -times 

) ,x 
( 1 n ) 

S 
= y if and only if y (n ) 

S 
= x,x 

( m n ) 

S 
= z

if and only if z (n ) 
S 

= x (m ) 
S 

, for all n, m ∈ N . Since S (1, 1) < 1 we will start from c = 1 and then due to continuity of 

S and its cancellativity c 
( m n ) 

S 
is well defined in the case that m 

n ≥ 1 . Thus we can define a strictly decreasing function 

s ∗ : [ 1 , ∞ [ ∩ Q −→ [0 , 1] , where s ∗( m 

n ) = c 
( m n ) 

S 
. This function can be uniquely extended to a continuous, strictly decreasing 

function s ∗ : [ 1 , ∞ ] −→ [0 , 1] . The inverse function s of s ∗ will be then the continuous, strictly decreasing additive generator 

of S . 
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Note that a continuous, cancellative t-subnorm is Archimedean. Indeed, in the opposite case the continuity implies exis- 

tence of a non-trivial idempotent point which, however, violates the cancellativity. 

Now we will show that each proper, continuous, cancellative t-subnorm is isomorphic to the t-subnorm S P (x, y ) = 

x ·y 
2 . 

Proposition 6. Let S : [0 , 1] 2 −→ [0 , 1] be a proper, continuous, cancellative t-subnorm. Then there exists an increasing isomor- 

phism ϕ : [0 , 1] −→ [0 , 1] such that S(x, y ) = ϕ 

−1 ( ϕ (x ) ·ϕ (y ) 
2 ) for all ( x , y ) ∈ [0, 1] 2 . 

Proof. Due to Theorem (4) S has an additive generator s ∗ which is unique up to a positive multiplicative constant. Then 

s ∗ is continuous and strictly decreasing with s ∗(0) = ∞ , s ∗(1) > 0. Moreover, the t-subnorm S P has an additive generator 

s (x ) = − ln ( x 2 ) . Let m be an additive generator of S such that m (1) = s (1) , and let s −1 be an inverse function to s . Then the 

function ϕ : [0 , 1] −→ [0 , 1] given by ϕ(x ) = s −1 (m (x )) is continuous, since both s , m are continuous, increasing, since both 

s , m are strictly decreasing and ϕ(0) = 0 , ϕ(1) = 1 . Thus ϕ is an increasing isomorphism on [0, 1]. Further, 

ϕ 

−1 ( 
ϕ(x ) · ϕ(y ) 

2 

) = ϕ 

−1 (s −1 (s (ϕ(x )) + s (ϕ(y )))) = m 

−1 (m (x ) + m (y )) = S(x, y ) . 

�

By duality between t-subnorms and t-superconorms we can show the following result. 

Proposition 7. Let R : [0 , 1] 2 −→ [0 , 1] be a proper, continuous, cancellative t-superconorm. Then there exists an increasing iso- 

morphism ϕ : [0 , 1] −→ [0 , 1] such that 

R (x, y ) = ϕ 

−1 

(
1 + ϕ(x ) + ϕ(y ) − ϕ(x ) · ϕ(y ) 

2 

)

for all ( x , y ) ∈ [0, 1] 2 . 

Note that the t-subnorm S P is dual to the t-superconorm R P given by R P = 

1+ x + y −x ·y 
2 . It is also easy to see the following 

corollary. 

Corollary 2. 

(i) Let T be a t-norm such that M T is a proper, continuous, cancellative t-subnorm. Then T is isomorphic to T P , where T P : 

[0 , 1] 2 −→ [0 , 1] is a t-norm given for all ( x , y ) ∈ [0, 1] 2 by 

T P (x, y ) = 

{ x ·y 
2 

if max (x, y ) < 1 , 

min (x, y ) else. 

(ii) Let C be a t-conorm such that M C is a proper, continuous, cancellative t-superconorm. Then C is isomorphic to C P , where 

C P : [0 , 1] 2 −→ [0 , 1] is a t-conorm given for all ( x , y ) ∈ [0, 1] 2 by 

C P (x, y ) = 

{
1+ x + y −x ·y 

2 
if min (x, y ) > 0 , 

max (x, y ) else. 

Based on these results we can show the following. 

Proposition 8. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm such that M T U 
is a proper, continuous, cancellative t-subnorm and M C U 

is a proper, continuous, cancellative t-superconorm. Then there exists an increasing isomorphism ϕ : [0 , 1] −→ [0 , 1] such that 

U(x, y ) = ϕ 

−1 (UP (ϕ (x ) , ϕ (y ))) for all ( x , y ) ∈ [0, 1] 2 , where UP is a uninorm such that M T UP 
= 

x ·y 
2 and M C UP 

= 

1+ x + y −x ·y 
2 . 

Proof. Due to Corollary 2 we know that there exist two increasing isomorphisms ψ , φ on [0, 1] such that T U (x, y ) = 

ψ 

−1 (T P (ψ(x ) , ψ(y ))) , C U (x, y ) = φ−1 (C P (φ(x ) , φ(y ))) . For any e 1 ∈ ]0, 1[ and the neutral element e ∈ ]0, 1[ of U we define 

an increasing isomorphism ϕ : [0 , 1] −→ [0 , 1] by 

ϕ(x ) = 

{
e · ψ( x 

e 1 
) if x ≤ e 1 , 

e + (1 − e ) · φ( x −e 1 
1 −e 1 

) otherwise. 

Then ϕ(0) = 0 , ϕ(1) = 1 and ϕ(e 1 ) = e. Since isomorphic transformation of a uninorm is again a uninorm then UP (x, y ) = 

ϕ(U(ϕ 

−1 (x ) , ϕ 

−1 (y ))) is a uninorm. Moreover, it is easy to see that M T UP 
= 

x ·y 
2 and M C UP 

= 

1+ x + y −x ·y 
2 . �

Similarly we can show the following results. 

Proposition 9. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm such that M T U 
is a proper, continuous, cancellative t-subnorm and M C U 

is a continuous, cancellative t-conorm. Then there exists an increasing isomorphism ϕ : [0 , 1] −→ [0 , 1] such that U(x, y ) = 

ϕ 

−1 (UP T (ϕ(x ) , ϕ(y ))) for all ( x , y ) ∈ [0, 1] 2 , where UPT is a uninorm such that M T UPT 
= 

x ·y 
2 and M C UPT 

= x + y − x · y. 

Proposition 10. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm such that M T U 
is a continuous, cancellative t-norm and M C U 

is a proper, 

continuous, cancellative t-superconorm. Then there exists an increasing isomorphism ϕ : [0 , 1] −→ [0 , 1] such that U(x, y ) = 

ϕ 

−1 (UP C(ϕ(x ) , ϕ(y ))) for all ( x , y ) ∈ [0, 1] 2 , where UPC is a uninorm such that M T UPC 
= x · y and M C UPC 

= 

1+ x + y −x ·y 
2 . 
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5. Uninorms continuous and cancellative on ]0, e [ 2 ∪ ] e , 1[ 2 

First let us observe that due to the boundedness by the minimum (maximum) from above (from below) of a t-subnorm 

(t-superconorm) a uninorm which is continuous on ]0, e [ 2 ∪ ] e , 1[ 2 is continuous on [0, e [ 2 ∪ ] e , 1] 2 . If a uninorm is can- 

cellative and continuous on ]0, e [ 2 ∪ ] e , 1[ 2 then it is Archimedean. First we will focus on these uninorms and then we will 

discuss related non-Archimedean (i.e., non-cancellative) uninorms. 

5.1. Archimedean uninorms 

We will now proceed similarly as in [7] , although in our case there are few differences that should be modified. 

Lemma 2. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm with the neutral element e ∈ ]0, 1[, such that M T U 
and M C U 

are continuous 

and cancellative. Then 

(i) if U(x 0 , y 0 ) = x 0 for some x 0 ∈ ]0, e [, y 0 ∈ ] e , 1[ then U(x, y 0 ) = x for all x ∈ [0, e [. 

(ii) if U(x 0 , y 0 ) = y 0 for some x 0 ∈ ]0, e [, y 0 ∈ ] e , 1[ then U(x 0 , y ) = y for all y ∈ ] e , 1]. 

Proof. We will show only the first part as the second part is analogous. Let U(x 0 , y 0 ) = x 0 . Since M T U 
is cancellative we 

have U ( x 0 , u ) > 0 for all u > 0. Then since M T U 
is continuous for all u ∈ [ 0 , U(e/ 2 , x 0 ) ] there exists a t ∈ [0, e ] such that 

U(t, x 0 ) = u. Then 

U(u, y 0 ) = U(t, U(x 0 , y 0 )) = U(t, x 0 ) = u. 

Now assume any x ∈ [0, e [: then there exists a q ∈ [0, e ] such that U(x, q ) ∈ [ 0 , U(e/ 2 , x 0 ) ] . Then U ( x , y 0 ) ≥ x and if U ( x , y 0 ) 

> x we have 

U(q, x ) = U(U(q, x ) , y 0 ) = U(q, U(x, y 0 )) > U(q, x ) 

what is a contradiction. The last inequality follows from the cancellativity of M T U 
and from U ( q , U ( x , y 0 )) ≥ q > U ( q , x ) in 

the case that U ( x , y 0 ) ≥ e . Summarizing, U(x, y 0 ) = x for all x ∈ [0, e [. �

Lemma 3. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm with the neutral element e ∈ ]0, 1[, such that M T U 
and M C U 

are continuous 

and cancellative. Then 

(i) if U(x 0 , y 0 ) = x 0 for some x 0 ∈ ]0, e [, y 0 ∈ ] e , 1[ then U(x, y ) = x for all x ∈ [0, e [, y ∈ [ e , 1[. 

(ii) if U(x 0 , y 0 ) = y 0 for some x 0 ∈ ]0, e [, y 0 ∈ ] e , 1[ then U(x, y ) = y for all x ∈ ]0, e ], y ∈ ] e , 1]. 

Proof. We will again show only the first part as the second part is analogous. From the previous lemma we know that 

U(x, y 0 ) = x for all x ∈ [0, e [. Let U ( x , z ) > x for some x ∈ ]0, e [, z ∈ ] e , 1[. Then U(x, y 0 ) = x and U(x, e ) = x, i.e., z > y 0 . 

Further, 

U(x, z) = U(U(x, y 0 ) , z) = U(U(x, z) , y 0 ) = · · · = U(U(x, z) , U( y 0 , . . . , y 0 ︸ ︷︷ ︸ 
n -times 

)) . 

Since M C U 
is Archimedean we have lim 

n −→∞ 

U( y 0 , . . . , y 0 ︸ ︷︷ ︸ 
n -times 

) = 1 and thus U (U (x, z) , t) = U(x, z) for all t ∈ [ e , 1[. Particularly, 

U (U (x, z) , z) = U(x, z) and thus if U ( x , z ) < e the previous lemma implies U(x, z) = x. In the case when U ( x , z ) ≥ e then 

U (U (x, z) , t) = U (U (x, z) , e ) for all t ∈ [ e , 1[ violates the cancellativity of M C U 
. Therefore U(x, y ) = x for all x ∈ ]0, e [, y ∈ ] e , 

1[. The monotonicity and the neutral element of U then imply the result. �

We see that if for a single point ( x , y ) from ]0, e [ × ] e , 1[ we have U(x, y ) = min (x, y ) ( U(x, y ) = max (x, y ) ) then U = min 

( U = max ) on the whole set ]0, e [ × ] e , 1[. We will now check the values U (0, x ) and U (1, x ) for x ∈ [0, 1]. 

Lemma 4. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm with the neutral element e ∈ ]0, 1[, such that M T U 
and M C U 

are continuous 

and cancellative. Then U (0, x ) ∈ {0, x } and U (1, x ) ∈ {1, x } for all x ∈ [0, 1]. 

Proof. We will show only U (0, x ) ∈ {0, x } for all x ∈ [0, 1] as the proof of the second part is analogous. It is evident 

that U(0 , x ) = 0 for all x ∈ [0, e ]. Now suppose that U(0 , x ) = c ∈ ] 0 , x [ for some x ∈ ] e , 1]. Then the associativity implies 

U(0 , c) = c and if c ≤ e we get c = 0 what is a contradiction. Thus c > e . Then due to the continuity of M C U 
there exist a , b 

∈ ] e , 1] such that U(x, a ) = U(c, b) , where a 
 = b due to the cancellativity of M C U 
. Then 

U(c, b) = U(0 , U(c, b)) = U(0 , U(x, a )) = U(c, a ) 

what is a contradiction with the cancellativity of M C U 
. �

Lemma 5. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm with the neutral element e ∈ ]0, 1[, such that M T U 
and M C U 

are continuous 

and cancellative. Then if there exists a p ∈ [0, 1] such that U(0 , x ) = 0 for all x < p and U(0 , x ) = x for all x > p then p is an 

idempotent point of U . Similarly, if there exists a q ∈ [0, 1] such that U(1 , x ) = x for all x < q and U(1 , x ) = 1 for all x > q then 

q is an idempotent point of U . 
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Proof. We will again show only the first part of the claim as the second part is analogous. Let U(0 , x ) = 0 for all x < p and 

U(0 , x ) = x for all x > p . Then p ≥ e . If p = e we are done, and therefore we will suppose that p > e . If p is not an idempotent 

element then there exists p 1 ∈ ] e , 1[ such that p 1 < p and U ( p 1 , p 1 ) > p . Then we have 0 = U(0 , p 1 ) = U(U(0 , p 1 ) , p 1 ) , 

however, U (0 , U (p 1 , p 1 )) = U(p 1 , p 1 ) > p, what is a contradiction. �

Remark 2. The previous results show that if for a uninorm U , such that M T U 
and M C U 

are continuous and cancellative, there 

is U(x, y ) = x for some ( x , y ) ∈ ]0, e [ × ] e , 1[ then U has one of the forms (i), (ii), or (iii) from Theorem 2 . If U(x, y ) = y for 

some ( x , y ) ∈ ]0, e [ × ] e , 1[ then U has one of the forms (iv), (v), or (vi) from Theorem 2 . 

We will denote by U nr all uninorms of the form (i), (ii), (iii), (iv), (v), or (vi) from Theorem 2 . In the following we will 

investigate uninorms, such that M T U 
( M C U 

) is a continuous cancellative t-subnorm (t-superconorm), which are not from the 

set U nr . 

Lemma 6. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm with the neutral element e ∈ ]0, 1[, such that M T U 
and M C U 

are continuous 

and cancellative, however, at least one of the underlying functions of U is non-continuous. Then 

(i) there does not exist x 0 ∈ ]0, e [ such that x 0 < U ( x 0 , y ) < e for all y ∈ ] e , 1[, 

(ii) there does not exist y 0 ∈ ] e , 1[ such that e < U ( x , y 0 ) < y 0 for all x ∈ ]0, e [. 

Proof. We will again show only the first part as the second part is analogous. Suppose the contrary, i.e., that there exists 

an x 0 ∈ ]0, e [ such that x 0 < U ( x 0 , y ) < e for all y ∈ ] e , 1[. Let 

x 1 = sup { x ∈ ] 0 , e [ | U(x, y ) < e for all y ∈ ] e, 1 [ } . 
Then e ≥ x 1 > 0 and since M T U 

is cancellative either U ( x 1 , x 1 ) < x 1 , or x 1 = e. If U(x 2 , y 2 ) = x 2 for some x 2 ∈ ]0, e [, y 2 ∈ ] e , 

1[, then by Lemma 3 also U(x 0 , y 2 ) = x 0 , what is a contradiction. Thus 

U(x, y ) > x for all x ∈ ] 0 , e [ , y ∈ ] e, 1 [ . (2) 

First we will show that x 1 = e . Suppose that x 1 < e . Then for all ε > 0 (small enough) there exists a y ε ∈ ] e , 1[ such 

that U(x 1 + ε, y ε ) ≥ e. Let y 1 ∈ ] e , 1[. Then (2) implies U ( x 1 , y 1 ) > x 1 and for ε y = U(x 1 , y 1 ) − x 1 we get 

U (x 1 , U (y 1 , y ε y )) = U (U (x 1 , y 1 ) , y ε y ) = U(x 1 + ε y , y ε y ) ≥ e. 

Suppose that U ( x 3 , y 3 ) ≥ x 1 for some x 3 < x 1 , y 3 ∈ ] e , 1[. Then for z = U(y 1 , y ε y ) we get U(x 3 , U(y 3 , z)) = U(U(x 3 , y 3 ) , z) ≥ e. 

Since M C U 
is cancellative and y 1 , y ε y , y 3 ∈ ] e, 1 [ also U ( y 3 , z ) ∈ ] e , 1[ which is a contradiction since from the definition of x 1 

it follows that U ( x 3 , q ) < e for all q ∈ ] e , 1[, i.e., 

U (x 3 , U (y 3 , z)) < e. 

Thus U ( x , y ) < x 1 for all x < x 1 , y ∈ ] e , 1[. Further, U ( x 1 , z ) ≥ e implies U ( U ( x 1 , x 1 ), z ) ≥ x 1 , however, since U ( x 1 , x 1 ) < x 1 we 

have also U ( U ( x 1 , x 1 ), z ) < x 1 what is a contradiction. Therefore x 1 = e . 

This means that we have U ( x , y ) < e for all x ∈ ]0, e [, y ∈ ] e , 1[. Together with (2) we get 

x < U(x, y ) < e for all x ∈ ] 0 , e [ , y ∈ ] e, 1 [ . (3) 

Since M T U 
( M C U 

) is a continuous cancellative t-subnorm (t-superconorm), but the underlying functions of U are not con- 

tinuous, then U is isomorphic to one of the uninorms from Propositions 8, 9 and 10 . We will focus only on the first 

two cases as the remaining case is analogous. This means that there exists an isomorphism ϕ : [0 , 1] −→ [0 , 1] such 

that U 

ϕ : [0 , 1] 2 −→ [0 , 1] given by U 

ϕ (x, y ) = ϕ 

−1 (U(ϕ (x ) , ϕ (y ))) is a uninorm with the neutral element e = 

1 
2 such that 

U 

ϕ (x, y ) = x · y for all x, y ∈ [ 0 , 1 2 [ . Then (2) implies for all x ∈ ] 0 , 1 2 [ , y ∈ ] 1 2 , 1 [ 

x < U 

ϕ (x, y ) < 

1 

2 

. 

We will show that such a uninorm does not exist. Assume any x 4 ∈ ] 0 , 1 2 [ , y 4 ∈ ] 1 2 , 1 [ . Then U 

ϕ (x 4 , y 4 ) = a for some a ∈ 

] x 4 , 
1 
2 [ . The associativity gives 

U 

ϕ (x 4 · u, y 4 ) = U 

ϕ (U 

ϕ (x 4 , u ) , y 4 ) = u · a 

for all u ∈ ] 0 , 1 2 [ . For all x ∈ ] 0 , 1 2 [ there exist x 5 , x 6 ∈ ] 0 , 1 2 [ such that x = 

x 4 ·x 6 
x 5 

. We have 

x 5 · U 

ϕ (x, y 4 ) = U 

ϕ (x · x 5 , y 4 ) = U 

ϕ (U 

ϕ (x 4 , x 6 ) , y 4 ) = x 6 · a = 

x 5 · x · a 

x 4 
. 

Thus U 

ϕ (x, y 4 ) = 

x ·a 
x 4 

for all x ∈ ] 0 , 1 2 [ . Since a ∈ ] x 4 , 
1 
2 [ we have a − x 4 = q > 0 and since U 

ϕ (x, y 4 ) < 

1 
2 for all x ∈ ] 0 , 1 2 [ we get 

x ·(x 4 + q ) 
x 4 

< 

1 
2 , what is a contradiction since lim 

x −→ 

1 
2 

−
x ·(x 4 + q ) 

x 4 
> 

1 
2 . 

�

Now we recall [14, Proposition 1] . 
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Proposition 11. Let f ( x , y ) be a real valued function defined on an open set G in the plane. Suppose that f ( x , y ) is continuous in 

x and y separately and is monotone in x for each y . Then f ( x , y ) is (jointly) continuous on the set G . 

Lemma 7. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm with neutral element e ∈ ]0, 1[, such that M T U 
and M C U 

are continuous and 

cancellative. If U / ∈ U nr then U is a representable uninorm, i.e., a uninorm with continuous underlying functions. 

Proof. Since U / ∈ U nr Remark 2 implies that y > U ( x , y ) > x for all x ∈ ]0, e [, y ∈ ] e , 1[. 

First assume that U (x 0 , y 0 ) = e for some x 0 ∈ ]0, e[, y 0 ∈ ]e, 1[. Then also 

U (U (x 0 , x 0 ) , U(y 0 , y 0 )) = e 

and since U is Archimedean if we repeat this several times we see that we can find an arbitrarily small ε > 0 and x ε
∈ ]0, ε[ ( y ε ∈ ] 1 − ε, 1 [ ) such that U(x ε , y ε ) = e for some y ε ∈ ] e , 1[ ( x ε ∈ ]0, e [). Then since M T U 

( M C U 
) is continuous for 

all x ∈ ]0, e [ ( y ∈ ] e , 1[) there exist an ε > 0 such that U(x, z) = x ε for some z ∈ ]0, e [ ( U(y, z) = y ε for some z ∈ ] e , 

1[). Then U (U (x, z) , y ε ) = e ( U (U (y, z) , x ε ) = e ) and thus for all x ∈ ]0, e [ and all y ∈ ] e , 1[ there exists u, v ∈ [0 , 1] such 

that U(x, u ) = e = U(y, v ) . Since the uninorm U is monotone for every x ∈ [0, 1] the function u x : [0 , 1] −→ [0 , 1] given by 

u x (z) = U(x, z) for z ∈ [0, 1], is continuous if and only if its range is a connected set. However, if U(x, u ) = e for some u ∈ 

[0, 1] then 

U (x, U (u, a )) = U (U (x, u ) , a ) = a 

for all a ∈ [0, 1] and thus Ran (u x ) = [0 , 1] for all x ∈ ]0, 1[. Due to Proposition 11 U is continuous on ]0, 1[ 2 . However, then 

T U and C U are continuous, i.e., strict and since U / ∈ U nr according to Theorem 2 U is representable. 

Now assume that U(x, y) �= e for all x ∈ ]0, e[, y ∈ ]e, 1[. Then U is not representable and since U / ∈ U nr we know that 

at least one of the underlying functions of U is not continuous. Then Lemma 6 and Remark 2 imply that there exist x 1 ∈ ]0, 

e [, y 1 ∈ ] e , 1[ such that 

x 1 < U(x 1 , y 1 ) < e. 

If U ( U ( x 1 , y 1 ), z ) ≥ x 1 for some z ∈ ]0, e [ then since M T U 
is continuous there exists a z 1 ∈ ]0, e [ such that 

U (x 1 , U (y 1 , z 1 )) = U (U (x 1 , y 1 ) , z 1 ) = x 1 . 

Then the cancellativity of M T U 
and the fact that y > U ( x , y ) > x for all x ∈ ]0, e [, y ∈ ] e , 1[, implies U(y 1 , z 1 ) = e what 

is a contradiction. Thus U ( U ( x 1 , y 1 ), z ) < x 1 for all z ∈ ]0, e [. Then by associativity U ( x 1 , U ( y 1 , z )) < x 1 which implies by 

monotonicity U ( y 1 , z ) < e for all z ∈ ]0, e [. 

Now let 

a = sup{ y ∈ ] e, 1 [ | U(y, z) < e for all z ∈ ] 0 , e [ } . 
Then a > e and we will show that a is an idempotent point: otherwise there exists a 1 ∈ ] e , 1[ such that a 1 < a < U ( a 1 , a 1 ). 

Then there exists z 2 ∈ ]0, e [ such that U ( U ( a 1 , a 1 ), z 2 ) ≥ e . However, U ( a 1 , z 2 ) < e and thus U ( a 1 , U ( a 1 , z 2 )) < e what is a 

contradiction. Thus a ∈ ] e , 1] is an idempotent element and since M C U 
is cancellative we get a = 1 . Therefore z < U ( y , z ) < 

e for all z ∈ ]0, e [, y ∈ ] e , 1[, which is a contradiction with Lemma 6 . �

We have now characterized all uninorms continuous and cancellative on ]0, e [ 2 ∪ ] e , 1[ 2 . For such a uninorm we have 

either U ∈ U nr or U is representable. 

5.2. Related non-Archimedean uninorms 

Further we will focus on related non-Archimedean uninorms continuous on [0, e [ 2 ∪ ] e , 1] 2 . We plan to solve the case 

when U has continuous underlying functions in [23,24] . Here we will suppose that at least one of the underlying functions 

is non-continuous. 

Definition 1. Let U lcc be the set of all uninorms continuous on [0, e [ 2 ∪ ] e , 1] 2 such that there exists an idempotent point b 0 
∈ [0, 1], b 0 < e , such that U is continuous and cancellative on ] b 0 , e [ 

2 , and let U rcc be the set of all uninorms continuous on 

[0, e [ 2 ∪ ] e , 1] 2 such that there exists an idempotent point c 0 ∈ [0, 1], c 0 > e , such that U is continuous and cancellative on 

] e , c 0 [ 
2 . 

Observe that if U ∈ U lcc then for the corresponding b 0 we have b 0 = sup { b ∈ [ 0 , e [ | b is an idempotent point } and if U ∈ 

U rcc then for the corresponding c 0 we have c 0 = inf { c ∈ ] e, 1 ] | c is an idempotent point } . 
We will discuss three classes: 

Class I: uninorms U from U lcc ∩ U rcc , such that T U and C U are non-continuous. 

Class II: uninorms U from U lcc such that T U is non-continuous and C U is a continuous t-conorm. 

Class III: uninorms U from U rcc such that C U is non-continuous and T U is a continuous t-norm. 

We will denote the union of all three classes by C. 

First we will show the structure of a uninorm from C on idempotents. 

Proposition 12. Let U ∈ C. Then for all idempotent elements a ∈ [0, 1] of U we have U ( a , x ) ∈ { a , x } for all x ∈ [0, 1]. 
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Proof. If a = e the result is trivial. Suppose that a < e (the case when a > e is analogous). If x ∈ [0, e ] then the claim follows 

from the ordinal sum structure of M T U 
. Suppose that x > e and U(a, x ) = z ∈ ] a, x [ . If z ≤ e then 

a = U(a, z) = U(a, U(a, x )) = z 

what is a contradiction. Thus z > e . 

If there exists an idempotent point v ∈ [ z, x ] of U then 

z = U(a, x ) = U(a, U(v , x )) = U(z, v ) = v , 

i.e., z = v which implies 

z = U(z, z) = U (U (a, x ) , z) = U(x, z) = x, 

what is a contradiction. Therefore there is no idempotent point of U in [ z , x ]. Since c 0 is an idempotent point we have x 
 = 

c 0 . Now there are two cases. 

Case 1: If x ∈ ] e , c 0 [ then 

U(z, z) = U(U(a, x ) , U(a, x )) = U(a, U(x, x )) = U(x, z) 

what is a contradiction with the cancellativity of M C U 
on ] e , c 0 [ 

2 . 

Case 2: If x ∈ ] c 0 , 1] then since M C U 
is a continuous t-conorm on [ c 0 , 1] 2 there exists a z 1 such that U(z, z 1 ) = x. Then 

z = U(a, x ) = U(a, U(z, z 1 )) = U(z, z 1 ) = x, 

what is a contradiction. Summarizing, U ( a , x ) ∈ { a , x } for all x ∈ [0, 1]. �

Further we will show the structure of a uninorm from C on some special subregions of [0, 1] 2 . For this we first recall [4, 

Theorem 5.1] . Here U(e ) = { U : [0 , 1] 2 −→ [0 , 1] | U is associative, non-decreasing, with the neutral element e ∈ [0, 1]}. Thus 

U ∈ U(e ) is a uninorm if it is commutative. 

Theorem 5. Let U ∈ U(e ) and a , b , c , d ∈ [0, 1], a ≤ b ≤ e ≤ c ≤ d , be such that U| [ a,b ] 2 is associative, non-decreasing, with the 

neutral element b and U| [ c,d ] 2 is associative, non-decreasing, with the neutral element c . Then the set ([ a , b ] ∪ [ c , d ]) 2 is closed 

under U . 

Proposition 13. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm, U ∈ C and let a , b ∈ [0, e ] and c , d ∈ [ e , 1] be idempotent elements of 

U , a ≤ b and c ≤ d . Then ([ a , b [ ∪ { U ( b , c )} ∪ ] c , d ]) 2 is closed under U . 

Proof. From Theorem 5 we know that the set ([ a , b ] ∪ [ c , d ]) 2 is closed under U . Further, Proposition 12 implies that U ( b , c ) ∈ 

{ b , c }. If b = c we are finished and therefore we will suppose that b < c . Assume that U(b, c) = b (the case when U(b, c) = c

is analogous). Then if there exist x , y ∈ [ a , b [ ∪ { U ( b , c )} ∪ ] c , d ] such that U(x, y ) = c the monotonicity implies that x and y 

can be selected in such a way that x ∈ [ a , b ] and y ∈ ] c , d ]. Then 

c = U(x, y ) = U(U(x, b) , y ) = U(c, b) = b, 

what is a contradiction. Thus the set ([ a , b [ ∪ { U ( b , c )} ∪ ] c , d ]) 2 is closed under U . �

Proposition 14. Let U : [0 , 1] 2 −→ [0 , 1] be a uninorm, U ∈ C and let a , b ∈ [0, e ] and c , d ∈ [ e , 1] be idempotent elements of 

U , a ≤ b and c ≤ d , such that there is no idempotent element of U in ] a , b [ ∪ ] c , d [. If ([ a , b [ ∪ ] c , d ]) 2 is not closed under U then 

U ( b , c ) is the neutral element of U on ([ a , b [ ∪ { U ( b , c )} ∪ ] c , d ]) 2 . 

Proof. If ([ a , b [ ∪ ] c , d ]) 2 is not closed under U then due to the monotonicity there exist a x 1 ∈ ] a , b [ and a y 1 ∈ ] c , d [ such 

that U(x 1 , y 1 ) = U(b, c) . Assume that U(b, c) = b (the case when U(b, c) = c is analogous). Then U(x, b) = x for all x ∈ [ a , b ]. 

Further, U ( y , b ) ∈ { y , b } for all y ∈ ] c , d ]. If U(y 2 , b) = b for some y 2 ∈ ] c , d ] then also b = U (b, U ( y 2 , . . . , y 2 ︸ ︷︷ ︸ 
n -times 

)) and together 

with monotonicity we get U(y, b) = b for all y ∈ ] c , d [. Then also U(b, y 1 ) = b and we get 

b = U (b, U (b, b)) = U (U (x 1 , b) , U(y 1 , b)) = U(x 1 , b) = x 1 

what is a contradiction. Thus U(b, y ) = y for all y ∈ ] c , d [. From monotonicity then also U(b, d) = d. Thus U ( b , c ) is the 

neutral element of U on ([ a , b [ ∪ { U ( b , c )} ∪ ] c , d ]) 2 . �

Remark 3. If for U ∈ C the set ([ a , b [ ∪ ] c , d ]) 2 is closed under U , where a , b ∈ [0, e ] and c , d ∈ [ e , 1] are idempotent 

elements of U , a ≤ b and c ≤ d , such that there is no idempotent element of U in ] a , b [ ∪ ] c , d [ then U on ([ a , b [ ∪ { e } ∪ ] c , 

d ]) 2 is isomorphic to a uninorm with Archimedean underlying functions. These underlying functions can be either strict, 

or nilpotent, or non-continuous such that their border-continuous projection is continuous and cancellative. If the set ([ a , 

b [ ∪ ] c , d ]) 2 is not closed under U and a , b ∈ [0, e ] and c , d ∈ [ e , 1] are idempotent elements of U , a ≤ b and c ≤ d , such that 

there is no idempotent element of U in ] a , b [ ∪ ] c , d [ then U on ([ a , b [ ∪ { U ( b , c )} ∪ ] c , d ]) 2 is isomorphic to a representable 

uninorm. 

To conclude our investigation we should characterize all uninorms with Archimedean underlying functions, which are 

either strict, or nilpotent, or non-continuous such that their border-continuous projection is continuous and cancellative. 
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The case when both underlying functions are cancellative was covered in the previous section. If both underlying functions 

are nilpotent then we have the following result. 

Theorem 6 ( [17] ) . Let U : [0 , 1] −→ [0 , 1] 2 be a uninorm with the neutral element e ∈ ]0, 1[ such that both T U and C U are 

nilpotent. Then either one of the following two statements holds: 

(i) U ∈ U min , 

(ii) U ∈ U max . 

Finally, we add the two remaining combinations. 

Proposition 15. Let U : [0 , 1] −→ [0 , 1] 2 be a uninorm with the neutral element e ∈ ]0, 1[ such that M T U 
is continuous and 

cancellative and C U is a nilpotent t-conorm. Then either one of the following two statements holds: 

(i) U ∈ U min , 

(ii) U ∈ U max , 

(iii) 

U(x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

e · T U ( 
x 
e 
, 

y 
e 
) if (x, y ) ∈ [ 0 , e ] 2 , 

e + ( 1 − e ) · C U ( 
x −e 
1 −e 

, 
y −e 
1 −e 

) if ( x, y ) ∈ [ e, 1 ] 2 , 

0 if x = 0 , 

max ( x, y ) otherwise. 

Proof. If C U is a nilpotent t-conorm then for each y ∈ ] e , 1[ there exists exactly one y U ∈ ] e , 1[ such that U(y, y U ) = 1 and 

U ( q , y U ) < 1 for all q < y . Assume a x 1 ∈ [0, e [. Then Proposition 12 implies U ( x 1 , 1) ∈ {1, x 1 }. If U(x 1 , 1) = 1 then for all y 

∈ ] e , 1[ we have U ( x 1 , y ) ∈ [ x 1 , y ] and 

1 = U (U (y, y U ) , x 1 ) = U (U (y, x 1 ) , y 
U ) 

which means that U(y, x 1 ) = y. If U(1 , x 1 ) = x 1 then the monotonicity implies U(y, x 1 ) = x 1 for all y ∈ ] e , 1[. 

Further, if U(1 , x ) = 1 for some x ∈ ]0, e [ then 1 = U (1 , U ( x, . . . , x ︸ ︷︷ ︸ 
n -times 

)) for all n ∈ N . Since M T U 
is Archimedean for each q ∈ 

]0, e [ there exists an N ∈ N such that U( x, . . . , x ︸ ︷︷ ︸ 
N -times 

) < q and thus the monotonicity of U implies U(1 , q ) = 1 for all q ∈ ]0, e [. 

Therefore either U(x, y ) = max (x, y ) for all x ∈ ]0, e [, y ∈ ] e , 1], or U(x, y ) = min (x, y ) for all x ∈ ]0, e [, y ∈ ] e , 1]. Moreover, 

either U(0 , y ) = 0 for all y ∈ [ e , 1], or U(0 , y ) = y for all y ∈ [ e , 1]. Summarising we get the result. �

Similarly we can show the following result. 

Proposition 16. Let U : [0 , 1] −→ [0 , 1] 2 be a uninorm with the neutral element e ∈ ]0, 1[ such that M C U 
is continuous and 

cancellative and T U is a nilpotent t-norm. Then either one of the following two statements holds: 

(i) U ∈ U min , 

(ii) U ∈ U max , 

(iii) 

U(x, y ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

e · T U ( 
x 
e 
, 

y 
e 
) if (x, y ) ∈ [ 0 , e ] 2 , 

e + ( 1 − e ) · C U ( 
x −e 
1 −e 

, 
y −e 
1 −e 

) if ( x, y ) ∈ [ e, 1 ] 2 , 

1 if x = 1 , 

min ( x, y ) otherwise. 

Remark 4. Summarising all previous results: for every U ∈ C we know its structure on idempotents and on every closed 

subset. Therefore we know all possible structures of U on the whole [0, 1] 2 . Moreover, it is possible to show that the struc- 

ture of a uninorm from C is similar to that of a uninorm with continuous underlying functions, i.e., that it is an ordinal sum 

of continuous t-norms and t-conorms, representable uninorms and cancellative continuous t-subnorms and t-superconorms 

(possibly without border points). However, the construction of the order in the ordinal sum is quite lengthy and therefore 

we will not go into details and we recommend interested readers to our future work in [23,24] . 

6. Conclusions 

We have investigated uninorms continuous on [0, e [ 2 ∪ ] e , 1] 2 and we have shown that these are related to continuous 

proper t-subnorms (t-superconorms). We have characterised uninorms continuous on [0, e [ 2 ∪ ] e , 1] 2 such that M T U 
( M C U 

) is a 

continuous cancellative t-subnorm (t-superconorm). We have also discussed related non-Archimedean uninorms continuous 

on [0, e [ 2 ∪ ] e , 1] 2 . Our results indicate that in the context of this paper cancellativity of the underlying functions of a 

uninorm can substitute continuity. Beside our main aim we have also shown when a border-continuous projection of a 

t-norm is a t-subnorm. 
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Abstract

The structure of idempotent n-uninorms is studied. We show that each idempotent 2-uninorm can be expressed as an ordinal 
sum of an idempotent uninorm (possibly also of a countable number of idempotent semigroups with operations min and max) and 
a 2-uninorm from Class 1 (possibly restricted to open or half-open unit square). Similar results are shown also for idempotent 
n-uninorms. Further, it is shown that idempotent n-uninorms are in one-to-one correspondence with special lower semi-lattices 
defined on the unit interval. The z-ordinal sum construction for partially ordered semigroups is also defined.
© 2020 Elsevier B.V. All rights reserved.

Keywords: n-Uninorm; Uninorm; Ordinal sum; t-Norm; t-Conorm; Nullnorm

1. Introduction

The aggregation operators on the unit interval have applications in many domains such as data fusion, control 
systems, multi-criteria decision making, image processing, expert systems and many others. The associativity of a 
binary function brings an advantage of an easy extension to any finite number n > 2 of inputs, particularly to an 
aggregation operator. Moreover, additional input is easily combined with the previous output by an associative func-
tion. This is the reason why associative functions, especially associative aggregation operators were widely studied in 
the past decades. At the beginning the biggest attention was given to t-norms and t-conorms [3,9], which were later 
generalized into uninorms capable of representing bipolar aggregation (see [7,11,22]). These functions represent the 
class of associative aggregation operators that are commutative and posses a neutral element. Another generalization 
of t-norms and t-conorms yields nullnorms (also called t-operators) [5,10]. These functions represent the class of 
associative aggregation operators that are commutative and posses an annihilator.

The class of continuous t-norms was easily characterized, showing that each continuous t-norm is an ordinal sum 
of continuous Archimedean t-norms, which can be further divided into strict and nilpotent, while each pair of strict 
(nilpotent) t-norms is isomorphic. Since t-conorms are dual operations to t-norms the characterization of continuous t-
conorms is straightforward. In the case of uninorms, several characterizations of uninorms were obtained under partial 
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continuity conditions (such as continuity on the open unit square [7,8,16], or continuity of the underlying functions 
[4,13,15]).

The above generalizations bring together t-norms and t-conorms. In the second step a notion that brings together 
uninorms and nullnorms was introduced by Akella [1]. These special aggregation operators are called n-uninorms and 
each n-uninorm possesses n local neutral elements. The basic structure of n-uninorms was described by Akella in [1]. 
Further, 5 possible classes, defined by values of U2(0, 1), U2(0, z1) and U2(z1, 1) were characterized in [23]. If for a 
2-uninorm there is e2 = 1 we obtain a uni-nullnorm and if e1 = 0 we obtain a null-uninorm [18]. The migrativity and 
the distributivity of uni-nullnorms were studied in [20,21].

In this paper we focus on idempotent n-uninorms. Since idempotent uninorms were fully characterized in [12,17], 
we would like to extend these results also for n-uninorms. This paper is the first work towards the characterization of n-
uninorms with continuous underlying functions. In the next papers we would like to characterize the basic structure of 
n-uninorms with continuous underlying functions, study characterizing functions of such n-uninorms and afterwards 
describe their decomposition into irreducible semigroups. Note that the first step towards this end was done by Sun, 
Wang and Qu in [19], where uni-nullnorms with continuous Archimedean underlying functions were characterized.

In the following section we recall all necessary basic notions and results. In Section 3 we will study the basic 
structure of 2-uninorms and n-uninorms. In Section 4 we define the z-ordinal sum construction for partially ordered 
semigroups and we show that idempotent n-uninorms are in one-to-one correspondence with special partial orders on 
[0, 1]. Finally, we give our conclusions in Section 5.

2. Basic notions

A triangular norm ([9]) is a binary function T : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing 
in both variables and 1 is its neutral element. Due to the associativity, n-ary form of any t-norm is uniquely given and 
thus it can be extended to an aggregation function working on 

⋃
n∈N [0, 1]n. Dual functions to t-norms are t-conorms. 

A triangular conorm ([9]) is a binary function S : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing 
in both variables and 0 is its neutral element. The duality between t-norms and t-conorms is expressed by the fact that 
from any t-norm T we can obtain its dual t-conorm S by the equation

S(x, y) = 1 − T (1 − x,1 − y)

and vice-versa.
Since we will work in this paper with ordinal sums of semigroups we recall the fundamental result of Clifford [6].

Theorem 2.1. Let A �= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of semigroups. Assume 
that for all α, β ∈ A with α < β the sets Xα and Xβ are either disjoint or that Xα ∩ Xβ = {xα,β}, where xα,β is both 
the neutral element of Gα and the annihilator of Gβ and where for each γ ∈ A with α < γ < β we have Xγ = {xα,β}. 
Put X = ⋃

α∈A

Xα and define the binary operation ∗ on X by

x ∗ y =

⎧⎪⎨
⎪⎩

x ∗α y if (x, y) ∈ Xα × Xα ,

x if (x, y) ∈ Xα × Xβ and α < β,

y if (x, y) ∈ Xα × Xβ and α > β.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ A the semigroup Gα is 
commutative.

The ordinal sum construction for t-norms and t-conorms reduces to the following proposition [9].

Proposition 2.2. Let K be a finite or countably infinite index set and let (]ak, bk[)k∈K ((]ck, dk[)k∈K ) be a system of 
open, disjoint subintervals of [0, 1]. Let (Tk)k∈K ((Sk)k∈K ) be a system of t-norms (t-conorms). Then the ordinal sum 
T = (〈ak, bk, Tk〉 | k ∈ K) (S = (〈ak, bk, Sk〉 | k ∈ K)) given by

T (x, y) =
{

ak + (bk − ak)Tk(
x−ak

bk−ak
,

y−ak

bk−ak
) if (x, y) ∈ [ak, bk[2,

min(x, y) else

2
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and

S(x, y) =
{

ck + (dk − ck)Sk(
x−ck

dk−ck
,

y−ck

dk−ck
) if (x, y) ∈ ]ck, dk]2,

max(x, y) else

is a t-norm (t-conorm). The t-norm T (t-conorm S) is continuous if and only if all summands Tk (Sk) for k ∈ K are 
continuous.

Each continuous t-norm (t-conorm) is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). 
Note that a continuous t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent points 0
and 1. A continuous Archimedean t-norm T (t-conorm S) is either strict, i.e., strictly increasing on ]0,1]2 (on 
[0,1[2), or nilpotent, i.e., there exists (x, y) ∈ ]0,1[2 such that T (x, y) = 0 (S(x, y) = 1). Moreover, each continuous 
Archimedean t-norm (t-conorm) has a continuous additive generator, which is uniquely determined up to a positive 
multiplicative constant. More details on t-norms and t-conorms can be found in [3,9].

A uninorm (introduced in [22]) is a binary function U : [0, 1]2 −→ [0, 1] which is commutative, associative, non-
decreasing in both variables and have a neutral element e ∈ [0, 1] (see also [7]). Evidently, if e = 1 (e = 0) then we 
retrieve a t-norm (t-conorm).

For each uninorm the value U(1, 0) ∈ {0, 1} is the annihilator of U . A uninorm is called conjunctive (disjunctive) 
if U(1, 0) = 0 (U(1, 0) = 1). For each uninorm U with the neutral element e ∈ ]0,1[, the restriction of U to [0, e]2 is 
a t-norm on [0, e]2, i.e., a linear transformation of some t-norm TU on [0, 1]2 and the restriction of U to [e,1]2 is a 
t-conorm on [e,1]2, i.e., a linear transformation of some t-conorm SU . Moreover, min(x, y) ≤ U(x, y) ≤ max(x, y)

for all (x, y) ∈ [0, e] × [e,1] ∪ [e,1] × [0, e].
Similarly as in the case of t-norms and t-conorms we can construct uninorms using additive generators (see [7]). 

A uninorm which possesses a continuous additive generator is called representable. Note that in [16] (see also [11]) it 
was shown that a uninorm is representable if and only if it is continuous on [0, 1]2 \ {(0, 1), (1, 0)}.

Definition 2.3. A uninorm U : [0, 1]2 −→ [0, 1] is called internal if U(x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2; and it is 
called idempotent if U(x, x) = x for all x ∈ [0, 1].

Observe that if a uninorm U is internal then it is also idempotent and vice-versa.
Let us recall the basic result from [17] that characterizes idempotent uninorms.

Theorem 2.4. Let U : [0, 1]2 −→ [0, 1] be a binary function. Then U is an idempotent uninorm with the neutral 
element e ∈ ]0,1[ if and only if there exists a non-increasing function g : [0, 1] −→ [0, 1], symmetric with respect to 
the main diagonal, with g(e) = e, such that

U(x, y) =

⎧⎪⎨
⎪⎩

min(x, y) if y < g(x) or (y = g(x) and x < g(g(x))),

max(x, y) if y > g(x) or (y = g(x) and x > g(g(x))),

x or y if y = g(x) and x = g(g(x)),

being commutative in the points (x, y) such that y = g(x) with x = g(g(x)). This class of uninorms is denoted by 
Uide.

Note that the graph of the function g from Theorem 2.4 is a subset of the graph of the characterizing set-valued 
function of an idempotent uninorm (for more details see [14,15]). Therefore the completed graph of the function g
divides the idempotent uninorm U into two parts: below the completed graph of g we have U(x, y) = min(x, y), i.e., 
U(x, y) < e, and above the completed graph of g there is U(x, y) = max(x, y), i.e., U(x, y) > e.

Uninorms with continuous underlying functions were completely characterized in [13,15]. In [13] it was shown that 
each uninorm with continuous underlying functions can be decomposed into an ordinal sum of a countable number of 
semigroups related to representable uninorms, continuous Archimedean t-norms, continuous Archimedean t-conorms 
and internal uninorms (including the min and the max operator). In [15] it was shown that the set of all points of 
discontinuity of a uninorm with continuous underlying functions is a subset of the graph of the characterizing set-
valued function of such a uninorm.

Now let us recall the definition of an n-uninorm (see [1]).

3
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Definition 2.5. Assume an n ∈ N \ {1}. Let V : [0, 1]2 −→ [0, 1] be a commutative binary function. Then 
{e1, . . . , en}z1,...,zn−1 is called an n-neutral element of V if for 0 = z0 < z1 < · · · < zn = 1 and ei ∈ [

zi−1, zi

]
, 

i = 1, . . . , n we have V (ei, x) = x for all x ∈ [
zi−1, zi

]
.

Definition 2.6. A binary function Un : [0, 1]2 −→ [0, 1] is an n-uninorm if it is associative, non-decreasing in each 
variable, commutative and has an n-neutral element {e1, . . . , en}z1,...,zn−1 .

The basic structure of n-uninorms was described by Akella in [1] and the characterizations of the main five classes 
of 2-uninorms was given in [23]. Now we will recall these five exhaustive and mutually exclusive classes:

• Class 1: 2-uninorms with U2(0, 1) = z1.
• Class 2a: 2-uninorms with U2(0, 1) = 0, U2(1, z1) = z1.
• Class 2b: 2-uninorms with U2(0, 1) = 1, U2(0, z1) = z1.
• Class 3a: 2-uninorms with U2(0, 1) = 0, U2(1, z1) = 1.
• Class 3b: 2-uninorms with U2(0, 1) = 1, U2(0, z1) = 0.

An idempotent 2-uninorm U2 from Class 1 has a very simple structure: on [0, z1]2 ([z1,1]2) it is isomorphic to an 
idempotent uninorm and U2(x, y) = z1 on [0, z1] × [z1,1] and [z1,1] × [0, z1].

Each n-uninorm has the following building blocks around the main diagonal.

Proposition 2.7. Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm with the n-neutral element {e1, . . . , en}z1,...,zn−1 . Then

(i) Un restricted to 
[
zi−1, ei

]2
, for i = 1, . . . , n, is isomorphic to a t-norm. We will denote this t-norm by Ti .

(ii) Un restricted to [ei, zi]2 for i = 1, . . . , n, is isomorphic to a t-conorm. We will denote this t-conorm by Si .
(iii) Un restricted to 

[
zi−1, zi

]2
for i = 1, . . . , n, is isomorphic to a uninorm. We will denote this uninorm by Ui .

(iv) Un restricted to 
[
zi, zj

]2
for i, j ∈ {0, 1, . . . , n}, i < j , is isomorphic to a (j − i)-uninorm.

Before we proceed with the main results of the paper we will recall several notions that we will use.
Since we will use ordinal sums of trivial semigroups, let us recall that there exists only one operation on a trivial 

semigroup, namely the function Id : {x}2 −→ {x}, which is simply defined by Id(x, x) = x.
If we will talk about linear transformation from interval [a, b] to interval [c, d] we mean a linear function 

ϕ : [a, b] −→ [c, d] given by

ϕ(x) = (x − a) · (d − c)

b − a
+ c,

which transforms a unary function f : [a, b] −→ [a, b] to a function g : [c, d] −→ [c, d] given by g(x) =
ϕ(f (ϕ−1(x))), and transforms a binary function V : [a, b]2 −→ [a, b] to a function U : [c, d]2 −→ [c, d] given by 
U(x, y) = ϕ(V (ϕ−1(x), ϕ−1(y))). Further, for any 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c] and a uninorm U : [0, 1]2 −→
[0, 1] with the neutral element e ∈ ]0,1[ we will use the transformation f : [0, 1] −→ [a, b[ ∪ {v} ∪ ]c, d], given by

f (x) =

⎧⎪⎨
⎪⎩

(b − a) · x
e

+ a if x ∈ [0, e[,

v if x = e,

d − (1−x)(d−c)
(1−e)

otherwise.

(1)

Then f is linear on [0, e[ and on ]e,1] and thus it is an increasing, piece-wise linear bijection from [0, 1] to ([a, b[ ∪
{v} ∪ ]c, d]) which preserves the commutativity, the associativity, the monotonicity, the idempotency and the neutral 
element; and the binary function Ua,b,c,d

v : ([a, b[ ∪ {v} ∪ ]c, d])2 −→ ([a, b[ ∪ {v} ∪ ]c, d]) given by

Ua,b,c,d
v (x, y) = f (U(f −1(x), f −1(y))) (2)

is a uninorm on ([a, b[ ∪ {v} ∪ ]c, d])2. The backward transformation f −1 then transforms a uninorm defined on 
([a, b[ ∪ {v} ∪ ]c, d])2 to a uninorm defined on [0, 1]2.

4
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For the rest of the paper if we say that two semigroups (X1, F1) and (X2, F2) are isomorphic we assume that there 
exists an increasing bijection ϕ : X1 −→ X2 such that F1(x, y) = ϕ−1(F2(ϕ(x), ϕ(y))) for all x, y ∈ X1. Note that 
such a bijection preserves the commutativity, the associativity, the monotonicity, the idempotency, the (local) neutral 
element and the annihilator, as well.

3. Idempotent n-uninorms

First let us settle for this paper that if we say that a function is an n-uninorm we will suppose that it possesses the 
n-neutral element {e1, . . . , en}z1,...,zn−1 .

For idempotent n-uninorms it holds Un(x, x) = x for all x ∈ [0, 1]. Thus we get Ti = min and Si = max for all 
i = 1, . . . , n.

We will divide this section into results on 2-uninorms and then similar results will be presented for n-uninorms for 
n ∈ N , n > 2.

3.1. Basic characterization of 2-uninorms

For every idempotent uninorm U there is U(x, y) ∈ {x, y}. From [2, Theorem 2] we get a similar result also for 
2-uninorms.

Lemma 3.1. Let U2 : [0, 1]2 −→ [0, 1] be an idempotent 2-uninorm. Then U2(x, y) ∈ {x, y, z1}.

Remark 3.2. Since U2(x, z1) ∈ {x, z1} for all x ∈ [0, 1] the monotonicity of U2 implies that there exists an x0 ∈ [0, e1]
and a y0 ∈ [e2,1] such that U2(x, z1) = x for all x < x0 and U2(x, z1) = z1 for all x0 < x ≤ z1, U2(y, z1) = y for all 
y > y0 and U2(y, z1) = z1 for all z1 ≤ y < y0. Then for all x0 < x ≤ z1 and z1 ≤ y < y0 there is U2(x, y) = z1. The 
structure of a 2-uninorm U2 on ]x0, y0[2 is given as follows:

(i) U2 restricted to ]x0, z1]2 is isomorphic to an idempotent uninorm restricted to ]0,1]2.
(ii) U2 restricted to [z1, y0[2 is isomorphic to an idempotent uninorm restricted to [0,1[2.

(iii) U2 restricted to ]x0, z1] × [z1, y0[ or to [z1, y0[ × ]x0, z1] is equal to z1.

Summarizing, U2 restricted to ]x0, y0[2 is isomorphic to an idempotent 2-uninorm from Class 1, restricted to 
]0,1[2. Observe that a 2-uninorm U2 restricted to [x0, y0]2 is isomorphic to a 2-uninorm, however, depending on the 
values of U2 on {x0, y0} × [x0, y0], this 2-uninorm can belong to any of the 5 classes. Note that if x0 = 0, y0 = 1 and 
U2(x0, y0) = z1 then U2 is an idempotent 2-uninorm from Class 1.

Example 3.3. Let U1, U2 : [0, 1]2 −→ [0, 1] be a disjunctive and a conjunctive idempotent uninorm, respectively, with 
the neutral element e = 1

2 and let U [a,b] denote the linear transformation of the uninorm U to the interval [a, b]2. Then 
we can assume the following functions.

(i) The function U2
1 : [0, 1]2 −→ [0, 1] given by U2

1 (x, y) = U

[
0, 1

2

]
1 (x, y) if x, y ∈ [

0, 1
2

]
, U2

1 (x, y) = U

[
1
2 ,1

]
2 (x, y)

if x, y ∈ [ 1
2 ,1

]
and U2

1 (x, y) = 1
2 otherwise, is a 2-uninorm from Class 1 such that e1 = 1

4 , e2 = 3
4 and z1 = 1

2 . 
Here x0 = 0 and y0 = 1.

(ii) Assume the function U2
2 : [0, 1]2 −→ [0, 1], which is on 

[ 1
4 , 3

4

]2
a linear transformation of the 2-uninorm U2

1 and 
U2

2 (x, y) = min(x, y) if min(x, y) < 1
4 , U2

2 (x, y) = max(x, y) if min(x, y) ≥ 1
4 and max(x, y) > 3

4 . Then U2
2 is 

a 2-uninorm from Class 3a and e1 = 3
8 , e2 = 5

8 and z1 = 1
2 . Here x0 = 1

4 and y0 = 3
4 .

(iii) Similarly we can assume the function U2
3 : [0, 1]2 −→ [0, 1], which coincides with U2

2 on 
[ 1

4 , 3
4

]2
and U2

3 (x, y) =
max(x, y) if max(x, y) > 3

4 , U2
3 (x, y) = min(x, y) if max(x, y) ≤ 3

4 and min(x, y) < 1
4 . Then U2

3 is a 2-uninorm 
from Class 3b and e1 = 3

8 , e2 = 5
8 and z1 = 1

2 . Here x0 = 1
4 and y0 = 3

4 .

5
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Fig. 1. The 2-uninorms U2
1 (left), U2

2 (center) and U2
3 (right) from Example 3.3.

0 1
2

3
4 1

1
2

3
4

1

min

U

[
3
4 ,1

]
2

U

[
1
2 , 3

4

]
1

z1

z1

0 1
4

1
2 1

1
4

1
2

1

max

U

[
1
4 , 1

2

]
2

U

[
0, 1

4

]
1

z1

z1

Fig. 2. The 2-uninorms U2
4 (left) and U2

5 (right) from Example 3.3.

(iv) Assume the function U2
4 : [0, 1]2 −→ [0, 1], which is on 

[ 1
2 ,1

]2
a linear transformation of the 2-uninorm U2

1 and 
U2

4 (x, y) = min(x, y) if min(x, y) < 1
2 . Then U2

4 is a 2-uninorm from Class 2a and e1 = 5
8 , e2 = 7

8 and z1 = 3
4 . 

Here x0 = 1
2 and y0 = 1.

(v) Assume the function U2
5 : [0, 1]2 −→ [0, 1], which is on 

[
0, 1

2

]2
a linear transformation of the 2-uninorm U2

1 and 
U2

5 (x, y) = max(x, y) if max(x, y) > 1
2 . Then U2

5 is a 2-uninorm from Class 2b and e1 = 1
8 , e2 = 3

8 and z1 = 1
4 . 

Here x0 = 0 and y0 = 1
2 .

The 2-uninorms from this example are depicted on Figs. 1 and 2.

From now on we will distinguish five different cases

• if U2(x0, y0) = z1,
• if U2(x0, y0) = x0, U2(x0, y) = y for all y > y0,
• if U2(x0, y0) = x0, U2(x0, y) �= y for some y > y0,
• if U2(x0, y0) = y0, U2(y0, x) = x for all x < x0,
• if U2(x0, y0) = y0, U2(y0, x) �= x for some x < x0.

6
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Since the second and the fourth (the third and the fifth) cases are analogous we will focus just on the first three 
cases. Observe that due to the monotonicity the value U2(x0, y0) is the annihilator of U2 on [x0, y0]. At first we will 
suppose that U2(x0, y0) = z1.

Lemma 3.4. Let U2 : [0, 1] −→ [0, 1] be an idempotent 2-uninorm and let U2(x0, y0) = z1. If U2(x, y) = z1 for some 
x, y ∈ [0, 1] then x, y ∈ [x0, y0].

Proof. If U2(x, y) = z1 then U2(x, z1) = U2(x, U2(x, y)) = U2(U2(x, x), y) = U2(x, y) = z1 and similarly 
U2(y, z1) = z1. Thus x, y ∈ [x0, y0]. �
Proposition 3.5. Let U2 : [0, 1] −→ [0, 1] be an idempotent 2-uninorm and let U2(x0, y0) = z1. Then U2 is an ordinal 
sum of semigroups G1 = ([0, x0[ ∪ {z1} ∪ ]y0,1] , U2) and G2 = ([x0, y0] , U2), where the order in the ordinal sum 
construction is 1 < 2, and G1 is isomorphic to ([0, 1], U), where U is an idempotent uninorm and G2 is isomorphic 
to ([0, 1], V 2), where V 2 is an idempotent 2-uninorm from Class 1.

Proof. Due to Lemmas 3.1 and 3.4 and the definition of x0 and y0 in Remark 3.2, we know that U2 is closed on 
([0, x0[ ∪ {z1} ∪ ]y0,1])2 and z1 is the neutral element of this restriction. Therefore U2 is on ([0, x0[ ∪ {z1} ∪ ]y0,1])2

isomorphic to an idempotent uninorm. Further, since U2(x0, y0) = z1 the restriction of U2 to [x0, y0]2 is isomorphic to 
an idempotent 2-uninorm from Class 1; and z1 is the annihilator of U2 on [x0, y0]2. For any x ∈ [0, x0[∪{z1} ∪ ]y0,1]
and y ∈ [x0, y0] there is U2(x, z1) = x and U2(y, z1) = z1. Thus

U2(x, y) = U2(U2(x, z1), y) = U2(x,U2(z1, y)) = U2(x, z1) = x,

i.e., U2(x, y) = x for all x ∈ [0, x0[ ∪ {z1} ∪ ]y0,1] and y ∈ [x0, y0]. The commutativity of U2 then shows that 
([0, 1], U2) is an ordinal sum of semigroups G1 and G2 with the corresponding order 1 < 2 (see Fig. 3). �
Remark 3.6. The previous result can be also reverted. Assume x0, y0, e1, e2, z1 ∈ [0, 1] such that 0 ≤ x0 ≤ e1 ≤
z1 ≤ e2 ≤ y0 ≤ 1 and 0 < z1 < 1. Let V 2 : [0, 1]2 −→ [0, 1] be an idempotent 2-uninorm with the 2-neutral element 
{e∗

1, e∗
2}z∗

1
and U : [0, 1]2 −→ [0, 1] be an idempotent uninorm. Let G1 = ([0, x0[ ∪ {z1} ∪ ]y0,1] , F) and G2 =

([x0, y0] , H), where G2 is isomorphic with ([0, 1], V 2) via an increasing isomorphism ϕ : [0, 1] −→ [x0, y0] such 
that ϕ(e∗

1) = e1, ϕ(e∗
2) = e2, and ϕ(z∗

1) = z1, and G1 is isomorphic with ([0, 1], U) via (1). Then the ordinal sum of 
G1 and G2 with 1 < 2 is an idempotent 2-uninorm denoted by U2. The commutativity and the associativity follows 
from Theorem 2.1 and U2 is evidently idempotent. The points e1 and e2 are local neutral elements on [x0, y0]2 and 
their extension to [0, 1]2 follows from the ordinal sum construction. Therefore the only non-trivial property is the 
monotonicity. Assume x ∈ [0, 1]. Then we have the following cases:

(i) If x ∈ [0, x0[. Then U2(x, ·) is non-decreasing on [0, x0[ and U2(x, y) ≤ x for all y ∈ [0, x0[. For y ∈ [x0, y0]
we have U2(x, y) = x. Finally, for y ∈ ]y0,1] we know that U2(x, y) ∈ [x, y] and U2(x, ·) is non-decreasing on 
]y0,1]. Together, for all x ∈ [0, x0[ the cut U2(x, ·) is non-decreasing.

(ii) If x ∈ [x0, y0]. Then U2(x, y) = y for all y ∈ [0, x0[ and U2(x, x0) ≥ x0. Further, U2(x, ·) is non-decreasing on 
[x0, y0] and U2(x, y0) ≤ y0. Finally, for y ∈ ]y0,1] there is U2(x, y) = y. Thus the cut U2(x, ·) is non-decreasing 
for all x ∈ [x0, y0].

(iii) If x ∈ ]y0,1] then U2(x, ·) is non-decreasing on [0, x0[ and U2(x, y) ∈ [y, x] for all y ∈ [0, x0[. Further, 
U2(x, y) = x for y ∈ [x0, y0]. Finally, U2(x, ·) is non-decreasing on ]y0,1] and U2(x, y) ≥ x for all y ∈ ]y0,1]. 
Summarizing, U2(x, ·) is non-decreasing for all x ∈ ]y0,1].

Similar observations can be done in all following results (including the results on idempotent n-uninorms).

Further we will suppose that U2(x0, y0) = x0. Then x0 is the annihilator of U2 on [x0, y0]2. However, x0 need not 
to be the neutral element on the rest of the unit interval. We have a similar result as in the previous case.

Lemma 3.7. Let U2 : [0, 1] −→ [0, 1] be an idempotent 2-uninorm and let U2(x0, y0) = x0. If U2(x, y) = z1 then 
x, y ∈ ]x0, y0].

7
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Proof. If U2(x, y) = z1 then U2(x, z1) = U2(x, U2(x, y)) = U2(x, y) = z1 and similarly U2(y, z1) = z1. Thus 
x, y ∈ ]x0, y0]. �

First we will discuss the case when U2(x0, y) = y for all y ∈ ]y0,1].

Proposition 3.8. Let U2 : [0, 1] −→ [0, 1] be an idempotent 2-uninorm such that U2(x0, y0) = x0 and for all y ∈
]y0,1] there is U2(x0, y) = y. Then U2 is an ordinal sum of semigroups G1 = ([0, x0] ∪ ]y0,1] , U2), and G2 =
(]x0, y0] , U2), where 1 < 2. Further, G1 is isomorphic to ([0, 1], U), where U is an idempotent uninorm and G2 is 
either isomorphic to (]0,1] , V 2), where V 2 is an idempotent 2-uninorm from Class 1 restricted to ]0,1]2, or G2 is an 
ordinal sum of two semigroups, ({y0}, Id) and (]x0, y0[ , U2), while U2 is on ]x0, y0[2 isomorphic to an idempotent 
2-uninorm from Class 1 restricted to ]0,1[2.

Proof. Due to Lemma 3.7 we know that U2 is closed on ([0, x0] ∪ ]y0,1])2. Since U2(x0, y) = y for all y ∈ ]y0,1]
and U2 ≡ min on [0, x0]2, i.e., U2(x, x0) = x for all x ∈ [0, x0], we know that x0 is the neutral element of U2

on [0, x0] ∪ ]y0,1]. Thus U2 is on ([0, x0] ∪ ]y0,1])2 isomorphic to an idempotent uninorm. Further we have to 
distinguish two cases. If U2(z1, y0) = z1 then U2 is on ]x0, y0]2 isomorphic to a 2-uninorm from Class 1 restricted to 
]0,1]2. If U2(z1, y0) = y0 then U2(y0, x) = y0 for all x ∈ ]x0, y0[ and due to Lemma 3.1 U2 is closed on ]x0, y0[2. 
Thus U2 on ]x0, y0]2 is an ordinal sum of a trivial semigroup and (]x0, y0[ , U2), while U2 restricted to ]x0, y0[2 is 
isomorphic to an idempotent 2-uninorm from Class 1 restricted to ]0,1[2.

To finish the proof we have to investigate the order of the two semigroups in the ordinal sum construction. Due to 
the commutativity it is enough to take an x ∈ ]x0, y0] and a y ∈ [0, x0] ∪ ]y0,1]. Here we have

U2(x, y) = U2(x,U2(x0, y)) = U2(U2(x, x0), y) = U2(x0, y) = y,

i.e., 1 < 2. Thus U2 is an ordinal sum of semigroups G1 and G2 with 1 < 2. �
Finally, in this subsection we will investigate the case when U2(x0, y0) = x0 and there exists a y ∈ ]y0,1] such that 

U2(x0, y) �= y.

Lemma 3.9. Let U2 : [0, 1] −→ [0, 1] be an idempotent 2-uninorm such that U2(x0, y0) = x0. If there is U2(x0, v) �=
v for some v ∈ ]y0,1] then U2(x0, v) = x0.

Proof. Lemma 3.1 implies U2(x0, v) ∈ {x0, v, z1}. If U2(x0, v) = z1 then

z1 = U2(x0, v) = U2(x0,U
2(v, v)) = U2(U2(x0, v), v) = U2(z1, v),

which is a contradiction since U2(y, z1) = y for all y ∈ ]y0,1]. Since U2(x0, v) �= v we obtain U2(x0, v) = x0. �
Further we will denote

y1 = sup{y ∈ [y0,1] | U2(x0, y) = x0}.

Proposition 3.10. Let U2 : [0, 1] −→ [0, 1] be an idempotent 2-uninorm such that U2(x0, y0) = x0. If y1 > y0 and 
U2(x0, y1) = x0 then U2 can be expressed as an ordinal sum of G1 = ([0, x0] ∪ ]y1,1] , U2), G2 = (]x0, y0] , U2)

described in Proposition 3.8 and G3 = (]y0, y1] , max). Further, G1 is isomorphic to ([0, 1], U), where U is an 
idempotent uninorm and the order in the ordinal sum construction is 1 < 3 < 2.

Proof. Due to Lemma 3.7 we know that U2 is closed on ([0, x0] ∪ ]y1,1])2. Since U2(x0, x) = x for all x ≤ x0
and U2(x0, y) = y for all y > y1 we see that x0 is the neutral element of U2 on ([0, x0] ∪ ]y1,1])2. Thus U2 is on 
([0, x0] ∪ ]y1,1])2 isomorphic to an idempotent uninorm.

Assume x ∈ ]x0, y0] and y ∈ ]y0, y1]. Then due to Lemma 3.7 we have U2(x, y) ∈ {x, y} and since U2(x, z1) ≥ z1, 
U2(z1, y) = y, due to the monotonicity we get U2(x, y) = y. Thus 3 < 2. Further, since x0 is the annihilator of U2 on 
[x0, y0]2 and the neutral element of U2 on ([0, x0] ∪ ]y1,1])2 we get

U2(x, y) = U2(U2(x, x0), y) = U2(x,U2(x0, y)) = U2(x, x0) = x

8
177



JID:FSS AID:8013 /FLA [m3SC+; v1.341] P.9 (1-22)

A. Mesiarová-Zemánková Fuzzy Sets and Systems ••• (••••) •••–•••

0 x0 e1 z1 e2 y0 1

x0

e1

z1

e2

y0

1

min

min

min

min

min

min min min min min

min

max

min

max

z1z1

z1z1

z1z1

z1z1

x or y

x or y

x or y

x or y

max

max

max

max

max

maxmaxmaxmaxmaxx or y

x
or

y

�

�
0 x0 e1 z1 e2 y0 y1 1

x0

e1

z1

e2

y0

y1

1

min

min

min

min

min

min min min min min

min

max

min

max

z1z1

z1z1

z1z1

z1z1

x or y

x or y

x or y

x or y

max

max

max

max

max

maxmaxmaxmaxmax
min

x or y

m
i
n

x
or

y

�

�

Fig. 3. A 2-uninorm with U2(x0, y0) = z1 (left) and with U2(x0, y0) = x0, y1 > y0 (right).

for all x ∈ [0, x0] ∪ ]y1,1] and y ∈ ]x0, y0], i.e., 1 < 2. Finally, since U2(x0, y) = x0 for all y ∈ ]y0, y1] we get

U2(x, y) = U2(U2(x, x0), y) = U2(x,U2(x0, y)) = U2(x, x0) = x

for all x ∈ [0, x0] ∪ ]y1,1] and y ∈ ]y0, y1], i.e., 1 < 3. Therefore U2 is an ordinal sum of G1, G2 and G3 with the 
order 1 < 3 < 2 (see Fig. 3). �
Remark 3.11. Assume U2(x0, y0) = x0 and U2(x0, v) �= v for some v ∈ ]y0,1]. Lemma 3.9 implies that U2(x0, y) =
y for all y > y1. However, it can happen that U2(x0, y1) = y1. In such a case the point y1 behaves differently than the 
rest of the semigroup defined on ]y0, y1] and therefore we cannot use the same construction as above.

We define x1 = inf{x ∈ [0, x0] | U2(y1, x) = y1} and we can continue like this by the induction: for n ∈ N we 
define

yn = sup{y ∈ [
yn−1,1

] | U2(xn−1, y) = xn−1}
and

xn = inf{x ∈ [
0, xn−1

] | U2(yn, x) = yn}.
It can happen that yn0 = yn0−1 (and then xn0 = xn0−1) for some n0 ∈ N , however it is also possible that (yi)i∈N
((xi)i∈N ) is an increasing (decreasing) sequence. Therefore we see that the structure of U2 on ([0, x0] ∪ ]y0,1])2 can 
be rather peculiar. That is why it needs not to be easy to express U2 as an ordinal sum of a uninorm, a 2-uninorm from 
Class 1 (restricted to ]0,1]2) and few other semigroups. Therefore we adopt a different approach.

Lemma 3.12. Let U2 : [0, 1] −→ [0, 1] be an idempotent 2-uninorm and let U2(x0, y0) = x0. Then U2 restricted to 
([0, x0[ ∪ {z1} ∪ ]y0,1])2 is isomorphic to an idempotent uninorm.

Proof. Lemma 3.7 implies that U2 is internal on ([0, x0[ ∪ ]y0,1])2. Therefore U2 is closed on ([0, x0[ ∪ {z1} ∪
]y0,1])2. Further, the definition of x0 and y0 implies that z1 is the neutral element of U2 on ([0, x0[ ∪ {z1} ∪ ]y0,1])2. 
Thus U2 restricted to ([0, x0[ ∪ {z1} ∪ ]y0,1])2 is isomorphic to an idempotent uninorm. �
Remark 3.13. Assume that y1 > y0 and U2(x0, y1) = y1. Due to results from [13] (see also [12]) we know that each 
idempotent uninorm is an ordinal sum of a countable number of semigroups with the operation min, semigroups 
with the operation max and semigroups corresponding to idempotent uninorms (such that the related function g from 
Theorem 2.4 is strictly decreasing) possibly restricted to open or half-open unit square. Thus also ([0, x0[ ∪ {z1} ∪

9
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]y0,1] , U2) is an ordinal sum of a countable number of such semigroups. Since each idempotent uninorm is internal, 
also the semigroup G = ([0, x0[ ∪ ]y0,1] , U2) can be expressed as an ordinal sum of a countable number of the above 
mentioned semigroups.

Further we know that U2(x0, y) = x0 for all y ∈ ]y0, y1[ and U2(x0, x) = x for all x ∈ [0, x0[ ∪ [y1,1]. Therefore 
we split the semigroup G into two parts: G1 = ([0, x0[∪ [y1,1] , U2) and G2 = (]y0, y1[ , max) since U2 on (]y0, y1[)2

is given by the maximum operator. Then G1 can be again expressed as an ordinal sum of a countable number of the 
above mentioned semigroups, however, y1 need not to be the neutral element of G1. Note that due to Lemma 3.12 we 
can find a similar characterization of the semigroup G1 using a non-decreasing function g as in Theorem 2.4. Now 
U2 on ([0, x0] ∪ ]y0,1])2 can be expressed as an ordinal sum of semigroups G1, G2 and G3 = ({x0}, Id), with order 
1 < 3 < 2. Indeed, from the previous we know that 3 < 2 and 1 < 3 and for an x ∈ [0, x0[ ∪ [y1,1] and a y ∈ ]y0, y1[
we have

U2(x, y) = U2(U2(x, x0), y) = U2(x,U2(x0, y)) = U2(x, x0) = x,

i.e., 1 < 2.

Proposition 3.14. Let U2 : [0, 1] −→ [0, 1] be an idempotent 2-uninorm and let U2(x0, y0) = x0. If y1 > y0 and 
U2(x0, y1) = y1 then U2 can be expressed as an ordinal sum of the semigroups G1 = ([0, x0[ ∪ [y1,1] , U2), G2 =
(]x0, y0] , U2) described in Proposition 3.8, G3 = (]y0, y1[ , max) and G4 = ({x0}, Id). Further, G1 can be expressed 
as an ordinal sum of a countable number of idempotent semigroups described in Remark 3.13 and 1 < 4 < 3 < 2.

Proof. Similarly as in Proposition 3.10 we can show that U2(x, y) = y for all y ∈ ]y0, y1[ and x ∈ ]x0, y0]. Therefore 
3 < 2. Further, U2(x0, y) = x0 for all y ∈ ]y0, y1[. Thus 4 < 3. Finally, U2(x0, x) = x for all x ∈ [0, x0[ ∪ [y1,1], i.e., 
1 < 4. Since the associativity of U2 implies the transitivity of the relation ≤ we can easily obtain all other comparisons. 
Therefore 1 < 4 < 3 < 2. The rest follows from Remark 3.13. �
3.2. Basic characterization of n-uninorms

The basic structure of idempotent n-uninorms is very similar to that of 2-uninorms. Therefore we will proceed with 
the results analogous to those in the previous subsection. From [2, Theorem 2] we obtain the following result.

Lemma 3.15. Let Un : [0, 1]2 −→ [0, 1] be an idempotent n-uninorm. Then Un(x, y) ∈ {x, y} ∪ {zi | zi ∈ ]x, y[}.

Next we will investigate the value of Un(e1, en).

Lemma 3.16. Let Un : [0, 1] −→ [0, 1] be an idempotent n-uninorm. Then Un(e1, en) = zk for some k ∈ {1, . . . , n −
1} and zk is the annihilator of Un on [e1, en]2.

Proof. The restriction of Un to 
[
z1, zn−1

]2 is an (n −2)-uninorm and thus Un(z1, zn−1) ∈ {zi | zi ∈ [
z1, zn−1

]}. Let us 
denote Un(z1, zn−1) = zk . We can easily show that Un(z1, zk) = zk = Un(zk, zn−1) and then the monotonicity implies 
that zk is the annihilator of Un on 

[
z1, zn−1

]
. Since Un(e1, z1) = z1 and Un(zn−1, en) = zn−1 we get Un(e1, zk) =

Un(e1, Un(z1, zk)) = Un(z1, zk) = zk and similarly Un(en, zk) = zk . Thus

zk = Un(e1, zk) ≤ Un(e1, en) ≤ Un(zk, en) = zk,

i.e., Un(e1, en) = zk and the monotonicity implies that zk is the annihilator of Un on [e1, en]2 (see Fig. 4). �
From now on we will denote the value Un(e1, en) by zk .

Lemma 3.17. Let Un : [0, 1] −→ [0, 1] be an idempotent n-uninorm. Then Un(x, zk) ∈ {x, zk} for all x ∈ [0, 1].

Proof. If x ∈ [e1, en] then the claim follows from Lemma 3.16. Assume that x < e1 (the case when x > en is 
analogous). If Un(x, zk) = zi for some zi ∈ ]x, zk[ then k > i > 0 and zi = Un(x, zk) = Un(x, Un(zk, zk)) =
Un(Un(x, zk), zk) = Un(zi, zk) = zk , which is a contradiction. Thus Un(x, zk) ∈ {x, zk} for all x ∈ [0, 1]. �
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Fig. 4. A sketch of an idempotent n-uninorm, where Un(e1, en) = zk . The bold lines denote the area where the values of Un differ for distinct 
cases.

We say that an idempotent n-uninorm Un belongs to the Class 1 if and only if Un(0, 1) = zk for some 
k ∈ {1, . . . , n − 1}. The structure of an idempotent n-uninorm Un from Class 1 is again very simple. If Un(0, 1) = zk

then Un is isomorphic to an idempotent k-uninorm on [0, zk]2, to an idempotent (n − k)-uninorm on [zk,1]2, and 
otherwise Un(x, y) = zk .

Remark 3.18. Lemma 3.17 and the monotonicity of Un imply that there exists an x0 ∈ [0, e1] and a y0 ∈ [en,1]
such that Un(x, zk) = x for all x < x0 and Un(x, zk) = zk for all x0 < x ≤ zk , Un(y, zk) = y for all y > y0 and 
Un(y, zk) = zk for all zk ≤ y < y0. Then for all x0 < x ≤ zk and zk ≤ y < y0 there is Un(x, y) = zk . The structure of 
an idempotent n-uninorm Un on ]x0, y0[2 is given as follows:

(i) Un restricted to ]x0, zk]2 is isomorphic to an idempotent k-uninorm restricted to ]0,1]2.
(ii) Un restricted to [zk, y0[2 is isomorphic to an idempotent (n − k)-uninorm restricted to [0,1[2.

(iii) Un restricted to ]x0, zk] × [zk, y0[ or to [zk, y0[ × ]x0, zk] is equal to zk .

Summarizing, Un restricted to ]x0, y0[2 is isomorphic to an idempotent n-uninorm from Class 1, restricted to ]0,1[2.

Now all results for 2-uninorms can be analogously shown also for n-uninorms. Therefore we introduce them 
without proofs.

Proposition 3.19. Let Un : [0, 1] −→ [0, 1] be an idempotent n-uninorm and let Un(x0, y0) = zk . Then Un is an ordi-
nal sum of semigroups G1 = ([0, x0[∪{zk} ∪ ]y0,1] , Un) and G2 = ([x0, y0] , Un), where the order in the ordinal sum 
construction is 1 < 2; and G1 is isomorphic to ([0, 1], U), where U is an idempotent uninorm and G2 is isomorphic 
to ([0, 1], V n), where V n is an idempotent n-uninorm from Class 1.

Proposition 3.20. Let Un : [0, 1] −→ [0, 1] be an idempotent n-uninorm such that Un(x0, y0) = x0 and for all y ∈
]y0,1] there is Un(x0, y) = y. Then Un is an ordinal sum of semigroups G1 = ([0, x0] ∪ ]y0,1] , Un) and G2 =
(]x0, y0] , Un), where 1 < 2. Further, G1 is isomorphic to ([0, 1], U), where U is an idempotent uninorm and G2 is 
either isomorphic to (]0,1] , V n), where V n is an idempotent n-uninorm from Class 1 restricted to ]0,1]2, or G2 is an 
ordinal sum of two semigroups, ({y0}, Id) and (]x0, y0[ , Un), while Un is on ]x0, y0[2 isomorphic to an idempotent 
n-uninorm from Class 1 restricted to ]0,1[2.

We will again denote y1 = sup{y ∈ [y0,1] | Un(x0, y) = x0}.
Proposition 3.21. Let Un : [0, 1] −→ [0, 1] be an idempotent n-uninorm such that Un(x0, y0) = x0. If there is y1 > y0
and Un(x0, y1) = x0 then Un can be expressed as an ordinal sum of G1 = ([0, x0]∪ ]y1,1] , Un), G2 = (]x0, y0] , Un)

11
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described in Proposition 3.20 and G3 = (]y0, y1] , max). Further, G1 is isomorphic to ([0, 1], U), where U is an 
idempotent uninorm and 1 < 3 < 2.

Proposition 3.22. Let Un : [0, 1] −→ [0, 1] be an idempotent n-uninorm and let Un(x0, y0) = x0. If y1 > y0 and 
Un(x0, y1) = y1 then Un can be expressed as an ordinal sum of semigroups G1 = ([0, x0[ ∪ [y1,1] , Un), G2 =
(]x0, y0] , Un) described in Proposition 3.20, G3 = (]y0, y1[ , max) and G4 = ({x0}, Id). Further, 1 < 4 < 3 < 2 and 
G1 can be expressed as an ordinal sum of a countable number of semigroups with the operation min, semigroups 
with the operation max and semigroups corresponding to idempotent uninorms (such that the related function g from 
Theorem 2.4 is strictly decreasing) possibly restricted to open or half-open unit square.

The above results show us that n-uninorms are constructed from blocks which contain uninorms of lower orders. 
These blocks are glued together either by the ordinal sum construction, or by the constant value zi for i ∈ {1, . . . , n −
1}.

4. Idempotent n-uninorms as partially ordered ordinal sums of trivial semigroups

In this section we will use a special construction method, similar to the ordinal sum construction, which, however, 
covers also partially ordered semigroups, in the case that the partial order on the respective index set corresponds to a 
lower semi-lattice.

Definition 4.1. A meet semi-lattice (or lower semi-lattice) is a partially ordered set which has a meet (or greatest lower 
bound) for any non-empty finite subset.

Note that since the existence of the meet is required only for non-empty finite subsets this is equivalent to the 
existence of the meet between all pairs of arguments.

The following theorem describes the z-ordinal sum construction for semigroups.

Theorem 4.2. Let A and B be two index sets such that A ∩ B = ∅ and C = A ∪ B �= ∅. Let (Gα)α∈C with Gα =
(Xα, ∗α) be a family of semigroups and let the set C be partially ordered by the binary relation � such that (C, �)

is a meet semi-lattice. Further suppose that each semigroup Gα for α ∈ A possesses an annihilator zα , and for all 
α, β ∈ C such that α and β are incomparable there is α ∧ β ∈ A. Assume that for all α, β ∈ C the sets Xα and Xβ

are either disjoint or that Xα ∩ Xβ = {xα,β}. In the second case suppose that for all γ ∈ C which is incomparable 
with α ∧ β there is α ∧ γ = β ∧ γ and for each γ ∈ C with α ∧ β ≺ γ ≺ α or α ∧ β ≺ γ ≺ β we have Xγ = {xα,β}. 
Further,

(i) in the case that α ∧ β ∈ A then xα,β = zα∧β is the annihilator of both Gβ and Gα;
(ii) in the case that α ∧ β = α ∈ B then xα,β is both the annihilator of Gβ and the neutral element of Gα .

Put X = ⋃
α∈C

Xα and define the binary operation ∗ on X by

x ∗ y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∗α y if (x, y) ∈ Xα × Xα ,

x if (x, y) ∈ Xα × Xβ , α �= β, and α ∧ β = α ∈ B,

y if (x, y) ∈ Xα × Xβ , α �= β, and α ∧ β = β ∈ B,

zγ if (x, y) ∈ Xα × Xβ , α �= β, and α ∧ β = γ ∈ A.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ C the semigroup Gα is 
commutative.

Proof. First note that if α ∧ β ∈ B then α and β are comparable. Obviously, G is commutative if and only if for 
each α ∈ C the semigroup Gα is commutative. Further, we have to show that the operation ∗ is well-defined and 
associative.

12
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If x ∈ Xα ∩ Xβ then for each γ ∈ C and y ∈ Xγ we can define x ∗ y as an operation on Xα × Xγ , or as an 
operation on Xβ × Xγ . We are going to show that in all cases this two definitions coincide. First assume that γ
is incomparable with α ∧ β . Then the assumption implies α ∧ γ = β ∧ γ and thus α ∧ γ = β ∧ γ = α ∧ β ∧ γ

which belongs to A since γ and α ∧ β are incomparable. Then in both cases x ∗ y = zα∧β∧γ . Now assume that γ is 
comparable with α ∧ β . If γ � α ∧ β then in both cases x ∗ y = y if γ ∈ B (x ∗ y = zγ if γ ∈ A). Finally assume 
that α ∧ β ≺ γ . If α ∧ β ∈ A then x = zα∧β , α ∧ β � α ∧ γ � α, α ∧ β � β ∧ γ � β , and it is easy to check that in 
both cases x ∗ y = zα∧β . If α ∧ β ∈ B then α and β are comparable and it is again easy to check that in both cases 
x ∗ y = x.

Now we will show that ∗ is associative. Assume any x, y, z ∈ X. If x, y, z ∈ Xα for some α ∈ A then the as-
sociativity follows from the associativity of ∗α . Let x, y ∈ Xα , z ∈ Xβ for some α, β ∈ C, α �= β . First assume 
that α ∧ β ∈ B , i.e., α and β are comparable. Then the associativity follows from Theorem 2.1. If α ∧ β = γ ∈ A

then

(x ∗ y) ∗ z = zγ = x ∗ zγ = x ∗ (y ∗ z),

(x ∗ z) ∗ y = zγ ∗ y = zγ = x ∗ zγ = x ∗ (z ∗ y),

(z ∗ x) ∗ y = zγ ∗ y = zγ = z ∗ (x ∗ y).

Further suppose that x ∈ Xα , y ∈ Xβ , z ∈ Xδ . We denote α ∧ β = γ , α ∧ δ = π and β ∧ δ = ρ. Then 
θ = γ ∧ π = γ ∧ ρ = π ∧ ρ is the greatest lower bound of α, β and γ .

Now we have 4 possible cases.
Case 1: If γ, π, ρ ∈ A. Then θ ∈ A and we leave as an easy exercise for the reader to check that (a ∗ b) ∗ c =
a ∗ (b ∗ c) = zθ whenever (a, b, c) is a permutation of (x, y, z).
Case 2: If γ, π ∈ A and ρ ∈ B . Here β and δ are comparable and θ ∈ A. If β � δ then θ = π � γ . If β ≺ δ then 
θ = γ � π . We again leave the proof of this case as an easy exercise for the reader. Note that similarly as in the 
previous case we always obtain (a ∗ b) ∗ c = a ∗ (b ∗ c) = zθ .
Case 3: If γ ∈ A and π, ρ ∈ B . Here both α and β are comparable with δ. If α and β are comparable then γ ∈ A

and π, ρ ∈ B implies δ ≺ α ∧ β and similarly as above it is easy to show that (a ∗ b) ∗ c = a ∗ (b ∗ c) = z whenever 
(a, b, c) is a permutation of (x, y, z). Assume that α and β are incomparable. Then either δ � α and δ � β , or 
δ ≺ α, δ ≺ β . First suppose that δ � α and δ � β . Then also δ � γ . Since π, ρ ∈ B we know that α, β ∈ B . We 
have

(x ∗ y) ∗ z = zγ ∗ z = zγ = x ∗ y = x ∗ (y ∗ z),

(y ∗ x) ∗ z = zγ ∗ z = zγ = y ∗ x = y ∗ (x ∗ z),

(x ∗ z) ∗ y = x ∗ y = zγ = x ∗ y = x ∗ (z ∗ y),

(z ∗ x) ∗ y = x ∗ y = zγ = z ∗ zγ = z ∗ (x ∗ y),

(y ∗ z) ∗ x = y ∗ x = zγ = y ∗ x = y ∗ (z ∗ x),

(z ∗ y) ∗ x = y ∗ x = zγ = z ∗ zγ = z ∗ (y ∗ x).

Now suppose that δ ≺ α, δ ≺ β . Since π, ρ ∈ B we know that δ ∈ B . Since γ ∈ A we know that δ ≺ γ . We 
have

(x ∗ y) ∗ z = zγ ∗ z = z = x ∗ z = x ∗ (y ∗ z),

(y ∗ x) ∗ z = zγ ∗ z = z = y ∗ z = y ∗ (x ∗ z),

(x ∗ z) ∗ y = z ∗ y = z = x ∗ z = x ∗ (z ∗ y),

(z ∗ x) ∗ y = z ∗ y = z = z ∗ zγ = z ∗ (x ∗ y),

(y ∗ z) ∗ x = z ∗ x = z = y ∗ z = y ∗ (z ∗ x),

(z ∗ y) ∗ x = z ∗ x = z = z ∗ zγ = z ∗ (y ∗ x).

Case 4: If γ, π, ρ ∈ B then α, β, δ are all mutually comparable and the claim follows from Theorem 2.1. �
13
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Note that if in the previous theorem A = ∅ then the set C = B is linearly ordered and the z-ordinal sum reduces to 
the standard ordinal sum construction. Further, if each semigroup Gα for α ∈ C is trivial and A = C then the z-ordinal 
sum of Gα is given by x ∗ y = x ∧∗ y, where the order ≤∗ is given for x ∈ Xα and y ∈ Xβ by x ≤∗ y if α � β .

Remark 4.3. Assume that in the previous theorem x ∈ Xα ∩ Xβ . Then the condition that α ∧ γ = β ∧ γ for all 
γ ∈ C incomparable with α ∧ β is necessary. Indeed, if γ is incomparable with α ∧ β and for example γ ≺ β then 
α ∧ γ �= β ∧ γ implies that α and γ are incomparable. Here on Xβ × Xγ there is x ∗ y = y if γ ∈ B (x ∗ y = zγ if 
γ ∈ A) however, on Xα × Xγ there is x ∗ y = zα∧β∧γ . Note that alternatively we can require that if x ∈ Xα ∩ Xβ and 
for some γ ∈ C, which is incomparable with α ∧ β , there is α ∧ γ �= β ∧ γ then Xγ = {zα∧β∧γ }.

Example 4.4. Let us assume the only idempotent nullnorm V : [0, 1]2 −→ [0, 1] with the annihilator z1 ∈ ]0,1[, 
which is a special case of a 2-uninorm with local neutral elements e1 = 0 and e2 = 1. Then V (x, y) = max(x, y)

if x, y ∈ [0, z1], V (x, y) = min(x, y) if x, y ∈ [z1,1] and V (x, y) = z1 otherwise. The semigroup ([0, 1], V ) is a 
z-ordinal sum of trivial semigroups Gx = ({x}, Id)x∈[0,1] with A = {z1}, where z1 � x for all x ∈ [0, 1] and x1 � x2
if x1, x2 ∈ [0, z1] and x1 ≥ x2, or x1, x2 ∈ [z1,1] and x1 ≤ x2. Further, x and y are incomparable for all x ∈ [0, z1[
and y ∈ ]z1,1]. On the other hand, V can be expressed also as a z-ordinal sum of 3 semigroups G1 = ([0, z1[ , max), 
G2 = (]z1,1] , min) and G3 = ({z1}, Id), where 3 ≺ 1, 3 ≺ 2 and 2 is incomparable with 1.

Let us now recall two results from [12].

Proposition 4.5. Let U : [0, 1]2 −→ [0, 1] be an idempotent uninorm. Then ([0, 1], U) is an ordinal sum of singleton 
semigroups ({x}, Id) for x ∈ [0, 1].

Proposition 4.6. Let P be an index set isomorphic with [0, 1] via the isomorphism i. For all p ∈ P we put Xp = {x}
if i(p) = x. Let e ∈ [0, 1] and let � be a linear order on P . If ([0, 1], U) is the ordinal sum of {(Xp, Id)}p∈P with the 
linear order � then U is an idempotent uninorm with the neutral element e if and only if the following two conditions 
are fulfilled:

(i) p1 ≺ p2 for all p1, p2 ∈ P such that Xp1 = {x1}, Xp2 = {x2}, x1 < x2 and x1, x2 ∈ [0, e],
(ii) p1 ≺ p2 for all p1, p2 ∈ P such that Xp1 = {y1}, Xp2 = {y2}, y1 > y2 and y1, y2 ∈ [e,1].

Example 4.7. For the construction of t-norms and t-conorms, an ordinal sum with respect to a countable index set is 
usually taken, which is due to the fact that the supports of respective summands need not cover the whole interval 
[0, 1] and the remaining part is covered by the minimum (maximum). However, in the case of uninorms this is no 
longer true and ordinal sums with uncountable index sets can be also used (see [12]). Assume the isomorphism i from 
the previous proposition, a family of semigroups {(Xp, Id)}p∈P and the relation � on P given for p1, p2 ∈ P with 
Xp1 = {x}, Xp2 = {y} by

p1 � p2 if (x + y < 1 and x ≤ y) or (x + y ≥ 1 and x ≥ y).

Then the relation � is reflexive since x = x for all x ∈ [0, 1], whether 2 · x < 1 or 2 · x ≥ 1. Further, � is antisym-
metric, since for x +y < 1 there p1 � p2 and p2 � p1 implies x ≤ y and y ≤ x, i.e., x = y and similarly for x +y ≥ 1
there p1 � p2 and p2 � p1 implies x ≤ y and y ≤ x, i.e., x = y. Finally we have to show that � is transitive. Assume 
that p1 � p2 and p2 � p3 for some p1, p2, p3 ∈ P with Xp1 = {x}, Xp2 = {y} and Xp3 = {z}. Then we have the 
following possibilities:

1. If x + y < 1, y + z < 1 then x ≤ y and y ≤ z, i.e., x ≤ z and x + z ≤ y + z < 1 which means that p1 � p3.
2. If x +y < 1, y +z ≥ 1 then x ≤ y and y ≥ z. Then x ≤ z since x < 1 −y ≤ z and x +z ≤ x +y < 1, i.e., p1 � p3.
3. If x +y ≥ 1, y +z < 1 then x ≥ y and y ≤ z. Then x ≥ z since x ≥ 1 −y > z and 1 ≤ x +y ≤ x +z, i.e., p1 � p3.
4. If x + y ≥ 1, y + z ≥ 1 then x ≥ y and y ≥ z, i.e., x ≥ z and x + z ≥ y + z ≥ 1 which means that p1 � p3.

Therefore � is transitive and thus it is a partial order. It is easy to see that � is also a linear order since for any 
x, y ∈ [0, 1] there is (x + y < 1) or (1 ≤ x + y) and there is (x ≤ y) or (y ≤ x).

14
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If ([0, 1], U) is the ordinal sum of {(Xp, Id)}p∈P with the linear order � then U is given by U(x, y) = min(x, y) if 
x + y < 1 and U(x, y) = max(x, y) if 1 ≤ x + y. It is easy to check that U is an idempotent uninorm with the neutral 
element 1

2 .
Thus uninorm U is an ordinal sum of trivial semigroups with respect to an index set which is uncountable. Note that 

this uninorm cannot be expressed as an ordinal sum of a countable number of non-trivial semigroups with supports 
that are connected sets.

We would like to show similar results for idempotent 2-uninorms and then generally for idempotent n-uninorms.
We will start with 2-uninorms.

Definition 4.8. Let P be an index set isomorphic with [0, 1] via the isomorphism i. For all p ∈ P we put Xp = {x}
if i(p) = x. Assume a commutative binary function F : [0, 1]2 −→ [0, 1]. On the set P we define a relation � by 
p1 � p2 if F(x, y) = x, where Xp1 = {x} and Xp2 = {y}.

Lemma 4.9. Let U2 : [0, 1]2 −→ [0, 1] be an idempotent 2-uninorm. Then � defined in Definition 4.8 is a partial 
order on the set P and the set P partially ordered by the binary relation � is a meet semi-lattice. Moreover, if p1
and p2 are incomparable for Xp1 = {x} and Xp2 = {y} then the meet of p1 and p2 is q1, i.e., p1 ∧ p2 = q1, where 
Xq1 = {z1}.

Proof. Since U2 is idempotent � is reflexive. The transitivity follows from the associativity since for Xp1 = {x}, 
Xp2 = {y} and Xp3 = {z} there p1 � p2 and p2 � p3 implies U2(x, z) = U2(U2(x, y), z) = U2(x, U2(y, z)) =
U2(x, y) = x, i.e., p1 � p3. Finally, if p1 � p2 and p2 � p1 the result is implied by the commutativity. Thus �
is a partial order.

From Proposition 4.6 we know that all semigroups corresponding to points from [0, z1] ([z1,1]) are linearly ordered 
by �. Therefore the definition of � and Lemma 3.1 implies that p1 and p2 are incomparable for Xp1 = {x}, Xp2 = {y}, 
x < y, if and only if U2(x, y) = z1 and z1 ∈ ]x, y[.

Now we will show that each pair of our trivial semigroups have the meet. Assume the semigroups Xp1 = {x} and 
Xp2 = {y}. If p1 and p2 are comparable, i.e., if U2(x, y) ∈ {x, y} then we are done. Assume that U2(x, y) = z1, 
x �= z1 and y �= z1. Then z1 ∈ ]x, y[ and we claim that q1 is the meet of p1 and p2, where Xq1 = {z1}. First we have 
to show that q1 � p1 and q1 � p2. We have

z1 = U2(x, y) = U2(U2(x, x), y) = U2(x,U2(x, y)) = U2(x, z1)

and similarly U2(y, z1) = z1. Thus q1 � p1 and q1 � p2. Now we know that q1 is the lower bound of p1 and p2, 
however, we have to show that it is the greatest lower bound. Assume that there exists a pj ∈ P such that pj � p1, 
pj � p2 and q1 � pj for Xpj

= {w}. Then we have

U2(x,w) = w = U2(y,w)

and U2(w, z1) = z1. However, since z1 ∈ ]x, y[ the monotonicity implies U2(z1, w) = w and thus w = z1, i.e., q1 =
pj . Therefore q1 is the meet of p1 and p2. Thus the set P partially ordered by the binary relation � is a meet 
semi-lattice. �
Remark 4.10. Assume x0, y0 ∈ [0, 1] from Remark 3.2. Then q1 ≺ p3 and q1 ≺ p4, where Xq1 = {z1}, Xp3 = {x1}
for x1 ∈ ]x0, z1[ and Xp4 = {y1} for y1 ∈ ]z1, y0[. Similarly, p5 ≺ q1 and p6 ≺ q1, where Xp5 = {x2} for x2 ∈ [0, x0[
and Xp6 = {y2} for y2 ∈ ]y0,1].

To simplify the notation hereinafter we will denote Xqi
= {zi}, Xwi

= {ei}, Xai
= {xi}, Xbi

= {yi} for i ∈ N , 
Xa = {x}, Xb = {y} and Xp0 = {U2(0, 1)}. Note that since U2(0, 1) is the annihilator of U2 then p0 is the bottom 
element of the meet semi-lattice (P, �).

Proposition 4.11. Let U2 : [0, 1]2 −→ [0, 1] be an idempotent 2-uninorm. Then ([0, 1], U2) is a z-ordinal sum of 
singleton semigroups ({x}, Id) for x ∈ [0, 1].

15
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� q1 ∼ z1

a0 ∼ x0
b0 ∼ y0

> z1
� �< z1��

�� w1 ∼ e1 � w2 ∼ e2

� p0 ∼ U2(0,1)

� � � � � �
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���������������
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������

���

� q1 ∼ z1a0 ∼ x0

b0 ∼ y0

� w1 ∼ e1 �
> z1

� �< z1��
� w2 ∼ e2

� p0 ∼ U2(0,1)

Fig. 5. A lower semi-lattice corresponding to an idempotent 2-uninorm with U2(x0, y0) = z1 (left) and with U2(x0, y0) = x0, U2(y0, z1) = z1
(right).

� � � � � �
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� � �

���������������

������
������

���

� q1 ∼ z1
a0 ∼ x0

b0 ∼ y0

� w1 ∼ e1 �
> z1

� �< z1��
� w2 ∼ e2

� p0 ∼ U2(0,1)

� � � � � �
� � � � � �

� � �

���������������

������
������

���

� q1 ∼ z1

a0 ∼ x0
b1 ∼ y1

b0 ∼ y0

�
> z1

� �< z1��
�w1 ∼ e1 � w2 ∼ e2

� p0 ∼ U2(0,1)

Fig. 6. A lower semi-lattice corresponding to an idempotent 2-uninorm with U2(x0, y0) = x0, U2(z1, y0) = y0, U2(x0, y) = y for all y > y0 (left) 
and with U2(x0, y0) = x0, U2(y0, z1) = y0, U2(x0, y1) = x0 (right).

Proof. Assume the partial order from Definition 4.8. Let ([0, 1], U∗) be the z-ordinal sum of {(Xp, Id)}p∈P with the 
partial order �, such that A = {q1}. Assume x, y ∈ [0, 1]. If x = y evidently U2(x, x) = U∗(x, x) = x. If U2(x, y) = x

then a � b. If x �= z1 then a ∈ B and U∗(x, y) = x. If x = z1 then a ∈ A and U∗(x, y) = z1 = x. Thus U2(x, y) =
U∗(x, y) = x. Similarly, if U2(x, y) = y then U2(x, y) = U∗(x, y) = y.

Finally assume that U2(x, y) = z1, z1 ∈ ]x, y[. Then a and b are incomparable and therefore U∗(x, y) = z1. Thus 
U2(x, y) = U∗(x, y) = z1. Summarizing, U2(x, y) = U∗(x, y) for all x, y ∈ [0, 1] (see Fig. 5 and Fig. 6). �
Proposition 4.12. Let P be an index set isomorphic with [0, 1] via the isomorphism i. For all p ∈ P we put Xp = {x}
if i(p) = x. Let z1 ∈ ]0,1[, e1, e2 ∈ [0, 1], e1 ≤ z1 ≤ e2. Denote A = {q1}, where Xq1 = {z1} and B = P \ {q1}. Let �
be a partial order on P such that all requirements of Theorem 4.2 are fulfilled. If ([0, 1], U2) is the z-ordinal sum of 
{(Xp, Id)}p∈P with the partial order � then U2 is an idempotent 2-uninorm with the 2-neutral element {e1, e2}z1 if 
and only if the following conditions are fulfilled:

(i) a1 ≺ a2 for all a1, a2 ∈ P such that Xa1 = {x1}, Xa2 = {x2}, x1 < x2 and x1, x2 ∈ [0, e1] ∪ [z1, e2],
(ii) b1 ≺ b2 for all b1, b2 ∈ P such that Xb1 = {y1}, Xb2 = {y2}, y1 > y2 and y1, y2 ∈ [e1, z1] ∪ [e2,1].

(iii) a and b are incomparable if and only if q1 ≺ a, q1 ≺ b and z1 ∈ ]x, y[, where Xa = {x}, Xb = {y}.
(iv) a1 and a2 are comparable for all a1, a2 ∈ P such that Xa1 = {x1}, Xa2 = {x2}, where (x1, x2) ∈ [0, z1]2 ∪ [z1,1]2.

Proof. The necessity follows from Proposition 4.6 and the monotonicity as U2(x, z1) = z1 = U2(y, z1) implies 
U2(x, y) = z1 if z1 ∈ ]x, y[.
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Now we will show the sufficiency part. The associativity and the commutativity of U2 follows from Theorem 4.2. 
Further, U2 is evidently idempotent. From (i) it follows that if x ≤ e1 then U2(x, e1) = x. Further, from (ii) it follows 
that if x ∈ [e1, z1] then U2(x, e1) = x. Thus e1 is the neutral element of U2 on [0, z1]2. Similarly we can show that e2
is the neutral element of U2 on [z1,1]2.

To finish the proof we have to show that U2 is non-decreasing. Proposition 4.6 implies that U2 is non-decreasing 
on [0, z1]2 and on [z1,1]2.

Let x, y1, y2 ∈ [0, 1]. We will assume x ∈ [0, z1] as the case when x ∈ [z1,1] is analogous. Then it is enough to 
check the monotonicity for y1, y2 ∈ [z1,1], y1 < y2. If x = z1 then the monotonicity follows from Proposition 4.6. 
Thus we will suppose that x < z1. Further, if y2 = z1 then also y1 = z1 and therefore we will suppose that y2 > z1. 
From (ii) we know that b2 � b1. Now we have the following 6 cases:
Case 1: If a � b2 � b1. Since x �= z1 we get

U2(x, y1) = x = U2(x, y2).

Case 2: If b2 � a � b1. Since y2 �= z1 and x �= z1 we have

U2(x, y1) = x < y2 = U2(x, y2).

Case 3: If b2 � b1 � a We have U2(x, y1) = y1 in both cases, when y1 = z1 and when y1 > z1 and thus we have

U2(x, y1) = y1 < y2 = U2(x, y2).

Case 4: If a is incomparable with b1 and b2 � a we get

U2(x, y1) = z1 < y2 = U2(x, y2).

Case 5: If a is incomparable with b2 and a � b1 we get

U2(x, y1) = x < z1 = U2(x, y2).

Case 6: If a and b1 are incomparable and a and b2 are incomparable we get

U2(x, y1) = z1 = U2(x, y2).

Thus in all cases U2(x, y1) ≤ U2(x, y2). �
Example 4.13. Assume a 2-uninorm U2

1 from Example 3.3. Then U2
1 is a z-ordinal sum of semigroups G1 =

(
[
0, 1

2

]
, U

[
0, 1

2

]
1 ), G2 = (

[ 1
2 ,1

]
, U

[
1
2 ,1

]
2 ) and G3 = ({ 1

2 }, Id), where A = {3}, 1 and 2 are incomparable and 1 ∧ 2 = 3. 
Observe that { 1

2 } ∈ X1 ∩X2 ∩X3 and 1
2 is the annihilator of all three semigroups. Since a∧b = 3 for all a, b ∈ {1, 2, 3}, 

a �= b and 3 � p for all p ∈ {1, 2, 3} we see that there are no α, β, γ ∈ {1, 2, 3} such that γ is incomparable with α∧β .
We can also show that U2

1 is a z-ordinal sum of trivial semigroups. From [12] we know that each uninorm 
U : [0, 1]2 −→ [0, 1] corresponds to an ordinal sum of trivial semigroups, where the order in the ordinal sum con-
struction is given by a ≤U b for Xa = {x} and Xb = {y} if U(x, y) = x. Thus it is easy to show that U2

1 is a z-ordinal 
sum of trivial semigroups, where A = {q1} for Xq1 = { 1

2 } and the corresponding order is given by:

• for x, y ∈ [
0, 1

2

]
the respective a, b are ordered by the corresponding order induced by U1,

• for x, y ∈ [ 1
2 ,1

]
the respective a, b are ordered by the corresponding order induced by U2

• for x ∈ [
0, 1

2

[
and y ∈ ] 1

2 ,1
]

the respective a, b are incomparable.

Note that since U1 is disjunctive and U2 is conjunctive we get q1 � p for all p ∈ P and Xp0 = { 1
2 }, i.e., q1 is the 

bottom element of the meet semi-lattice (P, �).
Assume a 2-uninorm U2

2 from Example 3.3. Then U2
2 is an ordinal sum of semigroups G1 = (

[
0, 1

4

[
, min), G2 =

(
] 3

4 ,1
]
, max) and G3 = (

[ 1
4 , 3

4

]
, U2

2 ) with the respective order 1 < 2 < 3. From the previous we know that G3 can 

be further decomposed to the z-ordinal sum of semigroups G4 = (
[ 1

4 , 1
2

]
, U

[
1
4 , 1

2

]
1 ), G5 = (

[ 1
2 , 3

4

]
, U

[
1
2 , 3

4

]
2 ) and G6 =
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({ 1
2 }, Id), where A = {6}. Thus U2

2 can be also expressed as a z-ordinal sum of semigroups G1, G2, G4, G5 and G6, 
where A = {6} and the corresponding order in the z-ordinal sum construction is 1 ≺ 2 ≺ 6, 4 and 5 are incomparable 
and 4 ∧ 5 = 6. We can also show that U2

2 is a z-ordinal sum of trivial semigroups. The respective order is given by:

• for x ∈ [
0, 1

4

[
, y ∈ [0, 1] the respective a, b fulfill a � b if min(x, y) = x,

• for x ∈ ] 3
4 ,1

]
, y ∈ [ 1

4 ,1
]

the respective a, b fulfill a � b if max(x, y) = x,
• for x, y ∈ [ 1

4 , 1
2

]
the respective a, b are ordered by the corresponding order induced by U1,

• for x, y ∈ [ 1
2 , 3

4

]
the respective a, b are ordered by the corresponding order induced by U2,

• for x ∈ [ 1
4 , 1

2

[
and y ∈ ] 1

2 , 3
4

]
the respective a and b are incomparable.

Observe that Xp0 = {0}.
Similarly we can use the z-ordinal sum construction to decompose 2-uninorms U2

3 , U2
4 and U2

5 from Example 3.3.

Now we will show the above results for idempotent n-uninorms for n ∈N with n > 2.

Lemma 4.14. Let P be an index set isomorphic with [0, 1] via the isomorphism i. For all p ∈ P we put Xp = {x} if 
i(p) = x. Further, let Un be an idempotent n-uninorm. On the set P we define a relation � by a � b if Un(x, y) = x, 
where Xa = {x} and Xb = {y}. Then � is a partial order on the set P and the set P partially ordered by the binary 
relation � is a meet semi-lattice. Moreover, if a and b are incomparable for Xa = {x} and Xb = {y} then a ∧ b = qi , 
where Xqi

= {zi} for some i ∈ {1, . . . , zn−1} and zi ∈ ]min(x, y),max(x, y)[.

Proof. Similarly as in Lemma 4.9 we can show that � is a well-defined partial order, where its reflexivity follows from 
the idempotency of Un, its transitivity from the associativity of Un and its anti-symmetry from the commutativity of 
Un. From Proposition 4.6 we know that all semigroups corresponding to points from 

[
zi, zi+1

]
for all i = 0, . . . , n −1

are linearly ordered by �. From the definition of � and Lemma 3.15 we see that a and b are incomparable for 
x < y if and only if Un(x, y) = zi for some zi ∈ ]x, y[. Further, for zk = Un(e1, en) we know from Lemma 3.17
that Un(zk, x) ∈ {x, zk} for all x ∈ [0, 1] and thus qk is comparable with every p ∈ P . Note that qk � qi for all 
i ∈ {1, . . . , n − 1}.

Now we will show that each pair of points from P have the meet. Assume that Xa = {x} and Xb = {y}. If a and b
are comparable, i.e., if Un(x, y) ∈ {x, y} then we are done. Assume that Un(x, y) = zi for some zi ∈ ]x, y[. We claim 
that then qi is the meet of a and b. First we have to show that qi � a and qi � b. We have

zi = Un(x, y) = Un(Un(x, x), y) = Un(x,Un(x, y)) = Un(x, zi)

and similarly Un(y, zi) = zi . Thus qi � a and qi � b. Now we know that qi is the lower bound of a and b, however, 
we have to show that it is the greatest lower bound. Assume that there exists a pj ∈ P such that pj � a, pj � b, 
qi � pj and Xpj

= {v}. Then we have

Un(x, v) = v = Un(y, v)

and Un(v, zi) = zi . However, since zi ∈ ]x, y[ the monotonicity implies Un(zi, v) = v and thus v = zi , i.e., qi = pj . 
Therefore qi is the meet of a and b. Thus the set P partially ordered by the binary relation � is a meet semi-lattice. �
Remark 4.15. For an idempotent n-uninorm there is also qk ≺ a1 and qk ≺ b1, where Xa1 = {x1} for x1 ∈ ]x0, zk[ and 
Xb1 = {y1} for y1 ∈ ]zk, y0[. Similarly, a2 ≺ qk and b2 ≺ qk , where Xa2 = {x2} for x2 ∈ [0, x0[ and Xb2 = {y2} for 
y2 ∈ ]y0,1]. Further, a and b are incomparable for Xa = {x} and Xb = {y} if and only if there exists a qi ∈ A such that 
zi ∈ ]x, y[ and qi � a, qi � b. The necessity of this claim follows from Lemma 4.14 and the sufficiency follows from 
the monotonicity as qi � a, qi � b implies Un(x, zi) = zi = Un(zi, y) and zi ∈ ]x, y[ then implies Un(x, y) = zi .

Proposition 4.16. Let Un : [0, 1]2 −→ [0, 1] be an idempotent n-uninorm. Then ([0, 1], Un) is a z-ordinal sum of 
singleton semigroups ({x}, Id) for x ∈ [0, 1].

Proof. We will define a partial order as in Lemma 4.14. Denote Z = {z1, . . . , zn−1}. Now let ([0, 1], U∗) be the 
z-ordinal sum of {(Xp, Id)}p∈P with the partial order �, such that A = {q1, . . . , qn−1}, where Xqi

= {zi} for i =
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� q2 ∼ z2

� q1 ∼ z1� � �
� � �

� � �
� � �

� � �

���
���

���
���

����w1 ∼ e1 �w2 ∼ e2

� q3 ∼ z3� � �
� � �

� � �
� � �

� � �

���
���

���
���

���� w3 ∼ e3 � w4 ∼ e4

� p0 ∼ U4(0,1)

> z2
� �< z2��

�

> z1
� �< z1��

� > z3
� �< z3��

�

� � ∈ S

Fig. 7. A lower semi-lattice corresponding to an idempotent 4-uninorm, where k = 2. Here S = [
0, x0

[ ∪ ]
y0,1

]
if U4(x0, y0) = z1, S = [

0, x0
] ∪]

y0,1
]

if U4(x0, y0) = x0, U4(z1, y0) = z1 and S = [
0, x0

] ∪ [
y0,1

]
if U4(x0, y0) = x0, U4(z1, y0) = y0.

1, . . . , n − 1. Assume x, y ∈ [0, 1]. If x = y evidently Un(x, x) = U∗(x, x) = x. If Un(x, y) = x then a � b. If 
x /∈ Z then a ∈ B and thus U∗(x, y) = x. If x ∈ Z then a ∈ A and x = zi for some i ∈ {1, . . . , n − 1}. Therefore 
U∗(x, y) = zi = x and Un(x, y) = U∗(x, y) = x. Similarly, if Un(x, y) = y then Un(x, y) = U∗(x, y) = y.

Finally assume that U2(x, y) = zi for some zi ∈ ]x, y[. Then a and b are incomparable and similarly as in the proof 
of Lemma 4.14 we can show that qi is the meet of a and b. Therefore U∗(x, y) = zi . Thus Un(x, y) = U∗(x, y) = zi . 
Summarizing, Un(x, y) = U∗(x, y) for all x, y ∈ [0, 1] (see Fig. 7 and Fig. 8). �
Proposition 4.17. Let P be an index set isomorphic with [0, 1] via the isomorphism i. For all p ∈ P we put Xp = {x}
if i(p) = x. Let e1, . . . , en, z1, . . . , zn−1 ∈ [0, 1], 0 = z0 < z1 < · · · < zn = 1, ei ∈ [

zi−1, zi

]
for i = 1, . . . , n. Denote 

A = {q1, . . . , qn−1}, where Xqi
= {zi} for i = 1, . . . , n − 1 and B = P \A. Let � be a partial order on P such that all 

requirements of Theorem 4.2 are fulfilled. If ([0, 1], Un) is the z-ordinal sum of {(Xp, Id)}p∈P with the partial order 
� then Un is an idempotent n-uninorm with the n-neutral element {e1, . . . , en}z1,...,zn−1 if and only if the following 
conditions are fulfilled:

(i) a1 ≺ a2 for all a1, a2 ∈ P such that Xa1 = {x1}, Xa2 = {x2}, x1 < x2 and x1, x2 ∈ [
zi−1, ei

]
, for i = 1, . . . , n.

(ii) b1 ≺ b2 for all b1, b2 ∈ P such that Xb1 = {y1}, Xb2 = {y2}, y1 > y2 and y1, y2 ∈ [ei, zi] for i = 1, . . . , n.
(iii) For a, b ∈ P , Xa = {x}, Xb = {y}, are a and b incomparable if and only if there exists an i ∈ {1, . . . , n − 1} such 

that qi � a, qi � b and zi ∈ ]x, y[, where Xqi
= {zi}.

(iv) a1 and a2 are comparable for all a1, a2 ∈ P such that Xa1 = {x1}, Xa2 = {x2}, where (x1, x2) ∈
[
zi−1, zi

]2
for 

i = 1, . . . , n.

Proof. The necessity follows from Proposition 4.6 and Remark 4.15.
Now we will show the sufficiency part. The associativity and the commutativity of Un follow from Theorem 4.2. 

Further, Un is evidently idempotent. From (i) it follows that if x ∈ [
zi−1, ei

]
for i = 1, . . . , n then Un(x, ei) = x. 

Further, from (ii) it follows that if x ∈ [ei, zi] for i = 1, . . . , n then Un(x, ei) = x. Thus ei is the neutral element of 
Un on 

[
zi−1, zi

]2.
To finish the proof we have to show that Un is non-decreasing, however, first we will show two important points.
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������
������

���

� � � � � �
� � � � � �

� � �������
������

���

� q3 ∼ z3

�q1 ∼ z1

�w1 ∼ e1 � q2 ∼ z2

� w4 ∼ e4

� w2 ∼ e2 � w3 ∼ e3

� p0 ∼ U4(0,1)

> z3
� �< z3��

�

> z1
� �< z1��

�
> z2

� �< z2��
�

� � ∈ S

Fig. 8. A lower semi-lattice corresponding to an idempotent 4-uninorm, where k = 3. Here S = [
0, x0

[ ∪ ]
y0,1

]
if U4(x0, y0) = z1, S = [

0, x0
] ∪]

y0,1
]

if U4(x0, y0) = x0, U4(z1, y0) = z1 and S = [
0, x0

] ∪ [
y0,1

]
if U4(x0, y0) = x0, U4(z1, y0) = y0.

Point 1: If qi � a and qi � b, for some Xa = {x}, Xb = {y}, x < y, i ∈ {1, . . . , n − 1} and zi ∈ ]x, y[ then Un(x, y) =
zi .
Point 2: Un(e1, en) = zk for some k ∈ {1, . . . , n − 1}.

To show Point 1 first observe that if qi � a and qi � b for some i ∈ {1, . . . , n − 1} and zi ∈ ]x, y[ then (iii) implies 
that a and b are incomparable. Suppose that a ∧ b = qj , where j �= i, i.e., Un(x, y) = zj . Then either zj < zi , or 
zj > zi . We will assume that zj < zi (the case when zj > zi is analogous). Then qi ≺ qj and zi ∈ ]

zj , y
[
, i.e., by (iii)

qj and y are incomparable, which is a contradiction. Thus Un(x, y) = zi .
To show Point 2 first observe that q1 ∧ · · · ∧ qn−1 ∈ A and thus

q1 ∧ · · · ∧ qn−1 = qk

for some k ∈ {1, . . . , n − 1}. Then qk is comparable with all p ∈ P . Indeed, if qk is incomparable with some p ∈ P

then p∧qk = qi for some i ∈ {1, . . . , n −1}, however, since qk ∧qi = qk we get qk � p, which is a contradiction. Thus 
Un(x, zk) ∈ {x, zk} for all x ∈ [0, 1]. Since qk � q1 � w1 and qk � qn−1 � wn we have Un(e1, zk) = zk , Un(en, zk) =
zk . If zk ∈ ]e1, en[ we get Un(e1, en) = zk . If zk = e1 (zk = en) then w1 � wn (wn � w1) and Un(e1, en) = e1 = zk

(Un(e1, en) = en = zk) as in the previous case.
Now we are ready to show that Un is non-decreasing. The proof will be done by induction. Since for 2-uninorms 

and uninorms (see Propositions 4.12 and 4.6) the claim holds we will suppose that the claim of this proposition holds 
for all (n −1)-uninorms. Now we will show that it holds also for all n-uninorms. Due to the induction assumption Un is 
non-decreasing on 

[
0, zn−1

]2 as well as on [z1,1]2. Thus we only have to check the monotonicity on [0, z1]×[
zn−1,1

]
and on 

[
zn−1,1

] × [0, z1]. We will take Xa = {x}, Xb1 = {y1} and Xb2 = {y2} and we will assume x ∈ [0, z1] (the 
case when x ∈ [

zn−1,1
]

is analogous). Then it is enough to check the monotonicity for y1, y2 ∈ [
zn−1,1

]
, y1 < y2. 

If x = z1 then the monotonicity follows from the induction assumption. Thus we will suppose that x < z1. Further, 
if y2 = zn−1 then also y1 = zn−1 and therefore we will suppose that y2 > zn−1. Note that the conditions (i) and (ii)
imply a � w1 and b1 � wn, b2 � wn and thus from the monotonicity of the meet we know that a ∧b1 � w1 ∧wn = qk

and similarly a ∧ b2 � qk . Therefore if a and b1 (b2) are incomparable then their meet is equal to qk . From (ii) we 
know that b2 � b1. Now we have the following 6 cases:
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Case 1: If a � b2 � b1. Since x �= z1 we get

Un(x, y1) = x = Un(x, y2).

Case 2: If b2 � a � b1. Since y2 �= zn−1 and x �= z1 we have

Un(x, y1) = x < y2 = Un(x, y2).

Case 3: If b2 � b1 � a. We have Un(x, y1) = y1 in both cases, when y1 = zn−1 and when y1 > zn−1 and thus we have

Un(x, y1) = y1 < y2 = Un(x, y2).

Case 4: If a is incomparable with b1 and b2 � a we get

Un(x, y1) = zk < y2 = Un(x, y2).

Case 5: If a is incomparable with b2 and a � b1 we get

Un(x, y1) = x < zk = Un(x, y2).

Case 6: If a and b1 are incomparable and a and b2 are incomparable we get

Un(x, y1) = zk = Un(x, y2).

Thus in all cases Un(x, y1) ≤ Un(x, y2). �
If we summarize the results obtained in this section we will see that the partial order on P induced by an idempotent 

n-uninorm resembles a tree, where qi ∼ zi for i = 1, . . . , n − 1 are nodes of this tree. More precisely, if p1 and p2 are 
incomparable for p1, p2 ∈ P then p1 and p2 have no join (the least upper bound).

5. Conclusions

We have described the structure of idempotent 2-uninorms and n-uninorms showing that each idempotent 2-
uninorm (n-uninorm) can be expressed as an ordinal sum of an idempotent uninorm (possibly also of a countable 
number of idempotent semigroups with operations min and max) and an idempotent 2-uninorm (n-uninorm) such that 
U2(0, 1) = z1 (Un(0, 1) = zk), possibly restricted to ]0,1[2, or [0,1[2, or ]0,1]2.

Further, we have shown that idempotent n-uninorms are in one-to-one correspondence with special lower semi-
lattices defined on the unit interval, where these semi-lattices have a tree-like structure. We have also defined the 
z-ordinal sum construction for partially ordered semigroups. This construction extends the ordinal sum construction 
of Clifford and our aim is to show that similarly as continuous t-norms (t-conorms) can be expressed as an ordinal 
sum of continuous Archimedean t-norms (t-conorms) also n-uninorms with continuous underlying functions can be 
decomposed to Archimedean and idempotent semigroups using the z-ordinal sum construction.

As we mentioned in the introduction, in the future work we would like to introduce the notion of the characterizing 
function defined for uninorms with continuous underlying functions also for n-uninorms, showing that each n-uninorm 
with continuous underlying functions possesses n characterizing functions and that graphs of these characterizing 
functions cover all points of discontinuity of such an n-uninorm. Finally, we would like to show that each n-uninorm 
with continuous underlying functions is a z-ordinal sum of a countable number of semigroups related to representable 
uninorms, continuous Archimedean t-norms, continuous Archimedean t-conorms and internal uninorms (including 
the min and the max operator).
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ABSTRACT
The n-uninorms with continuous underlying t-norms and t-conorms
are studied. We show that each 2-uninorm with continuous under-
lying functions can be expressed as an ordinal sum of a uninorm
with continuous underlying functions (possibly also of a count-
able number of semigroups related to representable uninorms, con-
tinuous Archimedean t-norms, continuous Archimedean t-conorms
and internal uninorms) and a 2-uninorm with continuous underly-
ing functions such that U2(0, 1) = z1 (possibly restricted to open
or half-open unit square [0, 1[2 , ]0, 1]2). Similar results are shown
for n-uninorms with continuous underlying functions, where n ∈ N,
n > 2.
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1. Introduction

Triangular norms and conorms (see Klement, Mesiar, and Pap 2000; Alsina, Frank, and
Schweizer 2006) represent the prominent classes of associative aggregation functions on
the unit interval which are, due to their nice properties, used in many applications and
many theoretical studies. The class of continuous t-norms was completely characterized
using the ordinal sum construction and additive generators. Since t-conorms are dual oper-
ations to t-norms the characterization of continuous t-conorms is straightforward. When
focusing on the neutral element of an aggregation function, t-norms and t-conorms can
be generalized into uninorms capable of representing bipolar aggregation (see Yager and
Rybalov 1996; Fodor, Yager, and Rybalov 1997; Mesiarová-Zemánková 2015). If we focus
on the annihilator, t-norms and t-conorms can be generalized into nullnorms (also called
t-operators) (Mas, Mayor, and Torrens 1999; Calvo, De Baets, and Fodor 2001). The above
generalizations bring together t-norms and t-conorms. In the second step a notion that
brings together uninorms and nullnorms was introduced by Akella (2007). These special
aggregation functions are called n-uninorms and each n-uninorm possesses n local neu-
tral elements. The basic structure of n-uninorms was described in Akella (2007). Further,
5 possible classes, defined by values of U2(0, 1),U2(0, z1) and U2(z1, 1) were character-
ized in Zong et al. (2018). If for a 2-uninorm there is e2 = 1 we obtain a uni-nullnorm
and if e1 = 0 we obtain a null-uninorm (Sun, Wang, and Qu 2017). The migrativity and
distributivity of uni-nullnorms were studied in Sun, Qu, and Zhu (2019); Wang, Qin, and
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Li (2019). Moreover, uni-nullnorms with continuous Archimedean underlying functions
were characterized in Sun, Wang, and Qu (2018).

In this paper we focus on n-uninormswith continuous underlying functions. The idem-
potent n-uninorms were fully characterized in Mesiarová-Zemánková (forthcoming) and
we would like to obtain similar results for all n-uninorms with continuous underlying
functions. In the next papers we would like to study characterizing functions of such
n-uninorms and afterwards describe their decomposition into irreducible semigroups.

The paper is structured as follows. In the following section we recall all necessary basic
notions and results. Section 3 gives basic results on 2-uninorms with continuous under-
lying functions which will be used in the following section. In Section 4 we will study
the structure of 2-uninorms and n-uninorms are examined in Section 5. We give our
conclusions in Section 6.

2. Basic notions

A triangular norm is a binary functionT : [0, 1]2 −→ [0, 1] which is commutative, associa-
tive, non-decreasing in both variables and 1 is its neutral element. Due to the associativity,
n-ary form of any t-norm is uniquely given and thus it can be extended to an aggregation
function working on

⋃
n∈N[0, 1]

n. Dual functions to t-norms are t-conorms. A triangular
conorm is a binary function S : [0, 1]2 −→ [0, 1] which is commutative, associative, non-
decreasing in both variables and 0 is its neutral element. The duality between t-norms and
t-conorms is expressed by the fact that from any t-norm T we can obtain its dual t-conorm
S by the equation

S(x, y) = 1 − T(1 − x, 1 − y)

and vice-versa.
Each continuous t-norm (t-conorm) is equal to an ordinal sum of continuous

Archimedean t-norms (t-conorms). Note that a continuous t-norm (t-conorm) is
Archimedean if and only if it has only trivial idempotent points 0 and 1. A continuous
Archimedean t-norm T (t-conorm S) is either strict, i.e. strictly increasing on ]0, 1]2 (on
[0, 1[2), or nilpotent, i.e. there exists (x, y) ∈ ]0, 1[2 such that T(x, y) = 0 (S(x, y) = 1).
Moreover, each continuous Archimedean t-norm (t-conorm) has a continuous additive
generator, which is uniquely determined up to a positive multiplicative constant. More
details on t-norms and t-conorms can be found inKlement,Mesiar, and Pap (2000); Alsina,
Frank, and Schweizer (2006).

A uninorm (introduced in Yager and Rybalov 1996) is a binary functionU : [0, 1]2 −→
[0, 1] which is commutative, associative, non-decreasing in both variables and have the
neutral element e ∈ [0, 1] (see also Fodor, Yager, and Rybalov 1997). Evidently, if e = 1
(e = 0) then we retrieve a t-norm (t-conorm).

Due to the monotonicity, for each uninorm the value U(1, 0) ∈ {0, 1} is the annihilator
of U. A uninorm is called conjunctive (disjunctive) if U(1, 0) = 0 (U(1, 0) = 1).

For each uninorm U with the neutral element e ∈ ]0, 1[ , the restriction of U to [0, e]2

is a t-norm on [0, e]2 , i.e.a linear transformation of some t-norm TU on [0, 1]2 and the
restriction of U to [e, 1]2 is a t-conorm on [e, 1]2 , i.e. a linear transformation of some
t-conorm SU . Moreover, min(x, y) ≤ U(x, y) ≤ max(x, y) for all (x, y) ∈ [0, e] × [e, 1] ∪
[e, 1] × [0, e] .
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Similarly as in the case of t-norms and t-conorms we can construct uninorms using
additive generators (see Fodor, Yager, and Rybalov 1997). A uninorm which possesses an
additive generator is called representable. In Ruiz and Torrens 2006 (see also Mesiarová-
Zemánková 2015) it was shown that U is representable if and only if it is continuous
on [0, 1]2 \ {(0, 1), (1, 0)}. This result completely characterizes the set of representable
uninorms.

Definition 2.1: A uninorm U : [0, 1]2 −→ [0, 1] is called internal if U(x, y) ∈ {x, y} for
all (x, y) ∈ [0, 1]2. Further, U is called locally internal on A(e) if U is internal on A(e) =
[0, e] × [e, 1] ∪ [e, 1] × [0, e] .

Several results on internal and locally internal uninorms can be found in Czogala and
Drewniak (1984), De Baets (1998), Martín, Mayor, and Torrens (2003), Ruiz-Aguilera
et al. (2010) and Drygas, Ruiz-Aguilera, and Torrens (2016). Note that if a uninorm U
is internal then it is also idempotent, i.e. U(x, x) = x for all x ∈ [0, 1] and vice versa.

Ordinal sums of uninorms were defined in Mesiarová-Zemánková (2016). Uninorms
with continuous underlying functions were completely characterized in Mesiarová-
Zemánková (2017, 2018). In Mesiarová-Zemánková (2017) it was shown that each
uninorm with continuous underlying functions can be decomposed into an ordinal
sum of a countable number of semigroups related to representable uninorms, continu-
ous Archimedean t-norms, continuous Archimedean t-conorms and internal uninorms
(including the min and the max operator). In Mesiarová-Zemánková (2018) it was shown
that the set of all points of discontinuity of a uninorm with continuous underlying
functions is a subset of the graph of the characterizing function of such a uninorm.

The following is the definition of a nullnorm (Calvo, De Baets, and Fodor 2001). Note
that t-operators were independently defined in Mas, Mayor, and Torrens (1999) and in
Mas, Mayor, and Torrens (2002) it was shown that t-operators and nullnorms coincide.

Definition 2.2: Abinary functionV : [0, 1]2 −→ [0, 1] is called a nullnorm if it is commu-
tative, associative, non-decreasing in each variable and has an annihilator z ∈ [0, 1] such
that V(0, x) = x for all x ≤ z and V(1, x) = x for all x ≥ z.

If z = 0 (z = 1) thenV is a t-norm (t-conorm). Note that for a commutative, associative
and non-decreasing function F : [0, 1]2 −→ [0, 1] with F(0,0) = 0, F(1,1) = 1, the value
F(0, 1) is always an annihilator of F. Thus for a nullnorm z = V(0, 1). In Calvo, De Baets,
and Fodor (2001) the following result was shown.

Theorem 2.3: Let z ∈ ]0, 1[ . Then V : [0, 1]2 −→ [0, 1] is a nullnorm with the annihilator
z if and only if there exists a t-norm TV and a t-conorm SV such that

V(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
z · SV( xz ,

y
z ) if x, y ∈ [0, z]2 ,

z + (1 − z) · TV

(
x − z
1 − z

,
y − z
1 − z

)
if x, y ∈ [z, 1]2 ,

z otherwise.

Now let us recall the definition of an n-uninorm (see Akella 2007).
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Definition 2.4: Assume an n ∈ N \ {1}. LetV : [0, 1]2 −→ [0, 1] be a commutative binary
function. Then {e1, . . . , en}z1,...,zn−1 is called an n-neutral element ofV if for 0 = z0 < z1 <

· · · < zn = 1 and ei ∈ [zi−1, zi] , i = 1, . . . , n we have V(ei, x) = x for all x ∈ [zi−1, zi] .

Definition 2.5: A binary function Un : [0, 1]2 −→ [0, 1] is an n-uninorm if it is asso-
ciative, non-decreasing in each variable, commutative and has an n-neutral element
{e1, . . . , en}z1,...,zn−1 .

The basic structure of n-uninorms was described in Akella (2007) and the characteri-
zation of the main five classes of 2-uninorms was given in Zong et al. (2018). Now we will
recall these five exhaustive and mutually exclusive classes:

• Class 1: 2-uninorms with U2(0, 1) = z1.
• Class 2a: 2-uninorms with U2(0, 1) = 0,U2(1, z1) = z1.
• Class 2b: 2-uninorms with U2(0, 1) = 1,U2(0, z1) = z1.
• Class 3a: 2-uninorms with U2(0, 1) = 0,U2(1, z1) = 1.
• Class 3b: 2-uninorms with U2(0, 1) = 1,U2(0, z1) = 0.

Each n-uninorm has the following building blocks around the main diagonal.

Proposition 2.6: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm with the n-neutral element
{e1, . . . , en}z1,...,zn−1 . Then

(i) Un restricted to [zi−1, ei]2 , for i = 1, . . . , n, is isomorphic to a t-norm. We will denote
this t-norm by Ti.

(ii) Un restricted to [ei, zi]2 for i = 1, . . . , n, is isomorphic to a t-conorm. We will denote
this t-conorm by Si.

(iii) Un restricted to [zi−1, zi]2 for i = 1, . . . , n, is isomorphic to a uninorm.We will denote
this uninorm by Ui.

(iv) Un restricted to
[
zi, zj

]2 for i, j ∈ {0, 1, . . . , n}, i < j, is isomorphic to a (j − i)-
uninorm.

For n ∈ N we will denote the set of all n-uninorms Un such that T1, . . . ,Tn and
S1, . . . , Sn are continuous by Un.

Since we will work in this paper with ordinal sums of semigroups we recall a fundamen-
tal result of Clifford (1954).

Theorem 2.7: Let A �= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα , ∗α) be a
family of semigroups. Assume that for all α,β ∈ A with α < β the sets Xα and Xβ are either
disjoint or that Xα ∩ Xβ = {xα,β}, where xα,β is both the neutral element of Gα and the
annihilator of Gβ and where for each γ ∈ A with α < γ < β we have Xγ = {xα,β}. Put
X = ⋃

α∈A Xα and define the binary operation ∗ on X by

x ∗ y =

⎧⎪⎨
⎪⎩
x ∗α y if (x, y) ∈ Xα × Xα ,
x if (x, y) ∈ Xα × Xβ and α < β ,
y if (x, y) ∈ Xα × Xβ and α > β .

196



96 A. MESIAROVÁ-ZEMÁNKOVÁ

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each
α ∈ A the semigroup Gα is commutative.

Remark 2.8: Aswe see in the previous theorem the ordinal sum construction assumes that
the index set A is totally (linearly) ordered and therefore if we say that semigroups Gα for
α ∈ A are ordered we are speaking about the order defined on the index set A. Then, if for
some α,β ∈ A we have Xα �= Xβ and x ∗ y = x for all x ∈ Xα and all y ∈ Xβ , necessarily
α < β .

Vice versa, assume a commutative, associative function F : [0, 1]2 −→ [0, 1], an index
set A and semigroups (Gα)α∈A with Gα = (Xα , F|Xα ), where F|Xα : X2

α −→ Xα is the
restriction of F to Xα , such that [0, 1] = ⋃

α∈A Xα , and for α,β ∈ A the sets Xα and Xβ

are either disjoint, or Xα ∩ Xβ = {xα,β}, and Xα �= Xβ whenever α �= β . We define a par-
tial order onA by α ≤A β for α,β ∈ A if either α = β , or F(x, y) = x for all x ∈ Xα and all
y ∈ Xβ . Then ≤A is evidently reflexive, the antisymmetry of ≤A follows from the commu-
tativity of F and the fact that Xα �= Xβ whenever α �= β , and the transitivity of ≤A follows
from the associativity of F. In the case when ≤A is a total (linear) order it is easy to check
that ([0, 1], F) is an ordinal sum of (Gα)α∈A with respect to order ≤A .

Therefore, in order to show that F is an ordinal sum of semigroups (Gα)α∈A it is enough
to show that these semigroups are totally ordered by the order ≤A defined above.

Note that when we speak about ordinal sums of t-norms (t-conorms) we work either
with trivial semigroups, or with semigroups acting on subintervals [ai, bi] of the unit
interval, ai < bi, with operations which are equal to t-norms (t-conorms) linearly trans-
formed to [ai, bi] . In the case of uninorms we use uninorms transformed to the set
[ai, bi[ ∪ {vi} ∪ ]ci, di] by a piece-wise linear, increasing isomorphism.

Therefore, if we will speak about linear transformation from interval [a, b] to interval
[c, d] we mean a linear function ϕ : [a, b] −→ [c, d] given by

ϕ(x) = (x − a) · (d − c)
b − a

+ c,

which transforms a unary function f : [a, b] −→ [a, b] to a function g : [c, d] −→ [c, d]
given by g(x) = ϕ(f (ϕ−1(x))), and transforms a binary functionV : [a, b]2 −→ [a, b] to a
function U : [c, d]2 −→ [c, d] given by U(x, y) = ϕ(V(ϕ−1(x),ϕ−1(y))). Further, for any
0 ≤ a < b < c < d ≤ 1, v ∈ [b, c] and a uninorm U : [0, 1]2 −→ [0, 1] with the neutral
element e ∈ ]0, 1[ we use the transformation f : [0, 1] −→ [a, b[ ∪ {v} ∪ ]c, d] , given by

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(b − a) · x
e

+ a if x ∈ [0, e[ ,

v if x = e,

d − (1 − x)(d − c)
(1 − e)

otherwise.

(1)

Then f is linear on [0, e[ and on ]e, 1] and thus it is a piece-wise linear isomorphism of
[0, 1] to ([a, b[ ∪ {v} ∪ ]c, d]) and the binary function Ua,b,c,d

v : ([a, b[ ∪ {v} ∪ ]c, d])2 −→
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([a, b[ ∪ {v} ∪ ]c, d]) given by

Ua,b,c,d
v (x, y) = f (U(f−1(x), f−1(y))) (2)

is a uninorm on ([a, b[ ∪ {v} ∪ ]c, d])2. The backward transformation f−1 then transforms
a uninorm defined on ([a, b[ ∪ {v} ∪ ]c, d])2 to a uninorm defined on [0, 1]2.

For the rest of the paper if we say that two semigroups (X1, F1) and (X2, F2) are iso-
morphic we assume that there exists an increasing isomorphism ϕ : X1 −→ X2 such that
F1(x, y) = ϕ−1(F2(ϕ(x),ϕ(y))) for all x, y ∈ X1. Note that such an isomorphism preserves
the commutativity, the associativity, the monotonicity, the (local) neutral element and the
annihilator, as well.

Since we will use ordinal sums of trivial semigroups, let us recall that there exists only
one operation on a trivial semigroup, namely the function Id : {x}2 −→ {x}, which is
simply defined by Id(x, x) = x.

3. Basic results on 2-uninorms with continuous underlying functions

Let us settle for this paper that if we say that a function is an n-uninorm we will suppose
that it possesses the n-neutral element {e1, . . . , en}z1,...,zn−1 . In this section we will focus
on 2-uninorms U2 : [0, 1]2 −→ [0, 1] such that T1,T2 and S1, S2 are continuous. First we
introduce several useful examples of 2-uninorms related to a 2-uninorm from Class 1,
i.e. such that U2(0, 1) = z1. Afterwards we will describe the structure of 2-uninorms with
continuous underlying functions.

Example 3.1: Uninorms with nilpotent (strict) underlying t-norm and t-conorm were
described in Fodor and De Baets (2012) and Li, Liu, and Fodor (2014). In (Mesiarová-
Zemánková 2017, Example 1,Example 2) it was shown that these uninorms are in fact
ordinal sums of semigroups defined on [0, e[ , {e} and ]e, 1] in the nilpotent case and on
{0}, ]0, e[ , {e}, ]e, 1[ , {1} in the strict case. The order of these semigroups then determines
the class of the corresponding uninorm. A similar construction can be used to construct
special examples of 2-uninorms related to a 2-uninorm U2 from the Class 1 which will be
used later for the characterization of 2-uninorms with continuous underlying functions.
Assume a 2-uninormU2

1 : [0, 1]
2 −→ [0, 1],U2

1 ∈ U2, such thatU2
1 (1, 0) = z1. ThenU2

1 is
isomorphic to a uninorm with continuous underlying functions on [0, z1]2 ([z1, 1]2) and
U2(x, y) = z1 for all x, y ∈ [0, 1] such that z1 ∈ [

x, y
]
.

In the case when T1 has no zero divisors then U2
1 is closed on ]0, 1]2 , i.e. U2

1 (x, y) ∈
]0, 1]2 for all x, y ∈ ]0, 1]2 , and we can define a function U2

2 : [0, 1]
2 −→ [0, 1] by

U2
2 (x, y) =

{
U2
1 (x, y) if x, y ∈ ]0, 1] ,

0 otherwise.

Then U2
2 is an ordinal sum of two semigroups G1 = (]0, 1] ,U2

1 ) and G2 = (0, Id), where
the order of semigroups in the ordinal sum construction is 2 < 1. ThereforeU2

2 is associa-
tive and commutative. Themonotonicity and the 2-neutral element ofU2

2 are easily verified
and thus we see that U2

2 is a 2-uninorm.
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Similarly, if S2 has no divisors of 1 then U2
1 is closed on [0, 1[2 and we can define a

function U2
3 : [0, 1]

2 −→ [0, 1] by

U2
3 (x, y) =

{
U2
1 (x, y) if x, y ∈ [0, 1[ ,

1 otherwise.

Then U2
3 is an ordinal sum of two semigroups G1 = ([0, 1[ ,U2

1 ) and G2 = (1, Id), where
the order of semigroups in the ordinal sum construction is 2 < 1. ThereforeU2

3 is associa-
tive and commutative. Themonotonicity and the 2-neutral element ofU2

3 are easily verified
and thus we see that U2

3 is a 2-uninorm.
Finally, if both T1 has no zero divisors and S2 has no divisors of 1 then we can define two

2-uninorms given as ordinal sums of G1 = (]0, 1[ ,U2
1 ), G2 = (0, Id) and G3 = (1, Id). To

keep the monotonicity for the order of the semigroups we need to have 2<1 and 3 < 1,
however, there are two possibilities: either 2 < 3, or 3 < 2. Then we obtain the following
two functions

U2
4 (x, y) =

⎧⎪⎨
⎪⎩
U2
1 (x, y) if x, y ∈ ]0, 1[ ,

0 if min(x, y) = 0,
1 otherwise,

and

U2
5 (x, y) =

⎧⎪⎨
⎪⎩
U2
1 (x, y) if x, y ∈ ]0, 1[ ,

1 if max(x, y) = 1,
0 otherwise.

Similarly as in the previous cases we can easily check thatU2
4 andU

2
5 are 2-uninormswhich

possess the same 2-neutral element as U2
1 . Observe that U

2
2 coincides with U2

1 on ]0, 1]2 ,
U2
3 coincides with U2

1 on [0, 1[2 , and U2
4 , U

2
5 coincide with U2

1 on ]0, 1[2 .

For any U2 ∈ U2 we know that U2 is isomorphic to a uninorm with continuous under-
lying functions on [0, z1]2 ([z1, 1]2). In Mesiarová-Zemánková (2018) the following result
was shown.

Lemma 3.2: Let U : [0, 1]2 −→ [0, 1] be a uninorm with continuous underlying functions.
If a ∈ [0, 1] is an idempotent point of U then U(a, x) ∈ {x, a} for all x ∈ [0, 1].

A similar result can be shown also for idempotent points of a 2-uninorm U2 ∈ U2,
however, here U2(a, x) ∈ {x, a, z1} for all x ∈ [0, 1].

Lemma 3.3: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. If a ∈ [0, 1] is an
idempotent point of U2 then U2(a, x) ∈ {x, a, z1} for all x ∈ [0, 1].

Proof: Let a ∈ [0, 1] be an idempotent point ofU2. If a = z1 thenU2(z1, x) ∈ {z1, x} for all
x ∈ [0, z1] ∪ [z1, 1] = [0, 1] follows from Lemma 3.2. Further we will assume that a < z1
as the casewhen a > z1 is analogous. Due to Lemma 3.2 there isU2(a, x) ∈ {a, x} for all x ∈
[0, z1] . Assume any y ∈ [z1, 1] . ThenU2(a, z1) ∈ {a, z1} andU2(y, z1) ∈ {y, z1}. Therefore
there are the following four possibilities:
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(i) If U2(a, z1) = z1 and U2(y, z1) = z1. Then the monotonicity of U2 gives us

z1 = U2(a, z1) ≤ U2(a, y) ≤ U2(z1, y) = z1

and therefore U2(a, y) = z1.
(ii) If U2(a, z1) = z1 and U2(y, z1) = y. Then

U2(a, y) = U2(a,U2(z1, y)) = U2(U2(a, z1), y) = U2(z1, y) = y.

(iii) If U2(a, z1) = a and U2(y, z1) = z1. Then

U2(a, y) = U2(U2(a, z1), y) = U2(a,U2(z1, y)) = U2(a, z1) = a.

(iv) If U2(a, z1) = a and U2(y, z1) = y. First suppose that U2(a, y) ≤ e2. Then

a = U2(a, z1) = U2(a,U2(e2, z1)) = U2(e2,U2(a, z1)) = U2(e2, a)

and therefore

a = U2(a, z1) ≤ U2(a, y) = U2(U2(a, a), y) = U2(a,U2(a, y)) ≤ U2(a, e2) = a,

i.e. U2(a, y) = a.

Now suppose that U2(a, y) > e2. Since U2(a, y) ≤ U2(z1, y) = y there is
U2(a, y) ≤ y. Suppose that U2(a, y) < y. Then since S2 is continuous there exists
a y1 ∈ [e2, 1] such that U2(y1,U2(a, y)) = y and we get

U2(a, y) = U2(a,U2(U2(a, y), y1)) = U2(U2(a, a),U2(y, y1))

= U2(U2(a, y), y1) = y.

Summarizing the four cases, for any y ∈ [z1, 1] we get U2(a, y) ∈ {a, y, z1}.

Therefore U2(a, x) ∈ {a, x, z1} for all x ∈ [0, 1]. �

Remark 3.4: Since for each x ∈ [0, z1] (x ∈ [z1, 1]) there is U2(x, z1) ∈ {x, z1} the mono-
tonicity of U2 implies that there exists an x0 ∈ [0, e1] and a y0 ∈ [e2, 1] such that
U2(x, z1) = x for all x < x0 and U2(x, z1) = z1 for all x0 < x ≤ z1, and U2(y, z1) = y for
all y > y0 and U2(y, z1) = z1 for all z1 ≤ y < y0. Note that if x0 < e1 (y0 > e2) then there
are possible both cases U2(x0, z1) = x0 as well as U2(x0, z1) = z1 (U2(y0, z1) = y0 as well
as U2(y0, z1) = z1).

Further, it is clear that x0 and y0 are idempotent points. Otherwise, if x0 is not an
idempotent point of U2 (and similarly for y0) due to the continuity of T1 there exists an
x1 ∈ [0, e1] such that x1 > x0 and U2(x1, x1) < x0. Then we get

z1 = U2(x1, z1) = U2(x1,U2(x1, z1)) = U2(U2(x1, x1), z1) = U2(x1, x1) < x0,

which is a contradiction.

Note that if for a 2-uninorm U2 there is x0 = 0, y0 = 1 and U2(x0, y0) = z1 we obtain
just the 2-uninorm U2

1 from Example 3.1.
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For the rest of this section we assume that x0 and y0 are defined as in Remark 3.4.
Since x0 (y0) is an idempotent point,U2 restricted to [x0, e1]2 (

[
e2, y0

]2) is isomorphic a
t-normT0 (t-conorm S0). The following result describes the case whenT0 has zero divisors
(S0 has divisors of 1).

Lemma 3.5: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. If there exist
x1, x2 ∈ ]x0, 1] such that U2(x1, x2) = x0 then U2(x0, z1) = z1. Similarly, if there exist
y1, y2 ∈ [

0, y0
[
such that U2(y1, y2) = y0 then U2(y0, z1) = z1.

Proof: We will show only the first part, as the second is analogous. If there exist x1, x2 ∈
]x0, 1] such that U2(x1, x2) = x0 then evidently x1 ≤ z1 and x2 ≤ z1 and

U2(x0, z1) = U2(U2(x1, x2), z1) = U2(x1,U2(x2, z1)) = U2(x1, z1) = z1.

�

Remark 3.6: Lemma 3.5 shows that if there exist x1, x2 ∈ ]x0, 1] such thatU2(x1, x2) = x0
and y1, y2 ∈ [

0, y0
[
such that U2(y1, y2) = y0 then U2 on

[
x0, y0

]2 is isomorphic to the
2-uninorm U2

1 from Example 3.1. If there exist x1, x2 ∈ ]x0, 1] such that U2(x1, x2) = x0
and U2 is closed on

[
0, y0

[2 then U2 on
[
x0, y0

]2 is isomorphic to U2
1 in the case when

U2(z1, y0) = z1 and it is isomorphic to U2
3 in the case when U2(z1, y0) = y0. If there exist

y1, y2 ∈ [
0, y0

[
such that U2(y1, y2) = y0 and U2 is closed on ]x0, 1]2 then U2 on

[
x0, y0

]2
is isomorphic to U2

1 in the case when U2(z1, x0) = z1 and it is isomorphic to U2
2 in the

case when U2(z1, x0) = x0. Finally, if U2 is closed on
]
x0, y0

[2 then U2 on
[
x0, y0

]2 is
isomorphic to one of the five 2-uninorms from Example 3.1 depending on the values of
U2(z1, y0),U2(z1, x0) and U2(x0, y0).

Since x0 and y0 are idempotent elements of U2, the monotonicity ensures that U2 is
closed on

[
x0, y0

]2 .
Now we are going to determine the structure ofU2 on ([0, x0[ ∪ ]

y0, 1
]
)2. We will show

that, similarly as in the case of uninorms with continuous underlying functions, U2 is
closed on ([0, x0[ ∪ {U2(x0, y0)} ∪ ]

y0, 1
]
)2.

Lemma 3.7: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. Assume an a ∈
[0, x0] and a b ∈ [

y0, 1
]
, where a and b are idempotent points of U2. Then U2 is closed on

([0, a] ∪ {z1} ∪ [b, 1])2.

Proof: The monotonicity implies thatU2 is closed on [0, a]2 as well as on [b, 1]2 . Further,
for all x ∈ [0, 1] there isU2(x, z1) ∈ {x, z1}. Due to Lemma 3.3 we haveU2(a, x) ∈ {a, x, z1}
and U2(b, x) ∈ {b, x, z1} for all x ∈ [0, a] ∪ {z1} ∪ [b, 1] . Thus, due to the commutativity,
we have to check only the value of U2(x, y) for x ∈ [0, a[ and y ∈ ]b, 1] . First assume that
U2(x, y) ≤ e1. Then

U2(x, y) = U2(U2(a, x), y) = U2(a,U2(x, y)) ≤ U2(a, e1) = a.

Similarly, ifU2(x, y) ≥ e2 thenU2(x, y) ≥ b. Finally assume that U2(x, y) ∈ ]e1, e2[ . Then

U2(x, y) = U2(U2(x, z1), y) = U2(U2(x, y), z1) = z1.

Summarizing, U2 is closed on ([0, a] ∪ {z1} ∪ [b, 1])2. �
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Lemma 3.8: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. Assume an a ∈
[0, x0] and a b ∈ [

y0, 1
]
,where a and b are idempotent points of U2. Then U2 is either closed

on ([0, a[ ∪ ]b, 1])2, or U2 is closed on ([0, a[ ∪ {U2(a, b)} ∪ ]b, 1])2.

Proof: IfU2 is not closed on ([0, a[ ∪ ]b, 1])2 then due to themonotonicity and Lemma 3.7
there exist an x1 ∈ [0, a[ and an x2 ∈ ]b, 1] such that U2(x1, x2) ∈ {a, b, z1}. We will show
that then U2(x1, x2) = U2(a, b). First suppose that U2(x1, x2) = a. Then

a = U2(x1, x2) = U2(U2(x1, a),U2(x2, b)) = U2(U2(a, b),U2(x1, x2))

= U2(U2(a, b), a) = U2(U2(a, a), b) = U2(a, b).

Analogously, if U2(x1, x2) = b then U2(a, b) = b. Finally assume that U2(x1, x2) = z1.
Then similarly as above we can show that U2(U2(a, b), z1) = z1. The associativity gives us
U2(a, z1) = z1 = U2(b, z1) and then the monotonicity of U2 implies U2(a, b) = z1. �

Corollary 3.9: LetU2 : [0, 1]2 −→ [0, 1] be a 2-uninormand letU2 ∈ U2.ThenU2 is either
closed on ([0, x0[ ∪ ]

y0, 1
]
)2, or U2 is closed on ([0, x0[ ∪ {U2(x0, y0)} ∪ ]

y0, 1
]
)2.

From the previous result we see that U2 is closed on ([0, x0[ ∪ {z1} ∪ ]
y0, 1

]
)2 if either

U2(x0, y0) = z1, or U2 is closed on ([0, x0[ ∪ ]
y0, 1

]
)2. For such a 2-uninorm we have the

following result.

Proposition 3.10: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. If U2 is
closed on ([0, x0[ ∪ {z1} ∪ ]

y0, 1
]
)2 thenU2 restricted to ([0, x0[ ∪ {z1} ∪ ]

y0, 1
]
)2 is isomor-

phic to a uninorm with continuous underlying functions.

Proof: It is enough to observe that if U2 is closed on ([0, x0[ ∪ {z1} ∪ ]
y0, 1

]
)2 then z1

is the neutral element of U2 restricted to ([0, x0[ ∪ {z1} ∪ ]
y0, 1

]
)2. Since U2 is continu-

ous on ([0, x0[)2 and on (
]
y0, 1

]
)2 we see that U2 restricted to ([0, x0[ ∪ {z1} ∪ ]

y0, 1
]
)2 is

isomorphic to a uninorm with continuous underlying functions. �

4. Characterization of 2-uninorms with continuous underlying functions

In this section we will again assume that x0 and y0 are defined as in Remark 3.4. We will
relate all 2-uninorms with continuous underlying functions to 2-uninorms from Class 1
(or their restrictions to open, or half-open unit square). Due to Lemma 3.3 there are three
possibilities: U2(x0, y0) = x0, U2(x0, y0) = y0 and U2(x0, y0) = z1, while U2(x0, y0) is the
annihilator of U2 on

[
x0, y0

]2 . Since the cases U2(x0, y0) = x0 and U2(x0, y0) = y0 are
analogous we will focus just on the cases whenU2(x0, y0) = z1 and whenU2(x0, y0) = x0.
In the case when U2(x0, y0) = z1 the structure of U2 is simple, however, in the case when
U2(x0, y0) = x0 (U2(x0, y0) = y0) the situation is much more complicated and we have to
divide it into more cases.

• Case 1: U2(x0, y0) = z1.

Theorem 4.1: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. If U2(x0, y0) =
z1 thenU2 is an ordinal sumof two semigroupsG1 = ([0, x0[ ∪ {z1} ∪ ]

y0, 1
]
,U2) andG2 =
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(
[
x0, y0

]
,U2), where G2 is isomorphic to U2

1 from Example 3.1 and G1 is isomorphic to a
uninorm with continuous underlying functions and the order of semigroups in the ordinal
sum construction is 1 < 2.

Proof: Proposition 3.10 shows thatG1 is isomorphic to a uninormwith continuous under-
lying functions. Since U2(x0, y0) = z1 it is easy to see that G2 is isomorphic to U2

1 from
Example 3.1. Further, z1 is the annihilator of U2 on

[
x0, y0

]2 and the neutral element of
U2 on ([0, x0[ ∪ {z1} ∪ ]

y0, 1
]
)2. Finally, if x ∈ [0, x0[ ∪ {z1} ∪ ]

y0, 1
]
and y ∈ [

x0, y0
]
we

get

U2(x, y) = U2(U2((x, z1), y) = U2(x,U2(z1, y)) = U2(x, z1) = x,

i.e. 1 < 2. �

The case whenU2 is closed on ([0, x0[ ∪ ]
y0, 1

]
)2 andU2(x0, y0) �= z1 will be discussed

later (see Remark 4.10).

• Case 2: U2(x0, y0) = x0.

Since the cases when U2(x0, y0) = x0 and when U2(x0, y0) = y0 are analogous we will
further focus just on the case when U2(x0, y0) = x0. In such a case the monotonicity
impliesU2(x0, z1) = x0. Therefore Lemma 3.5 implies thatU2 is closed on

]
x0, y0

]2 . Here
U2 restricted to

]
x0, y0

]2 is isomorphic to a 2-uninorm U2
1 restricted to ]0, 1]2 .

For the rest of the section let us denote

y1 = sup{y ∈ [
y0, 1

] | U2(x0, y) = x0}.
Then y1 ≥ y0 and similarly as for x0 and y0 in Remark 3.4 we can show that y1 is an idem-
potent point of U2. If y1 = y0 then U2(x0, y0) = x0 = U2(x0, y1) and if y1 > y0 we have
U2(x0, y1) ∈ {x0, z1, y1}.
Lemma 4.2: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. If y1 > y0 then
U2(x0, y1) ∈ {x0, y1} and U2(x0, y) = y for all y > y1.

Proof: We know that U2(x0, y1) ∈ {x0, z1, y1}. Assume that U2(x0, y1) = z1. Then

z1 = U2(x0, y1) = U2(U2(x0, x0), y1) = U2(x0,U2(x0, y1)) = U2(x0, z1) = x0,

which is a contradiction. Thus U2(x0, y1) ∈ {x0, y1}. Similarly we can show that
U2(x0, y) = y for all y > y1. �

Due to these facts we see that we have to distinguish three cases: when y1 = y0, when
y1 > y0 and U2(x0, y1) = x0 and when y1 > y0 and U2(x0, y1) = y1.

• Case 2a: U2(x0, y0) = x0, y1 = y0.

Proposition 4.3: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. If
U2(x0, y0) = x0 and U2(x0, y) = y for all y > y0 then U2 restricted to ([0, x0] ∪ ]

y0, 1
]
)2

is isomorphic to a uninorm with continuous underlying functions.

203



INTERNATIONAL JOURNAL OF GENERAL SYSTEMS 103

Proof: Due to Corollary 3.9U2 is closed on ([0, x0] ∪ ]
y0, 1

]
)2. Further,U2(x, x0) = x for

all x < x0 and U2(x0, y) = y for all y > y0 and therefore x0 is the neutral element of U2

on ([0, x0] ∪ ]
y0, 1

]
)2. Since U2 is continuous on [0, x0]2 and on

]
y0, 1

]2 we see that U2

restricted to ([0, x0] ∪ ]
y0, 1

]
)2 is isomorphic to a uninorm with continuous underlying

functions. �

Theorem 4.4: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. If U2(x0, y0) =
x0, U2(z1, y0) = z1 and U2(x0, y) = y for all y > y0 then U2 is an ordinal sum of two
semigroups G1 = ([0, x0] ∪ ]

y0, 1
]
,U2) and G2 = (

]
x0, y0

]
,U2), where G2 is isomorphic

to U2
1 from Example 3.1 restricted to ]0, 1]2 , G1 is isomorphic to a uninorm with continuous

underlying functions and the order of semigroups in the ordinal sum construction is 1 < 2.

Proof: Proposition 4.3 implies thatG1 is isomorphic to a uninormwith continuous under-
lying functions. Further, it is easy to see that G2 is isomorphic to U2

1 from Example 3.1
restricted to ]0, 1]2 . Finally, if x ∈ [0, x0] ∪ ]

y0, 1
]
and y ∈ ]

x0, y0
]
then

U2(x, y) = U2(U2(x, z1), y) = U2(x,U2(z1, y)) = U2(x, z1) = x,

i.e. 1 < 2. �

Theorem 4.5: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. If U2(x0, y0) =
x0,U2(z1, y0) = y0 and U2(x0, y) = y for all y > y0 then U2 is an ordinal sum of three semi-
groups G1 = ([0, x0] ∪ ]

y0, 1
]
,U2), G2 = (

]
x0, y0

[
,U2) and G3 = ({y0}, Id), where G1 is

isomorphic to a uninorm with continuous underlying functions, G2 is isomorphic to a 2-
uninorm U2

1 restricted to ]0, 1[
2 and the order of semigroups in the ordinal sum construction

is 1 < 3 < 2.

Proof: Proposition 4.3 implies thatG1 is isomorphic to a uninormwith continuous under-
lying functions. Further it is easy to see that G2 is isomorphic to U2

1 from Example 3.1
restricted to ]0, 1[2 . Finally, if x ∈ [0, x0] ∪ ]

y0, 1
]
and y ∈ ]

x0, y0
[
then

U2(x, y) = U2(U2(x, z1), y) = U2(x,U2(z1, y)) = U2(x, z1) = x,

i.e. 1 < 2. If x ∈ [0, x0] ∪ ]
y0, 1

]
then

U2(x, y0) = U2(U2(x, x0), y0) = U2(x,U2(x0, y0)) = U2(x, x0) = x,

i.e. 1<3 and if x ∈ ]
x0, y0

[
then

U2(x, y0) = U2(x,U2(z1, y0)) = U2(U2(x, z1), y0) = U2(z1, y0) = y0,

i.e. 3 < 2. �

• Case 2b: U2(x0, y0) = x0, y1 > y0,U2(x0, y1) = x0.

From now on we will assume that y1 > y0. Since y0 and y1 are idempotent points of
U2 Proposition 2.6 and the structure of continuous t-conorms imply that U2 restricted to
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]
y0, y1

[2 (]y0, y1]2) is isomorphic to a t-conorm restricted to ]0, 1[2 (]0, 1]2). Similarly, U2

restricted to
[
y0, y1

]2 is isomorphic to a t-conorm.
Since U2(x0, y) = y for all y > y1 in the case that U2(x0, y1) = x0 we can show the

following result.

Proposition 4.6: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. Assume
U2(x0, y0) = x0, y1 > y0 and U2(x0, y1) = x0. Then U2 restricted to ([0, x0] ∪ ]

y1, 1
]
)2 is

isomorphic to a uninorm with continuous underlying functions.

Proof: Due to Lemma 3.8 U2 is closed on ([0, x0] ∪ ]
y1, 1

]
)2. Further, U2(x, x0) = x for

all x < x0 and U2(x0, y) = y for all y > y1 and therefore x0 is the neutral element of U2

on ([0, x0] ∪ ]
y1, 1

]
)2. Since U2 is continuous on [0, x0]2 and on

]
y1, 1

]2 we see that U2

restricted to ([0, x0] ∪ ]
y1, 1

]
)2 is isomorphic to a uninorm with continuous underlying

functions. �

Theorem 4.7: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. Assume
U2(x0, y0) = x0, y1 > y0 and U2(x0, y1) = x0, U2(z1, y0) = z1. Then U2 is an ordi-
nal sum of three semigroups G1 = ([0, x0] ∪ ]

y1, 1
]
,U2), G2 = (

]
x0, y0

]
,U2) and G3 =

(
]
y0, y1

]
,U2), where G1 is isomorphic to a uninorm with continuous underlying functions,

G2 is isomorphic to a 2-uninorm U2
1 restricted to ]0, 1]

2 and G3 is isomorphic to a t-conorm
restricted to ]0, 1]2 . Moreover, the order of semigroups in the ordinal sum construction is
1 < 3 < 2.

Proof: Proposition 4.6 implies thatG1 is isomorphic to a uninormwith continuous under-
lying functions. Further it is easy to see that G2 is isomorphic to U2

1 from Example 3.1
restricted to ]0, 1]2 and from the previous we know that U2 on

]
y0, y1

]2 is isomorphic to a
t-conorm restricted to ]0, 1]2 .

Finally, if x ∈ [0, x0] ∪ ]
y1, 1

]
and y ∈ ]

x0, y0
]
then

U2(x, y) = U2(U2(x, z1), y) = U2(x,U2(z1, y)) = U2(x, z1) = x,

i.e. 1 < 2. If x ∈ [0, x0] ∪ ]
y1, 1

]
, y ∈ ]

y0, y1
]
then

U2(x, y) = U2(U2(x, x0), y) = U2(x,U2(x0, y)) = U2(x, x0) = x,

i.e. 1<3 and if x ∈ ]
x0, y0

]
and y ∈ ]

y0, y1
]
then

U2(x, y) = U2(x,U2(z1, y)) = U2(U2(x, z1), y) = U2(z1, y) = y,

i.e. 3 < 2. �

Theorem 4.8: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. Assume
U2(x0, y0) = x0, y1 > y0 and U2(x0, y1) = x0, U2(z1, y0) = y0. Then U2 is an ordi-
nal sum of three semigroups G1 = ([0, x0] ∪ ]

y1, 1
]
,U2), G2 = (

]
x0, y0

[
,U2) and G3 =

(
[
y0, y1

]
,U2), where G1 is isomorphic to a uninorm with continuous underlying functions,

G2 is isomorphic to a 2-uninorm U2
1 restricted to ]0, 1[

2 and G3 is isomorphic to a t-conorm.
Moreover, the order of semigroups in the ordinal sum construction is 1 < 3 < 2.
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Proof: Proposition 4.6 implies thatG1 is isomorphic to a uninormwith continuous under-
lying functions. Further it is easy to see that G2 is isomorphic to U2

1 from Example 3.1
restricted to ]0, 1[2 and from the previous we know that U2 on

[
y0, y1

]2 is isomorphic to a
t-conorm.

Finally, similarly as in the previous theorem we can show that 1 < 3 < 2. �

Now we will show that if U2(x0, y0) = x0 and U2 is not closed on ([0, x0[ ∪ ]
y0, 1

]
)2

then U2(y1, x0) = x0.

Lemma 4.9: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. Suppose that
U2(x0, y0) = x0 and U2 is not closed on ([0, x0[ ∪ ]

y0, 1
]
)2. Then U2(y1, x0) = x0.

Proof: SinceU2 is not closed on ([0, x0[ ∪ ]
y0, 1

]
)2 andU2(x0, y0) = x0 there exist an x1 ∈

[0, x0[ and an x2 ∈ ]
y0, 1

]
such thatU2(x1, x2) = x0. ThenU2(x1, x0) = x1. IfU2(x0, x2) =

x0 then we get

x0 = U2(x1, x2) = U2(U2(x1, x0), x2) = U2(x1,U2(x0, x2)) = U2(x1, x0) = x1,

which is a contradiction. Therefore x2 ≥ y1. Since y1 is an idempotent point of U2 and U2

on [e2, 1]2 is isomorphic to a continuous t-conorm we know that U2(y1, x2) = x2. Then
we get

x0 = U2(x1, x2) = U2(x1,U2(x2, y1)) = U2(U2(x1, x2), y1) = U2(x0, y1).

�

• Case 2c: U2(x0, y0) = x0, y1 > y0,U2(x0, y1) = y1.

To conclude our investigation of the structure of 2-uninorms with continuous underly-
ing functions we have to discuss the case is when y1 > y0 and U2(x0, y1) = y1.

Remark 4.10: Assume U2(x0, y0) = x0, y1 > y0 and U2(x0, y1) = y1. Due to Lemma 4.9
we know that in such a case U2 is closed on ([0, x0[ ∪ ]

y0, 1
]
)2. Since U2(x0, y1) = y1 the

point y1 behaves differently than the rest of the semigroup defined on
]
y0, y1

]
(
[
y0, y1

]
) and

therefore we cannot use the same construction as above. We define x1 = inf{x ∈ [0, x0] |
Un(y1, x) = y1} and we can continue like this by the induction: for n ∈ N we define

yn = sup{y ∈ [
yn−1, 1

] | Un(xn−1, y) = xn−1}
and

xn = inf{x ∈ [0, xn−1] | Un(yn, x) = yn}.
It can happen that yn0 = yn0−1 (and then xn0 = xn0−1) for some n0 ∈ N. In such a caseU2

is an ordinal sum of a semigroup isomorphic to a uninorm with continuous underlying
functions, of a semigroup isomorphic to a U2

1 from Example 3.1 (restricted to ]0, 1[2 , or
to ]0, 1]2) and a number of semigroups corresponding to continuous t-norms or continu-
ous t-conorms (possibly restricted to open, or half-open unit square). However, it is also
possible that (yi)i∈N ((xi)i∈N) is an increasing (decreasing) sequence. Therefore we see that
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the structure of U2 on ([0, x0] ∪ ]
y0, 1

]
)2 can be rather peculiar. That is why it need not to

be easy to express U2 as an ordinal sum of a uninorm, a 2-uninorm from Example 3.1 and
few other semigroups. Therefore we adopt a different approach.

Proposition 3.10 implies that U2 restricted to ([0, x0[ ∪ {z1} ∪ ]
y0, 1

]
)2 is isomorphic

to a uninorm with continuous underlying functions. Due to results from Mesiarová-
Zemánková (2017) we know that each uninorm with continuous underlying functions
is an ordinal sum of a countable number of semigroups related to representable uni-
norms, continuous Archimedean t-norms, continuous Archimedean t-conorms and inter-
nal uninorms (including the min and the max operator). At first we will suppose that
U2(y0, z1) = z1. ThenU2 is closed on

]
y0, y1

[2 . Further, Lemma3.8 shows thatU2 is closed
on ([0, x0[ ∪ [

y1, 1
]
)2. Therefore, since ([0, x0[ ∪ {z1} ∪ ]

y0, 1
]
)2 ∩ ([0, x0[ ∪ [

y1, 1
]
)2 =

([0, x0[ ∪ [
y1, 1

]
)2 we know that ([0, x0[ ∪ [

y1, 1
]
,U2) can be expressed as an ordinal

sum of a countable number of semigroups related to representable uninorms, continu-
ous Archimedean t-norms, continuous Archimedean t-conorms and internal uninorms
(including the min and the max operator).

For x ∈ [0, x0[ ∪ [
y1, 1

]
and y ∈ ]

y0, y1
[
there is

U2(x, y) = U2(U2(x, x0), y) = U2(x,U2(x0, y)) = U2(x, x0) = x.

SinceU2 is closed on ([0, x0[ ∪ ]
y0, 1

]
)2 we see that ([0, x0[ ∪ ]

y0, 1
]
,U2) can be expressed

as an ordinal sumofG1 = ([0, x0[ ∪ [
y1, 1

]
,U2) andG2 = (

]
y0, y1

[
,U2)with 1 < 2. Then

([0, x0] ∪ ]
y0, 1

]
,U2) is an ordinal sum ofG1,G2 andG3 = ({x0}, Id), with 1 < 3 < 2. We

get the following result.

Theorem 4.11: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. Assume
U2(x0, y0) = x0, y1 > y0 and U2(x0, y1) = y1, U2(z1, y0) = z1. Then U2 is an ordinal sum
of four semigroups G1 = ([0, x0[ ∪ [

y1, 1
]
,U2), G2 = (

]
y0, y1

[
,U2), G3 = ({x0}, Id) and

G4 = (
]
x0, y0

]
,U2), where G1 can be expressed as an ordinal sum of a countable number of

semigroups related to representable uninorms, continuous Archimedean t-norms, continuous
Archimedean t-conorms and internal uninorms, G2 is isomorphic to a restriction of a contin-
uous t-conorm to the open unit square and G4 is isomorphic to a 2-uninorm U2

1 restricted to
]0, 1]2 .Moreover, the order of semigroups in the ordinal sum construction is 1 < 3 < 2 < 4.

Let us note that U2 can be expressed also as an ordinal sum of three semigroups H1 =
([0, x0] ∪ [

y1, 1
]
,U2),H2 = (

]
y0, y1

[
,U2) and H3 = (

]
x0, y0

]
,U2), 1 < 2 < 3, where U2

restricted to ([0, x0] ∪ [
y1, 1

]
)2 is so-called generalized uninorm defined in Mesiarová-

Zemánková (2016), with the neutral element x0.
Similarly we can show the following result.

Theorem 4.12: Let U2 : [0, 1]2 −→ [0, 1] be a 2-uninorm and let U2 ∈ U2. Assume
U2(x0, y0) = x0, y1 > y0 and U2(x0, y1) = y1, U2(z1, y0) = y0. Then U2 is an ordinal sum
of four semigroups G1 = ([0, x0[ ∪ [

y1, 1
]
,U2), G2 = (

[
y0, y1

[
,U2), G3 = ({x0}, Id) and

G4 = (
]
x0, y0

[
,U2), where G1 can be expressed as an ordinal sum of a countable number

of semigroups related to representable uninorms, continuous Archimedean t-norms, contin-
uous Archimedean t-conorms and internal uninorms, G2 is isomorphic to a restriction of a
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Figure 1. A 2-uninorm with U2(x0, y0) = z1 (left) and with U2(x0, y0) = x0, y1 > y0, U2(x0, y1) = x0
(right). Ū1 (Ū2, S̄2) indicates that U2 is on the given area isomorphic to a restriction of U1 (U2, S2) to a
subinterval of [0, 1].

continuous t-conorm to [0, 1[2 and G4 is isomorphic to a 2-uninorm U2
1 restricted to ]0, 1[

2 .
Moreover, the order of semigroups in the ordinal sum construction is 1 < 3 < 2 < 4.

Since uninorms with continuous underlying functions were completely characterized,
the structure of any 2-uninorm with continuous underlying functions is described by one
of the Theorems 4.1, 4.4, 4.5, 4.7, 4.8, 4.11, 4.12 (or an analogous result in the case when
U2(x0, y0) = y0), see Figure 1.

Remark 4.13: Assume a 2-uninormU2 ∈ U2. If the underlying uninormU1 (U2) ofU2 is
disjunctive (conjunctive) then x0 = 0 (y0 = 1). Moreover, if the underlying t-norms and
t-conorm of U2 are Archimedean then x0 ∈ {0, e1} and y0 ∈ {e2, 1}.

Since for uni-nullnorms there is e2 = 1 in this case we obtain y0 = 1. Thus any uni-
nullnorm UN ∈ U2 is uniquely determined on ]x0, 1]2 and therefore its structure on
[0, 1]2 is uniquely determined by the structure of the underlying uninorm U1 (which has
continuous underlying functions). Therefore the structure of uni-nullnorms with con-
tinuous underlying functions follows from the structure of uninorms with continuous
underlying functions, see for example, Li, Liu, and Fodor (2014), Li and Liu (2016) and
Mesiarová-Zemánková (2017).

If we assume that underlying t-norms and t-conorm of UN are Archimedean we get
x0 ∈ {0, e1}. Note that since UN(z1, y0) = UN(z1, 1) = z1 there is UN(x0, y0) �= y0.

First assume that x0 = e1. Then UN(x0, z1) = UN(y0, z1) = z1 and the monotonicity
givesUN(x0, y0) = z1. Here the uninorm on ([0, x0[ ∪ {z1} ∪ ]

y0, 1
]
)2 reduces to a t-norm

on ([0, e1[ ∪ {z1})2. Since z1 is the annihilator ofUN on [e1, 1]2 and the neutral element of
UN on ([0, e1[ ∪ {z1})2, we see that in this case UN is an ordinal sum of a uni-nullnorm
from Class 1 acting on [e1, 1]2 (which is isomorphic to a nullnorm) and a (restricted) t-
norm acting on the interval [0, e1[2 (compare Sun, Wang, and Qu 2018, Theorem 4.1(i)).

Now assume that x0 = 0. If UN(x0, y0) = z1 then the uninorm on ([0, x0[ ∪ {z1} ∪]
y0, 1

]
)2 reduces to an operation on a single point {z1} andUN belongs to the Class 1. Here
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z1 is the annihilator ofUN. This case encompasses (Sun,Wang, andQu2018, Theorem4.1),
cases (ii), (iii), (iv) and (v).

If UN(x0, y0) = x0 then the uninorm on ([0, x0] ∪ ]
y0, 1

]
)2 reduces to an operation on

a single point {x0} and thus UN is an ordinal sum of a (restricted) uni-nullnorm from
Class 1 acting on ]0, 1]2 and a semigroup ({0}, Id). This case encompasses (Sun,Wang, and
Qu 2018, Theorem 4.1), cases (vi), (vii) and (viii).

5. n-uninorms with continuous underlying functions

In this section we will generalize the results from the previous sections for n-uninorms
with continuous underlying functions, where n ∈ N, n > 2.

5.1. Basic results on n-uninormswith continuous underlying functions

Recall that if Un : [0, 1]n −→ [0, 1] is an n-uninorm then Un restricted to
[
zi, zj

]2 for 0 ≤
i < j ≤ 1, where j−i = p is a p-uninorm.

Lemma 5.1: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If a ∈ [0, 1] is
an idempotent point of Un then Un(a, x) ∈ {x, a} ∪ {zi | zi ∈ ]min(a, x), max(a, x)[} for all
x ∈ [0, 1].

Proof: We will do the proof by the induction. By Lemmas 3.2 and 3.3 we know that for
a uninorm and a 2-uninorm the result holds. Assume n ∈ N, n > 2. We will suppose that
the result holds for all (n − 1)-uninorms. Let a ∈ [0, 1] be an idempotent point of Un. If
a = zn−1 then by Lemma 3.2 we know that Un(zn−1, x) = {zn−1, x} for all x ∈ [zn−1, 1]
and Un(zn−1, x) ∈ {x, zn−1} ∪ {zi | x < zi < zn−1} for x ∈ [0, zn−1] since the claim holds
for all (n − 1)-uninorms and Un restricted to [0, zn−1]2 is an (n − 1)-uninorm. Thus

Un(zn−1, x) ∈ {x, zn−1} ∪ {zi | zi ∈ ]min(zn−1, x), max(zn−1, x)[}

for all x ∈ [0, 1]. Nowwewill assume that a < zn−1 (the case when a > zn−1 is analogous).
Then Un(a, x) ∈ {x, a} ∪ {zi | zi ∈ ]min(a, x), max a, x[} for all x ∈ [0, zn−1] since the

claim holds for all (n − 1)-uninorms. Assume an x ∈ ]zn−1, 1] . Further we will discuss 6
possible cases.

Case 1: When Un(a, zn−1) = zn−1 and Un(x, zn−1) = zn−1. Then

zn−1 = Un(a, zn−1) ≤ Un(a, x) ≤ Un(zn−1, x) = zn−1.

Thus Un(a, x) = zn−1.
Case 2: When Un(a, zn−1) = zn−1 and Un(x, zn−1) = x. Then

Un(a, x) = Un(a,Un(zn−1, x)) = Un(Un(a, zn−1), x) = Un(zn−1, x) = x.

Case 3:WhenUn(a, zn−1) = zi, a < zi < zn−1, for some i ∈ {1, . . . , n − 2} andUn(x, zn−1)

= zn−1. Then

Un(zi, zn−1) = Un(Un(a, zn−1), zn−1) = Un(a,Un(zn−1, zn−1)) = Un(a, zn−1) = zi
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and

Un(x, zi) = Un(x,Un(zn−1, zi)) = Un(Un(x, zn−1), zi) = Un(zn−1, zi) = zi.

Further,Un(a, zi) = Un(a,Un(a, zn−1)) = Un(Un(a, a), zn−1) = Un(a, zn−1) = zi andwe
get

zi = Un(a, zi) ≤ Un(a, x) ≤ Un(zi, x) = zi,

i.e. Un(a, x) = zi.
Case 4: When Un(a, zn−1) = zi, a < zi < zn−1, for some i ∈ {1, . . . , n − 2} and

Un(x, zn−1) = x. Then similarly as in the previous case we have Un(zi, zn−1) = zi and
thus the monotonicity implies that Un(zi, zk) = zi for all k ∈ {i, . . . n − 1}. Moreover,
Un(a, zi) = zi. Further, either Un(x, zi) = x, or Un(x, zi) = zj for some j ∈ {i, . . . , n − 1}
since the claim holds for all (n − 1)-uninorms and i ≥ 1. If Un(x, zi) = zj then

zj = Un(x, zi) = Un(x,Un(zi, zi)) = Un(Un(x, zi), zi) = Un(zj, zi) = zi

and similarly as before the monotonicity implies Un(a, x) = zi.
If Un(x, zi) = x then we get

Un(a, x) = Un(a,Un(zi, x)) = Un(Un(a, zi), x) = Un(zi, x) = x.

Case 5: When Un(a, zn−1) = a and Un(x, zn−1) = zn−1. Then

Un(a, x) = Un(Un(a, zn−1), x) = Un(a,Un(zn−1, x)) = Un(a, zn−1) = a.

Case 6: When Un(a, zn−1) = a and Un(x, zn−1) = x.
If Un(a, x) ≤ en then Un(a, en) = Un(Un(a, zn−1), en) = Un(a,Un(zn−1, en)) =

Un(a, zn−1) = a implies

a = Un(a, zn−1) ≤ Un(a, x) = Un(Un(a, a), x) = Un(a,Un(a, x)) ≤ Un(a, en) = a,

i.e. Un(a, x) = a. Now suppose that Un(a, x) > en. Then Un(a, x) ≤ Un(zn−1, x) = x.
If Un(a, x) < x then since Sn is continuous there exists an x1 ∈ [en, 1] such that
Un(Un(a, x), x1) = x and we get

Un(a, x) = Un(a,Un(Un(a, x), x1)) = Un(Un(Un(a, a), x), x1) = Un(Un(a, x), x1) = x.

Thus in both cases Un(a, x) ∈ {a, x}.
If we summarize all cases we see that the claim holds for a ≤ zn−1 and for all x ∈ [0, 1]

and analogously for a > zn−1 and for all x ∈ [0, 1]. �

Assume an n-uninorm Un ∈ Un. Then Lemma 5.1 implies that for all i, j ∈
{0, 1, . . . , n}, i ≤ j, there is Un(zi, zj) = zk, were k ∈ {i, . . . , j}. Then the associativity
implies Un(zi, zk) = zk and Un(zj, zk) = zk.

Lemma 5.2: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Assume that
Un(z1, zn−1) = zk for some k ∈ {1, . . . , n − 1}. If for an x ∈ [0, z1] and a y ∈ [zn−1, 1] there
is Un(x, y) = zm for some m ∈ {1, . . . , n − 1} then m = k.
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Proof: If Un(z1, zn−1) = zk for some k ∈ {1, . . . , n − 1} then Un(z1, zk) = zk = Un(zn−1,
zk) and due to the monotonicity of Un we know that zk is the annihilator of Un on
[z1, zn−1]2 . Moreover,

zk = Un(z1, zk) = Un(Un(e1, z1), zk) = Un(e1,Un(z1, zk)) = Un(e1, zk)

and similarlyUn(en, zk) = zk. Thus themonotonicity impliesUn(e1, en) = zk. Assume that
for an x ∈ [0, z1] and a y ∈ [zn−1, 1] we have Un(x, y) = zm for some m ∈ {1, . . . , n − 1}.
Then

zm = Un(x, y) = Un(Un(x, e1),Un(en, y))

= Un(Un(x, y),Un(e1, en)) = Un(zm, zk) = zk,

i.e. zm = zk. �

From now on we will denote zk = Un(z1, zn−1), where k ∈ {1, . . . , n − 1}.

Lemma 5.3: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Then
Un(x, zk) ∈ {x, zk} for all x ∈ [0, 1].

Proof: Since zk is the annihilator of Un on [e1, en]2 the claim holds if x ∈ [e1, en] . Further
we will assume that x < e1 as the case when x > en is analogous. Then Un(x, zk) ∈ [x, zk]
since

x = Un(x, e1) ≤ Un(x, zk) ≤ Un(zk, zk) = zk.

First assume that Un(x, zk) ≥ e1. Then

z1 = Un(z1, e1) ≤ Un(z1,Un(zk, x)) = Un(Un(z1, zk), x) = Un(zk, x)

and

zk = Un(zk, z1) ≤ Un(zk,Un(zk, x)) = Un(Un(zk, zk), x) = Un(zk, x) ≤ zk,

i.e. Un(zk, x) = zk. Now assume Un(x, zk) < e1. If Un(x, zk) > x then since T1 is continu-
ous there exists an x1 ∈ [0, e1] such that Un(Un(x, zk), x1) = x. Then

Un(x, zk) = Un(Un(Un(x, zk), x1), zk) = Un(Un(x,Un(zk, zk)), x1)

= Un(Un(x, zk), x1) = x.

Therefore Un(x, zk) = x. �

Remark 5.4: Since Un(x, zk) ∈ {x, zk} for all x ∈ [0, 1] the monotonicity of Un implies
that there exists an x0 ∈ [0, e1] and a y0 ∈ [en, 1] such that Un(x, zk) = x for all
x < x0 and Un(x, zk) = zk for all x0 < x ≤ zk, and Un(y, zk) = y for all y > y0 and
Un(y, zk) = zk for all zk ≤ y < y0. Note that if x0 < e1 (y0 > en) then there are pos-
sible both cases Un(x0, zk) = x0 as well as Un(x0, zk) = zk (Un(y0, zk) = y0 as well as
Un(y0, zk) = zk).
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Further, similarly as in the case of 2-uninorms, it is clear that x0 and y0 are idempo-
tent points. If x ∈ ]x0, zk] and y ∈ [

zk, y0
[
then Un(x, zk) = zk and Un(y, zk) = zk and the

monotonicity of Un implies Un(x, y) = zk.

Since x0 (y0) is an idempotent point of Un, then Un restricted to [x0, e1]2 (
[
en, y0

]2)
is isomorphic a t-norm T0 (t-conorm S0). Similarly as in Lemma 3.5 we can show the
following result for the case when T0 has zero divisors (S0 has divisors of 1).

Lemma 5.5: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If there exist
x1, x2 ∈ ]x0, 1] such that Un(x1, x2) = x0 then Un(x0, zk) = zk. Similarly, if there exist
y1, y2 ∈ [

0, y0
[
such that Un(y1, y2) = y0 then Un(y0, zk) = zk.

We will say that an n-uninorm belongs to Class 1 if Un(0, 1) = zk for some k ∈
{1, . . . , n − 1}. Such an n-uninorm is a composition of a k-uninormwhich acts on [0, zk]2 ,
an (n − k)-uninorm which acts on [zk, 1]2 and Un(x, y) = zk for all (x, y) ∈ [0, zk] ×
[zk, 1] ∪ [zk, 1] × [0, zk] . In exactly the same way as in Example 3.1 we can define 5 types
of n-uninorms related to an n-uninorm from Class 1 which differ only on the boundary of
the unit square. Such n-uninorms will play a major role in the further investigation. Due
to the lack of space we do not introduce exact definitions (as they are analogous to these in
Example 3.1) and for the respective n-uninorm we will only mention that it coincides with
the n-uninorm from Class 1 (possibly restricted to open or half-open unit square).

As it was in the case of 2-uninorms also in the case of n-uninorms, Un restricted to[
x0, y0

]2 is isomorphic to one of such n-uninorms.
Further we will distinguish tree cases: either Un(x0, y0) = zk, or Un(x0, y0) = x0, or

Un(x0, y0) = y0. Since the case when Un(x0, y0) = y0 is analogous to the case when
Un(x0, y0) = x0, we will discuss only the first two cases. First we show that Un is closed
on ([0, x0[ ∪ {Un(x0, y0)} ∪ ]

y0, 1
]
)2.

Lemma 5.6: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Assume an a ∈
[0, x0] and a b ∈ [

y0, 1
]
, where a and b are idempotent points of Un. Then Un is closed on

([0, a] ∪ {zk} ∪ [b, 1])2.

Proof: The monotonicity implies thatU2 is closed on [0, a]2 as well as on [b, 1]2 . Further,
for all x ∈ [0, 1] there is U2(x, zk) ∈ {x, zk}. Since Un restricted to [0, z1]2 is a uninorm
with continuous underlying functions Lemma 3.2 implies Un(a, x) ∈ {a, x} for x ∈ [0, a] .
Similarly Un(b, y) ∈ {b, y} for y ∈ [0, b] . Assume y ∈ [0, b] . Then

Un(a, y) = Un(Un(a, e1),Un(y, en)) = Un(Un(a, y), zk)

and therefore ifUn(a, y) = zi for some i �= kwe get zi = Un(zi, zk) = zk, which is a contra-
diction. Thus Un(a, x) ∈ {a, x, zk} for all x ∈ [0, a] ∪ {zk} ∪ [b, 1] and similarly Un(b, x) ∈
{b, x, zk} for all x ∈ [0, a] ∪ {zk} ∪ [b, 1] . Due to the commutativity, what remains is to
check the value of Un(x, y) for x ∈ [0, a[ and y ∈ ]b, 1] .

First assume that Un(x, y) ≤ e1. Then

Un(x, y) = Un(Un(a, x), y) = Un(a,Un(x, y)) ≤ Un(a, e1) = a.
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Similarly, ifUn(x, y) ≥ en thenUn(x, y) ≥ b. Finally assume thatUn(x, y) ∈ ]e1, en[ . Then

Un(x, y) = Un(Un(x, zk), y) = Un(Un(x, y), zk) = zk.

Summarizing, Un is closed on ([0, a] ∪ {zk} ∪ [b, 1])2. �

Similarly as in Lemma 3.8 we can show the following result.

Lemma 5.7: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Assume an a ∈
[0, x0] and a b ∈ [

y0, 1
]
,where a and b are idempotent points of Un. Then Un is either closed

on ([0, a[ ∪ ]b, 1])2, or Un is closed on ([0, a[ ∪ {Un(a, b)} ∪ ]b, 1])2.

Corollary 5.8: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Then Un is
either closed on ([0, x0[ ∪ ]

y0, 1
]
)2, or Un is closed on ([0, x0[ ∪ {Un(x0, y0)} ∪ ]

y0, 1
]
)2.

Proposition 5.9: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If Un

is closed on ([0, x0[ ∪ {zk} ∪ ]
y0, 1

]
)2 then Un restricted to ([0, x0[ ∪ {zk} ∪ ]

y0, 1
]
)2 is

isomorphic to a uninorm with continuous underlying functions.

The proof is analogous to the proof of Proposition 3.10.

5.2. Characterization of n-uninormswith continuous underlying functions

In this section we will suppose that x0 and y0 are defined as in Remark 5.4.
Due to Lemma 5.1 there are three possible cases: either Un(x0, y0) = zk for some k ∈

{1, . . . , n − 1}, orUn(x0, y0) = x0, orUn(x0, y0) = y0. Since the casewhenUn(x0, y0) = x0
and Un(x0, y0) = y0 are analogous we will focus only on the cases when Un(x0, y0) = zk
and whenUn(x0, y0) = x0. The following results are analogous to that for 2-uninorms and
therefore we introduce them without proofs.

• Case 1: Un(x0, y0) = zk.

Theorem 5.10: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If
Un(x0, y0) = zk then Un is an ordinal sum of two semigroups G1 = ([0, x0[ ∪ {zk} ∪]
y0, 1

]
,Un) and G2 = (

[
x0, y0

]
,Un), where G2 is isomorphic to an n-uninorm from Class 1

andG1 is isomorphic to a uninormwith continuous underlying functions.Moreover, the order
of semigroups in the ordinal sum construction is 1 < 2.

• Case 2: Un(x0, y0) = x0.

Further we will assume that Un(x0, y0) = x0. Let us denote

y1 = sup{y ∈ [
y0, 1

] | Un(x0, y) = x0}.
Then y1 ≥ y0 and we can easily show that y1 is an idempotent point ofUn. For y > y0 there
is Un(x0, y) ∈ {y, zk, x0} and if Un(y, x0) = zk then

zk = Un(y, x0) = Un(y,Un(x0, x0)) = Un(Un(y, x0), x0) = Un(zk, x0) = x0,

which is a contradiction. Thus Un(x0, y1) ∈ {x0, y1} and Un(x0, y) = y for all y > y1.
Therefore in the following we will distinguish three cases: when y1 = y0, when y1 > y0
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and Un(x0, y1) = x0 and when y1 > y0 and Un(x0, y1) = y1. We obtain the following
results.

• Case 2a: Un(x0, y0) = x0, y1 = y0.

Theorem 5.11: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If
Un(x0, y0) = x0, Un(zk, y0) = zk and Un(x0, y) = y for all y > y0 then Un is an ordinal
sum of two semigroups G1 = ([0, x0] ∪ ]

y0, 1
]
,Un) and G2 = (

]
x0, y0

]
,U2), where G2 is

isomorphic to an n-uninorm from Class 1 restricted to ]0, 1]2 and G1 is isomorphic to a uni-
norm with continuous underlying functions. Moreover, the order of semigroups in the ordinal
sum construction is 1 < 2.

Theorem 5.12: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If
Un(x0, y0) = x0,Un(zk, y0) = y0 andUn(x0, y) = y for all y > y0 thenUn is an ordinal sum
of three semigroups G1 = ([0, x0] ∪ ]

y0, 1
]
,Un), G2 = (

]
x0, y0

[
,Un) and G3 = ({y0}, Id),

where G1 is isomorphic to a uninormwith continuous underlying functions and G2 is isomor-
phic to an n-uninorm from Class 1 restricted to ]0, 1[2 .Moreover, the order of semigroups in
the ordinal sum construction is 1 < 3 < 2.

• Case 2b: Un(x0, y0) = x0, y1 > y0,Un(x0, y1) = x0.

Theorem 5.13: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Assume
Un(x0, y0) = x0, y1 > y0 and Un(x0, y1) = x0, Un(zk, y0) = zk. Then Un is an ordi-
nal sum of three semigroups G1 = ([0, x0] ∪ ]

y1, 1
]
,Un), G2 = (

]
x0, y0

]
,Un) and G3 =

(
]
y0, y1

]
,Un), where G1 is isomorphic to a uninorm with continuous underlying functions,

G2 is isomorphic to an n-uninorm from Class 1 restricted to ]0, 1]2 and G3 is isomorphic
to a t-conorm restricted to ]0, 1]2 . Moreover, the order of semigroups in the ordinal sum
construction is 1 < 3 < 2.

Theorem 5.14: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Assume
Un(x0, y0) = x0, y1 > y0 and Un(x0, y1) = x0, Un(zk, y0) = y0. Then Un is an ordi-
nal sum of three semigroups G1 = ([0, x0] ∪ ]

y1, 1
]
,Un), G2 = (

]
x0, y0

[
,Un) and G3 =

(
[
y0, y1

]
,Un), where G1 is isomorphic to a uninorm with continuous underlying functions,

G2 is isomorphic to an n-uninorm from Class 1 restricted to ]0, 1[2 and G3 is isomorphic to
a t-conorm. Moreover, the order of semigroups in the ordinal sum construction is 1 < 3 < 2.

• Case 2c: Un(x0, y0) = x0, y1 > y0,Un(x0, y1) = y1.

Similarly as in the case of 2-uninorms if Un(x0, y0) = x0, y1 > y0 and Un(x0, y1) =
y1 then the structure of Un on ([0, x0] ∪ ]

y0, 1
]
)2 can be rather peculiar. However, it

is possible to show that Un on ([0, x0] ∪ ]
y0, 1

]
)2 can be expressed as an ordinal sum

of semigroups G1 = ([0, x0[ ∪ [
y1, 1

]
,Un), G2 = (

]
y0, y1

[
,Un) and G3 = ({x0}, Id), with

1 < 3 < 2, where Un on
]
y0, y1

[2 is isomorphic to a t-conorm restricted to ]0, 1[2 . More-
over, G1 can be expressed as an ordinal sum of a countable number of semigroups related
to representable uninorms, continuous Archimedean t-norms, continuous Archimedean
t-conorms and internal uninorms (including the min and the max operator). However, y1
need not to be the neutral element of G1.
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Theorem 5.15: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Assume
Un(x0, y0) = x0, y1 > y0 and Un(x0, y1) = y1, Un(zk, y0) = zk. Then Un is an ordinal sum
of four semigroups G1 = ([0, x0[ ∪ [

y1, 1
]
,Un), G2 = (

]
y0, y1

[
,Un), G3 = ({x0}, Id) and

G4 = (
]
x0, y0

]
,Un), where G1 can be expressed as an ordinal sum of a countable number of

semigroups related to representable uninorms, continuous Archimedean t-norms, continuous
Archimedean t-conorms and internal uninorms, G2 is isomorphic to a restriction of a contin-
uous t-conorm to the open unit square and G4 is isomorphic to an n-uninorm from Class 1
restricted to ]0, 1]2 . Moreover, the order of semigroups in the ordinal sum construction is
1 < 3 < 2 < 4.

Theorem 5.16: Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Assume
Un(x0, y0) = x0, y1 > y0 and Un(x0, y1) = y1, Un(zk, y0) = y0. Then Un is an ordinal sum
of four semigroups G1 = ([0, x0[ ∪ [

y1, 1
]
,Un), G2 = (

[
y0, y1

[
,Un), G3 = ({x0}, Id) and

G4 = (
]
x0, y0

[
,Un), where G1 can be expressed as an ordinal sum of a countable number of

semigroups related to representable uninorms, continuous Archimedean t-norms, continuous
Archimedean t-conorms and internal uninorms, G2 is isomorphic to a restriction of a con-
tinuous t-conorm to [0, 1[2 and G4 is isomorphic to an n-uninorm from Class 1 restricted to
]0, 1[2 .Moreover, the order of semigroups in the ordinal sum construction is 1 < 3 < 2 < 4.

6. Conclusions

We have studied n-uninorms with continuous underlying t-norms and t-conorms and we
have shown that each n-uninorm with continuous underlying functions can be expressed
as an ordinal sum of a uninorm with continuous underlying functions (possibly also
of a countable number of semigroups related to representable uninorms, continuous
Archimedean t-norms, continuous Archimedean t-conorms and internal uninorms) and
an n-uninorm such that Un(0, 1) = zk for k ∈ {1, . . . , n − 1} (possibly restricted to open
or half-open unit square ]0, 1[2 , [0, 1[2 , ]0, 1]2).

In the future work, we would like to study characterizing functions of n-uninorms with
continuous underlying functions and their relation to the points of discontinuity of such an
n-uninorm.Wewould also like to study the decomposition of n-uninorms via the z-ordinal
sum construction into Archimedean and idempotent semigroups.
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Characterizing functions of n-uninorms with
continuous underlying functions

Andrea Mesiarová-Zemánková
Mathematical Institute, Slovak Academy of Sciences

Bratislava, SLOVAKIA
zemankova@mat.savba.sk

Abstract—The characterizing set-valued functions were in-
troduced for uninorms with continuous underlying functions
and these set-valued functions were useful for the complete
characterization of such uninorms. In this work we study the
characterizing functions of n-uninorms with continuous under-
lying t-norms and t-conorms. We will show that an n-uninorm
with continuous underlying functions possesses n characterizing
set-valued functions, where the graphs of these characterizing
set-valued functions cover the set of all points of discontinuity
of the respective n-uninorm. Moreover, for i = 1, . . . , n, the i-th
characterizing set-valued function divides the unit square into
the two sets, where below the graph of the i-th characterizing
set-valued function the n-uninorm attains values smaller than
the local neutral element ei and above the graph of the i-th
characterizing set-valued function the n-uninorm attains values
greater than the local neutral element ei.

Index Terms—n-uninorm, uninorm, representable uninorm, t-
norm, t-conorm, nullnorm

I. INTRODUCTION

The uninorm operators generalize both the t-norm and the
t-conorm operators and they can be used to model bipolar
behaviour (see [1], [2], [3], [4], [5]). The uninorms with con-
tinuous underlying t-norm and t-conorm were in the center of
the interest for a long time and their complete characterization
was given in [6], [7]. In [6] it was shown that each uninorm
with continuous underlying functions can be decomposed into
an ordinal sum of a countable number of semigroups related
to representable uninorms, continuous Archimedean t-norms,
continuous Archimedean t-conorms and internal uninorms
(including the min and the max operator). In [7] it was shown
that the set of all points of discontinuity of a uninorm with
continuous underlying functions is a subset of the graph of the
characterizing set-valued function of such a uninorm. Note that
the notion of the characterizing set-valued function is closely
connected with the non-increasing function from [8] which
characterizes an idempotent uninorm.

Another possible generalization of t-norms and t-conorms
are nullnorms (also called t-operators) [9], [11], [12], which
consist of a t-conorm and a t-norm which are glued together
by an annihilator a ∈ ]0, 1[ .

The above generalizations bring together t-norms and t-
conorms. In the second step a notion that brings together
uninorms and nullnorms was introduced by Akella [13]. These
special aggregation functions are called n-uninorms and each
n-uninorm possesses n local neutral elements. Note that each
n-uninorm has a block structure, where the blocks around

the main diagonal consist of t-norms, t-conorms, uninorms
and nullnorms. Therefore, similarly as in the case of the
ordinal sum construction, in applications we can assume
different uninorms on distinct areas separated by division
points z1, . . . , zn−1. The class of n-uninorms is interesting
for theoretical studies, as well as for applications. Recall for
example the study of the distributivity [27], modularity condi-
tions [28], ordering [22] and applications in neural networks
[10]. The description of the basic structure of n-uninorms can
be found in [13], [14].

The idempotent n-uninorms were discussed in [15] where it
was shown that each idempotent n-uninorm can be expressed
as an ordinal sum of an idempotent uninorm (possibly also
of a countable number of idempotent semigroups with opera-
tions min and max) and an idempotent n-uninorm such that
Un(0, 1) = zk (possibly restricted to ]0, 1[

2
, or [0, 1[

2
, or

]0, 1]
2) for some k ∈ {1, . . . , n − 1}. Similar results were

shown in [16] for n-uninorms with continuous underlying
functions.

Since the structure of uninorms with continuous underlying
functions was described using the notion of the characterizing
set-valued function, we would like to do the same also for the
set of n-uninorms. In this paper we want to show that each
n-uninorm possesses n characterizing set-valued functions
which have similar properties as the characterizing set-valued
function of a uninorm with continuous underlying functions,
and the i-th characterizing set-valued function is connected
to the i-th local neutral element. Similarly as in the case of
uninorms with continuous underlying functions, in the follow-
up paper we would like to describe the decomposition of
n-uninorms with continuous underlying functions into irre-
ducible semigroups using the ordinal sum and the z-ordinal
sum construction (see [15]).

The paper is organized as follows. In Section II we will
recall all necessary basic notions and results. We introduce
the characterizing (set-valued) functions for n-uninorms and
show some basic results in Section III. In Sections IV we
show that graphs of these characterizing set-valued functions
cover the set of all points of discontinuity of the corresponding
n-uninorm and that an n-uninorm which is continuous in all
points that are not covered by the graphs of the characterizing
set-valued functions have continuous underlying functions
whenever Un is in each point (x0, y0) ∈ [0, 1]2, which is
covered by exactly one characterizing set-valued function,
either right-continuous, or left-continuous (or continuous). We
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give our conclusions in Section V.

II. BASIC NOTIONS AND RESULTS

Let us now recall all necessary basic notions.
A triangular norm is a function T : [0, 1]2 −→ [0, 1] which

is commutative, associative, non-decreasing in both variables
and 1 is its neutral element. Dual functions to t-norms are t-
conorms. A triangular conorm is a function S : [0, 1]2 −→
[0, 1] which is commutative, associative, non-decreasing in
both variables and 0 is its neutral element.

Each continuous t-norm (t-conorm) is equal to an ordi-
nal sum (see [17]) of continuous Archimedean t-norms (t-
conorms). Note that a continuous t-norm (t-conorm) is Archi-
medean if and only if it has only trivial idempotent points 0
and 1. A continuous Archimedean t-norm T (t-conorm S) is
either strict, i.e., strictly increasing on ]0, 1]

2 (on [0, 1[
2), or

nilpotent, i.e., there exists (x, y) ∈ ]0, 1[
2 such that T (x, y) =

0 (S(x, y) = 1). Moreover, each continuous Archimedean
t-norm (t-conorm) has a continuous additive generator, and
an additive generator of an Archimedean continuous t-norm
T (t-conorm S) is uniquely determined up to a positive
multiplicative constant. More details on t-norms and t-conorms
can be found in [1], [2].

A uninorm (introduced in [3]) is a function U : [0, 1]2 −→
[0, 1] which is commutative, associative, non-decreasing in
both variables and have a neutral element e ∈ [0, 1] (see
also [4]). For each uninorm the value U(1, 0) ∈ {0, 1} is the
annihilator of U. A uninorm is called conjunctive (disjunctive)
if U(1, 0) = 0 (U(1, 0) = 1).

For each uninorm U with the neutral element e ∈ [0, 1],
the restriction of U to [0, e]

2 is a t-norm on [0, e]
2
, i.e., a

linear transformation of some t-norm TU on [0, 1]2 and the
restriction of U to [e, 1]

2 is a t-conorm on [e, 1]
2
, i.e., a linear

transformation of some t-conorm SU on [0, 1]2. Moreover,
min(x, y) ≤ U(x, y) ≤ max(x, y) for all (x, y) ∈ [0, e] ×
[e, 1] ∪ [e, 1] × [0, e] . We will denote the set of all uninorms
U such that TU and SU are continuous by U .

Similarly as in the case of t-norms and t-conorms we can
construct uninorms using additive generators (see [4]). Uni-
norms that are generated by a continuous, strictly increasing
additive generator are called representable.

Proposition II.1 ([18])
Let U : [0, 1]2 −→ [0, 1] be a uninorm continuous everywhere
on the unit square except of the two points (0, 1) and (1, 0).
Then U is representable.

A uninorm U : [0, 1]2 −→ [0, 1] is called internal if
U(x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2. Further, U is
called locally internal on A(e) if U is internal on A(e) =
[0, e] × [e, 1] ∪ [e, 1] × [0, e] . More results on internal and
locally internal uninorms can be found in [8], [19], [20], [21],
[24].

Note that if a uninorm U is internal then it is also idempo-
tent, i.e., U(x, x) = x for all x ∈ [0, 1], and vice-versa. Let us
recall the basic result from [8] that characterizes idempotent
uninorms.

Theorem II.2
Let U : [0, 1]2 −→ [0, 1] be a binary function. Then U is an
idempotent uninorm with the neutral element e ∈ ]0, 1[ if and
only if there exists a non-increasing function g : [0, 1] −→
[0, 1], symmetric with respect to the main diagonal, with g(e) =
e, such that

U(x, y) =





min(x, y) if y < g(x) or (y = g(x)

and x < g(g(x))),

max(x, y) if y > g(x) or (y = g(x)

and x > g(g(x))),

x or y if y = g(x) and x = g(g(x)),

being commutative in the points (x, y) such that y = g(x) with
x = g(g(x)).

Note that the graph of the function g from Theorem II.2 is
a subset of the graph of the characterizing set-valued function
of an idempotent uninorm (for more details see [7], [25]).
Therefore the completed graph of the function g divides the
idempotent uninorm U into two parts: below the completed
graph of g we have U(x, y) = min(x, y), i.e., U(x, y) <
e, and above the completed graph of g there is U(x, y) =
max(x, y), i.e., U(x, y) > e.

Next we will recall the definition of a set-valued function
from [7]. Note that P(X) in the following definition denotes
the power set of X.

Definition II.3
A mapping p : [0, 1] −→ P([0, 1]) is called a set-valued
function on [0, 1]. Assuming the standard order on [0, 1], a
set-valued function p is called

(i) non-increasing if for all x1, x2 ∈ [0, 1], x1 < x2, we
have y1 ≥ y2 for all y1 ∈ p(x1) and all y2 ∈ p(x2), i.e.,
sup p(x2) ≤ inf p(x1) and thus p(x1) and p(x2) intersect
in, at most, a single point,

(ii) symmetric if for all x, y ∈ [0, 1] it holds y ∈ p(x) if and
only if x ∈ p(y),

(iii) u-surjective if for all y ∈ [0, 1] there exists an x ∈ [0, 1]
such that y ∈ p(x).

The graph of a set-valued function p will be denoted by G(p),
i.e., for x, y ∈ [0, 1] there is (x, y) ∈ G(p) if and only if
y ∈ p(x).

Lemma II.4 ([7])
A symmetric set-valued function p : [0, 1] −→ P([0, 1]) is u-
surjective if and only if we have p(x) 6= ∅ for all x ∈ [0, 1].

The graph of a symmetric, u-surjective, non-increasing
set-valued function p : [0, 1] −→ P([0, 1]) is a connected
bounded curve (i.e., a connected bounded set with no interior)
containing points (0, 1) and (1, 0) (see [7]).

The following is the definition of a nullnorm [9]. Note that
t-operators were independently defined in [12] and in [11] it
was shown that t-operators and nullnorms coincide.

Definition II.5
A binary function V : [0, 1]2 −→ [0, 1] is called a nullnorm if
it is commutative, associative, non-decreasing in each variable
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and has an annihilator z ∈ [0, 1] such that V (0, x) = x for all
x ≤ z and V (1, x) = x for all x ≥ z.

If z = 0 (z = 1) then V is a t-norm (t-conorm). Note that
for a commutative, associative and non-decreasing function
F : [0, 1]2 −→ [0, 1] the value F (0, 1) is always an annihilator
of F. Thus for a nullnorm z = V (0, 1).

Now let us recall the definition of an n-uninorm (see [13]).

Definition II.6
Assume an n ∈ N \ {1}. Let V : [0, 1]2 −→ [0, 1] be a com-
mutative binary function. Then {e1, . . . , en}z1,...,zn−1

is called
an n-neutral element of V if for 0 = z0 < z1 < · · · < zn = 1
and ei ∈ [zi−1, zi] , i = 1, . . . , n, we have V (ei, x) = x for
all x ∈ [zi−1, zi] .

Definition II.7
A binary function Un : [0, 1]2 −→ [0, 1] is an n-uninorm if it
is associative, non-decreasing in each variable, commutative
and has an n-neutral element {e1, . . . , en}z1,...,zn−1

.

The basic structure of n-uninorms was described by Akella
in [13] and the characterization of the main five classes of
2-uninorms was given in [14].

Each n-uninorm has the following building blocks around
the main diagonal.

Proposition II.8
Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm with the n-neutral
element {e1, . . . , en}z1,...,zn−1

. Then
(i) Un restricted to [zi−1, ei]

2
, for i = 1, . . . , n, is isomor-

phic to a t-norm. We will denote this t-norm by Ti.
(ii) Un restricted to [ei, zi]

2 for i = 1, . . . , n, is isomorphic to
a t-conorm. We will denote this t-conorm by Si.

(iii) Un restricted to [zi−1, zi]
2 for i = 1, . . . , n, is isomorphic

to a uninorm. We will denote this uninorm by Ui.

(iv) Un restricted to [ei, ei+1]
2 for i = 1, . . . , n − 1, is

isomorphic to a nullnorm. We will denote this nullnorm
by Vi.

(v) Un restricted to [zi, zj ]
2 for i, j ∈ {0, 1, . . . , n}, i < j, is

isomorphic to a (j − i)-uninorm.

For n ∈ N we will denote the set of all n-uninorms Un

such that T1, . . . , Tn and S1, . . . , Sn are continuous by Un.

III. CHARACTERIZING FUNCTIONS FOR n-UNINORMS
WITH CONTINUOUS UNDERLYING FUNCTIONS

From now on, if we say that a function is an n-uninorm
we will suppose that it possesses the n-neutral element
{e1, . . . , en}z1,...,zn−1

. Observe that it can happen that ei =
ei+1 for some i ∈ {1, . . . , n − 1}. However, in such a case
ei = zi = ei+1 and thus ei is the neutral element of Un on
[zi−1, zi+1]

2 and the nullnorm around point zi is degenerate to
just one point. Here Un is in fact an (n− 1)-uninorm and we
can drop ei, zi from the n-neutral element. Therefore in this
paper we will suppose ei 6= ei+1 for all i ∈ {1, . . . , n− 1}.

The notion of the characterizing set-valued function can
be approached from the two sides. On one hand, the notion
of the characterizing set-valued function was constructed to

cover the set of all points of discontinuity of a uninorm. On
the other hand, the non-increasing function g from Theorem
II.2 for idempotent uninorms was constructed to separate the
area where the uninorm is equal to the minimum operator
and where it is equal to the maximum operator. It is perhaps
not a surprise that these two functions coincide in that sense
that the graph of the non-increasing function g is a subset
of the graph of the characterizing set-valued function of an
idempotent uninorm. However, the non-increasing function g
contains more information since for points x ∈ [0, 1], for
which the functional value of the characterizing set-valued
function is a set which contains more than one element, one
cannot see where exactly the cut U(x, ·) is discontinuous,
i.e., where the change from the minimum to the maximum
operator occurs. However, the non-increasing function g is
defined merely for idempotent uninorms. To keep as much
information as possible we can easily define g for all uninorms
with continuous underlying functions. Here instead of change
from the minimum to the maximum operator we will look
for a change from values smaller than the neutral element e
to the values greater than the neutral element e. A similar
approach can be adopted also for n-uninorms from Un. In
order to keep as much information as possible we will use
both notions, the characterizing set-valued function and the
non-increasing function g which will be simply called the
characterizing function.

However, there is a small difference. While in the case of
uninorms for each x ∈ [0, 1] there exists at most one y ∈ [0, 1]
such that U(x, y) = e, in the case of n-uninorms this need
not be valid in the case when ei = zi−1, or ei = zi for some
i ∈ {1, . . . , n}. Assume for example that ei = zi for some
i ∈ {0, . . . , n}. Then Un(zi, zi) = ei = Un(zi, ei+1).

Example III.1
Assume a 2-uninorm U2

1 : [0, 1]2 −→ [0, 1] with the 2-neutral
element { 12 , 34} 1

2
given by

U2
1 (x, y) =





min(x, y) if min(x, y) < 1
2 ,

max( 1
2 , x+ y − 3

4 ) if x, y ∈
[
1
2 ,

3
4

]
,

max(x, y) otherwise.

Then e1 = z1 = 1
2 and for all (x, y) ∈

[
1
2 ,

3
4

]2
with x +

y ≤ 5
4 we have U2

1 (x, y) = e1. Note that U2
1 (see Figure 1)

is both the 2-uninorm and a uninorm since the local neutral
element 3

4 is also the global neutral element. A dual case is
a 2-uninorm U2

2 : [0, 1]2 −→ [0, 1] with the 2-neutral element
{ 14 , 12} 1

2
given by

U2
2 (x, y) =





max(x, y) if max(x, y) > 1
2 ,

min( 1
2 , x+ y − 1

4 ) if x, y ∈
[
1
4 ,

1
2

]
,

min(x, y) otherwise.

Here e2 = z1 = 1
2 and for all (x, y) ∈

[
1
4 ,

1
2

]2
with x+y ≥ 3

4
we have U2

1 (x, y) = e2. Note that U2
2 (see Figure 1) is both

the 2-uninorm and a uninorm since the local neutral element
1
4 is also the global neutral element.

The previous example shows that in the case of n-uninorms
where ei = zj for some i, j ∈ {0, . . . , n} it is not possible
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Fig. 1. The 2-uninorms U2
1 (left) and U2

2 (right) from Example III.1.

to define the i-th characterizing set-valued function in such
a way that below its graph the n-uninorm will attain values
smaller than ei and above it will attain the values greater than
ei. However, in the following we will show that if ei = zj for
some i ∈ {1, . . . , n}, j ∈ {1, . . . , n− 1} then the n-uninorm
can be reduced to an m-uninorm with m < n. First we recall
the following result for idempotent points of an n-uninorm
from [16].

Lemma III.2
Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un.
If a ∈ [0, 1] is an idempotent point of Un then Un(a, x) ∈
{x, a} ∪ {zi | zi ∈ ]min(a, x),max(a, x)[} for all x ∈ [0, 1].

The previous result implies that for all i, j ∈ {0, . . . , n},
i ≤ j, there is Un(zi, zj) = zm for some m ∈ {i, . . . , j}. The
monotonicity further implies that then zm is the annihilator
of Un on [zi, zj ]

2
. Further, if for i, j ∈ {1, . . . , n}, i < j,

there is Un(zi, zj−1) = zm for some m ∈ {i, . . . , j− 1} then
we have also Un(ei, ej) = zm since zm = Un(zi, zj−1) =
Un(zi, U

n(zj−1, ej)) = Un(Un(zi, zj−1), ej) = Un(zm, ej)

and similarly zm = Un(zm, ei) and ei ≤ zi ≤ zm ≤ zj−1 ≤
ej implies

zm = Un(ei, zm) ≤ Un(ei, ej) ≤ Un(zm, ej) = zm.

Proposition III.3
Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un.
If Un(x, y1) = Un(x, y2) = ei for some x, y1, y2 ∈ [0, 1],
y1 < y2, and i ∈ {1, . . . , n} then ei ∈ {zi−1, zi}.

PROOF: First assume that x /∈ [zi−1, zi] . Then there exists
a j ∈ {1, . . . , n}, i 6= j, such that x ∈ [zj−1, zj ] . Then
Un(x, y1) = ei implies

ei = Un(x, y1) = Un(Un(ej , x), y1) =

Un(ej , U
n(x, y1)) = Un(ej , ei) = zm

for some m ∈ {1, . . . , n − 1}. Since zi−2 < zi−1 ≤ ei ≤
zi < zi+1 we see that then ei ∈ {zi−1, zi}. Similarly, if
y1 /∈ [zi−1, zi] or y2 /∈ [zi−1, zi] we obtain ei ∈ {zi−1, zi}.
Now suppose that x, y1, y2 ∈ [zi−1, zi] . Then the associativity
implies

y1 = Un(y1, ei) = Un(y1, U
n(x, y2)) =

Un(Un(y1, x), y2) = Un(ei, y2) = y2,

which is a contradiction. Thus in all possible cases ei ∈
{zi−1, zi}. 2

Theorem III.4
Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm, Un ∈ Un. If for
some i ∈ {1, . . . , n} there is ei = zj for j ∈ {1, . . . , n−1} then
Un is an (n−1)-uninorm from U(n−1) with the (n−1)-neutral
element {e1, . . . , ei−1, ei+1, . . . , en}z1,...,zi−1,zi+1,...,zn−1 .

PROOF: The definition of the n-neutral element implies ei ∈
{zi−1, zi}. We will suppose that ei = zi as the other case is
analogous. Then Un(zi, ei+1) = zi and for all x ∈ [zi−1, zi]
there is

x = Un(x, ei) = Un(x, zi) = Un(x, Un(zi, ei+1)) =

Un(Un(x, zi), ei+1) = Un(x, ei+1)

and therefore ei+1 is the neutral element of the restriction of
Un to [zi−1, zi+1]

2 and thus Un restricted to [zi−1, zi+1]
2 is

a uninorm. Moreover, for all x ∈ [zi−1, zi] , y ∈ [zi, ei+1]
there is zi = Un(zi, zi) ≤ Un(zi, y) ≤ Un(zi, ei+1) = zi,
i.e., Un(zi, y) = zi and

Un(x, y) = Un(Un(x, zi), y) =

Un(x, Un(zi, y)) = Un(x, zi) = x.

Since Un restricted to [zi−1, zi]
2 ([zi, ei+1]

2) is isomorphic
to a continuous t-norm, we see that on [zi−1, ei+1]

2 is Un

isomorphic to an ordinal sum of continuous t-norms, i.e., to a
continuous t-norm. Since Un ∈ Un we know that Un restricted
to [ei+1, zi+1]

2 is isomorphic to a continuous t-conorm. Thus
on [zi−1, zi+1]

2 the n-uninorm Un is isomorphic to a uninorm
with continuous underlying functions. Summarizing, Un is an
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(n−1)-uninorm from U(n−1) with the (n−1)-neutral element
{e1, . . . , ei−1, ei+1, . . . , en}z1,...,zi−1,zi+1,...,zn−1 . 2

The previous result shows that for each ei that is equal to
zj for j ∈ {1, . . . , n − 1} we can reduce the order of the n-
uninorm by one. Using this procedure repeatedly we see that
each n-uninorm Un from Un can be seen as an m-uninorm
Um from Um such that if ei is the i-th local neutral element
of Um then ei ∈ {zi−1, zi} implies ei ∈ {0, 1}. Then the m-
uninorm Um will be called the reduced form of the n-uninorm
Un (reduced m-uninorm for short). Therefore in the following
section it is enough to focus just on reduced n-uninorms.

We will now continue with several useful definitions and
results.

Definition III.5
For an n-uninorm Un : [0, 1]2 −→ [0, 1] and each x ∈ [0, 1]
we define a function unx : [0, 1] −→ [0, 1] by unx(z) = Un(x, z)

for z ∈ [0, 1]. Further, for each x ∈ [0, 1] we denote x(1)Un = x

and x(m)
Un = Un(x, x

(m−1)
Un ) for all m ∈ N \ {1}.

Lemma III.6
Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un.
If x ∈ ]zi−1, zi[ and y ∈ ]zj−1, zj [ for some i, j ∈ {1, . . . , n},
i 6= j, x < y, then Un(x, y) ∈ [x, ei[ ∪ {Un(ei, ej)} ∪ ]ej , y] .

PROOF: Let Un(ei, ej) = zk for some k ∈ {i, . . . , j}. If
Un(x, zk) = zp for some zp ∈ ]x, zk[ then zp ≥ ei and
therefore Un(zk, zp) = zk. Then, however,

zp = Un(x, zk) = Un(x, Un(zk, zk)) =

Un(Un(x, zk), zk) = Un(zp, zk) = zk,

i.e., p = k and thus Un(x, zk) ∈ {x, zk}. Similarly we can
show that Un(y, zk) ∈ {y, zk}.

Then we have the following possibilities:
(i) If Un(x, zk) = zk and Un(y, zk) = zk. Then

zk = Un(x, zk) ≤ Un(x, y) ≤ Un(y, zk) = zk.

Thus Un(x, y) = zk.

(ii) If Un(x, zk) = zk and Un(y, zk) = y. Then

Un(x, y) = Un(x, Un(zk, y)) =

Un(Un(x, zk), y) = Un(zk, y) = y.

(iii) If Un(x, zk) = x and Un(y, zk) = zk. Then

Un(y, x) = Un(y, Un(zk, x)) =

Un(Un(y, zk), x) = Un(zk, x) = x.

(iv) If Un(x, zk) = x and Un(y, zk) = y. First assume that
Un(x, y) ∈ [ei, ej ] . Then

Un(x, y) = Un(x, Un(y, zk)) = Un(Un(x, y), zk) = zk.

If Un(x, y) < ei then x = Un(x, ei) ≤ Un(x, y) < ei
and if Un(x, y) > ej then y = Un(y, ej) ≥ Un(y, x) >
ej .

Summarizing, Un(x, y) ∈ [x, ei[ ∪ {zk} ∪ ]ej , y] .

2

In the following two results we will examine the continuity
of the cuts unx .

Lemma III.7
Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm, Un ∈ Un and
assume an x ∈ [0, 1].

(i) If ei ∈ Ran(unx) for some i ∈ {1, . . . , n} then [zi−1, zi] ⊂
Ran(unx).

(ii) If ei /∈ Ran(unx) for some i ∈ {1, . . . , n} and p ∈
Ran(unx) for some p ∈ [zi−1, ei[ then [zi−1, p] ⊂
Ran(unx).

(iii) If ei /∈ Ran(unx) for some i ∈ {1, . . . , n} and q ∈
Ran(unx) for some q ∈ ]ei, zi] then [q, zi] ⊂ Ran(unx).

PROOF:
(i) Assume Un(x, y) = ei for some y ∈ [0, 1]. Then

for any t ∈ [zi−1, zi] we have t = Un(ei, t) =
Un(Un(x, y), t) = Un(x, Un(y, t)) = unx(Un(y, t)), i.e.,
t ∈ Ran(unx).

(ii) Since Un restricted to [zi−1, ei] is isomorphic to a
continuous t-norm for all t ∈ [zi−1, p] there exists a
pt ∈ [zi−1, p] such that Un(p, pt) = t. Then for y ∈ [0, 1]
such that Un(x, y) = p we get

t = Un(p, pt) = Un(Un(x, y), pt) =

Un(x, Un(y, pt)) = unx(Un(y, pt)),

i.e., t ∈ Ran(unx).

(iii) This result can be shown analogously as (ii).
2

Lemma III.8
Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un.
Then for each x ∈ [0, 1] there are at most n points of disconti-
nuity of unx .

PROOF: First let us note that a monotone function is
continuous whenever its range is a connected set. Similarly,
a monotone function is non-continuous in exactly n points
whenever its range is a union of n+ 1 connected sets.

Lemma III.7 implies that Ran(unx)∩[ei−1, ei] is a connected
set for all i = 1, . . . , n, n + 1, where e0 = 0 and en+1 = 1.
Therefore the range of unx can be expressed as a union of at
most n + 1 connected sets, i.e., unx has at most n points of
discontinuity.

2

Now we are going to define the characterizing functions of
an n-uninorm Un ∈ Un which is for idempotent uninorms
described in Theorem II.2. On each cut unx for x ∈ [0, 1] and
i ∈ {1, . . . , n} we would like to select such a point y ∈ [0, 1]
that unx(t) < ei for all t < y and unx(t) > ei for all t > y.
From Proposition III.3 we know that this is possible whenever
ei /∈ {zi−1, zi}. In the other case we have a problem for
x ∈ [ei, ei+1[ (x ∈ ]ei−1, ei]) in the case when ei = zi (ei =
zi−1). However, from the previous discussion we know that it
is enough to focus just on reduced n-uninorms. For reduced
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n-uninorms there are only two anomalous cases: when e1 = 0
and when en = 1. However, in the first case e1 = 0 < z1 and
the monotonicity of Un implies that Un(x, 0) = Un(0, x) > 0
for all x > 0, i.e., Un(x, y) = e1 implies x = y = 0. In the
second case en = 1 > zn−1 and the monotonicity of Un

implies that Un(x, 1) = Un(1, x) < 1 for all x < 1, i.e.,
Un(x, y) = en implies x = y = 1. Therefore for reduced
n-uninorms and any i ∈ {1, . . . , n} there for each x ∈ [0, 1]
exists at most one y ∈ [0, 1] such that Un(x, y) = ei.

Definition III.9
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, let
Un ∈ Un and assume an i ∈ {1, . . . , n}. Define a function
gi : [0, 1] −→ [0, 1] by

gi(x) = sup{t ∈ [0, 1] | Un(x, t) < ei},
where sup ∅ = 0. The function gi will be called the i-th
characterizing function of the n-uninorm Un.

Note that evidently gi(ei) = ei for all i ∈ {1, . . . , n}.
Further, if e1 = 0 then g1(x) = 0 for all x ∈ [0, 1]. Similarly,
if en = 1 then gn(x) = 1 for all x ∈ [0, 1].

Now we are going to show that the characterizing function
gi of an n-uninorm Un from Un is non-increasing for all i ∈
{1, . . . , n}.

Proposition III.10
LetUn : [0, 1]2 −→ [0, 1] be a reduced n-uninorm and letUn ∈
Un. Then the characterizing function gi is non-increasing for all
i = 1, . . . , n.

PROOF: Assume i ∈ {1, . . . , n}. Let x1, x2 ∈ [0, 1], x1 <
x2. Then for all t ∈ [0, 1] such that Un(x2, t) < ei there is
Un(x1, t) < ei. Therefore gi(x1) ≥ gi(x2). 2

Remark III.11
(i) If ei ∈ Ran(unx) then Lemma III.7 implies that unx is

continuous in gi(x).

(ii) If ei /∈ Ran(unx) then evidently unx is non-continuous in
gi(x).

Moreover, if for x ∈ [0, 1] we have ei ∈ Ran(unx) then
Un(x, gi(x)) = ei. Summarizing, either Un(x, gi(x)) = ei,
or unx is non-continuous in gi(x).

From the definition of the characterizing function we see
that Un(x, t) < ei for all t < gi(x) and Un(x, t) > ei for all
t > gi(x).

Further we will define the characterizing set-valued func-
tions of an n-uninorm Un ∈ Un.

Definition III.12
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, Un ∈ Un,
and assume an i ∈ {1, . . . , n}. We define a set-valued function

ri : [0, 1] −→ P([0, 1]) by

ri(x) =





[
lim

t−→0+
gi(t), 1

]
if x = 0,

[
0, lim

t−→1−
gi(t)

]
if x = 1,

[
lim

t−→x+
gi(t), lim

t−→x−
gi(t)

]
otherwise.

Observe that if gi is continuous in x for some i ∈ {1, . . . , n}
and x ∈ ]0, 1[ then ri(x) = {gi(x)}.

Since gi is non-increasing, it is easy to show the following
result for a characterizing set-valued function of an n-uninorm
with continuous underlying functions.

Lemma III.13
The characterizing set-valued function ri of a reduced n-
uninorm Un ∈ Un is non-increasing for all i = 1, . . . , n.
Further, above (below) the graph of the characterizing set-
valued function ri the n-uninorm Un attains values greater
(smaller) than ei.

Next we will show that a characterizing set-valued function
is symmetric.

Lemma III.14
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, Un ∈ Un,
and assume an i ∈ {1, . . . , n}. Then the characterizing set-
valued function ri of Un is symmetric.

PROOF: Recall that ri is symmetric if for all x, y ∈ [0, 1]
there is y ∈ ri(x) if and only if x ∈ ri(y). Assume x, y ∈
[0, 1] and let y ∈ ri(x).

• If x = 0 then y ∈
[

lim
t−→0+

gi(t), 1

]
. For all w > lim

t−→0+
gi(t)

there is Un(w, s) = Un(s, w) > ei for all s > 0, i.e.,
gi(w) = 0. Thus if y > lim

t−→0+
gi(t) there is 0 ∈ ri(y). If

y = lim
t−→0+

gi(t) then either 0 = lim
w−→y+

gi(w) and 0 ∈ ri(y),

or y = 1. In the second case 0 ∈ ri(1) follows from Definition
III.12.
• If x = 1 then y ∈

[
0, lim

t−→1−
gi(t)

]
. For all w < lim

t−→1−
gi(t)

there is Un(w, s) = Un(s, w) < ei for all s < 1, i.e.,
gi(w) = 1. Thus if y < lim

t−→1−
gi(t) there is 1 ∈ ri(y). If

y = lim
t−→1−

gi(t) then either 1 = lim
w−→y−

gi(w) and 1 ∈ ri(y),

or y = 0. In the second case 1 ∈ ri(0) follows from Definition
III.12.
• Further we will assume that x ∈ ]0, 1[ . If ri(x) = [a, b] and
a < b then since gi(s) ≥ b for all s < x we get Un(s, t) < ei
for all t ∈ ]a, b[ , s < x. Moreover, since gi(s) ≤ a for all
s > x we get Un(s, t) > ei for all t ∈ ]a, b[ , s > x. Therefore
gi(t) = x for all t ∈ ]a, b[ . We have three possibilities, either
y = a, or y = b, or y ∈ ]a, b[ . If y ∈ ]a, b[ then gi(y) =
x and therefore x ∈ ri(y). Assume y ∈ {a, b}. Then x =

lim
t−→y+

gi(t) if y = a (x = lim
t−→y−

gi(t) if y = b) and thus

x ∈ ri(y).
Finally we will assume that ri(x) contains only one point.

Then Un(x, t) > ei for all t > y and Un(x, s) < ei for all
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s < y. Therefore for all t > y we have gi(t) ≤ x and for all
s < y we have gi(s) ≥ x. If y ∈ ]0, 1[ there is

lim
t−→y+

gi(t) ≤ x ≤ lim
t−→y−

gi(t)

which means that x ∈ ri(y). If y = 1 there is x ≤ lim
t−→1−

gi(t),

i.e., x ∈ ri(1). If y = 0 there is x ≥ lim
t−→0+

gi(t), i.e., x ∈
ri(0).

2

Since gi(x) ∈ ri(x) for all x ∈ [0, 1], i ∈ {1, . . . , n}, due
to Lemma II.4 and Lemma III.14 we get the following result.

Lemma III.15
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, Un ∈ Un,
and assume an i ∈ {1, . . . , n}. Then the characterizing set-
valued function ri of Un is u-surjective.

IV. POINTS OF DISCONTINUITY OF n-UNINORMS FROM Un.
Now we are going to show that all points of discontinuity

of an n-uninorm with continuous underlying functions are
covered by the graphs of ri(x) for i = 1, . . . , n (see Theorem
IV.8). However, first we show several useful results.

Lemma IV.1
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm and let
Un ∈ Un. If unx is non-continuous in y ∈ [0, 1], then there
exists an i ∈ {1, . . . , n} such that U(x, t) < ei for all t < y
and U(x, t) > ei for all t > y.

PROOF: Assume that unx is non-continuous in y ∈ [0, 1].
Then

a = lim
t−→y−

unx(t) < lim
t−→y+

unx(t) = b.

If there exists i, j ∈ {1, . . . , n} such that a ∈ ]ei−1, ei[ ,
b ∈ ]ej−1, ej [ , then i 6= j since Ran(unx) ∩ [ek−1, ek] is a
connected set for all k ∈ {1, . . . , n + 1}. The monotonicity
implies i < j and therefore a < ei < b which implies
U(x, t) < ei for all t < y and U(x, t) > ei for all t > y.

If a = 0 then U(x, t) > e1 for all t > y since otherwise
e1 > 0 and unx would be continuous in y by Lemma III.7. If
b = 1 then similarly U(x, t) < en for all t < y.

Finally assume that a = ei > 0 (the case when b = ei < 1
can be shown analogously) for some i ∈ {1, . . . , n}. Then
b > ei, i.e., U(x, t) > ei for all t > y. If unx(t) = ei for
some t < y then unx(s) = ei for all s ∈ [t, y[ . In such a
case Proposition III.3 implies that ei ∈ {zi−1, zi} and since
Un is in the reduced form this implies a = 0, which is a
contradiction. Therefore U(x, t) < ei for all t < y. 2

Lemma IV.2
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, U ∈ Un,
and assume i ∈ {1, . . . , n}. If Un(x, y) = ei ∈ ]0, 1[ for some
x, y ∈ [0, 1] then x, y ∈ ]zi−1, zi[ .

PROOF: Without loss of generality assume that x /∈
]zi−1, zi[ . Then either x = 0, i = 1, or x = 1, i = n, or

there exists a j ∈ {1, . . . , n}, i 6= j, such that Un(ej , x) = x.
In the last case we have

ei = Un(x, y) = Un(Un(ej , x), y) =

Un(ej , U
n(x, y)) = Un(ei, ej) = zk

for some k ∈ {1, . . . , n − 1}, which is a contradiction since
Un is in the reduced form and thus ei ∈ ]0, 1[ implies ei ∈
]zi−1, zi[ . If x = 0, i = 1 (the case when x = 1, i = n is
analogous) then

e1 = Un(0, y) = Un(Un(0, 0), y) =

Un(0, Un(0, y)) = Un(0, e1) = 0,

which is a contradiction. 2

From the previous result we see that if Un(0, y) = ei for
some y ∈ [0, 1] and i ∈ {1, . . . , n} then ei ∈ {0, 1}. Then
either y = 0 = ei, or y = 1 = ei. However, in the second
case Un(0, 1) = 1 = Un(1, 1) which means that 1 is the
annihilator of Un and thus it cannot be a neutral element on
[zn−1, 1]

2
, which is a contradiction. Similarly, Un(1, y) = ei

implies y = 1 = ei.
Now we recall a result [23, Proposition 1] which shows a

connection between continuity on cuts and joint continuity of
a monotone function.

Proposition IV.3
Let f(x, y) be a real valued function defined on an open set
G in the plane. Suppose that f(x, y) is continuous in x and y
separately and is monotone in x for each y. Then f(x, y) is
(jointly) continuous on the set G.

Lemma IV.4
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, U ∈ Un.
Then Un is continuous in (ei, ei) for all i ∈ {1, . . . , n}.

For all ei with i ∈ {2, . . . , n − 1} and for e1 6= 0 and
en 6= 1 the result follows from Lemma IV.2 and [26, Lemma
4]. Assume that e1 = 0. Then Un on [0, z1]

2 is a continuous
t-conorm and thus Un is continuous in (0, 0). Similarly, for
en = 1 we know that Un on [zn−1, 1]

2 is a continuous t-norm
and thus Un is continuous in (1, 1).

Proposition IV.5
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, Un ∈ Un.
Then Un is non-continuous in (x0, y0) ∈ [0, 1]2, (x0, y0) 6=
(ei, ei), if and only if one of the following is satisfied:

(i) unx0
is non-continuous in y0,

(ii) uny0
is non-continuous in x0,

(iii) there exist ε1 > 0 and ε2 > 0 such that unt is non-
continuous in x0 and uns is non-continuous in y0 either
for all t ∈ ]y0, y0 + ε1] , s ∈ ]x0, x0 + ε2] , or for all
t ∈ [y0 − ε1, y0[ , s ∈ [x0 − ε2, x0[ .

PROOF: Suppose that Un is non-continuous in (x0, y0) ∈
[0, 1]2. If Un(x0, y0) = e1 = 0 then x0 = y0 = 0 and since
Un is continuous in (0, 0) we get a contradiction. Similarly,
if Un(x0, y0) = en = 1 then Un is continuous in (x0, y0) and
we get a contradiction. Therefore Lemma IV.2 implies that if
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Un(x0, y0) = ei for some i ∈ {1, . . . , n} then x, y ∈ ]zi−1, zi[
and since Un is on [zi−1, zi]

2 isomorphic to a uninorm with
continuous underlying functions [7, Proposition 8] implies that
Un is continuous in (x0, y0), which is a contradiction. Thus
U(x0, y0) 6= ei.

From Proposition IV.3 it follows that if Un is non-
continuous in (x0, y0) ∈ [0, 1]2 then for all δ1 > 0 and
all δ2 > 0 there exist an x ∈ ]x0 − δ1, x0 + δ1[ and a
y ∈ ]y0 − δ2, y0 + δ2[ such that either unx is non-continuous
in y or uny is non-continuous in x. Due to Lemma IV.1,
since n is finite, there exists an i ∈ {1, . . . , n} such that
for all δ1 > 0 and all δ2 > 0 the n-uninorm Un on
[x0 − δ1, x0 + δ1] × [y0 − δ2, y0 + δ2] attain values smaller
than ei and bigger than ei as well. Let Wi be a subset of [0, 1]2

such that (x, y) ∈Wi if U(x1, y1) < ei for all x1 < x, y1 < y
and U(x2, y2) > ei for all x2 > x, y2 > y. Then the set
[x0 − δ1, x0 + δ1]× [y0 − δ2, y0 + δ2] ∩Wi is non-empty for
all δ1 > 0 and all δ2 > 0. Therefore due to the monotonicity
of Un we have (x0, y0) ∈Wi.

The rest of the proof is analogous to the proof of [7,
Proposition 11]. 2

Lemma IV.6
LetUn : [0, 1]2 −→ [0, 1] be a reduced n-uninorm and letUn ∈
Un. If Un(x, y) = ei for some x, y ∈ [0, 1] and i ∈ {1, . . . , n}
then (x, y) ∈ G(ri).

PROOF: If ei ∈ {0, 1} then the result easily holds. Otherwise
x, y ∈ ]0, 1[ and the monotonicity of Un implies Un(x, t) < ei
for all t < y and Un(x, t) > ei for all t > y. Thus gi(x) = y.
Therefore y ∈ ri(x) and (x, y) ∈ G(ri). 2

Remark IV.7
From the previous results we can observe for a reduced n-
uninorm Un the following. If (x0, y0) ∈ G(ri) ∩ ]0, 1[

2

then either Un(x0, y0) = ei, or Un(x0, y0) is a point of
discontinuity of Un. Further, on the lower boundary of the
unit square (and similarly on the upper boundary of the unit
square) we know that Un is continuous in the point (0, 0)
and Un is non-continuous in each point (0, t), (t, 0) such that

t ∈
]

lim
t−→0+

gi(t), gi(0)

]
for some i ∈ {1, . . . , n}, where

1 > ei > 0.

Now we show the main result.

Theorem IV.8
LetUn : [0, 1]2 −→ [0, 1] be a reduced n-uninorm and letUn ∈
Un. If (x0, y0) ∈ [0, 1]2 is a point of discontinuity of Un then

(x0, y0) ∈
n⋃

i=1

G(ri).

PROOF: In the case that unx0
is non-continuous in y0, or uny0

is non-continuous in x0 the claim follows from Lemma IV.1.
In the opposite case Proposition IV.5 implies that there exist
ε1 > 0 and ε2 > 0 such that unt is non-continuous in x0 and
uns is non-continuous in y0 either for all t ∈ ]y0, y0 + ε1] , s ∈
]x0, x0 + ε2] , or for all t ∈ [y0 − ε1, y0[ , s ∈ [x0 − ε2, x0[ .
Suppose the first case as the second is analogous. From the

proof of Proposition IV.5 it further follows that there exists
an i ∈ {1, . . . , n} such that (t, x0) ∈ G(ri) for all t ∈
]y0, y0 + ε1] , and (s, y0) ∈ G(ri) for all s ∈ ]x0, x0 + ε2] .
Therefore gi(x) = y0 for all x ∈ ]x0, x0 + ε2[ and thus

lim
t−→x+

0

gi(t) = y0. Then y0 ∈ ri(x0) and (x0, y0) ∈
n⋃

i=1

G(ri).

2
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U3
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Fig. 2. The two 2-uninorms from [16, Figure 1]. The bold lines denote the
characterizing set-valued functions r1 and r2.

Further we would like to show an opposite claim, i.e.,
if there exist n symmetric, non-increasing, u-surjective set-
valued functions ri : [0, 1] −→ P([0, 1]) such that all points of

discontinuity of Un are covered by
n⋃

i=1

G(ri) and Un(x, y) =

ei implies (x, y) ∈ G(ri) for all x, y ∈ [0, 1] then Un ∈ Un.
In the case of uninorms this was not enough to ensure that
U has continuous underlying functions and it was necessary
to suppose that U is in each point from the unit square either
left-continuous, or right-continuous (or continuous). However,
in the class of n-uninorms this is no longer true. Indeed, it
can happen that there exists a point in which Un is neither
left-continuous, nor right-continuous.
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Example IV.9
Assume 0 < e1 < z1 < e2 < 1 an let a binary function
U2 : [0, 1]2 −→ [0, 1] be given by:

Un(x, y) =





min(x, y) if min(x, y) < e1,

max(x, y) if min(x, y)>e1,max(x, y)>e2,

min(x, y) if x, y ∈ [z1, e2] ,

max(x, y) if x, y ∈ [e1, z1] ,

z1 otherwise.

Then U2 is a 2-uninorm with continuous underlying functions
and Un(x, y) = ei implies x = y = ei, i.e., U2 is in the
reduced form. However, U2(e1, e2) = z1 and Un(s, t) = s <
e1 for all s < e1, e1 < t < e2 and Un(s, t) = t > e2 for
all e2 > s > e1, t > e2. Therefore in the point (e1, e2) the
2-uninorm U2 is neither left-continuous, nor right-continuous.

Observe that in the previous example the point (e1, e2)
belongs to graphs of both characterizing functions r1 and r2.
This yields us to the following result.

Proposition IV.10
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, Un ∈ Un,
and assume a point (x0, y0) ∈ [0, 1]2. If there exists exactly one
i ∈ {1, . . . , n} such that (x0, y0) ∈ G(ri) then Un is left/right
continuous at the point (x0, y0).

PROOF: If there is exactly one i ∈ {1, . . . , n} such that
(x0, y0) ∈ G(ri) then there exists a δ > 0 such that G(rj) ∩
[x0 − δ, x0 + δ]× [y0 − δ, y0 + δ] = ∅ for all j ∈ {1, . . . , n},
i 6= j. If Un is in (x0, y0) continuous we are done. Suppose
that Un is non-continuous in (x0, y0). Then, similarly as in
Proposition IV.5, we can show that Un(x0, y0) 6= ei.

First let us assume that Un(x0, y0) < ei. Suppose that there
exists a point (s, t) ∈ [x0 − δ, x0] × [y0 − δ, y0] such that
Un(s, t) ≤ ei−1. Then gi−1(s) ≥ t and if Un(s, y0) > ei−1
then there exists a q ∈ [t, y0] such that gi−1(s) = q
and thus (s, q) ∈ G(ri−1), which is a contradiction. Thus
Un(s, y0) ≤ ei−1. If Un(x0, y0) > ei−1 then there exists
a q ∈ [s, x0] such that (q, y0) ∈ G(ri−1), which is a
contradiction. Thus Un(x0, y0) ≤ ei−1. However, the n-
uninorm Un attains values greater than ei above the graph of
ri and since (x0, y0) ∈ G(ri) it is easy to show that then also
(x0, y0) ∈ G(ri−1), which is a contradiction. Therefore for all
(s, t) ∈ [x0 − δ, x0] × [y0 − δ, y0] we have Un(s, t) > ei−1.
Lemma III.7 implies that Ran(unx) ∩ [ei−1, ei] is a connected
set for all x ∈ [0, 1]. Thus on [x0 − δ, x0] × [y0 − δ, y0] all
cuts are continuous and since Un is non-decreasing, similarly
as in Proposition IV.3, we see that Un is left-continuous in
(x0, y0).

In the case when Un(x0, y0) > ei we can analogously show
that Un is right-continuous in (x0, y0). 2

Lemma IV.11
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm, Un ∈ Un,
and assume i ∈ {1, . . . , n}. Then [zi−1, zi]

2 ∩
n⋃

j=1

G(rj) =

G(ri).

PROOF: We will show that G(rj) ∩ [zi−1, zi]
2

= ∅ for all
j ∈ {1, . . . , n}, i 6= j. We will suppose i < j as the case
i > j is analogous. Since Un(ej , ej) = ej we know that
gj(x) ≥ ej for all x ∈ [zi−1, ej [ and then rj(x) ≥ ej for all
x ∈ [zi−1, zi] . Thus G(rj)∩ [zi−1, zi]

2
= ∅. Note that ej 6= zi

since Un is in the reduced form. 2

Now we can show the main result.

Theorem IV.12
Let Un : [0, 1]2 −→ [0, 1] be a reduced n-uninorm. Suppose

that Un is continuous on [0, 1]2 \
n⋃

i=1

G(ri), where ri is a

symmetric, u-surjective, non-increasing set-valued function on
[0, 1], such that Un(x, y) = ei implies (x, y) ∈ G(ri) for
i = 1, . . . , n. Further assume that Un is either left-continuous,
or right-continuous (or continuous) in each point (x0, y0) ∈
[0, 1]2 such that there is exactly one i ∈ {1, . . . , n} for which
(x0, y0) ∈ G(ri). Then Un ∈ Un.

PROOF: Assume i ∈ {1, . . . , n}. Then similarly as in
Lemma IV.11 we can show that all points of discontinuity of
Un from [zi−1, zi]

2 are covered exclusively by G(ri), i.e., Un

is in all these points either right-continuous, or left-continuous
(or continuous). Thus Un is either right-continuous, or left-
continuous (or continuous) in each point (x, y) ∈ [zi−1, zi]

2
.

If ei = 0 (ei = 1) then Un is continuous on [zi−1, zi]
2 since

each t-norm (t-conorm) is continuous on the lower (the upper)
boundary of the unit square. Further we will suppose that
ei ∈ ]0, 1[ .

Let us define a set-valued function r : [0, 1] −→ P([0, 1])
by

r(x) =



ri(x) ∩ [zi−1, zi] if ri(x) ∩ [zi−1, zi] 6= ∅, x ∈ ]zi−1, zi[ ,

{zi} if ri(x) ∩ [zi−1, zi] = ∅ and x < ei,

{zi−1} if ri(x) ∩ [zi−1, zi] = ∅ and x > ei,

[min(ri(x)), zi] if x = zi−1 and ri(x) ∩ [zi−1, zi] 6= ∅,
[zi−1,max(ri(x))] if x = zi and ri(x) ∩ [zi−1, zi] 6= ∅.
Since ri is non-increasing also r is non-increasing. Further

we show that r is symmetric. Assume x ∈ [zi−1, zi] and let
y ∈ r(x). Then we have the following cases:

(i) If x ∈ ]zi−1, zi[ and r(x) = ri(x) ∩ [zi−1, zi] . Then y ∈
ri(x) and thus x ∈ ri(y). Since ri(y)∩ [zi−1, zi] ⊆ r(y)
we get x ∈ r(y).

(ii) If ri(x) ∩ [zi−1, zi] = ∅ and x < ei. Then t > zi for
all t ∈ ri(x) and y = zi. Since ri is u-surjective there
exists an s ∈ [0, 1] such that zi ∈ ri(s). Then either
{zi} = ri(v) for all v ∈ ]x, s[ , or there exists an ε > 0
such that ri(v) ∩ [zi−1, zi] = ∅ for all v ∈ [x, x+ ε[ .
In the first case v ∈ ri(zi) for all v ∈ ]x, s[ and since
ri(zi) is a closed interval we get x ∈ ri(zi) and then
x ∈ r(zi). In the second case let b = max(ri(zi)). Then
(zi, b), (b, zi) ∈ G(ri), i.e., b > x. Since r(zi) = [zi−1, b]
we get x ∈ r(zi).

(iii) If ri(x)∩[zi−1, zi] = ∅ and x > ei the proof is analogous
to the previous case.
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(iv) If x = zi−1 and ri(x) ∩ [zi−1, zi] 6= ∅. Then there
is r(x) = [min(ri(zi−1)), zi] . If y ∈ ri(zi−1) then
the result follows from the symmetry of ri. Denote
a = max(ri(zi−1)) ≥ ei and suppose that y > a ≥ ei.
Then y /∈ ri(zi−1) and thus t < zi−1 for all t ∈ ri(y).
Therefore ri(y)∩ [zi−1, zi] = ∅ and since y > ei there is
r(y) = {zi−1}, i.e., x ∈ r(y).

(v) If x = zi and ri(x)∩[zi−1, zi] 6= ∅ the proof is analogous
to the previous case.

Thus r is symmetric and Lemma II.4 implies that r is
u-surjective. Further, G(r) covers all points of discontinuity
of Un from [zi−1, zi]

2 and for all (x, y) ∈ [zi−1, zi]
2 there

Un(x, y) = ei implies (x, y) ∈ G(r). Thus r is the linear
transformation of the characterizing set-valued function of
the uninorm Ui to the interval [zi−1, zi] . Moreover, Un is
in each point from [zi−1, zi]

2 either left-continuous, or right-
continuous (or continuous). Then [7, Theorem 3] implies that
Un is isomorphic to a uninorm with continuous underlying
functions on [zi−1, zi]

2
. Since i was chosen arbitrarily we get

Un ∈ Un. 2

V. CONCLUSIONS

We have studied characterizing (set-valued) functions of
n-uninorms with continuous underlying functions. We have
shown that similarly as in the case of uninorms, the set of
points of discontinuity of such an n-uninorm can be charac-
terized using the characterizing set-valued functions related
to the local neutral element ei for i = 1, . . . , n. Unlike in
the case of uninorms, in the case of n-uninorms we had to
cover also all anomalous cases when ei ∈ {zi−1, zi} for
some i ∈ {1, . . . , n}. We have shown that in such a case the
n-uninorm Un can be reduced to an m-uninorm for which
ei ∈ {zi−1, zi} implies ei ∈ {0, 1}.

In the case of uninorms with continuous underlying func-
tions it was shown that such a uninorm is in each point
(x, y) ∈ [0, 1]2 either left-continuous, or right continuous (or
continuous). This no longer holds in the case of n-uninorms.
However, each reduced n-uninorm satisfy this property in
each point which is covered by exactly one characterizing set-
valued function.

Our results offer a complete characterization of n-uninorms
with continuous underlying functions by their set of disconti-
nuity points.

In the future work we would like to use these results and
show that each n-uninorm with continuous underlying func-
tions can be decomposed into a z-ordinal sum of representable
and idempotent semigroups.
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The n-uninorms with continuous underlying t-norms and t-conorms are characterized 
via the z-ordinal sum construction. We show that each n-uninorm with continuous 
underlying t-norms and t-conorms can be expressed as a z-ordinal sum of a countable 
number of Archimedean and idempotent semigroups with respect to the branching set 
A ∼ {z1, . . . , zn−1}, where the corresponding partial order has a tree structure.
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1. Introduction

The uninorm aggregation operators (see [7,8,21]) generalize both t-norms and t-conorms ([3,9]), allowing the neutral 
element to be anywhere inside the unit interval, instead of in the point 1 (which is the case of t-norms) or in point 0
(which is the case of t-conorms). Therefore uninorms are able to model bipolar behavior and uninorms can be taken as 
bipolar t-conorms (see [13,22]). While continuous t-norms (t-conorms) were characterized as ordinal sums of continuous 
Archimedean t-norms (t-conorms), which are representable by a continuous additive generator, a similar result was shown 
in [14] also for uninorms with continuous underlying functions, where each such a uninorm was shown to be an ordinal 
sum of semigroups related to representable uninorms, continuous Archimedean t-norms, continuous Archimedean t-conorms 
and internal uninorms.

Another possible generalization of t-norms and t-conorms are nullnorms (see [5]), allowing the annihilator to be any-
where inside the unit interval. Nullnorms can be taken as bipolar t-norms [13]. Note that nullnorms were independently 
introduced under the name t-operators in [12] and in [11] it was shown that these two notions coincide on the unit interval.

The second step in the above mentioned generalizations yields n-uninorms, introduced by Akella in [1], which bring 
together uninorms and nullnorms. The basic properties of n-uninorms were described in [1,2,23]. Our work focuses on n-
uninorms with continuous underlying functions. In [16] we have characterized idempotent n-uninorms and we have also 
shown that similarly as each idempotent uninorm can be expressed as an ordinal sum of trivial semigroups, each idempotent 
n-uninorm can be expressed as a z-ordinal sum of trivial semigroups Gx = ({x}, Id) for x ∈ [0, 1], where A = {z1, . . . , zn−1}. 
In [17] we have shown that each n-uninorm with continuous underlying functions can be expressed as an ordinal sum of 
a uninorm and an n-uninorm from Class 1 (and possibly also of a countable number of semigroups related to continuous 
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t-norms and t-conorms). In [18] we have discussed characterizing functions of n-uninorms with continuous underlying 
functions.

In this paper we would like to finish the characterization of n-uninorms with continuous underlying functions and 
show their complete decomposition into irreducible semigroups, i.e., we will show that each n-uninorm with continuous 
underlying t-norms and t-conorms can be expressed as a z-ordinal sum of a countable number of semigroups related 
to representable uninorms, continuous Archimedean t-norms, continuous Archimedean t-conorms and internal uninorms 
(including the min and the max operator and trivial semigroups) with respect to the set A ∼ {z1, . . . , zn−1}.

The paper is organized as follows: in the following section we recall all necessary basic notions and results. We discuss 
the relation of nullnorms with continuous underlying functions to the z-ordinal sum construction in Section 3. In Section 4
we introduce basic observations on n-uninorms with continuous underlying functions and in Section 5 we show the de-
composition of all 2-uninorms with continuous underlying functions into Archimedean and idempotent semigroups. These 
results are then extended for n-uninorms with continuous underlying functions for n ∈ N , n > 2, in Section 6. Section 7 is 
dedicated to our Conclusions.

2. Basic notions

A triangular norm ([9]) is a binary function T : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in 
both variables and 1 is its neutral element. Due to the associativity, n-ary form of any t-norm is uniquely given and thus it 
can be extended to an aggregation function working on 

⋃
n∈N [0, 1]n . Dual functions to t-norms are t-conorms. A triangular 

conorm ([9]) is a binary function S : [0, 1]2 −→ [0, 1] which is commutative, associative, non-decreasing in both variables 
and 0 is its neutral element.

The focus of this paper is on the ordinal sum and the z-ordinal sum construction. At first we recall the fundamental 
result of Clifford [6] as formulated in [9].

Theorem 1. Let A �= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of semigroups. Assume that for all 
α, β ∈ A with α < β the sets Xα and Xβ are either disjoint or that Xα ∩ Xβ = {xα,β}, where xα,β is both the neutral element of Gα

and the annihilator of Gβ and where for each γ ∈ A with α < γ < β we have Xγ = {xα,β}. Put X = ⋃
α∈A

Xα and define the binary 

operation ∗ on X by

x ∗ y =

⎧⎪⎨
⎪⎩

x ∗α y if (x, y) ∈ Xα × Xα ,

x if (x, y) ∈ Xα × Xβ and α < β ,

y if (x, y) ∈ Xα × Xβ and α > β .

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ A the semigroup Gα is commutative.

Each continuous t-norm (t-conorm) is equal to an ordinal sum of continuous Archimedean t-norms (t-conorms). Note that 
a continuous t-norm (t-conorm) is Archimedean if and only if it has only trivial idempotent points 0 and 1. A continuous 
Archimedean t-norm T (t-conorm S) is either strict, i.e., strictly increasing on ]0,1]2 (on [0,1[2), or nilpotent, i.e., there 
exists (x, y) ∈ ]0,1[2 such that T (x, y) = 0 (S(x, y) = 1). Moreover, each continuous Archimedean t-norm (t-conorm) has 
a continuous additive generator, which is uniquely determined up to a positive multiplicative constant. More details on 
t-norms and t-conorms can be found in [3,9].

A uninorm (introduced in [21]) is a binary function U : [0, 1]2 −→ [0, 1] which is commutative, associative, non-
decreasing in both variables and have a neutral element e ∈ [0, 1] (see also [8]). Evidently, if e = 1 (e = 0) then we retrieve 
a t-norm (t-conorm).

For each uninorm the value U (1, 0) ∈ {0, 1} is the annihilator of U . A uninorm is called conjunctive (disjunctive) if 
U (1, 0) = 0 (U (1, 0) = 1). For each uninorm U with the neutral element e ∈ ]0,1[, the restriction of U to [0, e]2 is a 
t-norm on [0, e]2, i.e., a linear transformation of some t-norm TU on [0, 1]2 and the restriction of U to [e,1]2 is a t-
conorm on [e,1]2, i.e., a linear transformation of some t-conorm SU . Moreover, min(x, y) ≤ U (x, y) ≤ max(x, y) for all 
(x, y) ∈ [0, e] × [e,1] ∪ [e,1] × [0, e].

Similarly as in the case of t-norms and t-conorms we can construct uninorms using additive generators (see [8]). A 
uninorm which possesses a continuous additive generator is called representable. Note that in [19] (see also [13]) it was 
shown that a uninorm is representable if and only if it is continuous on [0, 1]2 \ {(0, 1), (1, 0)}.

A uninorm U : [0, 1]2 −→ [0, 1] is called internal if U (x, y) ∈ {x, y} for all (x, y) ∈ [0, 1]2; and it is called idempotent if 
U (x, x) = x for all x ∈ [0, 1].

Observe that if a uninorm U is internal then it is also idempotent and vice-versa. Let us recall the basic result from [20]
that characterizes idempotent uninorms.

Theorem 2. Let U : [0, 1]2 −→ [0, 1] be a binary function. Then U is an idempotent uninorm with the neutral element e ∈ ]0,1[ if 
and only if there exists a non-increasing function g : [0, 1] −→ [0, 1], which is Id-symmetric, with g(e) = e, such that
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U (x, y) =

⎧⎪⎨
⎪⎩

min(x, y) if y < g(x) or (y = g(x) and x < g(g(x))),

max(x, y) if y > g(x) or (y = g(x) and x > g(g(x))),

x or y if y = g(x) and x = g(g(x)),

being commutative in the points (x, y) such that y = g(x) with x = g(g(x)).

Note that the graph of the function g from Theorem 2 is a subset of the graph of the characterizing set-valued function of 
an idempotent uninorm (for more details see [15]). Therefore the completed graph of the function g divides the idempotent 
uninorm U into two parts: below the completed graph of g we have U (x, y) = min(x, y), i.e., U (x, y) < e, and above the 
completed graph of g there is U (x, y) = max(x, y), i.e., U (x, y) > e.

Definition 1. A uninorm U : [0, 1]2 −→ [0, 1] is called d-internal if it is internal and there exists a continuous and strictly 
decreasing function gU : [0, 1] −→ [0, 1] such that U (x, y) = min(x, y) if y < gU (x) and U (x, y) = max(x, y) if y > gU (x).

Uninorms with continuous underlying functions were completely characterized in [14,15]. In [14] it was shown that 
each uninorm with continuous underlying functions can be decomposed into an ordinal sum of a countable number of 
semigroups related to representable uninorms, continuous Archimedean t-norms, continuous Archimedean t-conorms and 
internal uninorms (including the min and the max operator). In [15] it was shown that the set of all points of discontinuity 
of a uninorm with continuous underlying functions is a subset of the graph of the characterizing set-valued function of such 
a uninorm.

The following is the definition of a nullnorm [5] (see also [11,12]).

Definition 2. A binary function V : [0, 1]2 −→ [0, 1] is called a nullnorm if it is commutative, associative, non-decreasing in 
each variable and has an annihilator z ∈ [0, 1] such that V (0, x) = x for all x ≤ z and V (1, x) = x for all x ≥ z.

If z = 0 (z = 1) then V is a t-norm (t-conorm). Note that for a commutative, associative and non-decreasing function 
F : [0, 1]2 −→ [0, 1], with F (0, 0) = 0, F (1, 1) = 1, the value F (0, 1) is always an annihilator of F . Thus for a nullnorm 
z = V (0, 1). In [5] the following result was shown.

Theorem 3. Let z ∈ ]0,1[. Then V : [0, 1]2 −→ [0, 1] is a nullnorm with the annihilator z if and only if there exists a t-norm T V and 
a t-conorm S V such that

V (x, y) =

⎧⎪⎨
⎪⎩

z · S V ( x
z ,

y
z ) if x, y ∈ [0, z]2,

z + (1 − z) · T V ( x−z
1−z ,

y−z
1−z ) if x, y ∈ [z,1]2,

z otherwise.

Now let us recall the definition of an n-uninorm (see [1]).

Definition 3. Assume an n ∈N \ {1}. Let V : [0, 1]2 −→ [0, 1] be a commutative binary function. Then {e1, . . . , en}z1,...,zn−1 is 
called an n-neutral element of V if for 0 = z0 < z1 < · · · < zn = 1 and ei ∈ [zi−1, zi], i = 1, . . . , n we have V (ei, x) = x for all 
x ∈ [zi−1, zi].

Definition 4. A binary function Un : [0, 1]2 −→ [0, 1] is an n-uninorm if it is commutative, associative, non-decreasing in 
each variable and has an n-neutral element {e1, . . . , en}z1,...,zn−1 .

The basic structure of n-uninorms was described by Akella in [1] and the characterizations of the main five classes of 
2-uninorms was given in [23]. Now we will recall these five exhaustive and mutually exclusive classes:

• Class 1: 2-uninorms with U 2(0, 1) = z1.
• Class 2a: 2-uninorms with U 2(0, 1) = 0, U 2(1, z1) = z1.
• Class 2b: 2-uninorms with U 2(0, 1) = 1, U 2(0, z1) = z1.
• Class 3a: 2-uninorms with U 2(0, 1) = 0, U 2(1, z1) = 1.
• Class 3b: 2-uninorms with U 2(0, 1) = 1, U 2(0, z1) = 0.

Each n-uninorm has the following building blocks around the main diagonal.

Proposition 1. Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm with the n-neutral element {e1, . . . , en}z1,...,zn−1 . Then

(i) Un restricted to [zi−1, ei]
2 , for i = 1, . . . , n, is isomorphic to a t-norm. We will denote this t-norm by Ti.
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(ii) Un restricted to [ei, zi]
2 for i = 1, . . . , n, is isomorphic to a t-conorm. We will denote this t-conorm by Si.

(iii) Un restricted to [zi−1, zi]
2 for i = 1, . . . , n, is isomorphic to a uninorm. We will denote this uninorm by Ui.

(iv) Un restricted to 
[
zi, z j

]2
for i, j ∈ {0, 1, . . . , n}, i < j, is isomorphic to a ( j − i)-uninorm.

For n ∈ N we will denote the set of all n-uninorms Un such that T1, . . . , Tn and S1, . . . , Sn are continuous by Un . 
Similarly, the set of all uninorms with continuous underlying functions will be denoted by U .

Before we proceed with the main results of the paper we will recall several notions that we will use. Since we will 
use ordinal sums of trivial semigroups, let us recall that there exists only one operation on a trivial semigroup, namely the 
function Id : {x}2 −→ {x}, which is simply defined by Id(x, x) = x.

If we will talk about linear transformation from interval [a,b] to interval [c,d] we mean a linear function ϕ : [a,b] −→
[c,d] given by

ϕ(x) = (x − a) · (d − c)

b − a
+ c,

which transforms a unary function f : [a,b] −→ [a,b] to a function g : [c,d] −→ [c,d] given by g(x) = ϕ( f (ϕ−1(x))), and 
transforms a binary function V : [a,b]2 −→ [a,b] to a function U : [c,d]2 −→ [c,d] given by U (x, y) = ϕ(V (ϕ−1(x), ϕ−1(y))).

For a binary function F : [0, 1]2 −→ [0, 1] and an interval [a,b] we will denote the linear transformation of F to [a,b] by 
F [a,b]. Similarly, for an open, or a half-open interval we will assume the linear transformation of the function restricted to 
corresponding open, or half-open unit square.

Further, for any 0 ≤ a < b ≤ c < d ≤ 1, v ∈ [b, c] and a uninorm U : [0, 1]2 −→ [0, 1] with the neutral element e ∈ ]0,1[
we will use the transformation f : [0, 1] −→ [a,b[ ∪ {v} ∪ ]c,d], given by

f (x) =

⎧⎪⎨
⎪⎩

(b − a) · x
e + a if x ∈ [0, e[,

v if x = e,

d − (1−x)(d−c)
(1−e) otherwise.

(1)

Then f is linear on [0, e[ and on ]e,1] and thus it is an increasing, piece-wise linear isomorphism of [0, 1] to ([a,b[ ∪
{v} ∪ ]c,d]) which preserves the commutativity, the associativity, the monotonicity and the neutral element; and the binary 
function U a,b,c,d

v : ([a,b[ ∪ {v} ∪ ]c,d])2 −→ ([a,b[ ∪ {v} ∪ ]c,d]) given by

U a,b,c,d
v (x, y) = f (U ( f −1(x), f −1(y))) (2)

is a uninorm on ([a,b[ ∪ {v} ∪ ]c,d])2. The backward transformation f −1 then transforms a uninorm defined on ([a,b[ ∪
{v} ∪ ]c,d])2 to a uninorm defined on [0, 1]2.

For the rest of the paper if we say that two semigroups (X1, F1) and (X2, F2) are isomorphic we assume that there exists 
an increasing isomorphism ϕ : X1 −→ X2 such that F1(x, y) = ϕ−1(F2(ϕ(x), ϕ(y))) for all x, y ∈ X1. Note that such an iso-
morphism preserves the commutativity, the associativity, the monotonicity, the (local) neutral element and the annihilator, 
as well. Moreover, we will use just isomorphisms that are either linear, or the functions f , f −1 given in (1). Observe that a 
linear function on an interval is also a homeomorphism and it is easy to show that if a restriction of an n-uninorm from Un

is a uninorm then it can be transformed to a uninorm with continuous underlying functions using f ( f −1).
As we mentioned above, each idempotent uninorm is an ordinal sum of trivial semigroups. Similarly, each idempotent 

n-uninorm is a z-ordinal sum of trivial semigroups [16]. In the following we recall the z-ordinal sum construction. Note that 
a meet semi-lattice (or lower semi-lattice) [4] is a partially ordered set which has a meet (or greatest lower bound) for any 
non-empty finite subset. Since the existence of the meet is required only for non-empty finite subsets this is equivalent to 
the existence of the meet between all pairs of arguments.

Theorem 4. Let A and B be two index sets such that A ∩ B = ∅ and C = A ∪ B �= ∅. Let (Gα)α∈C with Gα = (Xα, ∗α) be a family of 
semigroups and let the set C be partially ordered by the binary relation � such that (C, �) is a meet semi-lattice. Further suppose that 
each semigroup Gα for α ∈ A possesses an annihilator zα , and for all α, β ∈ C such that α and β are incomparable there is α ∧ β ∈ A. 
Assume that for all α, β ∈ C, α �= β , the sets Xα and Xβ are either disjoint or that Xα ∩ Xβ = {xα,β}. In the second case suppose that 
for all γ ∈ C which is incomparable with α ∧ β there is α ∧ γ = β ∧ γ and for each γ ∈ C with α ∧ β ≺ γ ≺ α or α ∧ β ≺ γ ≺ β we 
have Xγ = {xα,β}. Further,

(i) in the case that α ∧ β ∈ A then xα,β = zα∧β is the annihilator of both Gβ and Gα ;
(ii) in the case that α ∧ β = α ∈ B then xα,β is both the annihilator of Gβ and the neutral element of Gα .
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Put X = ⋃
α∈C

Xα and define the binary operation ∗ on X by

x ∗ y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∗α y if (x, y) ∈ Xα × Xα ,

x if (x, y) ∈ Xα × Xβ , α �= β , and α ∧ β = α ∈ B,

y if (x, y) ∈ Xα × Xβ , α �= β , and α ∧ β = β ∈ B,

zγ if (x, y) ∈ Xα × Xβ , α �= β , and α ∧ β = γ ∈ A.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for each α ∈ C the semigroup Gα is commutative.

Observe that sets Xα in z-ordinal sum construction need not to be disjoint, however, in [16] it was shown that ∗ is well 
defined and thus in order to obtain the value x ∗ y for x ∈ Xα ∩ Xβ we can select any of the two semigroups. The set A from 
Theorem 4 will be called the branching set of the respective z-ordinal sum.

Further, since we use several index sets in our proofs let us observe that these index sets can be chosen in such a way 
that they are mutually disjoint and we will suppose that they are, without mentioning it on every place. Similarly, when 
we add a new index we assume that it does not belong to any index set that is already in use.

3. Nullnorms as z-ordinal sums of semigroups related to t-norms and t-conorms

In this section we would like to briefly discuss the decomposition of nullnorms with continuous underlying functions 
into irreducible semigroups. Note that the set X ⊆ [0, 1], or a semigroup (X, V |X2 ), is called irreducible with respect to a 
nullnorm V if (X, V |X2 ) cannot be expressed as a non-trivial z-ordinal sum of proper subsemigroups of (X, V |X2 ). Note that 
for the sake of simplicity we will write (X, V ) instead of (X, V |X2 ).

First let us observe that due to Theorem 3 it is easy to show the following result.

Lemma 1. Let V : [0, 1]2 −→ [0, 1] be a nullnorm with the annihilator z ∈ ]0,1[. Then ([0, 1], V ) is a z-ordinal sum of G1 =
([0, z] , V ), G2 = ([z,1] , V ) and G3 = ({z}, Id), where the corresponding partial order on {1, 2, 3} is given by 1 ∧ 2 = 3. Here G1
is isomorphic to a t-conorm and G2 is isomorphic to a t-norm.

Proof. Theorem 3 implies that G1 is isomorphic to a t-conorm and G2 is isomorphic to a t-norm. Further, z is the annihilator 
of all three semigroups and it is easy to check that all conditions of Theorem 4 are fulfilled. Assume that ([0, 1], W ) is a z-
ordinal sum of G1, G2 and G3 with respect to the partial order given by 1 ∧2 = 3. Then V (x, y) = W (x, y) for all x, y ∈ [0, z], 
V (x, y) = W (x, y) for all x, y ∈ [z,1] and for x ∈ [0, z], y ∈ [z,1] we can assume that x is from G1 and y from G2 and thus 
W (x, y) = z. By Theorem 3 and the commutativity we get V (x, y) = W (x, y) for all x, y ∈ [0, 1]. �

Since the ordinal sum decomposition of a t-norm (t-conorm) is generally known only for continuous t-norms (t-conorms) 
in the following we will focus on nullnorms with continuous underlying functions.

Archimedean nullnorms
First we will assume that a nullnorm V : [0, 1]2 −→ [0, 1] is Archimedean, i.e., that the underlying t-conorm S V and the 

underlying t-norm T V are continuous and Archimedean. In such a case V has exactly 3 idempotent points: 0, z and 1.
Case 1: If S V and T V are nilpotent.

Then lim
n−→∞ x(n)

V = z for all x ∈ ]0,1[, where for x ∈ [0, 1], n ∈ N , there is x(1)
V = x and x(n)

V = V (x, x(n−1)
V ). Therefore the 

sets irreducible with respect to V are sets {0}, ]0, z], [z,1[ and {1}. Thus we define semigroups G1 = ({0}, Id), G2(]0, z] , V ), 
G3([z,1[ , V ) and G4 = ({1}, Id). However, since V (0, x) = x for x ∈ [0, z] there should be 2 ≺ 1 and 2 ∈ B . Similarly, 3 ≺ 4 and 
3 ∈ B . If 3 ≺ 2 (2 ≺ 3) then V (x, y) = z for all x ∈ [0, z], y ∈ [z,1] implies 3 ∈ A (2 ∈ A) which is a contradiction. Therefore 2
and 3 are incomparable and the semigroup G2∧3 should contain z. Hence, we have to add an additional semigroup ({z}, Id). 
Then we have the following result.

Proposition 2. Let V : [0, 1]2 −→ [0, 1] be a nullnorm with the annihilator z ∈ ]0,1[ and let T V and S V be nilpotent. Then V is a 
z-ordinal sum of semigroups G1 = ({0}, Id), G2(]0, z] , V ), G3 = ({z}, Id), G4([z,1[ , V ) and G5 = ({1}, Id). Further, G2 is isomorphic 
to a nilpotent t-conorm restricted to ]0,1]2 and G4 is isomorphic to a nilpotent t-norm restricted to [0,1[2 . The partial order in the 
respective z-ordinal sum is given by 3 ≺ 2 ≺ 1, 3 ≺ 4 ≺ 5 and other pairs are incomparable.

Proof. First let us observe that Theorem 3 implies that G2 is isomorphic to a nilpotent t-conorm restricted to ]0,1]2 and 
G4 is isomorphic to a nilpotent t-norm restricted to [0,1[2. We define A = {3}, C = {1, 2, 3, 4, 5}, B = C \ A, and a partial 
order � on the set C given by 3 ≺ 2 ≺ 1, 3 ≺ 4 ≺ 5 and other pairs are incomparable. Then

• (C, �) is a meet semi-lattice and G3 trivially possesses an annihilator z.
• It is easy to check that if a, b ∈ C are incomparable then a ∧ b = 3 ∈ A.
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� i0 ∼ {0} � i1 ∼ {1}

Fig. 1. A partial order corresponding to an Archimedean nullnorm such that T V and S V are nilpotent (left) and a partial order corresponding to a non-
Archimedean nullnorm such that T V and S V are continuous (right). The left branch corresponds to the order used in the respective ordinal sum yielding 
S V and the right branch corresponds to the order used in the respective ordinal sum yielding T V .

• X1 and X5 have an empty intersection with all other semigroup carriers. X2 ∩ X3 = {z} = X4 ∩ X3 = X2 ∩ X4 and since 
2 ∧ 4 = 3 we only have to show that z is the annihilator in all three G2, G3, G4 which is evident since G2 (G4) is 
isomorphic to a nilpotent t-conorm (t-norm).

Thus the sets A, B, C , semigroups Gi for i ∈ C and the partial order � fulfill all requirements of Theorem 4.
Let ([0, 1], V ∗) be the z-ordinal sum of our 5 semigroups with the partial order � with respect to the set A. Then 

since all semigroups Gi for i ∈ C are commutative also V ∗ is commutative. V = V ∗ on ]0, z]2 ∪ [z,1[2, V ∗(0, 0) = 0 and 
V ∗(1, 1) = 1.

Further, if x ∈ ]0, z] and y ∈ [z,1[ then since 2 and 4 are incomparable, 2 ∧ 4 = 3, we get V ∗(x, y) = z and the commu-
tativity together with previous findings implies V (x, y) = V ∗(x, y) for all x, y ∈ ]0,1[. Since 2 ≺ 1 and 2 ∈ B for an x ∈ ]0, z]
we get V ∗(0, x) = x.

Since 1 and 4 are incomparable and 1 ∧ 4 = 3 ∈ A for a y ∈ [z,1[ we get V ∗(0, y) = z and finally, V ∗(0, 1) = z since 
1 ∧ 5 = 3 ∈ A. Thus V (0, x) = V ∗(0, x) for all x ∈ [0, 1]. Similarly we can show that V ∗(1, x) = V (1, x) for all x ∈ [0, 1]. 
Summarizing, V (x, y) = V ∗(x, y) for all x, y ∈ [0, 1] (Fig. 1). �
Case 2: If S V and T V are strict.

For a nullnorm V such that T V and S V are strict we get a similar result. Since the proof is analogous we omit it here.

Proposition 3. Let V : [0, 1]2 −→ [0, 1] be a nullnorm with the annihilator z ∈ ]0,1[ and let T V and S V be strict. Then V is a z-
ordinal sum of semigroups G1 = ({0}, Id), G2(]0, z[ , V ), G3 = ({z}, Id), G4(]z,1[ , V ) and G5 = ({1}, Id). Further, G2 is isomorphic 
to a strict t-conorm restricted to ]0,1[2 and G4 is isomorphic to a strict t-norm restricted to ]0,1[2 . The partial order in the respective 
z-ordinal sum is given by 3 ≺ 2 ≺ 1, 3 ≺ 4 ≺ 5 and other pairs are incomparable.

Case 3: If S V is strict and T V is nilpotent.

Proposition 4. Let V : [0, 1]2 −→ [0, 1] be a nullnorm with the annihilator z ∈ ]0,1[ and let T V be nilpotent and S V be strict. Then 
V is a z-ordinal sum of semigroups G1 = ({0}, Id), G2(]0, z[ , V ), G3 = ({z}, Id), G4([z,1[ , V ) and G5 = ({1}, Id). Further, G2 is 
isomorphic to a strict t-conorm restricted to ]0,1[2 and G4 is isomorphic to a nilpotent t-norm restricted to [0,1[2 . The partial order 
in the respective z-ordinal sum is given by 3 ≺ 2 ≺ 1, 3 ≺ 4 ≺ 5 and other pairs are incomparable.

Case 4: If S V is nilpotent and T V is strict.

Proposition 5. Let V : [0, 1]2 −→ [0, 1] be a nullnorm with the annihilator z ∈ ]0,1[ and let T V be strict and S V be nilpotent. Then 
V is a z-ordinal sum of semigroups G1 = ({0}, Id), G2(]0, z] , V ), G3 = ({z}, Id), G4(]z,1[ , V ) and G5 = ({1}, Id). Further, G2 is 
isomorphic to a nilpotent t-conorm restricted to ]0,1]2 and G4 is isomorphic to a strict t-norm restricted to ]0,1[2 . The partial order 
in the respective z-ordinal sum is given by 3 ≺ 2 ≺ 1, 3 ≺ 4 ≺ 5 and other pairs are incomparable.

Non-Archimedean nullnorms
Now assume that T V and S V are a continuous t-norm and a continuous t-conorm, respectively. Then T V can be ex-

pressed as an ordinal sum of a countable number of semigroups Gi , i ∈ K , where K is an index set and each semigroup Gi
for i ∈ K corresponds either to an Archimedean t-norm (i.e., it is isomorphic to an Archimedean t-norm possibly restricted 
to open, or half open unit interval) or to the minimum t-norm (i.e., it is isomorphic to the minimum t-norm possibly re-
stricted to open, or half open unit interval), or it is a trivial semigroup (see [9]). The corresponding linear order in the 
ordinal sum is given by i ≤T j if x ≤ y for all x ∈ Xi and all y ∈ X j , i, j ∈ K .
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Similarly S V can be expressed as an ordinal sum of a countable number of semigroups Gi , i ∈ M , where M is an 
index set, and each semigroup Gi for i ∈ M corresponds either to an Archimedean t-conorm (i.e., it is isomorphic to an 
Archimedean t-conorm possibly restricted to open, or half open unit interval) or to the maximum t-conorm (i.e., it is 
isomorphic to the maximum t-conorm possibly restricted to open, or half open unit interval), or it is a trivial semigroup. 
The corresponding linear order in the ordinal sum is given by i ≤S j if x ≥ y for all x ∈ Xi and all y ∈ X j , i, j ∈ M .

We define the set C by C = M ∪ K ∪ {α0} and a semigroup Gα0 = ({z}, Id). Further we define A = {α0} and B = C \ A. 
Observe that if z ∈ Xi for some i ∈ M (i ∈ K ) then z is the annihilator of Gi and if z ∈ Xi ∩ X j for some i, j ∈ M , i ≤S j
(i, j ∈ K , i ≤T j) then the corresponding ordinal sum construction implies Xi = {z}.

Further we define a partial order � on C by:

(i) α0 � i for all i ∈ C .
(ii) i � j if i, j ∈ K and i ≤T j.

(iii) i � j if i, j ∈ M and i ≤S j.
(iv) If i ∈ M and j ∈ K then i and j are incomparable.

Then (C, �) is a meet semi-lattice with the bottom element α0 and similarly as in Proposition 2 we can easily check 
that all requirements of Theorem 4 are fulfilled. Let V ∗ be a z-ordinal sum of semigroups Gi , i ∈ C with respect to the 
set A and the partial order �. Since z-ordinal sum reduces to the ordinal sum on a chain of semigroups from B , and the 
order on M (K ) is a subset of the partial order � we can see that V ∗ = V on [0, z[2 (or on [0, z]2 in the case that S V

has divisors of 1) and V ∗ = V on ]z,1]2 (or on [z,1]2 in the case that T V has zero divisors). Further, since α0 ∈ A is the 
bottom element of the meet semi-lattice (C, �), we get V ∗(z, x) = z for all x ∈ [0, 1]. Finally assume that x ∈ [0, z[, y ∈ ]z,1]. 
Then there exist i ∈ K and j ∈ M such that x ∈ X j , y ∈ Xi and thus i and j are incomparable, i.e., i ∧ j = α0 ∈ A. Therefore 
V ∗(y, x) = V ∗(x, y) = z. Then V ∗(x, y) = V (x, y) for all x, y ∈ [0, 1].

Summarizing, we have shown the following result.

Theorem 5. Let V : [0, 1]2 −→ [0, 1] be a nullnorm with the annihilator z ∈ ]0,1[ and let T V and S V be continuous. Then V is a 
z-ordinal sum of a countable number of semigroups related to continuous Archimedean t-norms, continuous Archimedean t-conorms 
and internal t-norms and t-conorms (including trivial semigroups).

Observe that nullnorms are special 2-uninorms. In the following sections we will show similar results for n-uninorms 
with continuous underlying functions.

4. General remarks on n-uninorms with continuous underlying functions

First let us settle for this paper that if we say that a function is an n-uninorm we will suppose that it possesses the 
n-neutral element {e1, . . . , en}z1,...,zn−1 .

For better understanding we begin with the description of the possible values of an n-uninorm U n ∈ Un when two points 
from different subintervals are taken. First recall the following result from [18].

Lemma 2. Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. If x ∈ ]zi−1, zi[ and y ∈ ]
z j−1, z j

[
for some i, j ∈ {1, . . . , n}, 

i �= j, x < y, then Un(x, y) ∈ [x, ei[ ∪ {Un(ei, e j)} ∪
]
e j, y

]
.

From [17] we know that Un(z1, zn−1) = zk for some k ∈ {1, . . . , n − 1}. Then Un(x, zk) ∈ {x, zk} for all x ∈ [0, 1] (see 
Lemma 5.1, 5.2 and 5.3 in [17]). Due to the monotonicity zk is the annihilator of Un on [z1, zn−1]. Further,

Un(e1, zk) = Un(e1, Un(z1, zk)) = Un(Un(e1, z1), zk) = Un(z1, zk) = zk,

similarly Un(en, zk) = zk and the monotonicity implies Un(e1, en) = zk . Since for any i, j ∈ {1, . . . , n}, i < j, Un restricted to [
zi−1, z j

]2 is a ( j − i + 1)-uninorm, similar observations can be shown for zm , where Un(zi, z j−1) = zm . Here Un(ei, e j) = zm

and Un(x, zm) ∈ {x, zm} for all x ∈ [
zi−1, z j

]2
.

Proposition 6. Let Un : [0, 1]2 −→ [0, 1] be an n-uninorm and let Un ∈ Un. Let x ∈ ]zi−1, zi[ and y ∈ ]
z j−1, z j

[
for some i, j ∈

{1, . . . , n}, i �= j, x < y, with Un(ei, e j) = zk. There is:

(i) If x ≥ ei and y ≤ e j then Un(x, y) = zk.
(ii) If x ≤ ei and y ≤ e j then Un(x, y) = Un(x, zk) ∈ {x, zk}.

(iii) If x ≥ ei and y ≥ e j then Un(x, y) = Un(y, zk) ∈ {y, zk}.
(iv) If x ≤ ei and y ≥ e j then

• Un(x, y) = zk, if Un(x, zk) = zk and Un(y, zk) = zk,
• Un(x, y) = x, if Un(x, zk) = x and Un(y, zk) = zk,
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• Un(x, y) = y, if Un(x, zk) = zk and Un(y, zk) = y,
• Un(x, y) ∈ [x, ei[ ∪ {zk} ∪

]
e j, y

]
if Un(x, zk) = x and Un(y, zk) = y.

Proof. (i) If x ≥ ei and y ≤ e j then [x, ei[ = ∅, 
]
e j, y

] = ∅ and then Lemma 2 implies Un(x, y) = Un(ei, e j) = zk .
(ii) If x ≤ ei, y ≤ e j there is

zk = Un(zk, zk) ≤ Un(zk, y) ≤ Un(zk, e j) = zk,

i.e., Un(y, zk) = zk . If Un(x, zk) = zk then zk = Un(x, zk) ≤ Un(x, y) ≤ Un(zk, y) = zk , i.e., Un(x, y) = zk = Un(x, zk). If 
Un(x, zk) = x then

Un(x, y) = Un(Un(x, zk), y) = Un(x, Un(zk, y)) = Un(x, zk) = x,

i.e., Un(x, y) = x = Un(x, zk).
(iii) If x ≥ ei and y ≥ e j then we can show similarly as in previous case that Un(x, y) = zk , if Un(y, zk) = zk and Un(x, y) =

y if Un(y, zk) = y.
(iv) If x ≤ ei and y ≥ e j . If Un(x, zk) = zk and Un(y, zk) = zk then (similarly as above) the monotonicity implies Un(x, y) =

zk . If Un(x, zk) = x and Un(y, zk) = zk then the associativity implies Un(x, y) = x. If Un(x, zk) = zk and Un(y, zk) = y
then the associativity implies Un(x, y) = y. Finally, if Un(x, zk) = x and Un(y, zk) = y Lemma 2 implies Un(x, y) ∈
[x, ei[ ∪ {zk} ∪

]
e j, y

]
. �

From previous result we get the following example.

Example 1. Assume an n-uninorm Un ∈ Un and i, j ∈ {1, . . . , n}, i < j.
Then we have the following.

(i) Un restricted to ([ei, zi[ ∪ {zk} ∪
]
z j−1, e j

]
)2 is a z-ordinal sum of three semigroups G1 = ([ei, zi[ , S

[ei ,zi [
i ), G2 =

(
]
z j−1, e j

]
, T

]
z j−1,e j

]
j ) and G3 = ({zk}, Id), where 1 ∧ 2 = 3.

(ii) Un restricted to ([ei, zi[ ∪ {zk} ∪
]
e j, z j

]
)2 is an z-ordinal sum of four semigroups. Assume that y0 = sup{y ∈ [

e j, z j
] |

Un(zk, y) = zk}. Then y0 is an idempotent point of Un and S
[
e j ,z j

]
j can be expressed as an ordinal sum of two t-

conorms Sa on 
[
e j, y0

]
and Sb on 

[
y0, z j

]
. We get G1 = ([ei, zi[ , S

[ei ,zi [
i ), G2 = ({zk}, Id), G3 = (

]
e j, y0

]
, Sa) and G4 =

(
]

y0, z j
]
, Sb) if Un(y0, zk) = zk (G3 = (

]
e j, y0

[
, Sa) and G4 = (

[
y0, z j

]
, Sb) if Un(y0, zk) = y0) and the respective order 

in the z-ordinal sum is given by 1 ∧ 3 = 2 and 4 ≺ 2.
(iii) Un restricted to ([zi−1, ei[) ∪ {zk} ∪

]
z j−1, e j

]
))2 is an z-ordinal sum of four semigroups. Assume that x0 = inf{x ∈

[zi−1, ei] | Un(zk, x) = zk}. Then x0 is an idempotent point of Un and T [zi−1,ei ]
i can be expressed as an ordinal sum of two 

t-norms Ta on [zi−1, x0] and Tb on [x0, ei]. We get G1 = (
]
z j−1, e j

]
, T

]
z j−1,e j

]
j ), G2 = ({zk}, Id), G3 = ([zi−1, x0] , Ta) and 

G4 = (]x0, ei[ , Tb) if Un(x0, zk) = x0 (G3 = ([zi−1, x0[ , Ta) and G4 = ([x0, ei[ , Tb) if Un(x0, zk) = zk) and the respective 
order in the z-ordinal sum is given by 1 ∧ 4 = 2 and 3 ≺ 2.

(iv) If Un(x0, zk) = zk = Un(y0, zk) then Un restricted to ([zi−1, ei[ ∪{zk} ∪
]
e j, z j

]
)2 is an z-ordinal sum of four semigroups. 

As we will see later in other cases the situation can be quite complicated and therefore we focus just on the case when 
Un(x0, y0) = zk . Let x0 and y0, Ta, Tb and Sa and Sb be defined as above. Then Un restricted to ([zi−1, x0[ ∪ {zk} ∪]

y0, z j
]
)2 is a uninorm U with the neutral element zk (see [17, Proposition 3.10]). We get G1 = ([x0, ei[ , Tb), G2 =

({zk}, Id), G3 = (
]
e j, y0

]
, Sa) and G4 = ([zi−1, x0[ ∪ {zk} ∪

]
y0, z j

]
, U ) and the order in the z-ordinal sum construction 

is 1 ∧ 3 = 2 and 4 ≺ 2.

A sketch of the n-uninorm Un on these regions can be seen on Fig. 2.

Our aim is to show the decomposition of each n-uninorm with continuous underlying functions using the z-ordinal 
sum construction. In the case of n-uninorms we will always use a z-ordinal sum with respect to the branching set A that 
contains only trivial semigroups corresponding to the points zi for i ∈ {1, . . . , n − 1}. In order to make proofs easier we first 
introduce three useful results.

In the following sections we will show that for an n-uninorm with continuous underlying functions the structure of the 
respective partial order on C always resembles a tree. For such partial orders we have the following result.

Definition 5. Let (C, �) be a partially ordered set. We say that (C, �) has a tree structure if for each p1, p2 ∈ C such that 
p1 and p2 are incomparable there is no upper bound for p1 and p2.

Lemma 3. Let (C, �) be a partially ordered set which has a tree structure. For α, β, γ ∈ C , if γ is incomparable with α ∧ β then 
α ∧ γ = β ∧ γ .
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Fig. 2. Sketch of the n-uninorm U n from Example 1 on respective regions. Bold lines denote the set where the functions U n(zk, ·) and U n(·, zk) attain the 
value zk .

Proof. Assume that γ is incomparable with α ∧ β . If α ∧ γ is incomparable with α ∧ β then α ∧ γ � α and α ∧ β � α
implies that α is an upper bound of α ∧ γ and α ∧ β , which is a contradiction since (C, �) has a tree structure. Thus α ∧ γ
is comparable with α ∧ β and similarly β ∧ γ is comparable with α ∧ β . If α ∧ β � α ∧ γ � γ then γ is comparable with 
α ∧ β , which is a contradiction. Thus α ∧ γ � α ∧ β � β and similarly β ∧ γ � α ∧ β � α. Then, however, α ∧ γ � β and 
β ∧ γ � α and thus α ∧ γ = α ∧ γ ∧ γ � β ∧ γ and similarly β ∧ γ � α ∧ γ . Summarizing, β ∧ γ = α ∧ γ . �
Lemma 4. Let (X, ∗) be a z-ordinal sum of semigroups (Gα)α∈C with respect to sets A and B and a partial order �. Assume that for 
each α ∈ B the semigroup Gα is an ordinal sum of semigroups (Hβ)β∈Bα for some linearly ordered index set (Bα, ≤α) and Hβ = Gβ

for all β ∈ A. Then (X, ∗) is a z-ordinal sum of semigroups (Hβ)β∈A′∪B ′ with respect to sets A′ = A, B ′ = ⋃
α∈B

Bα and a partial order 

�′ given by:

(i) If p1, p2 ∈ Bα for some α ∈ B then p1 �′ p2 if p1 ≤α p2 .
(ii) If p1 ∈ Bα and p1 ∈ Bβ for some α, β ∈ B then p1 �′ p2 if α � β and p2 �′ p1 if β � α.

(iii) If p1 ∈ Bα for some α ∈ B and p2 ∈ A. Then p1 �′ p2 if α � p2 and p2 �′ p1 if p2 � α.
(iv) If p1, p2 ∈ A then p1 �′ p2 if p1 � p2 .

Moreover, if (C, �) for C = A ∪ B has a tree structure then also (C ′, �′) for C ′ = A′ ∪ B ′ has a tree structure.

Proof. It is easy (but tedious) to check that �′ is a partial order and (C ′, �′) is a meet semi-lattice and therefore we leave 
it as an exercise for the reader.

Now we will check whether all conditions of Theorem 4 are fulfilled by A′, B ′ and �′ . Since A′ = A we see that Hα

possesses an annihilator for all α ∈ A′ . If p1, p2 ∈ A′ ∪ B ′ are incomparable then either p1 ∈ Bα , p2 ∈ Bβ and α and β are 
incomparable (with respect to �), or at least one from p1, p2 belongs to the set A. Therefore p1 ∧′ p2 ∈ A′ . Further assume 
that x ∈ Xp1 ∩ Xp2 for some x ∈ [0, 1], p1, p2 ∈ C ′ .
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1. If p3 is incomparable with p1 ∧ p2 then p1 ∧ p2 and p3 cannot belong to the same set Bα for some α ∈ B . If p1, p2 ∈ Bα

for some α ∈ B then p3 is incomparable with α with respect to � if p3 ∈ A (β is incomparable with α with respect to 
� if p3 ∈ Bβ ) and thus p1 ∧′ p3 = p2 ∧′ p3 = α ∧ p3 ∈ A (p1 ∧′ p3 = p2 ∧′ p3 = α ∧ β ∈ A). If p1 and p2 does not belong 
to the same set Bα for some α ∈ B then since A, B and � fulfill conditions of Theorem 4 we get p1 ∧′ p3 = p2 ∧′ p3.

2. If p1 ∧′ p2 = p1 ∈ B ′ (p1 ∧′ p2 = p2 ∈ B ′) then conditions of Theorem 1 (for all (Bα, ≤α), α ∈ B) and conditions of 
Theorem 4 (for A, B and �) imply that x is both the annihilator of G p2 (G p1 ) and the neutral element of G p1 (G p2 ). If 
p1 ∧′ p2 ∈ A′ then conditions of Theorem 4 for A, B and � imply that x is the annihilator of both G p1 and G p2 .

3. We should check that for all p3 ∈ A′ ∪ B ′ with p1 ∧′ p2 ≺′ p3 ≺′ p1 or p1 ∧′ p2 ≺′ p3 ≺′ p2 we have Xp3 = {x}. If 
p1, p2 ∈ Bα for some α ∈ B then the claim follows from Theorem 1.

Assume p1, p3 ∈ Bα for some α ∈ B (the case when p2, p3 ∈ Bα is analogous).
• If p1 ∧′ p2 ∈ A′ then x is the annihilator of Gα . Since p1 and p3 are comparable and p1 ∧′ p2 = p3 ∧′ p2 ∈ A′ we have 

p1 ∧′ p2 ≺′ p3 ≺′ p1, i.e., p3 ≤α p1. Then for all y ∈ Xp3 there is y = y ∗ x = x, since x is the annihilator of Gα . Thus 
Xp3 = {x}.

• If p1 ∧′ p2 ∈ B ′ and p1 ≺′ p2 then x is the neutral element of Gα and p1 ≺′ p3 ≺′ p2, i.e., p1 ≤α p3. Then for all y ∈ Xp3

there is x = y ∗ x = y, since x is the neutral element of Gα . Thus Xp3 = {x}.
• If p1 ∧′ p2 ∈ B ′ and p2 ≺′ p1. This case is analogous to previous one.

If p1, p2 and p3 belong to three distinct index sets then the claim follows from conditions of Theorem 4 for A, B and 
�.

Summarizing, the sets A′ , B ′ and the partial order �′ fulfill all requirements of Theorem 4.
Assume that (X, �) is a z-ordinal sum of semigroups (Hβ)β∈A′∪B ′ with respect to sets A′, B ′ and the partial order �′ . We 

will show that x ∗ y = x � y for all x, y ∈ X . If x ∈ Xp1 , y ∈ Xp2 for some p1, p2 ∈ Bα then p1 ∧ p2 ∈ B ′ and x ∗ y = x � y since 
for p1 ∧ p2 ∈ B ′ the ordinal sum and the z-ordinal sum coincide. In all other cases z-ordinal sum with respect to A, B and 
� and z-ordinal sum with respect to A′, B ′ and �′ coincide. Therefore (X, ∗) is a z-ordinal sum of semigroups (Hβ)β∈A′∪B ′
with respect to sets A′ = A and B ′ = ⋃

α∈B
Bα and the partial order �′ . From the definition of �′ it is easy to see that if 

(C, �) has a tree structure then also (C ′, �′) has a tree structure. �
Lemma 5. Let (X, ∗) be a z-ordinal sum of semigroups G1, G2, G3 and G4 , where A = {3} and � is given by 1 ∧ 2 = 3 and 4 ≺ 3. 
Assume that G1 is a z-ordinal sum of semigroups Hα with respect to A1, B1 and �1 , where (C1, �1) for C1 = A1 ∪ B1 has a tree 
structure. Similarly, assume that G2 is a z-ordinal sum of semigroups Hα with respect to A2, B2 and �2 , where (C2, �2) for C2 =
A2 ∪ B2 has a tree structure; and H3 = G3 , H4 = G4 . Then (X, ∗) is a z-ordinal sum of semigroups (Hα)α∈C1∪C2∪{3,4} with respect to 
A′ = A1 ∪ A2 ∪ {3}, B ′ = B1 ∪ B2 ∪ {4} and �′ given by

(i) α �′ β if α, β ∈ C1 and α �1 β .
(ii) α �′ β if α, β ∈ C2 and α �2 β .

(iii) 4 ≺′ 3 ≺′ α for all α ∈ C1 ∪ C2 .
(iv) If α ∈ C1 and β ∈ C2 then α and β are incomparable.

Moreover, (C ′, �′) has a tree structure.

Proof. Since (C, �), (C1, �1) and (C2, �2) have a tree structure also (C ′, �′) has a tree structure. Indeed, what we do is 
that in the tree with two branches we replace one branch with one sub-tree and the second branch with another sub-tree. 
We can easily verify that (C ′, �′) fulfills all conditions of Theorem 4, since they follow from the corresponding properties 
of (C, �), (C1, �1) and (C2, �2). Let (X, �) be a z-ordinal sum of (Hα)α∈C1∪C2∪{3,4} with respect to A′ , B ′ and �′ . Then 
similarly as before we can check that x � y = x ∗ y for all x ∈ Xα , y ∈ Xβ , α, β ∈ C ′ . Thus (X, ∗) can be expressed as a 
z-ordinal sum of (Hα)α∈C1∪C2∪{3,4} with respect to A′ = A1 ∪ A2 ∪ {3}, B ′ = B1 ∪ B2 ∪ {4} and �′ . �
5. 2-uninorms with continuous underlying functions

In this section we will focus on 2-uninorms and we will show that each 2-uninorm with continuous underlying functions 
can be expressed as a z-ordinal sum of Archimedean and idempotent semigroups. In the following section, using induction, 
we will show similar results also for all n-uninorms with continuous underlying functions, where n > 2.

As we mentioned in Section 2, in [14] it was shown that each uninorm with continuous underlying functions is an 
ordinal sum of a countable number of semigroups related to representable uninorms, continuous Archimedean t-norms, 
continuous Archimedean t-conorms and internal uninorms (including the min and the max operator). In the following we 
recall the definition of these semigroups.

Definition 6. Let a, b, c, d ∈ [0, 1] with a < b < c < d, v ∈ [b, c]. Then
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(i) a semigroup (]a,b[ ∪ {v} ∪ ]c,d[ , ∗) will be called a representable semigroup if ∗ is isomorphic via (2) to a restriction 
of a representable uninorm on [0, 1]2 to ]0,1[2,

(ii) a semigroup (]a,b[ , ∗) will be called a t-strict semigroup if ∗ is linearly isomorphic to a restriction of a strict t-norm 
on [0, 1]2 to ]0,1[2,

(iii) a semigroup (]c,d[ , ∗) will be called an s-strict semigroup if ∗ is linearly isomorphic to a restriction of a strict t-
conorm on [0, 1]2 to ]0,1[2,

(iv) a semigroup ([a,b[ , ∗) will be called a t-nilpotent semigroup if ∗ is linearly isomorphic to a restriction of a nilpotent 
t-norm on [0, 1]2 to [0,1[2,

(v) a semigroup (]c,d] , ∗) will be called an s-nilpotent semigroup if ∗ is linearly isomorphic to a restriction of a nilpotent 
t-conorm on [0, 1]2 to ]0,1]2,

(vi) a semigroup (]a,b[ ∪ ]c,d[ , ∗) will be called a d-internal semigroup if ∗ is isomorphic via (2) to a restriction of an 
d-internal uninorm on [0, 1]2 to (]0,1[ \ {e})2,

(vii) a semigroup (]a,b[ , ∗) will be called a t-internal semigroup if ∗ = min,
(viii) a semigroup (]c,d[ , ∗) will be called an s-internal semigroup if ∗ = max.

The set of semigroups from previous definition and trivial semigroups will be denoted by H. Observe that a representable 
semigroup is not Archimedean, however, it is composed of an Archimedean t-norm and an Archimedean t-conorm and 
therefore in this work we include representable semigroups to the set of Archimedean semigroups.

Remark 1. Assume a 2-uninorm U 2 : [0, 1]2 −→ [0, 1], U 2 ∈ U2. Then the restriction of U 2 to [0, z1]2 is a uninorm on [0, z1]
with continuous underlying functions and therefore there exists a countable, linearly ordered index set (A1, ≤A1 ) and a set 
of semigroups (Hα)α∈A1 , where Hα ∈ H for all α ∈ A1, such that ([0, z1] , U 2) is an ordinal sum of (Hα)α∈A1 with respect 
to the linear order ≤A1 (see [14, Proposition 11]). Similarly, there exists a countable, linearly ordered index set (A2, ≤A2 ), 
and a set of semigroups (Hα)α∈A2 , where Hα ∈ H for all α ∈ A2, such that ([z1,1] , U 2) is an ordinal sum of (Hα)α∈A2 with 
respect to the linear order ≤A2 .

In [17] it was shown that for each U 2 ∈ U2 there exist idempotent points x0 ∈ [0, e1] and a y0 ∈ [e2,1] such that 
U 2(x, z1) = x for all x < x0 and U 2(x, z1) = z1 for all x0 < x ≤ z1, U 2(y, z1) = y for all y > y0 and U 2(y, z1) = z1 for all 
z1 ≤ y < y0. Then for all x0 < x ≤ z1 and z1 ≤ y < y0 there is U 2(x, y) = z1. Since the structure of a 2-uninorm heavily 
depends on the value U 2(x0, y0), following [17] we will distinguish the following five cases:

• if U 2(x0, y0) = z1,
• if U 2(x0, y0) = x0, U 2(x0, y) = y for all y > y0,
• if U 2(x0, y0) = x0, U 2(x0, y) �= y for some y > y0,
• if U 2(x0, y0) = y0, U 2(y0, x) = x for all x < x0,
• if U 2(x0, y0) = y0, U 2(y0, x) �= x for some x < x0.

Since the second and the fourth (the third and the fifth) cases are analogous we will focus just on the first three cases. 
We will start with the simplest case when U 2(x0, y0) = z1. First we introduce one definition and one useful lemma.

Definition 7. Let (Hα)α∈I be a family of trivial semigroups for an index set I . For a set S we denote I ∼ S if for all x ∈ S
there exists an α ∈ I such that Hα is defined on {x} and for all α ∈ I there exists an x ∈ S such that Hα is defined on {x}.

Lemma 6. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm from Class 1, U 2 ∈ U2 . Then U 2 can be expressed as a z-ordinal sum of a countable 
number of semigroups from H, where A ∼ {z1} and (C, �) has a tree structure.

Proof. First we will show that ([0, 1], U 2) is a z-ordinal sum of three semigroups G1 = ([0, z1] , U [0,z1]
1 ), G2 = ([z1,1] , U [z1,1]

2 )

and G3 = ({z1}, Id), with A = {3}. Observe that since U 2 is from Class 1 then z1 is the annihilator of all three semigroups. 
Assume a partial order �, where 1 ∧ 2 = 3. Then (C, �) has a tree structure and thus Lemma 3 implies that if γ is incom-
parable with α ∧β for some α, β, γ then α ∧γ = β ∧γ . Further, if x ∈ Xα ∩ Xβ for α �= β then x = z1 and since in our case 
α ∧ β ∈ A for all α, β ∈ C , α �= β , it is enough to check that z1 is the annihilator of Gα and Gβ which clearly holds. Further, 
there is no α, β, γ such that α ∧ β ≺ γ ≺ α. Thus all conditions of Theorem 4 are fulfilled.

Assume that ([0, 1], V ) is a z-ordinal sum of (Gα)α∈{1,2,3} , with respect to A = {3}, B = {1, 2} and �. Then U 2 and V
coincide on [0, z1]2 and [z1,1]2. For x ∈ [0, z1[ and y ∈ ]z1,1] we have

V (y, x) = V (x, y) = z1 = U 2(x, y) = U 2(y, x).

Thus V and U 2 coincide on the whole unit interval and therefore ([0, 1], U 2) is a z-ordinal sum of (Gα)α∈{1,2,3} , with 
respect to A = {3}, B = {1, 2} and �. Assume sets A1 and A2 defined in Remark 1 and let H3 = G3. Then by Lemma 4 we 
see that ([0, 1], U 2) is a z-ordinal sum of (Hα)α∈A′∪B ′ , with respect to the partial order �′ , where B ′ = A1 ∪ A2, A′ = A and 
�′ is given by:
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(i) If p1, p2 ∈ A1 then p1 �′ p2 if p1 ≤A1 p2.
(ii) If p1, p2 ∈ A2 then p1 �′ p2 if p1 ≤A2 p2.

(iii) For all p ∈ C \ {3} there is 3 ≺ p (and trivially 3 � 3).

Observe that if p1 ∈ A1, p2 ∈ A2 then p1 and p2 are incomparable. Finally let us note that by Remark 1 we get Hα ∈ H for 
all α ∈ A′ ∪ B ′ and by Lemma 4 the set C ′ = A′ ∪ B ′ partially ordered by �′ has a tree structure. Moreover, since A, A1 and 
A2 are countable we see that also C ′ is countable. �

Observe that in previous result it is crucial that the underlying uninorm U1 is disjunctive and the underlying uninorm U2
is conjunctive. Otherwise z1 would not be the annihilator of the first or the second semigroup and the respective condition 
of Theorem 4 would be violated.

Now we recall the basic result from [17] which will help us to describe the structure of U 2 in the case when 
U 2(x0, y0) = z1.

Proposition 7 ([17]). Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = z1 . Then U 2 is an ordinal sum of 
semigroups G1 = ([0, x0[ ∪{z1} ∪ ]y0,1] , U 2) and G2 = ([x0, y0] , U 2), where the order in the ordinal sum construction is 1 < 2, and 
G1 is isomorphic to ([0, 1], U ), where U is a uninorm from U and G2 is isomorphic to ([0, 1], V 2), where V 2 ∈ U2 is an 2-uninorm 
from Class 1.

Using previous proposition we can show the following result.

Theorem 6. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = z1 . Then U 2 can be expressed as a z-ordinal sum 
of a countable number of semigroups from H, where A ∼ {z1} and (C, �) has a tree structure.

Proof. First we show that U 2 can be expressed as a z-ordinal sum, with a tree structure, of four semigroups G1 = ([0, x0[ ∪
{z1} ∪ ]y0,1] , U 2), G2 = ([x0, z1] , U 2), G3 = ([z1, y0] , U 2) and G4 = ({z1}, Id), with A = {4}, where the partial order � is 
given by 2 ∧ 3 = 4 and 1 ≺ 4. Observe that z1 is the annihilator of the last three semigroups and it is the neutral element 
of the first semigroup. Evidently, (C, �) has a tree structure and it is easy to check that if x ∈ Xα ∩ Xβ then all conditions 
of Theorem 4 are satisfied.

Assume that ([0, 1], V ) is a z-ordinal sum of (Gα)α∈{1,2,3,4} , with respect to A = {4}, B = {1, 2, 3} and �. Then similarly 
as in Lemma 6 we can verify that V coincides with U 2 on [x0, y0]2. Evidently, V coincides with U 2 also on ([0, x0[ ∪ {z1} ∪
]y0,1])2. Further, if x ∈ [x0, y0] and y ∈ [0, x0[ ∪ {z1} ∪ ]y0,1] then V (x, y) = y. On the other hand, Proposition 7 implies 
that U 2(x, y) = y, i.e., summarizing, V coincides with U 2 on the whole unit square. Thus ([0, 1], U 2) is a z-ordinal sum of 
our 4 semigroups.

Since x0, y0 are idempotent points, we know that U 2 on [x0, z1]2 ([z1, y0]2) is isomorphic to a uninorm with continuous 
underlying functions. Further, Proposition 7 implies that U 2 on ([0, x0[ ∪ {z1} ∪ ]y0,1])2 is isomorphic to a uninorm with 
continuous underlying functions, as well. Therefore there exist countable, linearly ordered index sets (A1, ≤1), (A2, ≤2) and 
(A3, ≤3) such that Gi is an ordinal sum of semigroups (Hα)α∈Ai , for i = 1, 2, 3, where Hα ∈ H for all α ∈ Ai , i ∈ {1, 2, 3}. 
Denote H4 = G4. Lemma 4 then implies that ([0, 1], U 2) is a z-ordinal sum of semigroups (Hα)α∈A′∪B ′ , where A′ = A and 
B ′ = A1 ∪ A2 ∪ A3, the set C ′ = A′ ∪ B ′ is countable, it has a tree structure, and Hα ∈ H for all α ∈ C ′ . �
Remark 2. If x0 = 0 and y0 = 1 then G1 reduces to a trivial semigroup defined on {z1}. However, it still can be taken as 
a uninorm with continuous underlying functions (defined on a single point). If x0 = 0 and y0 < 1 then G1 is defined on 
{z1} ∪ ]y0,1], which is isomorphic to a continuous t-conorm, i.e., it is still a uninorm with continuous underlying functions. 
The case when x0 > 0 and y0 = 1 is analogous. Similar observations can be done also in the subsequent results.

In all other possible cases for a 2-uninorm from U2 the decomposition via the z-ordinal sum construction is similar and 
therefore we omit the detailed proof and just describe the respective semigroups and the corresponding partial order. Let 
us denote

y1 = sup{y ∈ [y0,1] | U 2(x0, y) = x0}.
Then following [17] there are these possible cases:

1. U 2(x0, y0) = x0, U 2(z1, y0) = z1 and U 2(x0, y) = y for all y > y0.
2. U 2(x0, y0) = x0, U 2(z1, y0) = y0 and U 2(x0, y) = y for all y > y0.
3. U 2(x0, y0) = x0, y1 > y0 and U 2(x0, y1) = x0, U 2(z1, y0) = z1.
4. U 2(x0, y0) = x0, y1 > y0 and U 2(x0, y1) = x0, U 2(z1, y0) = y0.
5. U 2(x0, y0) = x0, y1 > y0 and U 2(x0, y1) = y1, U 2(z1, y0) = z1.
6. U 2(x0, y0) = x0, y1 > y0 and U 2(x0, y1) = y1, U 2(z1, y0) = y0.
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Remark 3. Since x0 and y0 are idempotent points, x0 ≤ e1 and e2 ≤ y0 we know that U 2 is closed on [x0, y0]2. Moreover, if 
U 2(x0, y0) = x0 then U 2 is closed on ]x0, y0]2. Indeed, in the opposite case there exist s, t ∈ ]x0, y0] such that U 2(s, t) = x0. 
Then x0 = Un(x0, x0) ≤ U 2(s1, t1) ≤ U 2(s, t) = x0 for all s1 ∈ ]x0, s], t1 ∈ ]x0, t]. Since s ≤ y0, t ≤ y0, for any s2 ∈ ]x0, s[, 
t2 ∈ ]x0, t[ we get

U 2(x0, z1) = U 2(U 2(s2, t2), z1) = U 2(s2, U 2(t2, z1)) = U 2(s2, z1) = z1 > x0 = U 2(x0, y0),

which is a contradiction with the monotonicity of U 2.
Similarly we can show that if U 2(x0, y0) = x0 and U 2(z1, y0) = y0 then U 2 is closed on ]x0, y0[2.

Proposition 8. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 , U 2(z1, y0) = z1 and U 2(x0, y) = y for 
all y > y0 . Then U 2 can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1} and (C, �)

has a tree structure.

Proof. From [17, Theorem 4.4] we know that in this case U 2 is an ordinal sum of two semigroups G1 = ([0, x0]∪ ]y0,1] , U 2)

and G2 = (]x0, y0] , U 2), where G2 is isomorphic to a 2-uninorm from Class 1 restricted to ]0,1]2, G1 is isomorphic to a 
uninorm with continuous underlying functions and 1 < 2. Thus U 2 can be expressed as a z-ordinal sum of four semigroups 
G1, G3 = (]x0, z1] , U 2), G4 = ([z1, y0] , U 2), G5 = ({z1}, Id), where A = {5} and the corresponding partial order is given 
by 3 ∧ 4 = 5 and 1 ≺ 5. Since semigroups G3, G4 and G1 are isomorphic to (restrictions of) uninorms with continuous 
underlying functions, Lemma 4 implies that U 2 can be expressed as a z-ordinal sum of a countable number of semigroups 
from H. �
Proposition 9. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 , U 2(z1, y0) = y0 and U 2(x0, y) = y for 
all y > y0 . Then U 2 can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1} and (C, �)

has a tree structure.

Proof. From [17, Theorem 4.5] we know that in this case U 2 is an ordinal sum of three semigroups G1 = ([0, x0] ∪
]y0,1] , U 2), G2 = (]x0, y0[ , U 2) and G3 = ({y0}, Id), where G1 is isomorphic to a uninorm with continuous underlying 
functions, G2 is isomorphic to a 2-uninorm from Class 1 restricted to ]0,1[2 and 1 < 3 < 2. Thus U 2 can be expressed 
as a z-ordinal sum of five semigroups G1, G3, G4 = (]x0, z1] , U 2), G5 = ([z1, y0[ , U 2), G6 = ({z1}, Id), where A = {6} and 
the corresponding partial order is given by 4 ∧ 5 = 6 and 1 ≺ 3 ≺ 6. Since semigroups G4, G5 and G1 are isomorphic to 
(restrictions of) uninorms with continuous underlying functions, Lemma 4 implies that U 2 can be expressed as a z-ordinal 
sum of a countable number of semigroups from H (see Fig. 3). �
Proposition 10. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 , y1 > y0 and U 2(x0, y1) = x0 , 
U 2(z1, y0) = z1 . Then U 2 can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1} and 
(C, �) has a tree structure.

Proof. From [17, Theorem 4.7] we know that in this case U 2 is an ordinal sum of three semigroups G1 = ([0, x0] ∪
]y1,1] , U 2), G2 = (]x0, y0] , U 2) and G3 = (]y0, y1] , U 2), where G1 is isomorphic to a uninorm with continuous under-
lying functions, G2 is isomorphic to a 2-uninorm from Class 1 restricted to ]0,1]2 and G3 is isomorphic to a continuous 
t-conorm restricted to ]0,1]2. For the respective linear order we have 1 < 3 < 2. Thus U 2 can be expressed as a z-ordinal 
sum of five semigroups G1, G3, G4 = (]x0, z1] , U 2), G5 = ([z1, y0] , U 2), G6 = ({z1}, Id), where A = {6} and the correspond-
ing partial order is given by 4 ∧ 5 = 6 and 1 ≺ 3 ≺ 6. Since semigroups G4, G5 and G1 are isomorphic to (restrictions of) 
uninorms with continuous underlying functions, and semigroup G3 is isomorphic to (a restriction of) a continuous t-conorm 
Lemma 4 implies that U 2 can be expressed as a z-ordinal sum of a countable number of semigroups from H. �
Proposition 11. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 , y1 > y0 and U 2(x0, y1) = x0 , 
U 2(z1, y0) = y0 . Then U 2 can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1} and 
(C, �) has a tree structure.

Proof. From [17, Theorem 4.8] we know that in this case U 2 is an ordinal sum of three semigroups G1 = ([0, x0] ∪
]y1,1] , U 2), G2 = (]x0, y0[ , U 2) and G3 = ([y0, y1] , U 2), where G1 is isomorphic to a uninorm with continuous under-
lying functions, G2 is isomorphic to a 2-uninorm from Class 1 restricted to ]0,1[2 and G3 is isomorphic to a continuous 
t-conorm. For the respective linear order we have 1 < 3 < 2. Thus U 2 can be expressed as a z-ordinal sum of five semi-
groups G1, G3, G4 = (]x0, z1] , U 2), G5 = ([z1, y0[ , U 2), G6 = ({z1}, Id), where A = {6} and the corresponding partial order 
is given by 4 ∧ 5 = 6 and 1 ≺ 3 ≺ 6. Since semigroups G4, G5 and G1 are isomorphic to (restrictions of) uninorms with 
continuous underlying functions, and semigroup G3 is isomorphic to a continuous t-conorm Lemma 4 implies that U 2 can 
be expressed as a z-ordinal sum of a countable number of semigroups from H. �
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[0, x0[ ∪ {z1} ∪ ]y0,1]� �

{e1} � {e2}

� U 2(0,1)
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[0, x0] ∪ ]y0,1]� �

{e1} � {e2}

� U 2(0,1)

Fig. 3. A partial order from Theorem 6 (left) and Propositions 8 and 9 (right). The bold sets in brackets apply for Proposition 9. Labeled areas consist of 
semigroups which contain points from the given set. Note that e1 and e2 can belong to semigroups which are not trivial.

Further we will assume that U 2(x0, y0) = x0, y1 > y0 and U 2(x0, y1) = y1. Then [17, Lemma 4.9] implies that U 2 is 
closed on ([0, x0[ ∪ ]y0,1])2 and [17, Proposition 3.10] implies that U 2 restricted to ([0, x0[ ∪ {z1} ∪ ]y0,1])2 is isomorphic 
to a uninorm with continuous underlying functions.

Lemma 7. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 , y1 > y0 and U 2(x0, y1) = y1 , U 2(z1, y0) =
z1 . Then ([0, 1] \ {x0}, U 2) can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1} and 
(C, �) has a tree structure.

Proof. From previous discussion we know that in this case U 2 is closed on ]x0, y0]2, as well as on ([0, x0[ ∪ {z1} ∪ ]y0,1])2. 
Since z1 is the annihilator of U 2 on ]x0, y0]2 and the neutral element of U 2 on ([0, x0[ ∪ {z1} ∪ ]y0,1])2 we see that the 
semigroup ([0, 1] \ {x0}, U 2) can be expressed as an ordinal sum of the semigroup G1 = ([0, x0[∪{z1} ∪ ]y0,1] , U 2), which is 
isomorphic to a uninorm with continuous underlying functions, and the semigroup G2 = (]x0, y0] , U 2), which is isomorphic 
to a 2-uninorm from Class 1 restricted to ]0,1]2.

Thus ([0, 1] \ {x0}, U 2) is a z-ordinal sum of four semigroups G1, G3 = (]x0, z1] , U 2), G4 = ([z1, y0] , U 2), G5 = ({z1}, Id), 
where A = {5} and the corresponding partial order is given by 3 ∧ 4 = 5 and 1 ≺ 5. Since semigroups G3, G4 and G1 are 
isomorphic to (restrictions of) uninorms with continuous underlying functions Lemma 4 implies that ([0, 1] \ {x0}, U 2) can 
be expressed as a z-ordinal sum of a countable number of semigroups from H. �
Proposition 12. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 , y1 > y0 and U 2(x0, y1) = y1 , 
U 2(z1, y0) = z1 . Then U 2 can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1} and 
(C, �) has a tree structure.

Proof. Lemma 7 shows that ([0, 1] \ {x0}, U 2) can be expressed as a z-ordinal sum of a countable number of semigroups 
from H with respect to the set A′ = {5}. Assuming the semigroups from Lemma 7, to prove the result we have to add 
the trivial semigroup G0 = ({x0}, Id) to the correct place. Evidently there is 0 � 5. Thus we only have to focus on the 
semigroups from the ordinal sum decomposition of G1, i.e., semigroups Hα, α ∈ A1, for the corresponding countable index 
set A1 linearly ordered by ≤A1 . Observe that U 2(x0, y) = x0 for all y ∈ ]y0, y1[ and U 2(x0, z1) = x0. On the other hand, 
U 2(x0, y) = y for all y ∈ [0, x0[ ∪ [y1,1]. Together we get

U 2(x, y) = U 2(U 2(x, x0), y) = U 2(x, U 2(x0, y)) = U 2(x, x0) = x

for all x ∈ [0, x0[ ∪ [y1,1] and y ∈ ]y0, y1[ ∪ {z1}. Thus if for α, β ∈ A1 there is x ∈ Xα for some x ∈ [0, x0[ ∪ [y1,1] and 
y ∈ Xβ for some y ∈ ]y0, y1[ ∪ {z1} then α ≤A1 β .

Assume a non-trivial semigroup Hα from the decomposition of G1. We will show that if y ∈ Xα for some y ∈ ]y0, y1[
then [0, x0[ ∩ Xα = ∅, z1 /∈ Xα . Indeed, [14, Proposition 11] (see Definition 6) implies that Hα is not defined on an interval 
only if it is either representable, or d-internal semigroup. However, for all x ∈ [0, x0[ there is

U 2(x, y) = U 2(U 2(x, x0), y) = U 2(x, U 2(x0, y)) = U 2(x, x0) = x,

which means that Hα is not a representable semigroup. Assume that Hα is d-internal. Then there exists points x1, x2 ∈
[0, x0[ such that U 2(x1, y) = x1 and U 2(x2, y) = y. However, as we showed above U 2(x, y) = x for all x ∈ [0, x0[ and thus 
Hα is not d-internal. Therefore Hα is s-strict, s-nilpotent, or s-internal semigroup.

Now there are two possibilities. If for all y ∈ ]y0, y1[ there y ∈ Xα implies y1 /∈ Xα then U 2 is a z-ordinal sum of a 
countable number of semigroups from H, where A′′ = A′ , B ′′ = B ′ ∪ {0} and �′′ coincides with �′ on A′ ∪ B ′ , �′′ is a linear 
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order on A1 ∪ {0, 5}, 0 ≺′′ 5 and for α ∈ A1 there is 0 ≺′′ α if y ∈ Xα for some y ∈ ]y0, y1[, α ≺′′ 0 if y ∈ Xα for some 
y ∈ [0, x0[ ∪ [y1,1].

If there exists α1 ∈ A1 such that y1 ∈ Xα1 and y ∈ Xα1 for some y ∈ ]y0, y1[ then since y1 is an idempotent element Hα1

cannot be an s-strict semigroup. Since Hα1 is not d-internal and it is not representable, the remaining two possibilities are 
that Hα1 is s-nilpotent, or s-internal. If Hα1 is an s-nilpotent semigroup then there exist s, t ∈ ]y0, y1[ such that U 2(s, t) =
y1. However, then

y1 = U 2(y1, x0) = U 2(U 2(s, t), x0) = U 2(s, U 2(t, x0)) = U 2(s, x0) = x0,

which is a contradiction. Thus Hα1 is an s-internal semigroup, which means that Xα1 is an (open) interval and Xα1 ⊆ ]y0,1]. 
Denote Xα1 = ]a,b[ and define two new semigroups Gα2 = (]a, y1[ , max) and Gα3 = ([y1,b[ , max). Then U 2 is a z-ordinal 
sum of a countable number of semigroups from H, where A′′ = A′ , B ′′ = (B ′ \ α1) ∪ {0, α2, α3} and �′′ coincides with �′
on A′ ∪ (B ′ \ α1) and α3 ≺′′ 0 ≺′′ α2, while for an α ∈ A1 there is α ≺′′ α3 if α ≺′ α1 and α2 ≺′′ α if α1 ≺′ α. In other words 
we have inserted the semigroup G0 between the semigroup Gα3 and the semigroup Gα2 while α2 and α3 inherited the 
position of α1. �
Lemma 8. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 , y1 > y0 and U 2(x0, y1) = y1 , U 2(z1, y0) =
y0 . Then ([0, 1] \ {x0}, U 2) can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1} and 
(C, �) has a tree structure.

Proof. The proof is similar to the proof of Lemma 7, we just have to replace G2 by two semigroups (]x0, y0[ , U 2) and 
({y0}, Id) (compare Propositions 8 and 9). �
Proposition 13. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 , y1 > y0 and U 2(x0, y1) = y1 , 
U 2(z1, y0) = y0 . Then U 2 can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1} and 
(C, �) has a tree structure.

Proof. The proof is similar to the proof of Proposition 12, here we have just one additional index corresponding to the trivial 
semigroup ({y0}, Id), which is an immediate predecessor of α0 ∈ A which corresponds to the trivial semigroup ({z1}, Id) (see 
Fig. 4). �

If we summarize Propositions 8–13 we obtain the following theorem.

Theorem 7. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = x0 . Then U 2 can be expressed as a z-ordinal sum 
of a countable number of semigroups from H, where A ∼ {z1} and (C, �) has a tree structure.

The case when U 2(x0, y0) = y0 is analogous to the case when U 2(x0, y0) = x0. We briefly describe the structure of U 2

in this case in the following remark.

Remark 4. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = y0. Denote

x1 = inf{x ∈ [0, x0] | U 2(y0, x) = y0}.
Then U 2 can be expressed as a z-ordinal sum of the following semigroups.

(i) If U 2(z1, x0) = z1 and U 2(y0, x) = x for all x < x0. G1 = ([0, x0[ ∪ [y0,1] , U 2), G2 = ([z1, y0[ , U 2), G3 = ([x0, z1] , U 2), 
G4 = ({z1}, Id), where A = {4} and the corresponding partial order is given by 2 ∧ 3 = 4 and 1 ≺ 4. Here semigroups 
G1, G2 and G3 are isomorphic to (restrictions of) uninorms with continuous underlying functions.

(ii) If U 2(z1, x0) = x0 and U 2(y0, x) = x for all x < x0. G1 = ([0, x0[ ∪ [y0,1] , U 2), G2 = ({x0}, Id), G3 = ([z1, y0[ , U 2), G4 =
(]x0, z1] , U 2), G5 = ({z1}, Id), where A = {5} and the corresponding partial order is given by 3 ∧ 4 = 5 and 1 ≺ 2 ≺ 5. 
Here semigroups G1, G3, G4 are isomorphic to (restrictions of) uninorms with continuous underlying functions.

(iii) If x1 < x0 and U 2(y0, x1) = y0, U 2(z1, x0) = z1. G1 = ([0, x1[ ∪ [y0,1] , U 2), G2 = ([x1, x0[ , U 2), G3 = ([z1, y0[ , U 2), 
G4 = ([x0, z1] , U 2), G5 = ({z1}, Id), where A = {5} and the corresponding partial order is given by 3 ∧ 4 = 5 and 
1 ≺ 2 ≺ 5. Here semigroups G1, G3 and G4 are isomorphic to (restrictions of) uninorms with continuous underlying 
functions, and semigroup G2 is isomorphic to (a restriction of) a continuous t-norm.

(iv) If x1 < x0 and U 2(y0, x1) = y0, U 2(z1, x0) = x0. G1 = ([0, x1[ ∪ [y0,1] , U 2), G2 = ([x1, x0] , U 2), G3 = ([z1, y0[ , U 2), 
G4 = (]x0, z1] , U 2), G5 = ({z1}, Id), where A = {5} and the corresponding partial order is given by 3 ∧ 4 = 5 and 
1 ≺ 2 ≺ 5. Here semigroups G1, G3 and G4 are isomorphic to (restrictions of) uninorms with continuous underlying 
functions, and semigroup G2 is isomorphic to a continuous t-norm.
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� U 2(0,1)

Fig. 4. A partial order from Propositions 10 and 11 (left) and Propositions 12 and 13 (right). The bold sets in brackets apply for Propositions 11 and 13. 
Labeled areas consist of semigroups which contain points from the given set.

(v) If x1 < x0 and U 2(y0, x1) = x1, U 2(z1, x0) = z1. G1 = ([0, x0[∪{z1} ∪[y0,1] , U 2), G2 = ([z1, y0[ , U 2), G3 = ([x0, z1] , U 2), 
G4 = ({z1}, Id), where A = {4} and the corresponding partial order is given by 2 ∧ 3 = 4 and 1 ≺ 4. Here semigroups 
G2 and G3 are isomorphic to (restrictions of) uninorms with continuous underlying functions. The semigroup G1 can 
be expressed as an ordinal sum of semigroups from H similarly as in Proposition 12.

(vi) If x1 < x0 and U 2(y0, x1) = x1, U 2(z1, x0) = x0. G1 = ([0, x0[∪{z1} ∪[y0,1] , U 2), G2 = ([z1, y0[ , U 2), G3 = (]x0, z1] , U 2), 
G4 = ({z1}, Id), G5 = ({x0}, Id), where A = {4} and the corresponding partial order is given by 2 ∧ 3 = 4 and 1 ≺ 5 ≺ 4. 
Here semigroups G2 and G3 are isomorphic to (restrictions of) uninorms with continuous underlying functions. The 
semigroup G1 can be expressed as an ordinal sum of semigroups from H similarly as in previous case.

Note that each non-trivial semigroup above can be further decomposed via the ordinal sum construction into semigroups 
from H.

Remark 4 and Lemma 4 imply similar results to Propositions 8–13 in the case when U 2(x0, y0) = y0. Then we get the 
following.

Theorem 8. Let U 2 : [0, 1] −→ [0, 1] be a 2-uninorm, U 2 ∈ U2 and let U 2(x0, y0) = y0 . Then U 2 can be expressed as a z-ordinal 
sum of a countable number of semigroups from H, where A ∼ {z1} and (C, �) has a tree structure.

Summarizing, we see that in all cases a 2-uninorm U 2 ∈ U2 can be expressed as a z-ordinal sum of semigroups from H
with respect to set A which contains only one index. The corresponding partially ordered set C has a tree structure with 
two branches and the single node (which belongs to A) corresponding to the trivial semigroup ({z1}, Id).

Remark 5. The structure of a 2-uninorm from Class 1 was described in [1] and the structure of 2-uninorms from Classes 2a 
and 2b were completely characterized in [23] (see Theorems 5 and 6). From our results we can observe the following.

• If U 2 ∈ U2 is a 2-uninorm from Class 1 then x0 = 0 and y0 = 1 and U 2(x0, y0) = U 2(0, 1) = z1. The z-ordinal sum 
structure of U 2 is described in Lemma 6. Here z1 is the bottom element of the corresponding partial order and above 
we have two separate branches, each linearly ordered (corresponding to underlying uninorms).

• If U 2 ∈ U2 is a 2-uninorm from Class 2a then y0 = 1 and U 2(z1, y0) = U 2(z1, 1) = z1. If U 2(x0, z1) = x0 then U 2 is a z-
ordinal sum (see Proposition 8) of a semigroup G1 corresponding to a t-norm on [0, x0]2, a semigroup G2 corresponding 
to a restriction of a uninorm on ]x0, z1]2, a semigroup G3 corresponding to a uninorm on [z1,1]2 and a semigroup 
G4 = ({z1}, Id). The respective partial order is given by 1 ≺ 4 and 2 ∧ 3 = 4. Each non-trivial semigroup can be further 
decomposed via the ordinal sum construction into semigroups from H.
If U 2(x0, z1) = z1 the situation is similar (see Theorem 6), just the t-norm is restricted to [0, x0[2 and we have a uninorm 
on [x0, z1]2. This covers also the special case when x0 = e1, which corresponds to [23, Corollary 2].

• If U 2 ∈ U2 is a 2-uninorm from Class 2b then x0 = 0 and U 2(z1, x0) = U 2(z1, 0) = z1. If U 2(y0, z1) = y0 then (see 
Remark 4(i)) U 2 is a z-ordinal sum of a semigroup G1 corresponding to a t-conorm on [y0,1]2, a semigroup G2 cor-
responding to a restriction of a uninorm on [z1, y0[2, a semigroup G3 corresponding to a uninorm on [0, z1]2 and a 
semigroup G4 = ({z1}, Id). The respective partial order is given by 1 ≺ 4 and 2 ∧ 3 = 4. Each non-trivial semigroup can 
be further decomposed via the ordinal sum construction into semigroups from H.
If U 2(y0, z1) = z1 the situation is similar (see Theorem 6), just the t-conorm is restricted to ]y0,1]2 and we have a 
uninorm on [z1, y0]2. This covers also the special case when y0 = e2, which corresponds to [23, Corollary 4].

75
243



A. Mesiarová-Zemánková International Journal of Approximate Reasoning 133 (2021) 60–79

6. n-uninorms with continuous underlying functions.

In this section we will generalize the results from previous section for n-uninorms from Un for all n ∈N , n > 2. We will 
prove these results by induction. Thus we will suppose that for some m ∈ N , m > 2, each n-uninorm Un for n ∈N , n < m, 
Un ∈ Un , can be expressed as a z-ordinal sum of a countable number of semigroups from H with tree structure, where 
A ∼ {z1, . . . , zn−1}. Then we will show that the same holds also for all m-uninorms from Um .

Assume an m-uninorm Um ∈ Um . Then Um(e1, em) = zk for some k ∈ {1, . . . , m −1}. Similarly as in the case of 2-uninorms 
there exist idempotent points x0 ∈ [0, e1] and y0 ∈ [em,1] such that Um(x, zk) = x for all x < x0 and Um(x, zk) = zk for all 
x0 < x ≤ zk , and Um(y, zk) = y for all y > y0 and Um(y, zk) = zk for all zk ≤ y < y0 (see [17]). We denote

y1 = sup{y ∈ [y0,1] | Um(x0, y) = x0}.
Then we can distinguish the following cases.

1. Um(x0, y0) = zk .
2. Um(x0, y0) = x0, Um(z1, y0) = z1 and Um(x0, y) = y for all y > y0.
3. Um(x0, y0) = x0, Um(z1, y0) = y0 and Um(x0, y) = y for all y > y0.
4. Um(x0, y0) = x0, y1 > y0 and Um(x0, y1) = x0, Um(z1, y0) = z1.
5. Um(x0, y0) = x0, y1 > y0 and Um(x0, y1) = x0, Um(z1, y0) = y0.
6. Um(x0, y0) = x0, y1 > y0 and Um(x0, y1) = y1, Um(z1, y0) = z1.
7. Um(x0, y0) = x0, y1 > y0 and Um(x0, y1) = y1, Um(z1, y0) = y0.

Observe that for the dual case when Um(x0, y0) = y0 we can obtain a division dual to points 2.–7.
We will again show the detailed proof for the first case and then just show the respective decomposition for the other 

cases. Note that we say that an n-uninorm belongs to the Class 1 if Un(0, 1) = zk for some k ∈ {1, . . . , n − 1}. Note that in 
such a case Un(0, zk) = zk = Un(zk, 1) and thus Un(x, y) = zk for all x ∈ [0, zk] and y ∈ [zk,1].

Theorem 9. Let Um : [0, 1] −→ [0, 1] be an m-uninorm, Um ∈ Um and let Um(x0, y0) = zk for some k ∈ {1, . . . , m − 1}. Then Um

can be expressed as a z-ordinal sum of a countable number of semigroups from H, where A ∼ {z1, . . . , zm−1} and (C, �) has a tree 
structure.

Proof. From [17, Theorem 5.10] we know that in this case Um is an ordinal sum of two semigroups G1 = ([0, x0[ ∪ {zk} ∪
]y0,1] , Um) and G2 = ([x0, y0] , Um), where G2 is isomorphic to an m-uninorm from Class 1 and G1 is isomorphic to a 
uninorm with continuous underlying functions and 1 < 2. Therefore similarly as in previous section (see Theorem 6) we 
can show that Um can be expressed as a z-ordinal sum, with a tree structure, of four semigroups G1, G3 = ([x0, zk] , Um), 
G4 = ([zk, y0] , Um) and G5 = ({zk}, Id) with A = {5}, where the partial order � is given by 3 ∧ 4 = 5 and 1 ≺ 5. Observe 
that zk is the annihilator of the last three semigroups and it is the neutral element of the first semigroup. Further, G3 is 
isomorphic to a k-uninorm from Uk and G4 is isomorphic to an (m − k)-uninorm from Um−k .

Therefore, due to the induction assumption G3 can be expressed as a z-ordinal sum of a countable number of semigroups 
Hα ∈ H with respect to some index sets A3, B3 and a partial order �3, where (C3, �3) for C3 = A3 ∪ B3 has a tree structure. 
Similarly, G4 can be expressed as a z-ordinal sum of a countable number of semigroups Hα ∈ H with respect to A4, B4 and 
�4, where (C4, �4) has a tree structure. Since G1 is isomorphic to a uninorm with continuous underlying functions it can 
be expressed as an ordinal sum of semigroups from H with respect to some linearly ordered set A1. Thus Lemma 4 and 
Lemma 5 imply that ([0, 1], Um) can be expressed as a z-ordinal sum of a countable number of semigroups from H with 
respect to sets A′ = A3 ∪ A4 ∪{5} and B ′ = B3 ∪ B4 ∪ A1. Note that the induction assumption implies that A3 ∼ {z1, . . . , zk−1}
and A4 ∼ {zk+1, . . . , zm−1}. Therefore A′ ∼ {z1, . . . , zm−1}. The respective partial order �′ on C ′ is given by

(i) α �′ β if α, β ∈ C3 and α �3 β .
(ii) α �′ β if α, β ∈ C4 and α �4 β .

(iii) α �′ β if α, β ∈ A1 and α ≤1 β .
(iv) α ≺′ 5 ≺′ β for all α ∈ A1 and β ∈ C3 ∪ C4. �

In the following theorem, in the case when Um(x0, y0) = y0 we denote

x1 = inf{x ∈ [0, x0] | Um(y0, x) = y0}.

Theorem 10. Let Um : [0, 1] −→ [0, 1] be an m-uninorm, Um ∈ Um. Then Um can be expressed as a z-ordinal sum of a countable 
number of semigroups from H, where A ∼ {z1, . . . , zm−1} and (C, �) has a tree structure.

Proof. In the case when Um(x0, y0) = zk the claim follows from Theorem 9.
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• If Um(x0, y0) = x0, Um(zk, y0) = zk and Um(x0, y) = y for all y > y0. Then Um can be expressed as an ordinal sum 
of two semigroups G1 = ([0, x0] ∪ ]y0,1] , Um) and G2 = (]x0, y0] , Um), where G2 is isomorphic to m-uninorm from Class 
1 restricted to ]0,1]2, G1 is isomorphic to a uninorm with continuous underlying functions and 1 < 2 (see [17, Theorem 
5.11]). Thus Um is a z-ordinal sum of four semigroups G1, G3 = (]x0, zk] , Um), G4 = ([zk, y0] , Um), G5 = ({zk}, Id) with the 
partial order 3 ∧ 4 = 5 and 1 ≺ 5, where G3 is isomorphic to (a restriction of) a k-uninorm from Uk and G4 is isomorphic 
to an (m − k)-uninorm from Um−k and thus Lemma 4 and Lemma 5 imply the result.

• If Um(x0, y0) = x0, Um(zk, y0) = y0 and Um(x0, y) = y for all y > y0. Then Um can be expressed as an ordinal sum of 
three semigroups G1 = ([0, x0] ∪ ]y0,1] , Um), G2 = (]x0, y0[ , Um) and G3 = ({y0}, Id), where G1 is isomorphic to a uninorm 
with continuous underlying functions, G2 is isomorphic to an m-uninorm from Class 1 restricted to ]0,1[2 and 1 < 3 < 2
(see [17, Theorem 5.12]). Thus Um is a z-ordinal sum of five semigroups G1, G3, G4 = (]x0, zk] , Um), G5 = ([zk, y0[ , Um), 
G6 = ({zk}, Id), where A = {6} and the corresponding partial order is given by 4 ∧ 5 = 6 and 1 ≺ 3 ≺ 6. Since semigroups 
G4, G5 are isomorphic to (a restriction of) a k-uninorm from Uk and (a restriction of) an (m − k)-uninorm from Um−k , 
respectively, and G1 is isomorphic to a uninorm with continuous underlying functions, Lemma 4 and Lemma 5 imply the 
result.

• If Um(x0, y0) = x0, y1 > y0 and Um(x0, y1) = x0, Um(zk, y0) = zk . Then Um can be expressed as an ordinal sum of 
three semigroups G1 = ([0, x0] ∪ ]y1,1] , Um), G2 = (]x0, y0] , Um) and G3 = (]y0, y1] , Um), where G1 is isomorphic to a 
uninorm with continuous underlying functions, G2 is isomorphic to an m-uninorm from Class 1 restricted to ]0,1]2 and 
G3 is isomorphic to a continuous t-conorm restricted to ]0,1]2. For the corresponding linear order in the ordinal sum 
construction we have 1 < 3 < 2 (see [17, Theorem 5.13]). Thus Um can be expressed as a z-ordinal sum of five semigroups 
G1, G3, G4 = (]x0, zk] , Um), G5 = ([zk, y0] , Um), G6 = ({zk}, Id), where A = {6} and the corresponding partial order is given 
by 4 ∧5 = 6 and 1 ≺ 3 ≺ 6. Since semigroups G4, G5 are isomorphic to (restrictions of) a k-uninorm from Uk and an (m −k)-
uninorm from Um−k , respectively, G1 is isomorphic to a uninorm with continuous underlying functions, and the semigroup 
G3 is isomorphic to (a restriction of) a continuous t-conorm, Lemma 4 and Lemma 5 imply the result.

• If Um(x0, y0) = x0, y1 > y0 and Um(x0, y1) = x0, Um(zk, y0) = y0. Then Um can be expressed as an ordinal sum of 
three semigroups G1 = ([0, x0] ∪ ]y1,1] , Um), G2 = (]x0, y0[ , Un) and G3 = ([y0, y1] , Um), where G1 is isomorphic to a 
uninorm with continuous underlying functions, G2 is isomorphic to an m-uninorm from Class 1 restricted to ]0,1[2 and G3
is isomorphic to a continuous t-conorm. For the corresponding linear order in the ordinal sum construction we have 1 <
3 < 2 (see [17, Theorem 5.14]). Thus Um can be expressed as a z-ordinal sum of five semigroups G1, G3, G4 = (]x0, zk] , Um), 
G5 = ([zk, y0[ , Um), G6 = ({zk}, Id), where A = {6} and the corresponding partial order is given by 4 ∧ 5 = 6 and 1 ≺ 3 ≺ 6. 
Since semigroups G4, G5 are isomorphic to (a restriction of) a k-uninorm from Uk and (a restriction of) an (m − k)-uninorm 
from Um−k , respectively, G1 is isomorphic to a uninorm with continuous underlying functions, and the semigroup G3 is 
isomorphic to a continuous t-conorm, Lemma 4 and Lemma 5 imply the result.

• If Um(x0, y0) = x0, y1 > y0 and Um(x0, y1) = y1, Um(zk, y0) = zk . Then similarly as in Lemma 7 we can show 
that ([0, 1] \ {x0}, Um) can be expressed as a z-ordinal sum of four semigroups G1 = ([0, x0[ ∪ {zk} ∪ ]y0,1] , Um), G2 =
(]x0, zk] , Um), G3 = ([zk, y0] , Um), G4 = ({zk}, Id), where A = {4} and the corresponding partial order is given by 2 ∧ 3 = 4
and 1 ≺ 4 and semigroups G2, G3 are isomorphic to (a restriction of) a k-uninorm from Uk and an (m − k)-uninorm from 
Um−k , respectively, and G1 is isomorphic to a uninorm with continuous underlying functions. Lemma 4 and Lemma 5 then 
imply that ([0, 1] \ {x0}, Um) can be expressed as a z-ordinal sum of semigroups from H, with respect to sets A, B and 
the partial order �. Now we have to insert the trivial semigroup G0 = ({x0}, Id) on the correct place. We will proceed as 
in Proposition 12. If for all y ∈ ]y0, y1[ there y ∈ Xα implies y1 /∈ Xα then ([0, 1], Um) is a z-ordinal sum with respect to 
A′ = A and B ′ = B ∪ {0}, where 0 is below all semigroups containing points from ]y0, y1[ and 0 is above all semigroups 
containing points from [0, x0[ ∪ [y1,1].

If there exists α1 ∈ A1 such that y1 ∈ Xα1 and y ∈ Xα1 for some y ∈ ]y0, y1[ then Hα1 is an s-internal semigroup defined 
on an open interval ]a,b[ and we assume two semigroups Gα2 = (]a, y1[ , max) and Gα3 = ([y1,b[ , max). Then Um is a 
z-ordinal sum of a countable number of semigroups from H, where A′ = A, B ′ = (B \ α1) ∪ {0, α2, α3} and α3 ≺′ 0 ≺′ α2, 
while α2 and α3 inherited the position with respect to all α ∈ C from the semigroup α1.

• If Um(x0, y0) = x0, y1 > y0 and Um(x0, y1) = y1, Um(zk, y0) = y0. Then we can show that ([0, 1] \ {x0}, Um) can be 
expressed as a z-ordinal sum of five semigroups G1 = ([0, x0[ ∪ {zk} ∪ ]y0,1] , Um), G2 = (]x0, zk] , Um), G3 = ([zk, y0[ , Um), 
G4 = ({zk}, Id) and G5 = ({y0}, Id), where A = {4} and the corresponding partial order is given by 2 ∧ 3 = 4 and 1 ≺ 5 ≺ 4
and semigroups G2, G3 are isomorphic to (a restriction of) a k-uninorm from Uk and (a restriction of) an (m − k)-uninorm 
from Um−k , respectively, and G1 is isomorphic to a uninorm with continuous underlying functions. Lemma 4 and Lemma 5
then imply that ([0, 1] \ {x0}, Um) can be expressed as a z-ordinal sum of semigroups from H, with respect to sets A, B and 
the partial order �. The result can be then shown as in previous case, just assuming that 5 is an immediate predecessor of 
4.

• If Um(x0, y0) = y0, Um(zk, x0) = zk and Um(y0, x) = x for all x < x0. Then Um is a z-ordinal sum of four semigroups 
G1 = ([0, x0[ ∪ [y0,1] , Um), G2 = ([zk, y0[ , Um), G3 = ([x0, zk] , Um), G4 = ({zk}, Id), where A = {4} and the corresponding 
partial order is given by 2 ∧ 3 = 4 and 1 ≺ 4. Here semigroup G1 is isomorphic to a uninorm with continuous underlying 
functions, G3 is isomorphic to a k-uninorm from Uk and G2 is isomorphic to (a restriction of) an (m − k)-uninorm from 
Um−k . Then Lemma 4 and Lemma 5 imply the result.

• If Um(x0, y0) = y0, Um(zk, x0) = x0 and Um(y0, x) = x for all x < x0. Then Um is a z-ordinal sum of five semigroups 
G1 = ([0, x0[ ∪ [y0,1] , Um), G2 = ({x0}, Id), G3 = ([zk, y0[ , Um), G4 = (]x0, zk] , Um), G5 = ({zk}, Id), where A = {5} and the 
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corresponding partial order is given by 3 ∧ 4 = 5 and 1 ≺ 2 ≺ 5. Here semigroup G1 is isomorphic to a uninorm with 
continuous underlying functions, G4 is isomorphic to (a restriction of) a k-uninorm from Uk and G3 is isomorphic to (a 
restriction of) an (m − k)-uninorm from Um−k . Then Lemma 4 and Lemma 5 imply the result.

• If Um(x0, y0) = y0, x1 < x0 and Um(y0, x1) = y0, Um(zk, x0) = zk . Then Um is a z-ordinal sum of five semigroups 
G1 = ([0, x1[ ∪ [y0,1] , Um), G2 = ([x1, x0[ , Um), G3 = ([zk, y0[ , Um), G4 = ([x0, zk] , Um), G5 = ({zk}, Id), where A = {5} and 
the corresponding partial order is given by 3 ∧ 4 = 5 and 1 ≺ 2 ≺ 5. Here semigroup G1 is isomorphic to a uninorm with 
continuous underlying functions, G4 is isomorphic to a k-uninorm from Uk and G3 is isomorphic to (a restriction of) an 
(m −k)-uninorm from Um−k . Moreover, semigroup G2 is isomorphic to (a restriction of) a continuous t-norm. Then Lemma 4
and Lemma 5 imply the result.

• If Um(x0, y0) = y0, x1 < x0 and Um(y0, x1) = y0, Um(zk, x0) = x0. Then Um is a z-ordinal sum of five semigroups 
G1 = ([0, x1[ ∪ [y0,1] , Um), G2 = ([x1, x0] , Um), G3 = ([zk, y0[ , Um), G4 = (]x0, zk] , Um), G5 = ({zk}, Id), where A = {5} and 
the corresponding partial order is given by 3 ∧ 4 = 5 and 1 ≺ 2 ≺ 5. Here semigroup G1 is isomorphic to a uninorm 
with continuous underlying functions, G4 is isomorphic to (a restriction of) a k-uninorm from Uk and G3 is isomorphic 
to (a restriction of) an (m − k)-uninorm from Um−k . Moreover, semigroup G2 is isomorphic to a continuous t-norm. Then 
Lemma 4 and Lemma 5 imply the result.

• If Um(x0, y0) = y0, x1 < x0 and Um(y0, x1) = x1, Um(zk, x0) = zk . Then Um is a z-ordinal sum of four semigroups G1 =
([0, x0[ ∪ {zk} ∪ [y0,1] , Um), G2 = ([zk, y0[ , Um), G3 = ([x0, zk] , Um), G4 = ({zk}, Id), where A = {4} and the corresponding 
partial order is given by 2 ∧3 = 4 and 1 ≺ 4. Here semigroup G3 is isomorphic to a k-uninorm from Uk and G2 is isomorphic 
to (a restriction of) an (m − k)-uninorm from Um−k . The semigroup G1 can be expressed as an ordinal sum of semigroups 
from H similarly as in Proposition 12. Then Lemma 4 and Lemma 5 imply the result.

• If Um(x0, y0) = y0, x1 < x0 and Um(y0, x1) = x1, Um(zk, x0) = x0. Then Um is a z-ordinal sum of five semigroups 
G1 = ([0, x0[ ∪ {zk} ∪ [y0,1] , Um), G2 = ([zk, y0[ , Um), G3 = (]x0, zk] , Um), G4 = ({zk}, Id), G5 = ({x0}, Id), where A = {4} and 
the corresponding partial order is given by 2 ∧ 3 = 4 and 1 ≺ 5 ≺ 4. Here semigroup G3 is isomorphic to (a restriction of) 
a k-uninorm from Uk and G2 is isomorphic to (a restriction of) an (m − k)-uninorm from Um−k . The semigroup G1 can be 
expressed as an ordinal sum of semigroups from H similarly as in previous case. Then Lemma 4 and Lemma 5 imply the 
result. �

Summarizing, we see that in all cases an m-uninorm Um ∈ Um can be expressed as a z-ordinal sum of a countable 
number of semigroups from H with respect to the branching set A ∼ {z1, . . . , zm−1}. The corresponding partially ordered set 
C has a tree structure, where each node corresponds to a trivial semigroup ({zi}, Id) for i ∈ {1, . . . , m − 1}, while above each 
node there are two branches and at the end of each branch there is a semigroup containing the point ei for i ∈ {1, . . . , m}.

7. Conclusions

In this paper we have shown, in a constructive way, that each n-uninorm with continuous underlying functions can be 
expressed as a z-ordinal sum of Archimedean and idempotent semigroups. This result completely characterizes n-uninorms 
with continuous underlying functions. Note that the decomposition of an n-uninorm from Un can be done also using the 
characterizing set-valued functions from [18], analogously as it was done for uninorms in [14]. Here the respective char-
acterizing set-valued function pairs the t-norm and the t-conorm part of representable and d-internal semigroups. Further, 
the set of idempotent points of Un together with horizontal, vertical and strictly decreasing segments of the corresponding 
characterizing set-valued function define the partition to the individual supports of the semigroups from H.

In the future work we would like to study all binary functions on the unit square that can be obtained via a z-ordinal 
sum of semigroups from H. Note that such a function need not be an n-uninorm. Further, we would like to study whether 
all commutative, asssociative binary functions on the unit square whose Archimedean components (see [10]) are semigroups 
from H (which means that their diagonal is a continuous function) can be expressed as a z-ordinal sum of these semigroups.
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