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Preface to the first edition

In the focus of the interest in the present monograph is the set G(xn) of all
distribution functions of a given sequence xn of real numbers or vectors in unit
cubes. We shall identify the notion of the distribution of a sequence xn
with the set G(xn). However, only a relatively small number of sequences xn
are known with a completely described infinite set G(xn). The majority
of sequences xn for which G(xn) is completely known is formed by the set
of uniformly distributed sequences, i.e. sequences xn for which G(xn) is a
singleton {g(x)} with g(x) = x. The importance of the set G(xn) is reflected
in the fact that most properties of a sequence xn expressed in terms of limiting
processes may be characterized using G(xn). For example, the fundamental
Weyl’s limit relation1

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0
f(x) dx,

holding for any continuous function f(x) defined on [0, 1] and any uniformly
distributed sequence xn, can be generalized to the relation

lim
k→∞

1

Nk

Nk∑
n=1

f(xn) =

∫ 1

0
f(x) dg(x)

which is true for every g ∈ G(xn) if an appropriate index sequence Nk is
used.

The description of G(xn) is of high theoretical importance in the theory of
uniform distribution and in the number theory generally. For instance, the
detailed knowledge of G(xn) influences the application of the sequence xn
when calculating some series of arithmetical functions using the generalized
Weyl’s limit relation. The sequences xn for which G(xn) is a singleton (i.e.

1Throughout this book we shall use the shorthand notation xn, n = 1, 2, . . . , for sequences,
instead of the more common ones (xn), or (xn)n≥1. Consequently, the symbol G(xn)
will stand for G((xn)), while f(xn) may denote either the value of the function f(x)
at x = xn, or the sequence f(xn), n = 1, 2, . . . . The meaning will be clear from the
context.

vii



viii Preface

xn has a limit law) have numerical applications through the so–called Quasi–
Monte Carlo method
• in numerical integration,
• when approximating the solutions of differential equations,
• or when approximating the global extremes of continuous functions,
• in searching theory,
• in cryptology,
• or in financial applications,

to mention some areas of applications. For multi–dimensional sequences xn

the set G(xn) can be used in the correlation analysis of co–ordinate sequences
of xn which yields different results from those obtained by the statistical
analysis.

The outline of our conception is as follows. We shall list deterministic –
mainly infinite – sequences, including block sequences. A finite sequence will
be included if an estimation of its discrepancy is known. We shall not cover
• metric aspects of the theory of distribution,
• integer sequences and sequences from generalized metric spaces,
• distribution problems in finite abstract sets,
• continuously uniform distributions.

In most cases the terms of the listed sequences will be supposed to lie in
the unit interval [0, 1] or that they are reduced mod 1. In some special
cases we also include unbounded sequences with distribution functions de-
fined on (−∞,∞). Infinite sequences will be listed together with their dis-
tribution functions, the upper and lower distribution function, discrepancy,
diaphony, dispersion, or with their known estimates, of course, depending on
our present state of knowledge of all these quantities (often we even do not
know anything about their density properties).

The sequences having limits are not listed for the obvious reasons, they have
a one–jump asymptotic distribution function and so can be found in other
sources. On the other hand, dense statistically convergent sequences which
also possess one–jump asymptotic distribution functions are included.

The book itself is divided into four chapters. To make the book more self–
contained we repeat the basic definitions or list the fundamental results in
Chapter 1. This also will help to unify the exact meaning of the utilized
notions which may be in use and to some extend hardly noticeable as to
difference in their meaning. Simultaneously we hope thus also to help the
non–specialized reader to find the fundamental notions and results of the
classical theory on the real line or in multi–dimensional real spaces in one
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source. Additional theoretical results can be found in Chapter 4. Chapters 2
and 3 contain the promised lists of sequences, which are divided into two
main categories:
• one–dimensional sequences (Chapter 2)
• multi–dimensional sequences (Chapter 3).

The sequences are grouped within these two categories according to a dom-
inant (from our point of view) or characteristic feature mainly represented
by
• a distribution criteria,
• the distribution as a result of some operations on sequences,
• general functions involved in the definition of the sequence,
• some important special functions appearing in their definitions as sequences

involving
∗ logarithmic functions,
∗ trigonometrical functions,
∗ number–theoretic functions,
∗ power function,
∗ exponential sequences, etc.

It is hard to find a unique classification scheme in the labyrinth of the various
aspects. From the other classification attributes let us mention
• sequences involving primes,
• sequences of rational numbers or reduced rational numbers,
• the van der Corput sequence and van der Corput – Halton sequence,
• pseudorandom number generators,
• circle sequences.

The so–called completely uniformly distributed sequences can be found in
Chapter 3.

Not all of these classification attributes may be immediately clear. More-
over they are neither uniquely determined nor even disjoint, therefore many
cross–references should help the reader in orientation amongst other related
sequences.

As already mentioned open problems are included not only to complete the
picture. These may provide the impetus for further possible research. Having
the same aim in mind the reader’s attention is also directed to gaps in the
presently known results in the theory of the distribution of sequences.

The sections of the book are numbered consecutively, their subsections too.
The numbering of the entries starts afresh in each section. The entries are
then numbered indicating the chapter by the first number, then the section
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by the second one, and the final number gives the order within the section.
The theorems have the additional fourth number giving their order within the
entry number. The notes containing a brief survey of related results together
with relevant bibliographies follow immediately the main body of the entry.
Here the numbering of the notes corresponds to the numbering in the main
part of the entry if any, otherwise the numbering only separates notes from
each other (the numbering may also continue if there is no relation to the
numbering within the main body of the entry).

The book ends with an extended bibliography with cross–references to the
main text, followed by the index of names referred to in the text and the
subject index.

It is well–known that the theory of uniform distribution formally began with
the pioneering paper Über die Gleichverteilung von Zahlen mod. Eins by
Hermann Weyl published in 1916. Many important discoveries, the theory of
uniform distribution, not excluded often have several forerunners. Results of
P.Bohl, W. Sierpiński, S.N.Bernstein, G.H.Hardy and J.E. Littlewood his-
torically paved the road to this theory. Later within some decades several
authors, such as J.G. van der Corput, J.F.Koksma, A.Ostrowski, I.M.Vinog-
radov, and E.Hlawka introduced quantitative methods into the study of the
distribution behaviour of sequences. van der Corput defined the discrepancy
as a new tool for the quantitative measurement of the distribution behaviour
of sequences, a notion which in turn has undergone dramatic development
resulting in a variety of modifications and the corresponding avalanche of
results.

The prerequisites for using this book are contained in the monographs listed
below which are usually recommended as standard references in the general
theory of the uniform distribution:

L.Kuipers – H.Niederreiter: Uniform Distribution of Sequences,2 the
first comprehensive monograph devoted to uniform distribution published by
John Wiley in 1974;

G.Rauzy: Propriétés statistiques de suites arithmétiques published by Pres-
ses Universitaires de France in 1976;

E.Hlawka: Theorie der Gleichverteilung published in German by Bibli-
ographisches Institut in 1979 and English under the title The Theory of
Uniform Distribution by A B Academic Publishers in 1984;

N.M.Korobov: Number–theoretic Methods in Approximate Analysis pub-
lished in Russian in 1963;

2Hereafter referred to as [KN].
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I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions
published in Russian in 1969;

Hua LooKeng – WangYuan: Applications of Number Theory to Numer-
ical Analysis published by Springer Verlag in 1981;

J. Beck – W.W.L.Chen: Irregularities of Distribution published by Cam-
bridge University Press in 1987;

N.M.Korobov: Trigonometric Sums and its Applications (mainly Chap-
ter 3) published in Russian in 1989;

H.Niederreiter: Random Number Generation and Quasi–Monte Carlo
Methods published by SIAM in 1992;

S.Tezuka: Uniform Random Numbers. Theory and Practice, published by
Kluwer Academic Publishers in 1995;

M.Drmota – R.F.Tichy: Sequences, Discrepancies and Applications 3

published by Springer Verlag in 1997. It is mainly devoted to results proved
over the two decades 1974 – 1996;

J.Matoušek: Geometric Discrepancy. An Illustrated Guide, Algorithms
and Combinatorics published by Springer Verlag in 1999; and

J.E.Gentle: Random Number Generation and Monte Carlo Methods. Sta-
tistic and Computing published by Springer Verlag in 1998 and second edition
in 2003.

The interested reader may perhaps also direct his attention to the following
expository papers which cover the topic from various points of view:

H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random num-
bers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1040 (MR 80d:65016)

E.Hlawka – Ch.Binder: Über die Entwicklung der Theorie der Gle-
ichverteilung in den Jahren 1909 bis 1916 (On the development of the theory
of uniform distribution in the years 1909 to 1916), Arch. Hist. Exact Sci.
36 (1986), no. 3, 197–249 (MR0872356 (88e:01037); Zbl. 0606.10001).

J. Beck – V.T. Sós: Discrepancy theory which appeared in Vol. II of the
Handbook of Combinatorics published by Elsevier in 1995; and

E.Hlawka: Statistik und Gleichverteilung (Statistics and uniform distribu-
tion), Grazer Math. Ber. 335 (1998), ii+206 pp (MR1638218 (99g:11093);
Zbl. 0901.11027).

The first results from the early period of the development of the theory of
uniform distribution can be found in existing classical textbooks:

3Hereafter referred to as [DT].
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G.Pólya and G. Szegő: Aufgaben und Lehrsätze aus der Analysis pub-
lished by Springer Verlag in several editions, the 3rd one in 1964;

J.F.Koksma: Diophantische Approximationen (Diophantine Approxima-
tions), (German), published by Springer Verlag previuosly in 1936;

The mosaic of results can be completed using cumulative indices of Mathe-
matical Reviews:

Reviews in Number Theory as printed in Mathematical Reviews 1940 through
1972, Vol. 3, published by AMS in 1974 and edited by W.J. LeVeque;

Reviews in Number Theory 1973–83 as printed in Mathematical Reviews,
Vol. 3A, published by AMS in 1984 and edited by R.K.Guy;

Reviews in Number Theory 1984–96 as printed in Mathematical Reviews,
Vol. 3B, published by AMS in 1997 and compiled by the Mathematical Re-
views staff.

Last but not least, the following proceedings published by the Springer Verlag
may be utilized as additional sources:

Monte Carlo and Quasi–Monte Carlo Methods in Scientific Computing (Las
Vegas, 1994), Lecture Notes in Statistics, Vol. 106, published in 1995 and
edited by H.Niederreiter and P.J. Shiue;

Monte Carlo and Quasi–Monte Carlo Methods 1996 (Salzburg), Lecture
Notes in Statistics, Vol. 127, published in 1998 and edited by H.Niederreiter,
P.Hellekalek, G. Larcher and P. Zinterhof;

Monte Carlo and Quasi–Monte Carlo Methods 1998 (Clermont), published
in 2000 and edited by H.Niederreiter and J. Spanier;

Random and Quasi–Random Point Sets, Lecture Notes in Statistics, Vol.
138, published in 1998 and edited by P.Hellekalek and G. Larcher; and

Monte Carlo and Quasi–Monte Carlo Methods 2000 (Hong Kong), published
in 2002 and edited by K.–T. Fang, F.J.Hickernell and H.Niederreiter.

The authors tried to make the presented selection of results as complete as
possible in order to reflect the current state of stage. However due to the
wealth of material scattered throughout the literature, it is highly probable
that some noteworthy results may have been unintentionally omitted or not
reproduced completely (or regrettably with errors). We would be grateful
to the readers for their remarks, hints and opinion on how to improve or
complete the presentation.

During the preparation of the book, valuable advice was provided by Henry
Faure, Gérard Rauzy, Michel Mendès France, Robert F.Tichy and in particu-
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lar by Pierre Liardet. The authors want to express them and the anonymous
referees the deepest gratitude for their useful discussions and helpful com-
ments which were used to improve the presentation of the book. O. Strauch
thanks for grants from the the Slovak Academy of Sciences and Grant Agency
VEGA in years 1994 – 2003 and presently the grant #2/4138/04. Š. Porubský
would like to thank the Grant agency of the Czech Republic for supports
on grants #201/93/2122, #201/97/0433, #201/01/0471 and#201/04/0381,
and the Slovak Academy of Sciences and the Academy of Sciences of the
Czech Republic for their support via the interacademic reciprocity agreement
in the final stages of the preparations of the manuscript.

Bratislava and Prague, February 2005 Authors



Preface to the first revised and extended edition

The numbering of the items from the first edition will be kept also in all
subsequent editions. It has the form x.y.z. where x.y. denotes the type of
the sequences under consideration and z gives its order in the list. The new
items added in the second edition are numbered in the form x.y.z.u. where
x.y.z. is the label of a sequence from the first edition after which this newly
added item is appended.

If a new sequence type is added in the second edition then we imitate the
original numbering system in such a way that the added sequence has label
x.y.z. where x.y. is the label of this newly added type of sequences and z is
again its order in the list. In this case the added numbering obviously does
not collide with the original one.

After the first edition of the book in 2005 several new monographs appeared.
Let us mention at least the following ones:

E.Novak – H.Woźniakowski: Tractability of Multivariete Problems

Volume I: Linear Information, 2008,

Volume II: Standard Information for Functionals, 2010 published by Europen
Mathematical Society;

J.Dick – F. Pillichshammer: Digital Nets and Sequences Discrepancy
Theory and Quasi-Monte Carlo Integration published by Cambridge Univer-
sity Press in 2010;

Monte Carlo and Quasi–Monte Carlo Methods 2006 (Ulm), published in 2008
and edited by A.Keller, S.Heinrich and H.Niederreiter;

Monte Carlo and Quasi–Monte Carlo Methods 2010 (Warsaw), published in
2012 and edited by L. Plaskota and H.Woźniakowski.
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supported by VEGA grant No. 2/0206/10. The work on this electronic ver-
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List of symbols and abbreviations

N0 = Z+
0 the set of non–negative integers

N = Z+ the set of positive integers
Z the set of integers
Q the set of rational numbers
R the set of real numbers
C the set of complex numbers
Zq the ring of all integers (mod q)
Fq the finite field of order q
Fq(z) the rational function field over Fq

Fq((z
−1)) the field of formal Laurent series over Fq

x, y, t, u, v, . . . denote real numbers
xn, yn, . . . sequences of real numbers, see p. 1 – 1
x,y, . . . s–dimensional real vectors
h = (h1, . . . , hs) s–dimensional integral vector, i.e. hi ∈ Z
0 = (0, . . . , 0), 1 = (1, . . . , 1)
xn,yn, . . . sequences of s–dimensional real vectors
a, b, p, q, . . . denote positive integers
m,n, i, j, k, . . . denote indices
c1, c2, . . . , c, c

′, . . . , C, . . . will denote constants
A matrix
det(A) determinant of A
rank(A) the number of linearly independent rows

(or columns)
Xn, An sequences of blocks, see p. 1 – 31
{x} the fractional part of x, see p. 1 – 1
x mod 1 reduction modulo 1 we identify with {x}
[x] the integer part of x, or floor of x

or greatest integer function, see p. 1 – 1
∥x∥ = min({x}, 1− {x}) distance of x to the nearest integer
∆xn = xn+1 − xn difference operator
∆kxn = ∆(∆k−1xn) difference operator of order k, see p. 2 – 14
[x, y], [x, y) intervals (closed, right open)

xvii



xviii Symbols and abbreviations

|x| =
√∑s

i=1 x
2
i Euclidean norm of x = (x1, . . . , xs)

|x− y| =
√∑s

i=1(xi − yi)2 Euclidean distance
∥x∥∞ = max

1≤i≤s
|xi| supremum norm of x = (x1, . . . , xs)

∥x− y∥∞ = max
1≤i≤s

|xi − yi| maximum distance

r(h) =
∏s

i=1max(1, |hi|) for h = (h1, . . . , hs) ∈ Zs, see p. 1 – 68
x · y =

∑s
i=1 xiyi usual inner (scalar) product of x = (x1, . . . , xs)

and y = (y1, . . . , ys), see p. 1 – 68
L s–dimensional integration lattice, see p. 1 – 28
L⊥ the dual lattice of L, see p. 1 – 28
ρ(L) the figure of merit of L, see p. 3 – 83
r(L) the rank of L, see p. 3 – 83
xT column vector to the row vector x
|X| the Lebesgue measure of X
#X the number of terms of the set X = {. . . }
arg z argument of the complex number z
|z| norm of the complex number z, see p. 2 – 114
ℜ(z) the real part of the complex number z
n! = 1.2. . . . .n factorial, 0! = 1(
m
n

)
= m!

n!(m−n)! binomial coefficient

a|b a divides b, a, b ∈ Z
a - b a does not divide b
pα∥n pα|n and pα+1 - n
a ≡ b (modm) means m|(a− b)
a ̸≡ b (modm) means m - (a− b)∏

d|m the product over the divisors d of m∑
d|m the sum over the divisors d of m(
a
p

)
Legendre’s symbol

gcd(a, b) greatest common divisor of a and b
lcm[a, b] least common multiple
a∗ positive integer 1 ≤ a∗ < n satisfying

a.a∗ ≡ 1 (mod n), see, p. 2 – 257
pn unless contrary is stated the nth prime

or sequence of weights
ω(n) = #{p ; p|n} the number of distinct prime divisors of n
Ω(n) the total number of prime factors of n

µ(n) = (−1)ω(n) Möbius’ function for square-free n
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and µ(n) = 0 otherwise
d(n) the total number of divisors of n (the divisor

function)
v(n) the nth Farey fraction, see, p. 2 – 288
φ(n) Euler function
λ(n) universal exponent of n, see p. 2 – 233
π(n) number of all primes ≤ n
ordp(n) = α if pα∥n, see p. 2 – 245
h(n) min(α1, . . . , αk), where n = pα1

1 . . . pαkk is the
canonical decomposition of n into primes,
see p. 2 – 245

H(n) max(α1, . . . , αk), where n = pα1
1 . . . pαkk , see

p. 2 – 245
σ(n) the sum of the positive divisors of n
σk(n) =

∑
d|n,d>0

dk

sq(n) sum–of–digits function, see p. 2 – 105
γq(n) radical inverse function in base q,

see p. 2 – 121
h(−n) the class number of Q(

√
−n), see p. 2 – 261

χ(n) primitive Dirichlet character modulo q, see
p. 2 – 253

ν(λ) the degree of the algebraic number λ, see
p. 3 – 51

deg p(x) the degree of the polynomial p(x)
α = [a0; a1, a2, . . . ] continued fraction expansion of α

with partial quotients a0, a1, . . . , see
p. 2 – 80

pn
qn

= [a0; a1, a2, . . . , an] the nth convergent of a continued fraction

l(p/q) = i the length of p/q = [a0; a1, a2 . . . ai], see
p. 2 – 183

M(α) = 1/ lim infn→∞ n∥nα∥ the Markov constant, see p. 2 – 84
K = max1≤i≤l ai for a

N = [a0; a1, . . . , al], see p. 3 – 75
ρ = min0≤j≤j qj |qja− pjN | for a

N = [a0; a1, . . . , al], see p. 3 – 75
u.d. uniform distribution, uniformly distributed,

or equi–distributed, see p. 1 – 4
almost u.d. see p. 1 – 5
u.d. mod ∆ u.d. modulo subdivision, see p. 1 – 5
c.u.d. continuously uniformly distributed, see p. 2 – 60
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completely u.d. see p. 1 – 21
double u.d. see p. 1 – 5
u.d.p. uniform distribution preserving, see

p. 2 – 50
w.d. well distributed, see p. 1 – 5
d.f. distribution function, see p. 1 – 7
g(x), g̃(x), . . . denote d.f., see p. 1 – 7
FN (x) step d.f. of xn, see p. 1 – 3
FN (x) s-dimensional step d.f., see p. 1 – 66
F (Xn, x) step d.f. of block Xn, see p. 1 – 32
a.d.f. asymptotic distribution function, see

p. 1 – 11
G(xn) the set of the all distribution functions

of xn, see p. 1 – 9
g, g the lower and upper d.f. of xn, resp.,

see p. 1 – 11
g
H
, gH the lower and upper d.f. with respect to a

set H of d.f.’s, see p. 1 – 63
c[0,x)(t) the indicator of [0, x)

cα(x) one–jump distribution function having
a jump of height 1 at x = α, see p. 1 – 19

hα(x) constant distribution function with
hα(x) = α for x ∈ (0, 1)

r2(x) = 1−
(
sinπx
πx

)2
the pair correlation function in the GUE,
see p. 2 – 250

ts(q) least t for all (t, s)–sequences in base q,
see p. 3 – 99 , Par. (III) and (IX)

ds(q) least t for all digital (t, s)–sequences
over Fq, see p. 3 – 105 , Par. (IV)

A([x, y);N ;xn) counting function, see p. 1 – 2
A([u1, v1)× · · · × [us, vs);N ;xn) counting function in the s–dimensional

case, see p. 1 – 66
A([0, x);xn) counting function for integer sequence xn,

see p. 1 – 3
A([0, x);Xn) counting functions for blocks sequence Xn,

see p. 1 – 32
Aq(Bs, N) the number of occurrences of the block Bs

in q–adic expansion of α, see p. 1 – 34
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Ã(X;N ;xn) counting function for X = ∪∞
m=1Im, see

p. 1 – 40
A(x;N ; (xn, zn)) counting function for diophantine

approximations, see p. 1 – 39
A∗(N, xn) see p. 1 – 39
DN extremal discrepancy, see p. 1 – 45
DN (θ) extremal discrepancy of {nθ}, see p. 2 – 80
D∗

N star discrepancy, see p. 1 – 45

D
(2)
N L2 discrepancy, see p. 1 – 45 and p. 1 – 80

DI
(2)
N diaphony, see p. 1 – 55 and p. 1 – 83

DIN Zinterhof’s diaphony, see p. 1 – 55
DFN diaphony using Walsh or Chrestenson

functions, see p. 1 – 84
PN polynomial discrepancy, see p. 1 – 58
LN logarithmic discrepancy, see p. 1 – 60 and

p. 1 – 93
Dr Abel discrepancy, see p. 1 – 61 and p. 1 – 92
DX

N discrepancy relative to X, see p. 1 – 85

DC
N , D

C(r)
N discrepancy relative to cubes, see p. 1 – 85

D
B(r)
N discrepancy relative to balls, see p. 1 – 86

DK
N discrepancy relative to kernel K, see p. 1 – 89

SN spherical–cap discrepancy, see p. 1 – 87
IN isotropic discrepancy, see p. 1 – 87
DP

N partition discrepancy, see p. 1 – 92
φ∞(N) non–uniformity, see p. 1 – 90
Pα(L) discrepancy for lattice rule L, see p. 3 – 83
A–DN matrix discrepancy, see p. 1 – 59

D
(2)
N (xn,H) L2 discrepancy of xn with respect to H, see

p. 1 – 62

D
(2)
N (xn, g) L2 discrepancy of xn with respect to a d.f. g,

see p. 1 – 53 and p. 1 – 82

DS
(2)
N ((xn, yn)) L2 discrepancy of statistically independent xn

and yn, see p. 1 – 57
D(g) discrepancy of a d.f. g, see p. 1 – 63
U(g, z) logarithmic potential of g at z, see p. 1 – 63
σN (xn) spectral test, see p. 1 – 96

CN (θ) = −N
2 +

∑N
n=1{nθ} see p. 2 – 85



xxii Symbols and abbreviations

WN (xn) well–distribution measure of ±1 sequence
xn, see p. 2 – 315

C
(k)
N (xn) correlation measure of order k,

see p. 2 – 315

Q
(k)
N (xn) combined pseudorandom measure of order

k, see p. 2 – 315

N
(k)
N (xn) normality measure of order k, see p.2 – 315

NN (xn) normality measure of of ±1 sequence xn,
see p. 2 – 315

EN (xn) mean value of x1, . . . , xn, see p. 4 – 18

D
(2)
N (xn) dispersion=variance of x1, . . . , xN ,

see p. 4 – 18
RN (xn, yn) correlation coefficient of x1, . . . , xN and

y1, . . . , yN , see p. 4 – 18
DN = O(H(N)) if there exists a number c > 0 such that

DN ≤ cH(N) for all sufficiently large N
DN ≪ H(N) the same as DN = O(H(N))
DN ∼ H(N) the same as DN/H(N) → 1, N → ∞
DN = o(H(N)) as N → ∞, means limN→∞

DN
H(N) = 0

DN = Ω(H(N)) the same as DN ̸= o(H(N))

d̃N (θ) maximum of distances between consecutive
numbers 0, 1, {1θ}, . . . , {Nθ}, see p. 2 – 84

d∗N = min
1≤m ̸=n≤N

|xm − xn| see p. 1 – 64

dN dispersion of x1, . . . , xN , see p. 1 – 64 and
see p. 1 – 94 in the multi–dimensional case

d∞N dispersion of x1, . . . ,xN with respect to
maximum distance, see p. 1 – 94

dN (θ) dispersion of {1θ}, . . . , {Nθ}, see p. 2 – 83
D(θ) = lim supN→∞Ndn(θ) see p. 2 – 84

d(an) upper asymptotic density of an, see p. 1 – 3
d(an) lower asymptotic density of an, see p. 1 – 3
d(an) asymptotic density of an, see p. 1 – 3
sp(xn) spectrum of the sequence xn defined by

M.Mendès France, see p. 2 – 45
Bsp(xn) Fourier – Bohr spectrum, see p. 2 – 48

γ(k) = limN→∞
1
N

∑N
n=1 zn+kzn correlation of a complex sequence zn, see

p. 3 – 53
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ψ(k) autocorrelation of a real sequence, see
p. 2 – 172

B(qn) normal set associate to qn, see p. 2 – 95
δq(θ) = max1≤j≤s ∥qθj∥ see p. 3 – 11 ; here θ = (θ1, . . . , θs) and

q ≥ 1 is an integer
λf (t) modulus of continuity of f with respect

to Euclidean distance, see p. 1 – 74
λ∞f (t) modulus of continuity of f with respect

to maximum distance, see p. 1 – 74
V (f) variation of f on [0, 1] or the Hardy –

Krause variation on [0, 1]s, see p. 1 – 73

V (k)(f) the Vitali variation on [0, 1]k of the
function f : [0, 1]k → R, see p. 1 – 73

σ2(f) variance of f , see p. 1 – 76
∆(h, J) see p. 1 – 73
dg(x) differential of g at x see p. 1 – 67

∆
(i)
hi
g(x) difference of g by ith coordinate with

increment hi, see p. 1 – 67
log x logarithm of x in the base e

log(k) n kth iterated logarithm, see p. 2 – 139
logy x logarithm of x in the base y

li(x) integral logarithm
ζ(z) =

∑∞
n=1

1
nz for ℜ(z) > 1, Riemann zeta function, see

p. 2 – 253
ρ(n) = β(n) + iγ(n) the sequence of the non–trivial zeros

of ζ(z), see p. 2 – 249
RH(α) the Riemann hypothesis with α = 1/2,

see p. 2 – 288
L(s, χ) Dirichlet L–function, see p. 2 – 253
wn(x) Walsh function, see p. 2 – 1
wh(x) Chrestenson function, see p. 1 – 84

erfc(x) = 2√
π

∫∞
x e−t2 dt complementary error function

igamc(u, x) = 1
Γ(u)

∫∞
x e−ttu−1 dt incomplete gamma function

Γ(u) =
∫∞
0 e−ttu−1 dt gamma function

sign(x) 1 for x ≥ 0 and −1 others
δ(x) Dirac δ–function
U the union of all Hardy fields, see p. 2 – 73
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U+ f ∈ U satisfying limx→∞ f(x) = ∞, see p. 2 – 75
Eα

s (c) the set of periodic functions with
bounded Fourier coefficients, see p. 3 – 72

P.V. number Pisot – Vijayaraghavan number, see p. 2 – 187
Fn nth Fibonacci number, see p. 2 – 146
Bn nth Bernoulli number
Bn(x) nth Bernoulli polynomial, see p. 4 – 5
Mn = 2n − 1 nth Mersenne number
Bn(x; f) Bernstein polynomial of degree n,

associated with the function f(x), see p. 2 – 4
e = 2.71828182 . . . the base of natural logarithm
π = 3.1415926536 . . . the ratio of a circle’s circumference to its diameter
γ0 = 0.57721566490 . . . The Euler–Mascheroni constant
Th. Theorem
Ex. Example
Exer. Exercise
Prop. Proposition
Coroll. Corollary
Chap. Chapter
Sect. Section
Par. Paragraph
Rem. Remark
a.e. almost everywhere
JFM Jahrbuch über die Fortschritte der Mathematik
MR Mathematical Reviews
Zbl Zentralblatt MATH



1. Basic definitions and properties

The main objects of the uniform distribution theory are:
• sequences;
• counting function;
• step distribution function of initial segments of a given sequence;
• distribution function of a given sequence;
• the set of all distribution functions of a given sequence;
• discrepancies.

We shall mainly follow the conventions and the conception used in the mono-
graphs Uniform Distribution of Sequences by L.Kuipers and H.Niederreiter
and Sequences, Discrepancies and Applications by M.Drmota and R.F.Tichy
which, for the sake of simplicity will be referred to as [KN] and [DT], respec-
tively. Nevertheless, some modifications to the notations used in these books
will appear in what follows. In this chapter we shall repeat the fundamen-
tals facilitating a more comfortable reading of the text. Additional technical
information can also be found in the Appendix.

1.1 Sequences

• The infinite sequences will be considered as real or complex valued functions
defined on the set of positive integers N and will be denoted by xn, yn, zn etc.,
with n = 1, 2, . . . , or in some explicitly mentioned cases with n = 0, 1, 2, . . . .
We shall occasionally use the functional notation with the argument appear-
ing in the parentheses instead of in the index position, e.g. x(n), y(n), . . .
instead of xn, yn, . . . . Note, that if f(x) is a function, then f(xn), f(yn), . . .
also denote sequences.

• The infinite s–dimensional sequences will be considered as sequences of
points of the s–dimensional Euclidean space Rs and denoted by xn, yn, zn
etc., where e.g. xn = (xn,1, . . . , xn,s) for n = 1, 2, . . . .

•We shall also consider finite sequences xn, yn, zn etc., with say n = 1, . . . , N .
These mostly arise as initial segments of infinite sequences, seldom as finite
sequences of single terms.

Notes: We shall mainly use the name finite sequences for what is often denoted as
multisets in the combinatorial sense, i.e. for collection of objects where their mul-

1 – 1
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tiplicity count. For instance, H.Niederreiter (1992) systematically uses the notion
point set in such situations.

H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).

• Given a real number x, [x] denotes the integral part of x, and x mod 1
stands for the residue of x modulo one, i.e. in other words the fractional
part {x} of x. Almost all sequences xn, yn, zn etc. will be understood to
be reduced modulo 1, that is as xn mod 1, yn mod 1, zn mod 1 etc. In
the multi–dimensional case all the coordinates are reduced modulo 1, i.e.
xn mod 1 =

(
{xn,1}, . . . , {xn,s}

)
.

• We shall also consider the double sequences xm,n, ym,n, zm,n etc., where
m = 1, 2, . . . and n = 1, 2, . . . run independently.

1.2 Counting functions

• Given a sequence xn of real numbers, a positive integer N and a subset I of
the unit interval [0, 1), the counting function A(I;N ;xn mod 1) is defined
as the number of terms of xn with 1 ≤ n ≤ N , and with xn taken modulo
one, belonging to I, i.e.

A(I;N ;xn mod 1) = #{n ≤ N ; {xn} ∈ I} =
N∑

n=1

cI({xn}),

where cI(t) is the characteristic function of I.

In the previous definition the unit interval and the fractional part have a
very close relation. In some situations, however, the distribution property of
a sequence xn with terms belonging to an interval [α, β] is studied relative to
the interval [α, β], in which case the fractional part of xn in the composition
c[α,β]({xn}) will not be taken into account, even if written (cf. p. 1 – 11 ).

Notes: (I) Some other types of counting functions are also used, e.g. O. Strauch
(1994, p. 622) uses

A(([0, x), y);N ;xn) = #{m,n ≤ N ; xm, xn ∈ [0, x), |xm − xn| < y}.

O. Strauch: L2 discrepancy, Math. Slovaca 44 (1994), 601–632 (MR1338433 (96c:11085); Zbl.
0818.11029).

(II) Another example appears in the definition of the asymptotic density defined
in 1.2 bellow which is based on the counting function A([0, x);xn) defined by (cf.
H.Halberstam and K.F.Roth (1966, p. xix))



1.3 Step distribution function of xn, n = 1, 2, . . . , N 1 – 3

• Let an, n = 1, 2, . . . , be an increasing sequence of positive (non–negative) integers,
then

A([0, x); an) = #
{
n ∈ N ; an ∈ [0, x]

}
=

∞∑
n=1

c[0,x)(an)

for any real x > 0. The lower asymptotic density d(an) and the upper asymp-
totic density d(an) of the sequence an are defined by

d(an) = lim inf
x→∞

A([0, x); an)

x
= lim inf

n→∞

n

an
,

d(an) = lim sup
x→∞

A([0, x); an)

x
= lim sup

n→∞

n

an
.

If d(an) = d(an), we say that the sequence an possesses the asymptotic density
(or the natural density) d(an), given by this common value. Some further types
of densities can be found in G.Tenenbaum (1990, p. 309–314, Sec. III.1).

H.Halberstam – K.F.Roth: Sequences, Vol. I, Clarendon Press, Oxford, 1966; 2nd ed. 1983
(MR0210679 (35 #1565); Zbl. 0141.04405).
G.Tenenbaum: Introduction à la théorie analytique et probabiliste des nombres, Institut Elie
Cartan, Vol. 13, Université de Nancy, Nancy, 1990. (second edition: Société de France, Paris,
1995 (MR1366197 (97e:11005a); Zbl. 0880.11001)). (English translation: Studies in Advanced
Mathematics, Vol. 46, Cambridge Univ. Press, Cambridge, 1995 (MR1342300 (97e:11005b); Zbl.
0880.11001)).

1.3 Step distribution function of xn, n = 1, 2, . . . , N

• For a sequence x1, . . . , xN mod 1 we define the step distribution function
FN (x) for x ∈ [0, 1) by

FN (x) =
A([0, x);N ;xn mod 1)

N

while FN (1) = 1, e.g.

F4(x)

0 1x2 x3 x4 x1
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Thus if f : [0, 1] → R is continuous then

1

N

N∑
n=1

f(xn) =

∫ 1

0
f(x) dFN (x).

Notes: The notion of the step distribution function was introduced by I.M. So-
bol’ (1969). The expression via Riemann – Stieljes integral is also valid for sequences
xn ∈ [0, 1] not reduced mod 1. The function FN (x) is also called the empirical
distribution of x1, . . . , xN mod 1. Weyl limit relation from 1.4 and also its gen-
eralization from 1.7 can be derived directly applying the second Helly theorem (cf.
4.1.4.13) to FN (x).

I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).

1.4 Uniform distribution

• The sequence xn is said to be uniformly distributed modulo one (ab-
breviated u.d. mod 1) if for every subinterval [x, y) ⊂ [0, 1] we have

lim
N→∞

A([x, y);N ;xn mod 1)

N
= y − x

(
= lim

N→∞
(FN (y)− FN (x))

)
.

(Note that it suffices to require limn→∞ FN (x) = x for all x ∈ [0, 1].) Such a
sequence xn is also called equi–distributed modulo one.
Notes: We shall (unless the contrary is stated) firstly reduce the given sequence xn
modulo 1 and only then we proceed to the issue of the uniform distribution.

The next three theorems are of fundamental importance for the theory of u.d.
Theorem 1.4.0.1 (Weyl limit relation). The sequence xn mod 1 is u.d.
if and only if for every continuous f : [0, 1] → R we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0
f(x) dx.

Theorem 1.4.0.2 (Weyl criterion). The sequence xn mod 1 is u.d. if and
only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 for all integers h ̸= 0.

Theorem 1.4.0.3 (van der Corput’s difference theorem). Let xn be a
sequence of real numbers. If for every positive integer h the sequence xn+h −
xn mod 1 is u.d., then xn mod 1 is u.d.
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Notes: The formal definition of u.d. was given by H.Weyl (1916) who also proved
two of the above mentioned fundamental criteria (cf. 2.1.1, 2.1.2). The difference
theorem was proved by van der Corput (1931) (cf. 2.2.1). For the proofs cf. [KN,
p. 2, Th. 1.1], [KN, p. 7, Th. 2.1], and [KN, p. 26, Th. 3.1], resp.

H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).
J.G. van der Corput: Diophantische Ungleichungen I. Zur Gleichverteilung modulo Eins, Acta
Math. 56 (1931), 373–456 (MR1555330; JFM 57.0230.05; Zbl. 0001.20102).

1.5 Other types of u.d.

• [KN, p. 53, Def. 7.2]: The sequence xn is said to be almost u.d. mod 1 if
a strictly increasing sequence of positive integers N1 < N2 < ... exists such
that for every subinterval [x, y) ⊂ [0, 1] we have

lim
k→∞

A
(
[x, y);Nk;xn mod 1

)
Nk

= y − x.

• [KN, p. 40, Def. 5.1]: The sequence xn mod 1 is said to bewell distributed
(abbreviated w.d.) if for every subinterval [x, y) ⊂ [0, 1] we have

lim
N→∞

A
(
[x, y);N ;xn+k mod 1

)
N

= y − x

uniformly in k = 0, 1, 2, . . . .

Notes: The well distribution will be considered only occasionally.

• The double sequence xm,n mod 1 is said to be u.d. if for every subinterval
[x, y) ⊂ [0, 1] we have

lim
M,N→∞

A([x, y);M,N ;xm,n mod 1)

MN
= y − x,

where A([x, y);M,N ;xm,n mod 1) is the number of xm,n, 1 ≤ m ≤ M ,
1 ≤ n ≤ N , for which x ≤ {xm,n} < y.

The Weyl limit relation and Weyl criterion takes the following form in this case:
Theorem 1.5.0.1 ([KN, p. 18, Th. 2.8]). The double sequence xm,n mod 1 is
u.d. if and only if for every Riemann integrable function f on [0, 1] we have

lim
M,N→∞

1

MN

M∑
m=1

N∑
n=1

f({xm,n}) =
∫ 1

0

f(x) dx,
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Theorem 1.5.0.2 ([KN, p. 18, Th. 2.9]). The double sequence xm,n mod 1 is
u.d. if and only if

lim
M,N→∞

1

MN

M∑
m=1

N∑
n=1

e2πihxm,n = 0 for all integers h ̸= 0.

• [KN, p. 4, Def. 1.2]: Let ∆ = (zn)
∞
n=0 be a sequence of increasing non–

negative real numbers such that z0 = 0 and zn tends to infinity with n. We
shall call zn a subdivision of the interval [0,∞). For zk−1 ≤ x < zk put

[x]∆ = zk−1 and {x}∆ =
x− zk−1

zk − zk−1
.

The sequence xn, n = 1, 2, . . . , of non–negative real numbers is said to be
u.d. mod ∆ if the sequence {xn}∆ is u.d., and it is said to be almost
u.d. mod ∆ if the sequence {xn}∆ is almost u.d. (cf. p. 1 – 5 ). A necessary
condition states:
Theorem 1.5.0.3 (LeVeque (1953, Th. 1, cf. [KN, p. 4, Th. 1.3])). If an
increasing sequence of non–negative reals xn with limn→∞ xn = ∞ is u.d. mod ∆,
then

lim
k→∞

#{n ∈ N ; xn < zk+1}
#{n ∈ N ; xn < zk}

= 1.

• Let I ⊂ R be an interval of positive length |I|. The sequence xn ∈ I is said
to be u.d. with respect to I if

lim
N→∞

#{n ≤ N ; xn ∈ J}
N

=
|J |
|I|

for all subintervals J ⊂ I.

• The sequence xn ∈ R, n = 1, 2, . . . , is said to be u.d. in R if the se-
quence txn mod 1 is u.d. for every real number t ̸= 0.

• Let h be a measure density defined on X ⊂ 2N, i.e.
∅ ∈ X, N ∈ X, and if X1, . . . , Xk ∈ X, then

∪k
i=1Xi ∈ X,

h(∅) = 0, h(N) = 1, 0 ≤ h(X) ≤ 1 for X ∈ X, and
h(
∪k

i=1Xi) =
∑k

i=1 h(Xi) for pairwise disjoint Xi ∈ X.
The sequence xn ∈ [0, 1) is called h–u.d. if for every x ∈ [0, 1] the set

Ax = {n ∈ N ; xn ∈ [0, x)}

belongs to X and h(Ax) = x.

Notes: (I) The notion of almost u.d. was introduced by I.I. Pjateckĭı – Šapiro (1952).
(II) The notion of w.d. was introduced by E.Hlawka (1955) and G.M.Petersen
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(1956). For the basic properties of w.d. cf. [KN, pp. 40–47] and [DT, pp. 259–268].
(III) The concept u.d. modulo subdivision goes back to W.J. LeVeque (1953). The
case ∆ with zn = n reduces to the ordinary concept of u.d. mod 1.
(IV) The above definition of u.d. in R is the same as the criterion from [KN, p. 283–
284, Ex. 5.4] for u.d. in the locally compact additive group of real numbers. For
examples cf. 2.15.1, 2.14.1(V) and 2.3.11.
(V) If h = d, the asymptotic density (see p. 1 – 3 ), then we get the classi-
cal u.d. Measure densities may alter: e.g. matrix (cf. 1.8.3), weighted or log-
arithmic (cf. 1.8.4), Abel (cf. 1.8.6), zeta (cf. 1.8.7), with respect to divisors
(cf. 1.8.26), H∞ (cf. 1.8.5), analytic, uniform, Schnilerman’s, Buck’s, etc., see
G.Tenenbaum (1990), Š. Porubský (1984), M.Paštéka (1992, 1994), A. Fuchs and
R.Giuliano Antonini (1990).

A.Fuchs – R.Giuliano Antonini: Théorie générale des densités, Rend. Accad. Naz. Sci. XL
Mem. Mat. (5) 14 (1990), no. 1, 253–294 (MR1106580 (92f:11018); Zbl. 0726.60004).
E.Hlawka: Zur formalen Theorie der Gleichverteilung in kompakten Gruppen, Rend. Circ. Mat.
Palermo (2) 4 (1955), 33–47 (MR0074489 (17,594c); Zbl. 0065.26402).
H.Niederreiter – J. Schoißengeier: Almost periodic functions and uniform distribution mod 1,
J. Reine Angew. Math. 291 (1977), 189–203 (MR0437482 (55 #10412); Zbl. 0338.10053).
M.Paštéka: Some properties of Buck’s measure density, Math. Slovaca 42 (1992), no. 1, 15–32
(MR1159488 (93f:11011); Zbl. 0761.11003).
M.Paštéka: Measure density of some sets, Math. Slovaca 44 (1994), 515–524 (MR1338425
(96d:11013); Zbl. 0818.11007).
G.M.Petersen: ’Almost convergence’ and uniformly distributed sequences, Quart. J. Math. (2)
7 (1956), 188–191 (MR0095812 (20 #2313a); Zbl. 0072.28302).
I.I. Pjateckĭı–Šapiro: On a generalization of the notion of uniform distribution of fractional
parts, (Russian), Mat. Sb. (N.S.), 30(72) (1952), 669–676 (MR0056650 (15,106g); Zbl. 0046.04901).
Š. Porubský: Notes on density and multiplicative structure of sets of generalized integers, in:
Topics in classical number theory, Vol. I, II (Budapest, 1981), (G.Halász ed.), Colloq. Math. Soc.
János Bolyai, Vol. 34, North–Holland Publishing Co., Amsterdam, New York, 1984, pp. 1295–1315
(MR0781186 (86e:11011); Zbl. 0553.10038).
G.Tenenbaum: Introduction à la théorie analytique et probabiliste des nombres, Institut Elie
Cartan, Vol. 13, Université de Nancy, Nancy, 1990. (second edition: Société de France, Paris,
1995 (MR1366197 (97e:11005a); Zbl. 0880.11001)). (English translation: Studies in Advanced
Mathematics, Vol. 46, Cambridge Univ. Press, Cambridge, 1995 (MR1342300 (97e:11005b); Zbl.
0880.11001)).
W.J. LeVeque: On uniform distribution modulo a subdivision, Pacific J. Math. 3 (1953), 757–771
(MR0059323 (15,511c); Zbl. 0051.28503).

1.6 Distribution functions

• A function g : [0, 1] → [0, 1] will be called distribution function (abbre-
viated d.f.) if the following two conditions are satisfied:
(i) g(0) = 0, g(1) = 1,
(ii) g is non–decreasing.

We shall identify any two distribution functions g, g̃ which coincide at com-
mon continuity points, or equivalently, if g(x) = g̃(x) a.e.

Notes: (I) Lebesgue decomposition theorem: Any d.f. g(x) can be uniquely
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expressed as
g(x) = α1gd(x) + α2gs(x) + α3gac(x),

where α1,α2,α3 are non–negative constants, α1 + α2 + α3 = 1, and
• gd(x) is a discrete d.f., i.e. gd(x) =

∑
tn<x

hn, where tn is the sequence of points
of discontinuity of g(x) with jumps hn at these points,

• gs(x) is a singular d.f.1, i.e. continuous, strictly increasing and having zero
derivative a.e.,

• and gac(x) is an absolutely continuous d.f., i.e. gac(x) =
∫ x
0
h(t) dt for some

non–negative Lebesgue integrable function h(t) such that
∫ 1

0
h(t) dt = 1. Function

h(t) is called the density of gac(x).

(see A.N.Kolmogorov and S.V. Fomin (1972, p. 336)).
(II) The function

f(t) =

∫ ∞

−∞
eitx dg(x), t ∈ R,

where g(x) is extended to (−∞,∞) by dg(x) = 0 for x /∈ [0, 1] for integration
reasons, is called the characteristic function of the d.f. g(x). It has the following
properties:
• f(t) is uniformly continuous on R;
• f(0) = 1, |f(t)| ≤ 1,f(−t) = f(t);
• Let g1 and g2 be two d.f. with characteristic functions f1 and f2, resp. If f1(t) =
f2(t) for every t ∈ R, then g1(x) = g2(x) a.e.

• If f is absolutely integrable on R then the corresponding d.f. g is absolutely
continuous. Its density g′ exists, is bounded, uniformly continuous and is given
by

g′(x) =
1

2π

∫ ∞

−∞
e−itxf(t) dt for x ∈ [0, 1],

• A d.f. g is continuous if and only if its characteristic function f satisfies

lim inf
T→∞

1

2T

∫ T

−T
|f(t)|2 dt = 0.

• If FN (x) is the step d.f. of the sequence xn mod 1, n = 1, 2, . . . , N , defined in 1.3,
then its characteristic function f(t) is given by

f(t) =

∫ ∞

−∞
eitx dFN (x) =

∫ 1

0

eitx dFN (x) =
1

N

N∑
n=1

eitxn .

(e.g. see P.D.T.A.Elliott (1979, pp. 28–29, 112–114; p. 48, Lemma 1.23)).

P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).

1Also called singular continuous d.f.
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A.N.Kolmogorov – S.V. Fomin: Elements of the Theory of Functions and Functional Analysis,
(Russian), 3th ed., Izd. Nauka, Moscow, 1972 (Zbl 0235.46001; 4th ed. MR0435771 (55 #8728)).

1.7 Distribution functions of a given sequence

• A d.f. g is called a distribution function of the sequence xn mod 1 if
an increasing sequence of positive integers N1, N2, . . . exists such that the
equality

g(x) = lim
k→∞

A([0, x);Nk;xn mod 1)

Nk

(
= lim

k→∞
FNk(x)

)
(∗)

holds at every point x, 0 ≤ x ≤ 1, of the continuity of g(x) and thus a.e.
on [0, 1].

The existence of the above limit for a given sequence Nk is equivalent to the
existence of the limit

lim
k→∞

1

Nk

Nk∑
n=1

f({xn}) =
∫ 1

0
f(x) dg(x)

for every continuous f : [0, 1] → R. This generalizes the Weyl limit rela-
tion 1.4.0.1.2

Notes: The above definition differs from that given in [KN, p. 53, Def. 7.2], where
it is required that the relation (∗) should hold for all x ∈ [0, 1].

• The set of all distribution functions of a sequence xn mod 1 will be
denoted by G(xn mod 1). We shall identify the notion of the distribution
of a sequence xn mod 1 with the set G(xn mod 1), i.e. the distribution of
xn mod 1 is known if we know the set G(xn mod 1). The set G(xn mod 1)
has the following fundamental properties for every sequence xn mod 1:
• G(xn mod 1) is non–empty, and it is either a singleton or has infinitely

many elements,
• G(xn mod 1) is closed and connected in the topology of the weak conver-

gence, and these properties are characteristic for
• given a non–empty set H of distribution functions, there exists a se-

quence xn in [0, 1) such that G(xn) = H if and only if H is closed and
connected.

Notes: (I) Proof of non–emptiness can be found in [KN, p. 54, Th. 7.1].
(II) The closedness and connectivity can be derived from the following results proved
by van der Corput:

2The Riemann – Stieljes integration with limits
∫ 1+0

0−0
is understood in this case.
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Theorem 1.7.0.1 (J.G. van der Corput (1935–36, Satz 10)). If g1(x), g2(x),
g3(x), . . . are d.f.’s of xn mod 1 and limn→∞ gn(x) exists at every common point x
of continuity, then the corresponding limit function is also a d.f. of xn mod 1.
Theorem 1.7.0.2 (J.G. van der Corput (1935–36, Satz 5)). Let H be a non–
empty set of d.f.’s. Then there exists a sequence xn ∈ [0, 1) with G(xn) = H if and
only if there exitst a sequence of d.f.’s gn(x), n = 1, 2, . . . , in H such that
(i) If limk→∞ gnk

(x) = g(x) at common points x of continuity, then g ∈ H, and
conversely, there is such a subsequence for any g ∈ H.

(ii) limn→∞ gn+1(x) − gn(x) = 0 at any common point x of continuity of gn(x),
n = 1, 2, . . . .

(III) A purely topological characterization of G(xn) with a short history can be
found in R.Winkler (1997).
(IV) Since the weak topology is metrisable by the metric

d(g1, g2) =

(∫ 1

0

(g1(x)− g2(x))
2 dx

)1/2

,

a non–empty closed set H is connected if and only if, for any two g, g̃ ∈ H and
every ε > 0 there exist finitely many g1, . . . , gn ∈ H such that g1 = g, gn = g̃ and
d(gi, gi+1) < ε for i = 1, . . . , n − 1. Some examples of such H can be found in
O. Strauch (1997), cf. 2.2.22.
(V) Instead of G(xn), the set of all Borel probability measures on [0, 1] associated
with xn is occasionally studied (cf. J. Coquet and P. Liardet (1987)).

• The continuity of all d.f.’s of xn mod 1 follows from

lim
K→∞

1

K

K∑
k=1

βk = 0, where βk = lim sup
N→∞

∣∣∣∣∣ 1N
N∑
n=1

e2πikxn

∣∣∣∣∣
2

.

Notes: This is a generalization of the Wiener – Schoenberg theorem (2.1.4(II))
given by P.Kostyrko, M.Mačaj, T. Šalát and O. Strauch (2001).

J.Coquet – P. Liardet: A metric study involving independent sequences, J. Analyse Math. 49
(1987), 15–53 (MR0928506 (89e:11043); Zbl. 0645.10044).
P.Kostyrko – M.Mačaj – T. Šalát – O. Strauch: On statistical limit points, Proc. Amer.
Math. Soc. 129 (2001), no. 9, 2647–2654 (MR1838788 (2002b:40003); Zbl. 0966.40001).
O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).
J.G. van der Corput: Verteilungsfunktionen I – II , Proc. Akad. Amsterdam 38 (1935), 813–821,
1058–1066 (JFM 61.0202.08, 61.0203.01; Zbl. 0012.34705, 0013.05703).
J.G. van der Corput: Verteilungsfunktionen III – VIII , Proc. Akad. Amsterdam 39 (1936), 10–
19, 19–26, 149–153, 339–344, 489–494, 579–590 (JFM 61.0204.01, 61.0204.02, 62.0206.06, 62.0207.01,
62.0207.02, 62.0207.03; Zbl. 0013.16001, 0013.20306, 0014.01106, 0014.01107, 0014.20803).
R.Winkler: On the distribution behaviour of sequences, Math. Nachr. 186 (1997), 303–312
(MR1461227 (99a:28012); Zbl. 0876.11040).
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• Occasionally, if xn ∈ [α, β], we define a distribution function g(x) of xn
with respect to [α, β] as the limit (cf. 2.3.23, 2.14.4)

g(x) =

 lim
k→∞

1
Nk

Nk∑
n=1

c[α,x)(xn), at points α ≤ x < β of continuity of g(x),

1, if x = β,

for some increasing sequence Nk. The set of all such d.f.’s will again be
denoted by G(xn).

• Let x ∈ [0, 1]. Consider the limits

g(x) = lim inf
N→∞

A([0, x);N ;xn mod 1)

N
,

g(x) = lim sup
N→∞

A([0, x);N ;xn mod 1)

N
.

The d.f. g and g will be called the lower, and the upper d.f. of xn mod 1,
resp. Note, that either the lower or the upper d.f. assigned to a given
sequence xn need not be a d.f. of xn mod 1 in general, i.e. they do not
necessarily belong to G(xn mod 1).
Theorem 1.7.0.3 (O. Strauch (1997)). The lower and upper d.f. g, g
of xn belong to G(xn mod 1) if and only if∫ 1

0
(g(x)− g(x)) dx = lim sup

N→∞

1

N

N∑
n=1

{xn} − lim inf
N→∞

1

N

N∑
n=1

{xn}.

Notes: The lower and upper d.f.’s were introduced by J.F.Koksma (1933). They
can also be defined by relations

g(x) = inf
g∈G(xn mod 1)

g(x), g(x) = sup
g∈G(xn mod 1)

g(x).

J.F.Koksma: Asymptotische verdeling van reële getallen modulo 1. I, II, III , Mathematica (Lei-
den) 1 (1933), 245–248, 2 (1933), 1–6, 107–114 (Zbl. 0007.33901).
O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).

1.8 Various types of distribution of sequences

1.8.1 g–distributed sequences, asymptotic distribution functions

• The sequence xn mod 1 is said to have the asymptotic distribution
function (in short a.d.f.) g(x) if the relation

g(x) = lim
N→∞

A([0, x);N ;xn mod 1)

N
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holds at every point x, 0 ≤ x ≤ 1, of continuity of g(x), i.e. if the set
G(xn mod 1) of all d.f.’s of xn mod 1 reduces to a singleton. The function g
is sometimes referred to as the limit law or limiting distribution of the
sequence xn mod 1, or that xn mod 1 is a g–distributed sequence, or
xn mod 1 is said to have a distribution.

Notes: (I) The notion of the a.d.f. was introduced by I.J. Schoenberg (1928). He
required, however at that time, that g(x) is continuous at each x ∈ [0, 1]. The above
definition was rendered by him in 1939, and again in 1959.
(II) The definition given above differs from that given in [KN, Def. 7.1, p. 53], where
it is required that the limit relation should hold for all x ∈ [0, 1]. If, in addition, the
limit3

g(x) = lim
N→∞

A([0, x];N ;xn mod 1)

N

exists for all x ∈ [0, 1], then g is called the strong a.d.f. of xn. H.Niederreiter (1971,
Th. 1) proved that if the sequence xn has a continuous a.d.f. g (in the sense of [KN,
Def. 7.1, p. 53]), then g is also the strong a.d.f. of xn. He notes that if xn has a discon-
tinuous strong a.d.f. g, then limN→∞A([0, x];N ;xn mod 1)/N need not be equal to
g(x+0). Take for xn the sequence 1

2 ,
1
3 ,

1
4 , . . . , then limN→∞A([0, 0];N ;xn)/N = 0,

but g(0 + 0) = 1.
(III) R. von Mises (1933) proved (cf. 2.6.19) that for every distribution function g
there exists a sequence xn ∈ [0, 1) such that

lim
N→∞

A([0, x);N ;xn)

N
= g(x)

holds for all x ∈ [0, 1]. For sequences in a compact metric space this was generalized
by E.Hlawka (1956).
(IV) Niederreiter (1971) assigned to each sequence xn with elements in [0, 1) the
partial order ≺xn

on the set of positive integers N defined by m ≺xn
n if and only if

xm < xn. In terms of this ordering he then characterized sequences in [0, 1) having
strong or continuous d.f., and sequences dense in [0, 1) having continuous d.f. E.g.
let C(n;N) denote the number of integers m, 1 ≤ m ≤ N , such that xm < xn.
Then the dense sequence xn ∈ [0, 1) has a continuous d.f. if and only if the following
conditions hold
(i) limN→∞

C(n;N)
N = αn exists for all n ≥ 1,

(ii) for every ε > 0 there exists δ > 0 such that |αn−αm| < ε whenever |xn−xm| < δ.

The Weyl limit relation for a.d.f. becomes the form
Theorem 1.8.1.1. The sequence xn mod 1 has the a.d.f. g(x) if and only if

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0
f(x) dg(x)

3Note the closing bracket in [0, x].
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for each continuous f defined on [0, 1].

Notes: (I) The existence of the limit on the right–hand side (for every continuous f)
is equivalent to the fact that xn mod 1 has the limiting distribution.
(II) I.J. Schoenberg (1928, Satz I and p. 174) proved Th. 1.8.1.1 for the case of the
continuous a.d.f.’s f having bounded variation, and he noted the consequences for
f(x) = xk, or f(x) = e2πikx, k = 1, 2, . . . . Actually he proved these results for block
sequences xi1, . . . , xin ∈ [0, 1].

E.Hlawka: Folgen auf kompakten Räumen, Abh. Math. Sem. Univ. Hamburg 20 (1956),
223–241 (MR0081368 (18,390f); Zbl. 0072.05701).
H.Niederreiter: Distribution of sequences and included orders, Niew Arch. Wisk. 19 (1971),
no. 3, 210–219 (MR0364150 (51 #405); Zbl. 0222.10057).
I.J. Schoenberg: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928),
171–199 (MR1544950; JFM 54.0212.02).
I.J. Schoenberg: On asymptotic distribution of arithmetical functions, Trans. Amer. Math. Soc.
39 (1936), 315–330 (MR1501849; Zbl. 0013.39302).
I.J. Schoenberg: The integrability of certain functions and related summability methods, Amer.
Math. Monthly 66 (1959), 361–375 (MR0104946 (21 #3696); Zbl. 0089.04002).
I.J. Schoenberg: The integrability of certain functions and related summability methods II , Amer.
Math. Monthly 66 (1959), 562–563 (MR0107688 (21 #6411); Zbl. 0089.04002).
R. von Mises: Über Zahlenfolgen, die ein kollektiv–ähnliches Verhalten zeigen, Math. Ann. 108
(1933), no. 1, 757–772 (MR1512874; Zbl. 0007.21801).

1.8.2 Distribution with respect to a summation method

The next general definition covers the following cases: matrix, weighted, H∞
and Abel asymptotic distribution.

• A sequence xn mod 1 has the S–a.d.f. g(x), if the sequence c[0,x)({xn}) is
S–summable to the d.f. g(x) a.e. on [0, 1].

1.8.3 Matrix asymptotic distribution

• cf. [KN, p. 60, Def. 7.3]: Let A = (an,k), n = 1, 2, . . . , k = 1, 2, . . . , be a
positive Toeplitz matrix4 and let xn be a sequence of real numbers. Then d.f.
g(x) is theA–asymptotic distribution function of xn mod 1 (abbreviated
by A–a.d.f.) if

lim
n→∞

∞∑
k=1

an,kc[0,x)({xk}) = g(x)

a.e. on [0, 1].

The Weyl limit relation 1.4 for A–asymptotic distribution becomes the form

4i.e. an,k ≥ 0 for all n and k and limn→∞
∑∞
k=1 an,k = 1. To ensure the regularity of A

we need limn→∞ an,k = 1 for k = 1, 2, . . . , see Silverman – Toeplitz Theorem [KN, p. 62,
Th. 7.12].
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Theorem 1.8.3.1. The sequence xn mod 1 has the A–a.d.f. g(x) if and
only if

lim
n→∞

∞∑
k=1

an,kf({xk}) =
∫ 1

0
f(x) dg(x)

for each continuous f defined on [0, 1].

The existence of the limit on the right–hand side for every continuous f , is
equivalent to the fact that xn mod 1 has the A–a.d.f.
Theorem 1.8.3.2 (cf. [KN, p. 62, Ex. 7.1, Th. 7.13]). The concepts of
the a.d.f. mod 1 in (C, 1) (arithmetic means), (C, r) (Cesàro means) and
(H, r) (Hölder means) coincide.
Notes: (I) Further results can be found in [KN, pp. 207–219].
(II) I.J. Schoenberg (1959) introduced the matrix summation method A = (an,k),
where

an,k =

{
φ(k)
n , if k|n, and

0 otherwise,

i.e. the sequence xn is called φ–convergent to α if the sequence yn = 1
n

∑
d|n φ(d)xd

converges to α. Schoenberg’s Theorem 2 (1959) shows that the φ–convergence of xn
implies the classical convergence of xnk

(to the same limit) for every sequence nk
for which lim infk→∞

φ(nk)
nk

> 0. Since a 0–1 φ–convergent sequence has the φ–limit

0 or 1, no φ–u.d. sequence exists (E.Kováč (2005)).
(III) If FN (x) =

∑∞
k=1 an,kc[0,x)(xk), then we can define the set G(A, xn) of all d.f.’s

of the sequence xn ∈ [0, 1) with respect to a positive Toeplitz matrix A = (an,k) as
the set of all possible limits FNj → g(x) (a.e.) as j → ∞.
E.Kováč: On φ–convergence and φ–density, Math. Slovaca 55 (2005), no. 3, 329–351 (MR2181010
(2007b:40001); Zbl. 1113.40002).
I.J. Schoenberg: The integrability of certain functions and related summability methods, Amer.
Math. Monthly 66 (1959), 361–375 (MR0104946 (21 #3696); Zbl. 0089.04002).
I.J. Schoenberg: The integrability of certain functions and related summability methods II , Amer.
Math. Monthly 66 (1959), 562–563 (MR0107688 (21 #6411); Zbl. 0089.04002).

1.8.4 Weighted asymptotic distribution

• cf. [KN, p. 250, Def. 2.35]: Let pn, n = 1, 2, . . . , be a sequence of non–
negative numbers such that

∑∞
n=1 pn = ∞, and set

PN =
N∑

n=1

pn.

Then the A–a.d.f. g(x) with A = (aN,n) defined by

aN,n =

{
pn/PN , for n ≤ N,

0, for n > N.
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is called pn–weighted a.d.f. In the case pn = 1/n we obtain the so–called
logarithmically weighted a.d.f.
Notes: The notion of a pn–weighted u.d. sequence was introduced by M.Tsuji
(1952). He proved
(I) Weyl’s criterion 1.4.0.2 and 2.1.2 in the form: The sequence xn mod 1 is pn–

weighted u.d. if and only if we have
∑N
n=1 pne

2πihxn = o(
∑N
n=1 pn) for h = 1, 2, . . . .

(II) The van der Corput difference theorem 1.4.0.3 and 2.2.1 in the form: Let the
sequence pn also satisfy the condition that pn/pn+h is a decreasing function of n for
each h = 1, 2, . . . . If (xn+h − xn) mod 1, n = 1, 2, . . . , is pn–weighted u.d. for every
h = 1, 2, . . . , then also xn mod 1 is pn–weighted u.d.
(III) He also proved an analogue to the Fejér’s theorem 2.6.1, and that the sequence
log n mod 1 (cf. 2.12.1) is 1

n–weighted u.d., i.e. logarithmically weighted u.d. Other
weights pn for which log10 n mod 1 is u.d. was found by R.Giuliano Antonini (1991),
see 2.12.1(VII).

R.Giuliano Antonini: On the notion of uniform distribution mod 1, Fibonacci Quart. 29 (1991),
no. 3, 230–234 (MR1114885 (92f:11101); Zbl. 0731.11044).
M.Tsuji: On the uniform distribution of numbers mod 1, J. Math. Soc. Japan 4 (1952), 313–322
(MR0059322 (15,511b); Zbl. 0048.03302).

1.8.5 H∞–uniform distribution

• P. Schatte (1983): Given a sequence tn, n = 1, 2, . . . , of real numbers, the
Hölder means (H, k) are iterated means, i.e. H0(tn) = tn and Hk+1(tn) =
1
n

∑n
j=1Hk(tj) for k = 0, 1, 2, . . . . If

lim
k→∞

lim inf
n→∞

Hk(tn) = lim
k→∞

lim sup
n→∞

Hk(tn)

then the common value is denoted by H∞ − lim tn. A sequence xn in [0, 1)
is said to be H∞–uniformly distributed (abbreviated H∞–u.d.) provided

H∞ − lim c[0,x)(xn) = x for every 0 < x ≤ 1.

The Weyl criterion has in this case the form
Theorem 1.8.5.1. The sequence xn mod 1 is H∞–u.d. if and only if

H∞ − lim e2πihxn = 0

for all h = 1, 2, . . . .
Theorem 1.8.5.2. The sequence xn mod 1 is H∞–u.d. if and only if for all h =
1, 2, . . .

lim
k→∞

1

log k

kn∑
j=n

e2πihxj

j
= 0

uniformly in n.
Schatte’s (1983) examples are: 2.2.13, 2.6.8.
P. Schatte: On H∞–summability and the uniform distribution of sequences, Math. Nachr. 113
(1983), 237–243 (MR0725491 (85f:11057); Zbl. 0526.10043).
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1.8.6 Abel asymptotic distribution

• cf. [DT, p. 268]: A sequence xn mod 1 has the Abel a.d.f. g(x) if

lim
r→1−0

(1− r)

∞∑
n=0

c[0,x)({xn})rn = g(x)

a.e. on [0, 1].

The concepts of the a.d.f. mod 1 and of Abel a.d.f. coincide.

1.8.7 Zeta asymptotic distribution

• A sequence xn mod 1 has the zeta a.d.f. g(x) if

lim
α→1+0

1

ζ(α)

∞∑
n=1

c[0,x)({xn})
nα

= g(x)

a.e. on [0, 1]. For an example cf. 2.19.8.

1.8.8 Statistically convergent sequences

The following concept of statistically convergent sequences serves as an ex-
ample of g–distributed sequences.

• A sequence xn ∈ (−∞,∞) statistically converges to α if

lim
N→∞

1

N
#{n ≤ N ; |xn − α| ≥ ε} = 0

for every ε > 0.
Theorem 1.8.8.1 (I.J. Schoenberg (1959)). A sequence xn in (−∞,∞)
is statistically convergent to α if and only if xn admits the a.d.f. cα(x) :=
c(α,∞)(x).

For bounded sequences we have:
Theorem 1.8.8.2. The sequence xn in [a, b] is statistically convergent to α if and
only if for every real valued continuous function f(x, y, z, . . . ), defined on the closed
multi–dimensional cube [a, b]s we have

lim
M,N,K,···→∞

1

MNK . . .

M∑
m=1

N∑
n=1

K∑
k=1

. . . f(xm, xn, xk, . . . ) = f(α, α, α, . . . ).

Theorem 1.8.8.3. The sequence xn in [a, b] possesses a statistical limit if and only if

lim
M,N→∞

1

MN

M∑
m=1

N∑
n=1

|xm − xn| = 0.



1.8 Various types of distribution of sequences 1 – 17

Theorem 1.8.8.4. The sequence xn in [a, b] is statistically convergent to α if and
only if

lim
N→∞

1

N

N∑
n=1

xn = α, and lim
N→∞

1

N2

N∑
m,n=1

|xm − xn| = 0.

Examples: 2.3.23, 2.20.18, 2.20.19

Notes: (I) The notion of statistical convergence was independently introduced by
H.Fast (1951) and I.J. Schoenberg (1959). H. Fast in his definition, however, as-
sumed that xn has the a.d.f., which is superfluous.
(II) H. Fast (1951) gave all the known elementary properties of statistically conver-
gent sequences, namely
• The sum, the difference, and the product of statistically convergent sequences is

again statistically convergent to the sum, the difference and the product of the
corresponding limits, resp.

• A bounded sequence xn of non–negative real numbers statistically converges to
zero if and only if limN→∞

1
N

∑N
n=1 xn = 0.

• A sequence xn is statistically convergent to α if and only if there exists a sequence
of indices kn of the asymptotic density d(kn) = 1 such that limn→∞ xkn = α in
the standard sense.

(III) The Cauchy condition was introduced by O. Strauch (1995). However, it differs
from the concept of the statistically Cauchy sequence defined by J.A. Fridy (1985).
(IV) J.A. Fridy (1993) defined that a real number x is said to be a statistical limit
point of the given sequence xn, n = 1, 2, . . . , if there exists a subsequence xkn ,
n = 1, 2, . . . , such that limn→∞ xkn = x and the set of indices kn has positive upper
asymptotic density. P.Kostyrko, M.Mačaj, T. Šalát and O. Strauch (2001) proved
that the set of all statistical limit points of the sequence xn ∈ [0, 1) coincides with
the set of all discontinuity points of d.f.’s g(x) ∈ G(xn).

H.Fast: Sur la convergence statistique, Colloq. Math. 2 (1951/1952), 241–244 (MR0048548
(14,29c); Zbl. 0044.33605).
J.A. Fridy: On statistical convergence, Analysis 5 (1985), 301–313 (MR0816582 (87b:40001); Zbl.
0588.40001).
J.A. Fridy: Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), 1187–1192 (MR1181163
(94e:40008); Zbl. 0776.40001).
P.Kostyrko – M.Mačaj – T. Šalát – O. Strauch: On statistical limit points, Proc. Amer.
Math. Soc. 129 (2001), no. 9, 2647–2654 (MR1838788 (2002b:40003); Zbl. 0966.40001).
I.J. Schoenberg: The integrability of certain functions and related summability methods, Amer.
Math. Monthly 66 (1959), 361–375 (MR0104946 (21 #3696); Zbl. 0089.04002).
I.J. Schoenberg: The integrability of certain functions and related summability methods II , Amer.
Math. Monthly 66 (1959), 562–563 (MR0107688 (21 #6411); Zbl. 0089.04002).
O. Strauch: Uniformly maldistributed sequence in a strict sense, Monatsh. Math. 120 (1995),
153–164 (MR1348367 (96g:11095); Zbl. 0835.11029).

1.8.9 Statistically independent sequences

• G.Rauzy (1976, p. 91, 4.1. Def.): Let xn and yn be two infinite sequences
from the unit interval [0, 1). The pair of sequences (xn, yn) is called statis-
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tically independent if

lim
N→∞

(
1

N

N∑
n=1

f(xn)g(yn)−

(
1

N

N∑
n=1

f(xn)

)(
1

N

N∑
n=1

g(yn)

))
= 0

for all continuous real functions f , g defined on [0, 1]. In other words, the
double sequence (xn, yn) is called statistically independent if its coordinate
sequences xn and yn are statistically independent.

The number of continuous functions f(x) and g(x) can be reduced, e.g.

G. Rauzy (1976, pp. 97–98): Two sequences xn mod 1 and yn mod 1 are
statistically independent if and only if

lim
N→∞

(
1

N

N∑
n=1

e2πi(hxn+kyn) −
(

1

N

N∑
n=1

e2πihxn
)(

1

N

N∑
n=1

e2πikyn
))

= 0

for all integers h and k.
Theorem 1.8.9.1 (G.Rauzy (1976, p. 92, 4.2. par.)). For every (xn, yn)
∈ [0, 1)2 we have

(xn, yn) is statistically independent

⇕

∀
g∈G(xn,yn)

g(x, y) = g(x, 1)g(1, y) a.e. on [0, 1]2.

Notes: (I) This theorem can also be found in P.J.Grabner, O. Strauch and R.F.Ti-
chy (1999) where it is used (p. 109) to give the following s–dimensional gener-
alization of statistical independence: Let xn = (xn,1, . . . , xn,s) ∈ [0, 1)s be an
s–dimensional sequence formed from s sequences xn,1, xn,2, . . . , xn,s. Then xn is
called statistically independent (or that xn has statistically independent co–
ordinates xn,1, . . . , xn,s) if every d.f. g(x) ∈ G(xn) can be written as a product
g(x) = g1(x1) . . . gs(xs) of one–dimensional d.f.’s. Here gi, i = 1, . . . , s, can depend
on g.
(II) Grabner and Tichy (1994) proved that the extremal discrepancy does not charac-

terize statistical independence, but the limit limN→∞D
(2)
N = 0 of the L2 discrepancy

(cf. 1.11.4) provides a characterization.
(III) J. Coquet and P. Liardet (1987) call two multi–dimensional sequences xn and
yn statistically independent if for every (complex valued) continuous f , g

lim
N→∞

(
1

N

N∑
n=1

f(xn)g(yn)−

(
1

N

N∑
n=1

f(xn)

)(
1

N

N∑
n=1

g(yn)

))
= 0.
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If for an integer s ≥ 1, the s–dimensional sequences xn = (xn+1, . . . , xn+s) and
yn = (yn+1, . . . , yn+s) are statistically independent, then the one–dimensional se-
quences xn and yn are said to be statistically independent at rank s. If they
are statistically independent at rank s for all integers s, they are called completely
statistically independent (for an example cf. 3.10.6).

Coquet and Liardet (1987) defined (following Rauzy (1976)) the statistical inde-
pendence for a family of sequences H using the limit

lim
N→∞

(
1

N

N∑
n=1

f1(xn,1) . . . fk(xn,k)−

(
1

N

N∑
n=1

f1(xn,1)

)
. . .

(
1

N

N∑
n=1

fk(xn,k)

))
,

provided this limit vanishes for any subfamily xn,1, . . . ,xn,k of H and for every
continuous f1, . . . , fk. The equivalent formulation in terms of the decomposition of
any g ∈ G(xn,1, . . . ,xn,k) into the product of d.f.’s from G(xn,1), . . . , G(xn,k) they
call independence criterion. Cf. also Coquet and Liardet (1984).
(IV) Liardet (1990) also defined the statistical independence of a sequence xn with
respect to a set Ψ of mappings ψ : N → N such that limn→∞ ψ(n) = ∞ provided
the family of sequences xψ(n), ψ ∈ Ψ, is statistically independent. Along parallel
lines to those of the previous note he defined the notion of Ψ–independence at rank
s and the complete Ψ–independence.

J.Coquet – P. Liardet: Répartitions uniformes des suites et indépendance statistique, Compo-
sitio Math. 51 (1984), no. 2, 215–236 (MR0739735 (85d:11072); Zbl. 0537.10030).
J.Coquet – P. Liardet: A metric study involving independent sequences, J. Analyse Math. 49
(1987), 15–53 (MR0928506 (89e:11043); Zbl. 0645.10044).
P.J.Grabner – R.F.Tichy: Remarks on statistical independence of sequences, Math. Slovaca 44
(1994), 91–94 (MR1290276 (95k:11098); Zbl. 0797.11063).
P.J.Grabner – O. Strauch – R.F.Tichy: Lp–discrepancy and statistical independence of se-
quences, Czechoslovak Math. J. 49(124) (1999), no. 1, 97–110 (MR1676837 (2000a:11108); Zbl.
1074.11509).
P. Liardet: Some metric properties of subsequences, Acta Arith. 55 (1990), no. 2, 119–135
(MR1061633 (91i:11091); Zbl. 0716.11038).
G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).

1.8.10 Maldistributed sequences

• G.Myerson (1993): The sequence xn mod 1 is said to be uniformly mald-
istributed if for every non–empty proper subinterval I ⊂ [0, 1] we have both

lim inf
N→∞

A(I;N ;xn mod 1)

N
= 0, and lim sup

N→∞

A(I;N ;xn mod 1)

N
= 1.

This distribution can be characterized in terms of d.f.’s as follows (cf.
O. Strauch (1995)):
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Theorem 1.8.10.1. A sequence xn mod 1 is uniformly maldistributed if and
only if G(xn mod 1) ⊃ {cα(x) ; α ∈ [0, 1]}, where cα(x) is the one–jump
d.f. defined on [0, 1] by

cα(x) =

{
0, if x ≤ α,

1, if x > α,

while always cα(1) = 1.

Examples: 2.12.2, 2.12.4, and in higher dimensions 3.2.2.
Notes: (I) One–dimensional maldistributed sequences were introduced by G.Myer-
son (1993). A multi–dimensional analogue was studied by P.J.Grabner, O. Strauch
and R.F.Tichy (1997).
R.Winkler (1997) proposed a generalization of the notion of maldistribution of a
sequence xn ∈ [0, 1) in which G(xn) contains the set all possible d.f.’s.
(II) J.–P.Kahane and R. Salem (1964) called a sequence xn mod 1 badly dis-
tributed if at least one subinterval I ⊂ [0, 1] exists such that

lim sup
N→∞

A(I;N ;xn mod 1)

N
< |I|.

P.J.Grabner – O. Strauch – R.F.Tichy: Maldistribution in higher dimension, Math. Panon. 8
(1997), no. 2, 215–223 (MR1476099 (99a:11094); Zbl. 0923.11110).
J.–P.Kahane – R. Salem: Distribution modulo 1 and sets of uniqueness, Bull. Amer. Math. Soc.
70 (1964), 259–261 (MR0158216 (28 #1442); Zbl. 0142.29604).
G.Myerson: A sampler of recent developments in the distribution of sequences, in: Number theory
with an emphasis on the Markoff spectrum (Provo, UT 1991), (A.D.Pollington and W.Moran eds.),
Lecture Notes in Pure and App.Math., Vol. 147, Marcel Dekker, New York, Basel, Hong Kong, 1993,
pp. 163–190 (MR1219333 (94a:11112); Zbl. 0789.11043).
O. Strauch: Uniformly maldistributed sequence in a strict sense, Monatsh. Math. 120 (1995),
153–164 (MR1348367 (96g:11095); Zbl. 0835.11029).
R.Winkler: On the distribution behaviour of sequences, Math. Nachr. 186 (1997), 303–312
(MR1461227 (99a:28012); Zbl. 0876.11040).

1.8.11 (λ, λ′)–distribution

• J.Chauvineau (1967/68): Let λ and λ′ be two real numbers such that
0 < λ ≤ 1 ≤ λ′. The sequence xn mod 1 is said to be (λ, λ′)–distributed if,
for every non–empty proper subinterval I ⊂ [0, 1], we have both

(i) lim infN→∞
A(I;N ;xn mod 1)

N |I| ≥ λ, and

(ii) lim supN→∞
A(I;N ;xn mod 1)

N |I| ≤ λ′.

For an example cf. 2.12.1(IV). If only (i) is satisfied, the sequence xn mod 1
is said to be (λ,∞)–distributed or positively distributed (cf. O. Strauch
(1982, p. 234)). On the other hand, if only (ii) is true the sequence xn mod 1
is said to be (0, λ′)–distributed. These distributions can be characterized
using d.f.’s as follows (cf. O. Strauch (1997)):
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Theorem 1.8.11.1. A sequence xn mod 1 is (λ, λ′)–distributed if and only
if every g(x) ∈ G(xn mod 1) has the lower derivative ≥ λ and the upper
derivative ≤ λ′ at every point x ∈ (0, 1).
J.Chauvineau: Sur la répartition dans R et dans Qp, Acta Arit., 14 (1967/68), 225–313
(MR0245529 (39 #6835); Zbl. 0176.32902).
O. Strauch: Duffin – Schaeffer conjecture and some new types of real sequences, Acta Math.
Univ. Comenian. 40–41 (1982), 233–265 (MR0686981 (84f:10065); Zbl. 0505.10026).
O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).

1.8.12 Completely u.d. sequences

• N.M.Korobov (1948): The sequence xn mod 1 is said to be completely
uniformly distributed (abbreviated completely u.d.) if for any s ≥ 1 the
s–dimensional sequence

xn = (xn+1, . . . , xn+s) mod 1

is u.d. in [0, 1]s.

• E.Hlawka (1960): The sequence xn mod 1 is said to be u.d. of degree s if

xn = (xn+1, . . . , xn+s) mod 1

is u.d. in [0, 1]s.

• R.F.Tichy (1987): Let s(N) increase monotonically, be unbounded and
s(N) = o(N). The sequence xn mod 1 is said to be s(N)–u.d. if the
discrepancy DN−s(N) of the s(N)–dimensional sequence

xn = (xn+1, . . . , xn+s(N)) mod 1, n = 1, 2, . . . , N − s(N),

satisfies limN→∞DN−s(N) = 0.

• A.G.Postnikov (1960): The sequence xn mod 1 is said to be g–completely
distributed if for any s ≥ 1 the s–dimensional sequence (xn+1, . . . , xn+s)
mod 1 has a.d.f.

g(x) = g(x1)g(x2) . . . g(xs).

Notes: Completely u.d. sequences were introduced by N.M.Korobov (1948) (see
also G.Rauzy (1976, p. 23)). They are often suitable candidates for pseudoran-
dom numbers, cf. D.E.Knuth (1981). For example 3.3.1, 3.6.2, 3.6.3, 3.6.4, 3.10.1,
3.10.2, 3.10.3 are completely u.d. and 3.7.6, 3.7.7 are completely dense. M.Drmota
and R.Winkler (1995) proved that almost all sequences are s(N)–u.d. if s(N) =
o(
√
N/ logN).
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M.Drmota – R.Winkler: s(N)–uniform distribution mod 1, J. Number Theory 50 (1995),
213–225 (MR1316817 (95k:11097); Zbl. 0826.11034).
E.Hlawka: Erbliche Eigenschaften in der Theorie der Gleichverteilung, Publ. Math. Debrecen 7
(1960), 181–186 (MR0125103 (23 #A2410); Zbl. 0109.27501).
D.E.Knuth: Seminumerical Algorithms, The Art of Computer Programming, Vol. 2, 2nd ed.,
Addison Wesley, Reading, MA, 1981 (First ed.: Reading, MA, 1969) (MR0286318 (44 #3531);
Zbl. 0477.65002).
N.M.Korobov: On functions with uniformly distributed fractional parts, (Russian), Dokl. Akad.
Nauk SSSR 62 (1948), 21–22 (MR0027012 (10,235e); Zbl. 0031.11501).
A.G.Postnikov: Arithmetic modeling of random processes, Trudy Math. Inst. Steklov. (Russian),
57 (1960), 1–84 (MR0148639 (26 #6146); Zbl. 0106.12101).
G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).
R.F.Tichy: Ein metrischer Satz über vollständing gleichverteilte Folgen, Acta Arith. 48 (1987),
197–207 (MR0895440 (88i:11051); Zbl. 0574.10049).

1.8.13 Completely dense sequences

• J. Bukor and J.T.Tóth (1998): A sequence xn is said to be completely
dense in the interval I ⊂ (−∞,∞) if for any s ≥ 1 the s–dimensional
sequence

(xn+1, . . . , xn+s)

is dense everywhere in Is (see 3.7.6, 3.7.7).

J. Bukor – J.T.Tóth: On completely dense sequences, Acta Math. Inform. Univ. Ostraviensis 6
(1998), no. 1, 37–40 (MR1822513 (2001k:11147); Zbl. 1024.11052).

1.8.14 Relatively dense universal sequences

• D.Andrica and S.Buzeteanu (1987): A sequence xn, n = 1, 2, . . . , of real
numbers is said to be relatively dense for a function f : R → R if for
every x, y ∈ R such that f(x) < f(y) there exists an n ∈ N which satisfy
f(x) < f(xn) < f(y). Relatively dense universal sequence is such a
sequence xn which is relatively dense for all continuous functions f with an
irrational period (cf. 2.6.34, 2.14.8, 2.14.9).
D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

1.8.15 Low discrepancy sequences

• [DT, p. 369]: an s–dimensional infinite sequence xn which discrepancy (for
def. of discrepancy DN see 1.11.2) is bounded from above by

DN (xn) = O
(
(logN)s

N

)
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is called low discrepancy sequence 5. Here the implied O–constant de-
pends only on dimension s and on the sequence xn.
Notes: (I) Well–known conjecture says that this is the optimal order of magnitude
of DN (xn) for an infinite sequence xn in the s–dimensional unit cube. The problem
is open for s ≥ 2. For s = 1 the conjecture was proved by W.M. Schmidt (1972). The
best general result is due to K.F.Roth (1954), who showed that for an arbitrary s

and any s–dimensional infinite sequence xn we have D∗
N ≥ cs

(logN)s/2

N for infinitely
many N , where the constant cs depends only on s. A slight improvement was
obtained by J. Beck (1989) for s = 2 who proved that D∗

N ≥ c2
logN
N (log logN)c for

infinitely many N , where c > 0 is an absolute constant.

More generally, the sequence of single blocks Xn = (xn,1, . . . ,xn,Nn), xn,i ∈
[0, 1)s, is called low discrepancy sequence if

DNn(Xn) = O
(
(logNn)

s−1

Nn

)
.

Notes: (II) Cf. Hammersley sequence 3.18.2. It is conjectured (cf. [DT, p. 39] and
the conjecture 1.11.2.5 on p. 1 – 72 ) that for every s ≥ 2 there is a constant cs such

that for every finite sequence x1, . . . ,xN mod 1 we have DN (xn) ≥ cs
logs−1N

N . This
conjecture is equivalent to that from (I), cf. 1.11.2.5.

J. Beck: A two–dimensional van Ardenne-Ehrenfest theorem in irregularities of distribution, Com-
positio Math. 72 (1989), no. 3, 269–339 (MR1032337 (91f:11054); Zbl. 0691.10041).
K.F.Roth: On irregularities of distribution, Mathematika 1 (1954), 73–79 (MR0066435 (16,575c);
Zbl. 0057.28604).
W.M. Schmidt: Irregularities of distribution. VII , Acta Arith. 21 (1972), 45–50 (MR0319933 (47
#8474); Zbl. 0244.10035).

1.8.16 Low dispersion sequences

• An s–dimensional infinite sequence xn for which dispersion (for def. see
1.11.17) we have

dN (xn) = O
(
N−1/s

)
is called low dispersion sequence. Examples are in 3.19.

1.8.17 (t,m, s)–nets

• [DT, p. 382, Def. 3.11]: Let t andm be integers satisfying 0 ≤ t ≤ m and let
q ≥ 2 be some chosen base. Finite s–dimensional sequence x1, . . . ,xN mod 1,
N = qm, is called (t,m, s)–net in base q, if

A(I; qm;xn mod 1) = qt

5These sequences are also called quasirandom sequences, e.g. H.Niederreiter (1992,
p. 23).
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for all intervals I of the form

I =
s∏

i=1

[
ai
qdi

,
ai + 1

qdi

)
,

where di ≥ 0, 0 ≤ ai < qdi for 1 ≤ i ≤ s and
∑s

i=1 di = m− t (i.e. the volume
|I| = qt−m) and thus xn is a (t,m, s)–net if and only if∣∣∣∣A(I;N ;xn mod 1)

N
− |I|

∣∣∣∣ = 0

for all such intervals I.

1.8.18 (t, s)–sequences

• Cf. [DT, p. 382, Def. 3.12]: Let t ≥ 0 be an integer. An infinite sequence
xn mod 1 is called a (t, s)–sequence in base q if for all k ≥ 0 and m > t
the finite section

xn, kqm < n ≤ (k + 1)qm,

is a (t,m, s)–net in base q. Every (t, s)–sequence is a low discrepancy se-
quence.
Notes: (I) The formal definition of (t,m, s)–nets and (t, s)–sequences in base q = 2
together with the method of their construction 3.19.5 and a discrepancy bound was
given by I.M. Sobol’ (1966). Full proofs can be found in Sobol’ (1967) or in his mono-
graph (1969, Chap. 3, Part 3, and Chap. 6). An overview of Sobol’’s results is given
in Niederreiter (1978, pp. 979–981).
(II) The next contribution to the theory goes back to H. Faure (1982), cf. 3.19.6.
(III) The general theory of (t,m, s)–nets and (t, s)–sequences was developed by
H.Niederreiter (1987, 1988).
(IV) H.Niederreiter and C.-P.Xing (1998) gave the following slightly modified defi-
nition of the (t, s)–sequence: Let x ∈ [0, 1] and x =

∑∞
j=1 ajq

−j be its infinite q–adic
digit expansion (the possibility aj = q − 1 is allowed for all but finitely many j).
Given an arbitrary integer m ≥ 1 define the truncation function

[x]m =

m∑
j=1

ajq
−j .

If x = (x1, . . . , xs) then put [x]m = ([x1]m, . . . , [xs]m). The sequence xn, n =
1, 2, . . . , of points in [0, 1]s is called a (t, s)–sequence in base q, if for all integers
k ≥ 0 and m > t the finite section [xn]m for kqm < n ≤ (k+1)qm forms a (t,m, s)–
net in base q.
(V) Surveys can be found in H.Niederreiter (1992, Chap. 4), G. Larcher (1998),
H.Niederreiter and C.-P.Xing (1998).
(IV) Examples: 3.19.3, 3.19.4, 3.19.6, 3.19.1, 3.19.2.
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H.Faure: Discrépance de suites associées à un système de numération (en dimension s), Acta
Arith. 41 (1982), 337–351 (MR0677547 (84m:10050); Zbl. 0442.10035).
G.Larcher: Digital point sets: Analysis and application, in: Random and Quasi–Random Point
Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statistics, 138, Springer Verlag, New York,
Berlin, 1998, pp. 167–222 (MR1662842 (99m:11085); Zbl. 0920.11055).
H.Niederreiter: Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987),
273–337 (MR0918037 (89c:11120); Zbl. 0626.10045).
H.Niederreiter: Low discrepancy and low–dispersion sequences, J. Number Theory 30 (1988),
51–70 (MR0960233 (89k:11064); Zbl. 0651.10034).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
H.Niederreiter – C.-P.Xing: Nets, (t, s)–sequences and algebraic geometry, in: Random and
Quasi–Random Point Sets, (P.Hellekalek and G. Larcher eds.), Lecture Notes in Statistics, 138,
Springer Verlag, New York, Berlin, 1998, pp. 267–302 (MR1662844 (99k:11121); Zbl. 0923.11113).
I.M. Sobol’: Distribution of points in a cube and integration nets, (Russian), Uspechi Mat. Nauk
21 (1966), no. 5(131), 271–272 (MR0198678 (33 #6833)).
I.M. Sobol’: Distribution of points in a cube and approximate evaluation of integrals, (Russian),
Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784–802 (MR0219238 (36 #2321)).
I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).

1.8.18.1. Digital (T, s)-sequence over Fq.

• Let s denote the dimension of the sequence;

• q be a prime;

• Represent n = n0 + n1q + n2q
2 + . . . in base q;

• Let C1, . . . , Cs be N× N-matrices over the finite field Fq;

• Ci · (n0, n1, . . . )T = (y
(i)
0 , y

(i)
1 , . . . )T ∈ FN

q ;

• x(i)n :=
y
(i)
0
q +

y
(i)
1
q2

+ . . . ;

• The sequence xn = (x
(1)
n , . . . , x

(s)
n ) is said to be a (T, s)-sequence if for every

m ∈ N there exists T(m) with 0 ≤ T(m) ≤ m such that for all partitions
d1 + · · ·+ ds of m−T(m) the (m−T(m))×m-matrix which

first d1 rows are formed by the upper left d1 ×m-submatrix of C1,

the next d2 rows are formed by the upper left d2 ×m-submatrix of C2,

. . .

the last block of ds rows is formed by the upper left ds ×m-submatrix of Cs,

has rank m−T(m).

If T is minimal we speak about a strict digital (T, s)-sequence.

Notes:
(I) These definitions are from R. Hofer and G. Larcher (2010).
(II) An alternative definition is given in 3.19.2.
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(III) A strictly digital (T, s)-sequence is u.d. if and only if limm→∞(m−T(m)) = ∞.
If T(m) ≤ t for all m, then (T, s)-sequence is a (t, s)-sequence.

R.Hofer – G. Larcher: On existence and discrepancy of certain digital Niederreiter-Halton se-
quences, Acta Arith. 141 (2010), no. 4, 369–394 (MR2587294 (2011b:11108); Zbl. 1219.11112).

1.8.18.2. (t, α, β, n,m, s)-nets

• Let n, m, s, α ≥ 1 and b ≥ 2 be integers;

• 0 ≤ t ≤ βn be an integer, where 0 < β ≤ 1;

• k = (k1, . . . , ks) ∈ {0, . . . , n}s, |k|1 =
∑s

j=1 kj ;

• ik = (i1,1, . . . , i1,k1 , . . . , is,1, . . . , is,ks), where 1 ≤ ij,kj < · · · < ij,1 ≤ n if
kj > 0 and {ij,1, . . . , ij,kj} = ∅ if kj = 0;

• ak = (a1,i1,1 , . . . , a1,i1,k1 , . . . , as,is,1 , . . . , as,is,ks ) where ak ∈ {0, . . . , b−1}|k|1 ;
• J(ik,ak) is a generalized elementary interval of volume b|k|1

J(ik,ak) =

s∏
j=1

b−1∪
aj,l=0

l∈{1,...,n}\{ij,1,...,ij,kj }

[
aj,1
b

+ · · ·+ aj,n
bn

,
aj,1
b

+ · · ·+ aj,n
bn

+
1

bn

)
,

• A (t, α, β, n,m, s)-net in base b is a sequence x0, . . . ,xbm−1 in [0, 1)s such
that the generalized elementary interval J(ik,ak) contains exactly bm−|k|1

points of x0, . . . ,xbm−1 for each ak ∈ {0, . . . , b − 1}|k|1 and for all integers
kj ≥ 0 and 1 ≤ ij,kj < · · · < ij,1 satisfying∑s

j=1

∑min(kj ,α)
l=1 ij,l ≤ βn− t,

where if kj = 0 we set the empty sum
∑0

l=1 ij,l = 0.

J. Baldeaux – J.Dick – F. Pillichshammer: A characterization of higher order nets using Weyl
sums and its applications, Unif. Distrib. Theory 5 (2010), no. 1, 133–155 (MR2804667; Zbl.
1249.11071).

1.8.18.3. Niederreiter-Halton (NH) sequence

NH sequence is a combination of different digital (Ti, wi)-sequences in dif-
ferent prime bases q1, . . . , qr with w1 + · · ·+wr = s into a single sequence in
[0, 1)s.

Finite row NH sequence is a NH sequence in which every generating
matrice of the component digital (Ti, wi)-sequences has in each row only
finitely many non-vanishing entries.

Infinite row NH sequence is a (NH) sequence which is not a finite row
NH one.
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Notes:
(I) A prototype example is the Halton sequence which is a combination of s digital
(0, 1)-sequences in different prime bases q1, . . . , qs generated by the unit matrices in
Fqi for each i.
(II) General NH sequences were first investigated by R.Hofer, P.Kritzer, G. Larcher
and F.Pillichshammer (2009). R.Hofer (2009) proved: NH sequence is u.d. if and
only if each (Ti, wi) is u.d.
(III) R.Hofer and G. Larcher (2010) gave concrete examples of digital (0, s)-sequences
generated by matrices with finite rows. They noted that all low-discrepancy digi-
tal (t, s)-sequences in dimension s ≥ 2 investigated by I.M. Sobol’ (1967), H. Faure
(1982), H.Niederreiter (1992), C.-P.Xing and H.Niederreiter (1995) are generated
by matrices with infinite rows.

H.Faure: Discrépance de suites associées à un système de numération (en dimension s), Acta
Arith. 41 (1982), 337–351 (MR0677547 (84m:10050); Zbl. 0442.10035).
R.Hofer: On the distribution properties of Niederreiter-Halton sequences, J. Number Theory 129
(2009), 451–463 (MR2473892 (2009k:11123); Zbl. 1219.11111).
R.Hofer – P.Kritzer – G. Larcher – F. Pillichshammer: Distribution properties of generalized
van der Corput-Halton sequences and their subsequences, Int. J. Number Theory 5 (2009), 719–746
(MR2532267 (2010d:11082); Zbl. 1188.11038).
R.Hofer – G. Larcher: On existence and discrepancy of certain digital Niederreiter-Halton se-
quences, Acta Arith. 141 (2010), no. 4, 369–394 (MR2587294 (2011b:11108); Zbl. 1219.11112).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
I.M. Sobol’: Distribution of points in a cube and approximate evaluation of integrals, (Russian),
Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784–802 (MR0219238 (36 #2321)).
C.-P.Xing – H.Niederreiter: A construction of low-discrepancy sequences using global function
fields, Acta Arith. 73 (1995), no. 1, 87–102 (MR1358190 (96g:11096); Zbl. 0848.11038).

1.8.19 Good lattice points sequences

Good lattice points (g.l.p.) are integral vectors g = (g1, g2, . . . , gs) ∈ Zs

(depending on the parameter N) such that the discrepancy of the sequence

xn =
n

N
g =

(ng1
N

,
ng2
N

, . . . ,
ngs
N

)
mod 1, n = 1, . . . , N,

satisfies

DN (xn) = O
(
(logN)s

N

)
,

where the implied constant does not dependent on N .

Notes: (I) The sequences of this form were first investigated by N.M.Korobov
(1959). The existence of g.l.p.’s if N is a prime number was proved by E.Hlawka
(1962) and N.M.Korobov (1963); see also [KN, pp. 154–157], H.Niederreiter (1992,
Chap. 5) and 3.15.1.
(II) Hlawka (1962) and Korobov (1963, p. 96, Lemma 20) proved that for every
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prime p there exists an vector g ∈ Zs such that∑
0<∥h∥∞<p

h·g≡0 (mod p)

1

r(h)
<

2

p
(5 log p)s.

Hlawka called such g as good lattice point modulo p (see [KN, p. 156, Ex. 5.4]).
Since the left hand side of above expression is directly connected with the discrep-
ancy Dp (see 3.15.1(VII)) of the sequence n

p g mod 1, n = 1, . . . , p, Hlawka definition

provides an alternative approach to g.l.p. Korobov (cf. (1963, p. 96)) used a different
terminology, he called such a g an optimal point.

E.Hlawka: Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962),
140–151 (MR0143329 (26 #888); Zbl. 0105.04603).
N.M.Korobov: Approximate evaluation of repeated integrals, (Russian), Dokl. Akad. Nauk SSSR
(N.S.), 124 (1959), 1207–1210 (MR0104086 (21 #2848); Zbl 0089.04201).
N.M.Korobov: Number–theoretic Methods in Approximate Analysis, (Russian), Library of Ap-
plicable Analysis and Computable Mathematics, Fizmatgiz, Moscow, 1963 (MR0157483 (28 #716);
Zbl. 0115.11703).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).

1.8.20 Lattice rules

See H.Niederreiter (1992, pp. 125–146) and 3.17.

• An s–dimensional lattice is a discrete additive subgroup

L =

{
s∑

i=1

higi ; (h1, . . . , hs) ∈ Zs

}
.

of Rs generated by s linearly independent vectors g1, . . . ,gs ∈ Rs.

• An s–dimensional integration lattice is a lattice containing Zs.

• The node set of a lattice L is determined as the intersection L ∩ [0, 1)s.

• If x0,x1, . . . ,xN−1 is the node set of L then the s–dimensional lattice
rule L is given by the quasi–Monte Carlo approximation

1

N

N−1∑
n=0

f(xn) of

∫
[0,1]s

f(x) dx.

If it is necessary to point out the number N we also speak about the s–
dimensional N–point lattice rule.

• The dual lattice L⊥ of the s–dimensional integration lattice L is defined
by

L⊥ = {h ∈ Zs ; h · x ∈ Z for all x ∈ L}.
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• The shifted lattice with shift ∆ ∈ Rs is the set

L+∆ = {x+∆ ; x ∈ L}.

Notes: The first steps towards the definition of lattice rules go back to K.K. Fro-
lov (1977), I.H. Sloan (1985), and I.H. Sloan and P.Kachoyan (1987).

K.K.Frolov: On the connection between quadrature formulas and sublattices of the lattice of
integral vectors, (Russian), Dokl. Akad. Nauk SSSR 232 (1977), 40–43 (MR0427237 (55 #272);
Zbl. 0368.65016).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
I.H. Sloan: Lattice methods for multiple integration, J. Comp. Appl. Math. 12/13 (1985), 131–
143 (MR0793949 (86f:65045); Zbl. 0597.65014).
I.H. Sloan – P.Kachoyan: Lattice methods for multiple integration: Theory, error analysis and
examples, SIAM J. Numer. Anal. 24 (1987), 116–128 (MR0874739 (88e:65023); Zbl. 0629.65020).

1.8.21 Random numbers

• Three different methods are used in the analysis of random numbers: (i) the
structural, (ii) the complexity–theoretic, and (iii) the statistical one, cf. [DT,
p. 424]. For example,

(I) D.E.Knuth (1981) proposed a hierarchy of definitions for a sequence xn
of uniform random numbers. In his definition
(i) R1 means that xn is completely uniformly distributed,
(ii) R4 means that for every effective algorithm that specifies a sequence bn

of distinct positive integers, the sequence xbn is completely uniformly
distributed.

Cf. [DT, pp. 424–430, 3.4.] and J.C. Lagarias (1990, 1992).

(II) A complete collection of tests for random and pseudorandom num-
ber generators can be found in A.Rukhin, J. Sotoij ; Soto, J., J. Nechvatal,
et al. (2001).

(III) Physical random numbers are generated, as the name shows, by physical
devices, e.g. coin flipping, roulette wheels, white noise, counts of emitted
particles, cf. H.Niederreiter (1978, p. 998).
D.E.Knuth: Seminumerical Algorithms, The Art of Computer Programming, Vol. 2, 2nd ed.,
Addison Wesley, Reading, MA, 1981 (First ed.: Reading, MA, 1969) (MR0286318 (44 #3531);
Zbl. 0477.65002).
J.C. Lagarias: Pseudorandom number generators in cryptography and number theory, in: Cryptol-
ogy and Computational Number Theory (Boulder, CO, 1989), (C. Pomerance ed.), Proc. Sympos.
Appl. Math., 42, Amer. Math. Soc., Providence, RI, 1990, pp. 115–143 (MR1095554 (92f:11109);
Zbl. 0747.94011).
J.C. Lagarias: Pseudorandom numbers, in: Probability and Algorithms, Nat. Acad. Press,
Washington, D.C., 1992, pp. 65–85 (MR1194441; Zbl. 0766.65003).
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H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).
A.Rukhin – J. Soto – J.Nechvatal – M. Smid – E.Barker – S. Leigh – M.Levenson – M.Van-
gel – D.Banks – A.Heckert – J.Dray – S.Vo: A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication 800-
22, (2000 with revision dated May 15, 2001). (http://csrc.nist.gov/rng/SP800-22b.pdf).

1.8.22 Pseudorandom numbers

(I) We distinguish two cases: the uniform and the non–uniform one.

There is no satisfactory formal definition for uniform pseudorandom num-
bers but the basic demands for their generation should meet the following
requirements:
• the sequence is generated by a deterministic algorithm,
• the standard generation algorithms are based on recursive procedures and

thus yield periodic sequences6,
• the generated sequences should have a sufficiently large period,
• the generated sequences should be equidistributed within the period in [0, 1],
• its successive terms should have reasonable statistical independence prop-

erties,
• the generation should possess a reasonably effective computer implemen-

tation.

(II) The generation of non–uniform pseudorandom numbers usually
starts with a sequence of uniform pseudorandom numbers which is then pro-
cessed by a follow–up transformation to a given distribution using one the
following methods (cf. H.Niederreiter (1992, pp. 164–166)):
• the inversion method,
• the rejection method,
• the composition method,
• the ratio–of uniforms method.

(III) The concept of pseudorandom sequences can be interpreted in three
different ways as (cf. Ch.Mauduit and A. Sárközy (1997)):
• [0, 1) sequences,
• pseudorandom sequences of integers selected from {1, 2, . . . , N},
• pseudorandom binary, or more generally, q–ary sequences,

(IV) The web site http://random.mat.sbg.ac.at/ managed by P.Helleka-
lek is devoted to random numbers and their applications.
Notes: Statistical independence properties are studied in the correlation anal-
ysis. The correlation analysis of pseudorandom numbers x1, . . . , xM should pass

6Every sufficiently large initial segment of an infinite u.d. sequence can also be considered
as a sequence of u.d. pseudorandom numbers.
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the serial test (discrepancy) or the spectral test (sums of Weyl type) of the
overlapping s–tuples xn = (xn, xn+1, . . . , xn+s−1), n = 1, . . . ,M − (s − 1), or the
non–overlapping s–tuples xn = (xns, xns+1, . . . , xns+s−1), n = 1, . . . , [M/s] − 1
(cf. P.Hellekalek (1998) and example 2.25.5). H.Niederreiter (1992, pp. 166–168)
discusses the following statistical tests: uniformity test, gap test, run test,
permutation test, and serial correlation. Some results illustrating the diffi-
culties of giving a comprehensive and general definition of pseudorandom sequence
are discussed by R.Winkler (1993). J. Bass (1957) and J.–P.Bertrandias (1964) de-
fined special types of pseudorandomness on the unit circle (see 3.11). P.J.Grabner,
P. Liardet and R.F.Tichy (1995) reformulated these definitions to the case of real
sequences xn under the name
Bertrandias pseudorandomness: If k ̸= 0 is any integer, then
(i) limN→∞

1
N

∑N
n=1 e

2πikxn = 0,

(ii) γ(h) = limN→∞
1
N

∑N
n=1 e

2πik(xn+h−xn) exists,

(iii) limH→∞
1
N

∑H
h=1 |γ(h)|2 = 0.

In the case called the Bass pseudorandomness, instead of (iii) the following
stronger condition is required
(iii′) limh→∞ γ(h) = 0.

J. Bass: Sur certaines classes de fonctions admettant une fonction d’autocorrélation continue, C.
R. Acad. Sci. Paris 245 (1957), 1217–1219 (MR0096344 (20 #2828)); Zbl. 0077.33302).
J.–P.Bertrandias: Suites pseudo–aléatoires et critères d’équirépartition modulo un, Compositio
Math. 16 (1964), 23–28 (MR0170880 (30 #1115); Zbl. 0207.05801).
P.J.Grabner – P. Liardet – R.F.Tichy: Odometres and systems of numeration, Acta Arith. 70
(1995), no. 2, 103–123 (MR1322556 (96b:11108); Zbl. 0822.11008).
P.Hellekalek: On correlation analysis of pseudorandom numbers, in: Monte Carlo and Quasi–
Monte Carlo Methods 1996 (Proceedings of a conference at the University of Salzburg, Austria,
July 9–12, 1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in
Statistics, 127, Springer Verlag, New York, Berlin, 1998, pp. 251–265 (MR1644524 (99d:65020);
Zbl. 0885.65005).
Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences, I. Measure of pseudoran-
domness, the Legendre symbol , Acta Arith. 82 (1997), no. 4, 365–377 (MR1483689 (99g:11095);
Zbl. 0886.11048).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
R.Winkler: Some remarks on pseudorandom sequences, Math. Slovaca 43 (1993), no. 4, 493–512
(MR1248982 (94g:65009); Zbl. 0813.65001).

1.8.23 Block sequences

Block sequences provide one of the main tools for the construction of se-
quences with prescribed distribution properties.

• Let a finite sequence

Xn = (xn,1, . . . , xn,Nn) mod 1
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be given for every n ≥ 1. The infinite sequence

ω = (x1,1, . . . , x1,N1 , x2,1, . . . , x2,N2 , . . . ) mod 1,

abbreviated by ω = (Xn)
∞
n=1, is called a block sequence associated with

the sequence of single blocks Xn, n = 1, 2, . . . .

• The notion of a d.f. of a block sequence ω = (Xn)
∞
n=1 is defined in Sect. 1.7.

We shall distinguish between block sequences and sequences of individual
blocks:

• For a block Xn we define the step distribution function F (Xn, x) by

F (Xn, x) =


A([0, x);Xn)

Nn
, for x ∈ [0, 1),

1, if x = 1,

where
A([0, x);Xn) = #

{
i ≤ Nn ; {xn,i} ∈ [0, x)

}
.

A d.f. g(x) of the sequence of single terms Xn is defined as the limit

g(x) = lim
n→∞

F (Xkn , x)

for a suitable sequence of indices k1 < k2 < . . . at all continuity points
x ∈ [0, 1] of g(x).
• If kn = n, then g(x) is called the a.d.f. of Xn, and if g(x) = x, then Xn is

called u.d. or asymptotically u.d.
• If kn has the asymptotic density 1, then there exists mostly one such g(x)

and it is called the generalized a.d.f. of Xn. If g(x) = x, then the
sequence of single blocks Xn is called generalized u.d.

• The set of the all d.f.’s of Xn will be denoted by G(Xn).
• If Nn = n, then the sequence of single blocks Xn is called the triangular

array Xn (cf. R.F.Tichy (1998), E.Hlawka (1979, 1983)).
Notes: In existing literature various types of block sequences have been investi-
gated.
(I) The notion of the a.d.f. of block sequences was actually introduced and studied
by I.J. Schoenberg (1928) for Xn with Nn = n. He gave some criteria and quotes a
result of G. Pólya 2.22.13 that

Xn =
(n
1
,
n

2
, . . . ,

n

n

)
mod 1

has a.d.f. g(x) =
∫ 1

0
1−tx
1−t dt.

(II) In his monograph E.Hlawka (1984, p. 57–60) calls sequences of single blocks Xn
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with Nn = n double sequences, and with general Nn as Nn–double sequences.
As an illustration he gives the proof of the u.d. of sequences (cf. 2.23.1)

Xn =

(
1

n
,
2

n
, . . . ,

n

n

)
, and Xn =

(
1

n
,
a2
n
, . . . ,

aφ(n)

n

)
,

with a1 = 1 < a2 < · · · < aφ(n), gcd(ai, n) = 1 where φ(n) denotes Euler’s totient
function. For the u.d. of related block sequences ω = (Xn)

∞
n=1 see the monograph

by L.Kuipers and H.Niederreiter [KN, Lem. 4.1, Ex. 4.1, p. 136].
(III) R.F.Tichy (1998) gave some examples of triangular arrays which are u.d. (cf.
also E.Hlawka (1983)).
(IV) G.Myerson (1993, p. 172) calls a sequence of blocks Xn (not taking the ordering
of elements of Xn into account) a sequence of sets.7 The same terminology is used
by H.Niederreiter in his book (1992). Myerson calls the associated block sequence ω
(with Xn endowed with some order) an underlying sequence and proved some
criteria for the u.d. of such Xn.

(V) Let xn be an increasing sequence of positive integers. Generalizing a result of
S.Knapowski (1958), Š. Porubský, T. Šalát and O. Strauch (1990) have studied a
sequence of blocks Xn of the type

Xn =

(
1

xn
,
2

xn
, . . . ,

xn
xn

)
.

They completely described the u.d. theory of related block sequences ω = (Xn)
∞
n=1,

cf. 2.22.1.
(VI) O. Strauch and J.T.Tóth (2000) considered a sequence of blocks Xn, n =
1, 2, . . . , where

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
.

The associated block sequence ω = (Xn)
∞
n=1 denoted as xm/xn, m = 1, . . . , n,

n = 1, 2, . . . , is also called the ratio sequence of xn. Everywhere density of xm/xn
was first investigated by T. Šalát (1969), cf. 2.22.2. The set of limit points of xm/xn
was described by J. Bukor and J.T.Tóth (1996). O. Strauch and J.T.Tóth (1998)
proved that if the lower asymptotic density of xn is greater than or equal to 1/2,
then the ratio sequence xm/xn is everywhere dense in [0,∞). Strauch and Tóth
in (2001) studied the set G(Xn) of all d.f.’s of such Xn, cf. 2.22.6, 2.22.7, 2.22.8,
2.19.16.

J. Bukor – J.T.Tóth: On accumulation points of ratio sets of positive integers, Amer. Math.
Monthly 103 (1996), no. 6, 502–504 (MR1390582 (97c:11009); Zbl. 0857.11004).
E.Hlawka: Eine Bemerkung zur Theorie der Gleichverteilung, in: Studies in Pure Mathematics,
Akadémiai Kiadó, Budapest, 1983, pp. 337–345 (MR0820233 (87a:11070); Zbl. 0516.10048).
E.Hlawka: The Theory of Uniform Distribution, A B Academic Publishers, Berkhamsted, 1984
(translation of the original German edition Hlawka (1979)) (MR0750652 (85f:11056); Zbl. 0563.10001).

7Occasionally we shall also use set notation for description of blocks Xn
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S.Knapowski: Über ein Problem der Gleichverteilungstheorie, Colloq. Math. 5 (1957), 8–10
(MR0092823 (19,1164c); Zbl. 0083.04401).
G.Myerson: A sampler of recent developments in the distribution of sequences, in: Number theory
with an emphasis on the Markoff spectrum (Provo, UT 1991), (A.D.Pollington and W.Moran eds.),
Lecture Notes in Pure and App.Math., Vol. 147, Marcel Dekker, New York, Basel, Hong Kong, 1993,
pp. 163–190 (MR1219333 (94a:11112); Zbl. 0789.11043).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
Š. Porubský – T. Šalát – O. Strauch: On a class of uniform distributed sequences, Math. Slo-
vaca 40 (1990), 143–170 (MR1094770 (92d:11076); Zbl. 0735.11034).
T. Šalát: On ratio sets of sets of natural numbers, Acta Arith. 15 (1968/69), 273–278 (MR0242756
(39 #4083); Zbl. 0177.07001).
I.J. Schoenberg: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928),
171–199 (MR1544950; JFM 54.0212.02).
O. Strauch – J.T.Tóth: Asymptotic density of A ⊂ N and density of the ratio set R(A),
Acta Arith. 87 (1998), no. 1, 67–78 (correction ibid. 103 (2002), no. 2, 191–200). (MR1659159
(99k:11020); Zbl. 0923.11027).
O. Strauch – J.T.Tóth: Distribution functions of ratio sequences, Publ. Math. (Debrecen) 58
(2001), 751–778 (MR1828725 (2002h:11068); Zbl. 0980.11031).
R.F.Tichy: Three examples of triangular arrays with optimal discrepancy and linear recurrences,
in: Applications of Fibonacci Numbers (The Seventh International Research Conference, Graz,
1996), Vol. 7, (G.E.Bergum, A.N.Philippou and A.F.Horadam eds.), 1998, Kluwer Acad. Publ.,
Dordrecht, Boston, London, pp. 415–423 (MR1638468; Zbl. 0942.11036).

1.8.24 Normal numbers

See also [KN, p. 69, Def. 8.1; p. 71, Def. 8.2], [DT, p. 104–117] and examples
in 2.18.

Let q ≥ 2 be an integer and α be a real number having q–adic digit expansion
α = a0.a1a2 . . . an . . . with digits an, 0 ≤ an < q for n = 1, 2 . . . . If Bs =
(b1b2 . . . bs) is a given block of q–adic digits of length s ≥ 1 put |Bs| = 1/qs.
Let Aq(Bs;N) be the number of those n with 1 ≤ n ≤ N − s + 1 for which
an+j−1 = bj for 1 ≤ j ≤ s, i.e. the number of occurrences of the block Bs in
the sequence of blocks

(a1a2 . . . as)(a2a3 . . . as+1) . . . (aN−s+1aN−s+2 . . . aN ).

The number α is called normal in the base q if

lim
N→∞

Aq(Bs;N)

N
=

1

qs
(= |Bs|)

for all s ≥ 1 and all Bs. The number α is called absolutely normal if it
is normal in all bases q ≥ 2. The number α is called simply normal if
the limit holds for k = 1, i.e. each digit from 0 to q − 1 appears with the
asymptotic frequency 1/q.

The next theorem shows the relation between normal numbers and sequences
of the type αqn mod 1:
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Theorem 1.8.24.1 (cf. [KN, p. 70, Th. 8.1]). The number α is normal
in the base q if and only if the sequence αqn mod 1, n = 1, 2, . . . , is u.d.

Notes: (0) A number which is simply normal in any base (called absolutely normal
in W. Sierpiński (1964, p. 277)) is absolutely normal in our sense. The existence of
such numbers follows from the well–known result proved by E.Borel (1909) saying
that almost all real numbers are absolutely normal. The first effective example was
given by Sierpiński (1917) and H. Lebesgue (1917).
(I) Another approach (cf. 2.18.19) was discovered by A.G.Postnikov (1952): If there
exist two positive constants c and σ such that for every s and Bs

lim sup
N→∞

Aq(Bs;N)

N
< c|Bs|

(
1 + log

1

|Bs|

)σ
,

then the number α is normal in the base q. Postnikov’s result extended a previous
result proven by I.I. Šapiro – Pjateckĭı (1951) in which the right–hand side has the
form c|Bs|.
(II) If N = ns define a new counting function Ãq(Bs;N) as the number of occur-
rences of the block Bs in the sequence of blocks

(a1a2 . . . as)(as+1as+2 . . . a2s) . . . (a(n−1)s+1a(n−1)s+2 . . . ans).

The following theorem of S.S. Pillai (1939, 1940) gives an alternative definition of
normality (for a proof cf. Postnikov (1960)): The number α is normal if and only if

lim
n→∞

Ãq(Bs;ns)

n
= |Bs|

for every s and Bs.
(III) Some elementary properties:
J.E.Maxfield (1953): A non–zero rational number times a normal number in the
base q is normal in the same base.
W.M. Schmidt (1960): If there exist positive integers p, q, k, and l such that pk = ql,
then any number normal in the base p is also normal in the base q, and vice versa.
If such exponents k, l do not exist, then there exists a real number normal in the
base p but non–normal in the base q.
(IV) Theorem 1.8.24.1 provided the impetus for the following general definition: Let
θ > 1 be a real number. The number α is called normal in the real base θ if the
sequence αθn mod 1, n = 1, 2, . . . , is u.d. (for an example cf. 2.18.21). Let B(θ)
denote the set of such numbers α. G. Brown, W.Moran and A.D.Pollington (1993)
answered some questions posed by Mendès France:
(a) B(θ) = (1/q)B(θ) if and only if for some j ∈ N either θj ± θ−j ∈ N or θj ∈ N,
(b) B(θ1) = B(θ2) if and only if there is some j ∈ N such that θj1, θ

j
2 ∈ N,

log θ1/ log θ2 ∈ Q and Q(θ1) = Q(θ2),
(c) B(10) ̸⊂ B(

√
10).
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(V) For the multi–dimensional case we have the following definitions (cf. [KN, p. 76,
Notes]):
J.E.Maxfield (1953): A k–tuple (α1, . . . , αk) is called a normal k–tuple in the
base q if the sequence

(qnα1, . . . , q
nαk) mod 1, n = 1, 2, . . . ,

is u.d. in [0, 1]k. The Weyl theorem 1.11.1.3 implies that a k–tuple (α1, . . . , αk) is

normal in the base q if and only if
∑k
i=1 hiαi is normal in the same base for all

integers (h1, . . . , hk) ̸= (0, . . . , 0).
N.M.Korobov (1952): A k–tuple (α1, . . . , αk) is called a jointly normal in the
bases q1, . . . , qk if the sequence

(qn1α1, . . . , q
n
kαk) mod 1, n = 1, 2, . . . ,

is u.d. in [0, 1]k (for an example see 3.2.4).
Matrix normality was considered by L.N.Pushkin (1991): Let A be a k–dimensional
square matrix with real elements. Then a real k–dimensional vector α is said to
be normal with respect to A, if the sequence αAn mod 1 is u.d. in [0, 1]k and
is said to be absolutely normal if the sequence αAn mod 1 is u.d. in [0, 1]k for
every non–singular matrice which no eigenvalue is a root of unity. Let A and B be
non–singular matrices with no eigenvalue being a root of unity. If AB = BA then
the sets of A–normal vectors and B–normal ones coincide if and only if there are
integers i, j ≥ 1 such that Ai = Bj , cf. G.Brown (1992).

(VI) Some other types of normality:
A.G.Postnikov and I.I. Pjateckĭı – Šapiro (1957) and A.G.Postnikov (1960): Let p
be a number 0 < p < 1. The number α = a0.a1a2 . . . an . . . expressed in the base
q = 2 is called Bernoulli normal if

lim
N→∞

Aq(Bs;N)

N
= pj(1− p)s−j

for all s ≥ 1 and all Bs, where j is the number of occurrences of 1 in Bs.

A.G.Postnikov and I.I. Pjateckĭı – Šapiro ([a]1957): Let

• P = (pi,j)0≤i,j≤q−1 be an irreducible Markov transition matrix,

• p = (pi)0≤i≤q−1 be the stationary probability vector of P,

The number α is said to be Markov–normal if in its q–ary expansion α = 0.a1a2 . . .

=
∑∞
i=1 ai/q

i each fixed finite block of digits b0b1 . . . bk appears with the asymptotic

frequency of

p0pb0,b1 . . . pbk−1,bk .

Let g(x) be a d.f. defined on [0, 1] by

g(γn + 1/qn)− g(γn) = pc1pc1,c2 . . . pcn−1,cn
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for any γn = 0.c1c2 . . . cn where ci ∈ {0, 1, . . . , q − 1}. Then α is Markov–normal in

the base q if and only if the sequence αqn mod 1 has a.d.f. g(x).

M.B. Levin (1996) constructed the Markov–normal number α with star discrepancy

D∗
N = O((logN)2)/

√
N where the O–constant depends only on the matrix P.

(VII) Let α = [0; a1, a2, . . . ] be the continued fraction expansion of α ∈ (0, 1).

Given a vector b = (b1, . . . , bk) with positive integer coordinates bi, put ∆b = {α ∈
(0, 1) ; a1 = b1, . . . , ak = bk} (note that this set is an interval). If T (x) = {1/x} and

f(x) is an L2 Lebesgue integrable function defined on [0, 1], then by ergodic theorem

we have

lim
N→∞

1

N

N−1∑
n=0

f(T (n)(α)) =
1

log 2

∫ 1

0

f(x)

1 + x
dx

for almost all α ∈ (0, 1). Here 1
log 2

dx
1+x is density of the Gauss distribution. If we

take the indicator of ∆b for f(x), then we get that the frequency of occurrence of b

in α = [0; a1, a2, . . . ] exists and equals

1

log 2

∫
∆b

dx

1 + x

for almost all α ∈ (0, 1).
After R.Adler, M.Keane and M. Smorodinsky (1981) a real number α ∈ (0, 1) is
said to be continued fraction normal if for every positive integral vector b the
frequency of occurrence of b in [0; a1, a2, . . . ] is equal to

1
log 2

∫
∆b

dx
1+x .

The following analogue of Borel’s theorem follows from the definition: Almost every
α ∈ (0, 1) is continued fraction normal.
B.Volkmann noticed the following characterization in the review (MR 82k:10070):
α = [0; a1, a2, . . . ] is continued fraction normal if and only if the sequence αn =
[0; an+1, an+2, . . . ], n = 1, 2, . . . , has the a.d.f.

g(x) =
log(1 + x)

log 2
.

This a.d.f. is also called Gaussian a.d.f. For an example, cf. 2.18.22.
(VIII) The theorem saying that almost every number is normal can be proved using
various tools. For instance, M.Kac (1959) proved this theorem for simply nor-
mal numbers to base 2 using Rademacher functions and Beppo Levi’s Theorem.
R.Nillsen (2000), also for binary case, employed series of integrals of step functions
without using the measure theory in the proof at the cost of defining the null set
in a different way. F. Filip and J. Šustek (2010) gave an elementary proof based on
the fact that a bounded monotone function has finite derivative in almost all points.
(cf. D.Khoshnevisan (2006), or [KN, p. 74 – 78] for more details.)

R.Adler – M.Keane – M. Smorodinsky: A construction of normal number for the continued
fraction transformation, J. Number Theory 13 (1981), no. 1, 95–105 (MR0602450 (82k:10070); Zbl.
0448.10050).
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H.Lebesgue: Sur certaines démonstrations d’existence, Bull. Soc. Math. France 45 (1917),
132–144 (MR1504765; JFM 46.0277.01).
M.B. Levin: On the discrepancy of Markov–normal sequences, J. Théor. Nombres Bordeaux 8
(1996), no. 2, 413–428 (MR1438479 (97k:11113); Zbl. 0916.11044).
J.E.Maxfield: Normal k–tuples, Pacific J. Math. 3 (1953), 189–196 (MR0053978 (14,851b); Zbl.
0050.27503).
R.Nillsen: R.Nillsen: Normal numbers without measure theory, Am. Math. Month. 107 (2000),
639–644 (MR1786238 (2001i:11096); Zbl. 0988.11031).
S.S. Pillai: On normal numbers, Proc. Indian Acad Sci., sec. A 10 (1939), 13–15 (MR0000020
(1,4c); Zbl. 0022.11105; JFM 65.0180.02).
S.S. Pillai: On normal numbers, Proc. Indian Acad Sci., sec. A 12 (1940), 179–184 (MR0002324
(2,33c); Zbl. 0025.30802).
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1.8.25 Homogeneously u.d. sequences

• P.Erdős and G.G. Lorentz (1958): The sequence xn mod 1 is called ho-
mogeneously u.d. if the sequence

xnd
d

mod 1, n = 1, 2, . . .

is u.d. in [0, 1] for every positive integer d.

Notes: R. Schnabl (1963) gave a generalization based on weighted means.

P.Erdős – G.G. Lorentz: On the probability that n and g(n) are relatively prime, Acta Arith. 5
(1958), 35–55 (MR0101224 (21 #37)).

R. Schnabl: Zur Theorie der homogenen Gleichverteilung modulo 1, Őstereich. Akad. Wiss.
Math.–Natur. Kl. Sitzungsber. II 172 (1963), 43–77 (MR0164944 (29 #2235); Zbl. 0121.05101).

1.8.26 u.d. sequences with respect to divisors

Let d(n) denote the number of positive divisors of n ∈ N.
• The infinite real sequence xn ∈ [0, 1] is said to be u.d. on the divisors if
for some subsequence of indices n with asymptotic density 1 we have

lim
n→∞

#{d ∈ N ; d|n, xd ∈ [x, y)}
d(n)

= y − x

for every [x, y) ⊂ [0, 1].

Notes: (I) In other words, the sequence of blocks Xn = (xd)d|n is generalized u.d.,
cf. 1.8.23.
(II) Y.Dupain, R.R.Hall and G.Tenenbaum (1982) proved that the sequence
nθ mod 1 is u.d. on the divisors if and only if θ is irrational. For other examples
cf. 2.20.24.

Y.Dupain – R.R.Hall – G.Tenenbaum: Sur l’équirépartition modulo 1 de certaines fonctions
de diviseurs, J. London Math. Soc. (2) 26 (1982), no. 3, 397–411 (MR0684553 (84m:10047); Zbl.
0504.10029).

1.8.27 Eutaxic sequences

Let xn ∈ [0, 1), zn ∈ R+, n = 1, 2, . . . , be two sequences and x ∈ [0, 1].
Strauch (1994) introduced a new counting function

A(x;N ; (xn, zn)) = #{n ≤ N ; |x− xn| < zn}.

• The sequence xn is said to be eutaxic if for every non–increasing se-
quence zn the divergence of

∑∞
n=1 zn implies that

lim
N→∞

A(x;N ; (xn, zn)) = ∞
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for almost all x ∈ [0, 1]. If furthermore

lim
N→∞

A(x;N ; (xn, zn))

2
∑N

n=1 zn
= 1

then xn is called strongly eutaxic.
Notes: Eutaxic sequences were introduced by J. Lesca (1968). He proved that if θ is
irrational then the sequence nθ mod 1 is eutaxic if and only if θ has bounded partial
quotients. M.Reversat proved the same for the strong eutaxicity of nθ mod 1, i.e. for
sequence nθ mod 1 both notions coincide. B. de Mathan (1971) defined the counting
function

A∗(N, xn) = #{0 ≤ k < N ; ∃n ≤ N(xn ∈ [k/N, (k + 1)/N)}

and proved that lim infN→∞A∗(N, xn)/N = 0 implies that xn is not eutaxic. Since
for the sequence xn = nθ mod 1 and for θ with unbounded partial quotients we have
lim infN→∞A∗(N, xn)/N = 0, de Mathan (1971) recovered half of Lesca’s result. A
characterization of strong eutaxicity in terms of L2 discrepancy is an open problem,
cf. O. Strauch (1994).

B. de Mathan: Un critére de non–eutaxie, C. R. Acad. Sci. Paris Sér. A–B 273 (1971), A433–
A436 (MR0289419 (44 #6610); Zbl. 0219.10061).
J. Lesca: Sur les approximationnes a’une dimension, Univ. Grenoble, Thése Sc. Math., Grenoble,
1968.
M.Reversat: Un résult de forte eutaxie, C. R. Acad. Sci. Paris Sér. A–B 280 (1975), Ai,
A53–A55 (MR0366829 (51 #3075); Zbl. 0296.10032).
O. Strauch: L2 discrepancy, Math. Slovaca 44 (1994), 601–632 (MR1338433 (96c:11085); Zbl.
0818.11029).

1.8.28 Uniformly quick sequences

Let X = ∪∞
m=1Im be a decomposition of an open set X ⊂ [0, 1] into a

sequence Im, m = 1, 2, . . . , of pairwise disjoint open subintervals of [0, 1]
(empty intervals are allowed). Let xn be an infinite sequence in [0, 1). Define
a new counting function

Ã(X;N ;xn) = #{m ∈ N ; ∃n ≤ N such that xn ∈ Im}+
+#{n ≤ N ; xn /∈ X},

i.e. if xn ∈ X for n = 1, 2, . . . , then Ã(X;N ;xn) is the number of intervals
Im containing at least one element of x1, x2, . . . , xN .

• The sequence xn is said to be uniformly quick (abbreviated u.q.) if for
any open set X ⊂ [0, 1] we have

lim
N→∞

Ã(X;N ;xn)

N
= 1− |X|,
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where |X| denotes Lebesgue measure of X.

• If this limit holds for a special sequence of indices N1 < N2 < . . . , then xn
is said almost u.q.

Notes: (I) U.q. sequences were introduced and studied by O. Strauch (1982, 1983,
1984, [a]1984, 1986) in connection with the conjecture of Duffin – Schaeffer, cf.
R.J.Duffin and A.C. Schaeffer (1941) and G.Harman (1998).

(II) Any u.q. sequence xn is u.d. in [0, 1] and it is also strongly eutaxic.
(III) The sequence xn = nθ mod 1 is u.q. if and only if the simple continued fraction
expansion of the irrational θ has bounded partial quotients (cf. O. Strauch ([a]1984)).
(IV) Strauch (1982, Th. 3): The u.d. sequence xn is u.q. if for infinitely many M
there exists cM , c′M , and N0(M) such that c′M → 0 as M → ∞ and∑

|xi−xj |≤t
M<i ̸=j≤N

1 ≤ cM t(N −M)2 + c′M (N −M)

for every N ≥ N0(M) and every t ≥ 0. For examples see 2.23.6.
(V) The u.q. sequences xn can be used in the numerical evaluation of integrals∫
X
f(x) dx over open subsets X of [0, 1]. Thus also for Jordan non–measurable

setsX, that is sets which boundaries |∂X| are of positive measure, cf. Strauch (1997).
(VI) Let qn, n = 1, 2, . . . , be a one–to–one sequence of positive integers and let
(An)

∞
n=1 be a sequence composed from blocks

An =

(
1

qn
,
a2
qn
, . . . ,

aφ(qn)

qn

)
,

where 1 = a1 < a2 < a3 < · · · < aφ(qn) are the integers < qn coprime to qn. If

(An)
∞
n=1 is almost u.q.

(
with respect to the set of indices Nn =

∑n
i=1 φ(qi)

)
, then

the Duffin – Schaeffer conjecture holds for qn. In other words, if f(qn) is non–
increasing with n→ ∞, then the divergence

∑∞
n=1 φ(qn)f(qn) = ∞ implies that for

almost all x ∈ [0, 1] the diophantine inequality∣∣∣∣x− y

qn

∣∣∣∣ < f(qn)

has an integral solution y coprime to qn for infinitely many n. Examples of such
sequences qn can be found in 2.23.6.

R.J.Duffin – A.C. Schaeffer: Khintchine’s problem in metric diophantine approximation, Duke
Math. J. 8 (1941), 243–255 (MR0004859 (3,71c); Zbl. 0025.11002).
G.Harman: Metric Number Theory, London Math. Soc. Monographs, New Series, Vol. 18, Claren-
don Press, Oxford, 1998 (MR1672558 (99k:11112); Zbl. 1081.11057).
O. Strauch: Duffin – Schaeffer conjecture and some new types of real sequences, Acta Math.
Univ. Comenian. 40–41 (1982), 233–265 (MR0686981 (84f:10065); Zbl. 0505.10026).
O. Strauch: Some new criterions for sequences which satisfy Duffin – Schaeffer conjecture, I ,
Acta Math. Univ. Comenian. 42–43 (1983), 87–95 (MR0740736 (86a:11031); Zbl. 0534.10045).
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O. Strauch: Some new criterions for sequences which satisfy Duffin – Schaeffer conjecture, II ,
Acta Math. Univ. Comenian. 44–45 (1984), 55–65 (MR0775006 (86d:11059); Zbl. 0557.10038).
[a] O. Strauch: Two properties of the sequence nα (mod 1), Acta Math. Univ. Comenian. 44–45
(1984), 67–73 (MR0775007 (86d:11057); Zbl. 0557.10027).
O. Strauch: Some new criterions for sequences which satisfy Duffin – Schaeffer conjecture, III ,
Acta Math. Univ. Comenian. 48–49 (1986), 37–50 (MR0885318 (88h:11053); Zbl. 0626.10046).
O. Strauch: A numerical integration method employing the Fibonacci numbers, Grazer Math.
Ber. 333 (1997), 19–33 (MR1640470 (99h:65038); Zbl. 0899.11037).

1.8.29 Poissonian sequences

Given an interval I = [a, b] ⊂ R, let I/N = [a/N, b/N ], I/N ± 1 = [(a/N)±
1, (b/N) ± 1] and |I| = b − a. Let xn, n = 1, 2, . . . , be a sequence of points
from the unit interval [0, 1). Define the new counting function by

Ã(I;N ;xm − xn) =

= #{1 ≤ m ̸= n ≤ N ; xm − xn ∈ I/N ∪ (I/N + 1) ∪ (I/N − 1)}.

Then the sequence xn is said to be Poissonian if

lim
N→∞

Ã(I;N ;xm − xn)

N
= |I|

for every interval I ⊂ R.
Notes: (I) This type of sequences was explicitly introduced by P. Sarnak and
Z.Rudnick (1998). For history cf. F.P.Boca and A. Zaharescu (2000).
(II) The sequence nθ mod 1 is not Poissonian. P. Sarnak and Z.Rudnick (1998)
proved that nkθ mod 1, k = 2, 3, . . . , is Poissonians for almost all θ. On the other
hand, F.P.Boca and A. Zaharescu (2000) showed that for any irrational θ there ex-
ist two increasing sequences of positive integers Mj , Nj such that n2θ mod 1 with
Mj < n ≤Mj +Nj is Poissonian as j → ∞.
(III) If the interval I is of the special form I = [−c, c] then we have

Ã(I;N ;xm − xn) = A([0, c/N ];N2; ∥xm − xn∥)−N,

where A(J ;N2; ∥xm − xn∥) = #
{
1 ≤ m,n ≤ N ; ∥xm − xn∥ ∈ J

}
is the classical

counting function and ∥x∥ = min({x}, 1− {x}).
(IV) There is an alternative definition of Poissonian sequences based on the sequences
of differences |xm − xn|: Let

F̃N (x) =
{1 ≤ m,n ≤ N ; |xm − xn| ∈ [0, xN ] ∪ [1− x

N , 1]}
2N

− 1

2
.

Then the sequence xn is Poissonian if and only if limN→∞ F̃N (x) = x for all x ∈
[0,∞).

F.P.Boca – A. Zaharescu: Pair correlation of values of rational functions (mod q), Duke Math.
J. 105 (2000), no. 2, 276–307 (MR1793613 (2001j:11065); Zbl. 1017.11037).
Z.Rudnick – P. Sarnak: The pair correlation function of fractional parts of polynomials, Com-
mun. Math. Phys. 194 (1998), no. 1, 61–70 (MR1628282 (99g:11088); Zbl. 0919.11052).
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1.8.30 u.d. of matrix sequences

A sequence of s×smatricesAn, n = 1, 2, . . . , can be considered as a sequence
xn in Rs2 in a natural way and then we use def. 1.11.1.
Notes: An exponential sequence An mod 1, n = 1, 2, . . . , is u.d. only if the eigen-
value of A of largest absolute value is ≥ 1. M.Drmota, R.F.Tichy and R.Winkler
(see [DT, p. 202–203]) give an explicit construction of completely u.d. An mod 1.

1.8.31 u.d. of quadratic forms

• R.F.Tichy (1982): Let qA(n) = qA(n1, . . . , nr) = nAnt be a quadratic
form associated with the r × r square matrix A. Order the r–dimensional
integral vectors n lexicographically and put |N| = N1 . . . Nr. If we define the
discrepancy through

DN = DN(qA(n)) = sup
0≤α<β≤1

∣∣∣∣∣∣ 1

|N|
∑
n≤N

c[α,β)({qA(n)})− (β − α)

∣∣∣∣∣∣ .
then the quadratic form qA(n) is called u.d. mod 1 provided that

lim
N→∞

DN(qA(n)) = 0,

where N → ∞ means that all its components tend independently towards ∞.
R.F.Tichy: Gleichverteilung von Mehrfachfolgen und Ketten, Anz. Österreich. Akad. Wiss.
Math.–Natur. Kl. (1978), no. 7, 174–207 (MR0527512 (83a:10087); Zbl. 0401.10061).
R.F.Tichy: Einige Beiträge zur Gleichverteilung modulo Eins, Anz. Österreich. Akad. Wiss.
Math.–Natur. Kl. 119 (1982), no. 1, 9–13 (MR0688688 (84e:10061); Zbl. 0495.10030).

1.8.32 Hybrid sequences

Let z0, z1, . . . be a digital explicit inversive sequence as defined in 2.25.8.
Let q = pk with a prime p and an integer k ≥ 1. Given an integer t with
1 ≤ t ≤ q, choose integers 0 ≤ d1 < d2 < · · · < dt < q. If α ∈ Rs is of finite
type η (cf. page 2 – 82 ), then the discrepenacy DN of the first N terms of
the hybrid sequence

xn = ({nα}, zn+d1 , . . . , zn+dt) ∈ [0, 1)s+t, n = 0, 1, . . . ,

satisfies

DN = Oα,t,ε

(
max

(
N−1/((η−1)s+1)+ε,

2(k−1)t+k/2k1/2N−1/2(logN)sq1/4(log q)t(1 + log p)k/2
))
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for all 1 ≤ N ≤ q and all ε > 0, where the implied constant depends only on
α, t, and ε.

Notes:
(I) H.Niederreiter (2010).
(II) If η = 1 then

DN = Oα,t

(
2(k−1)t+k/2k1/2N−1/2(logN)sq1/4(log q)t(1 + log p)k/2

)
.

H.Niederreiter: A discrepancy bound for hybrid sequences involving digital explicit inversive
pseudorandom numbers, Unif. Distrib. Theory 5 (2010), no. 1, 53–63 (MR2804662 (2012f:11143);
Zbl. 1249.11074).

1.8.33 Hartmann u.d. sequences

A sequence of integers kn, n = 1, 2, . . . , is called Hartmann uniformly dis-
tributed if for each irrational α the sequence knα mod 1 is uniformly dis-
tributed and the sequence kn, n = 1, 2, . . . , is uniformly distributed in Z.
A criterion. A sequence kn, n = 0, 1, 2, . . . , is Hartman-u.d. if and only if

lim
N→∞

1

N

N∑
n=1

e2πitkn = 0

for all non-integer t.

Examples.

(i) For irrational α, the sequence [nα], n = 1, 2, . . . , is not Hartman-u.d.

Notes: (I) See [KN, p. 269, Ex. 5.11]. Also cf. P. Lertchoosakul, A. Jaššová,
R.Nair and M.Weber.

P. Lertchoosakul – A. Jaššová – R.Nair – M.Weber: Distribution functions for subsequences
of generalized van der Corput sequences, Unif. Distrib. Theory (to appear).

1.8.34 Lp good universal sequences

A sequence of integers kn, n = 1, 2, . . . is Lp good universal if for each
dynamical system (see 4.3.1) (X,B, µ, T ) and for each Lp function f : X → X
the limit

lim
N→∞

1

N

N−1∑
n=0

f(T knx) = f̃(x)

exists µ-almost everywhere.

Examples.

(i) kn = n, n = 1, 2, . . . is L1 good universal. This is Birkhoff’s theorem.
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(ii) kn = [g(n)], where g(n) = nω, ω > 1 and ω /∈ N is L1 good universal.

(iii) kn = [g(n)] where g(n) = elog
γ(n) for γ ∈ (1, 3/2).

(iv) kn = [g(n)], where g(n) is a polynomial with coefficients not all rational
multiplies of the same real numbers.

P. Lertchoosakul – A. Jaššová – R.Nair – M.Weber: Distribution functions for subsequences
of generalized van der Corput sequences, Unif. Distrib. Theory (to appear).

1.9 Classical discrepancies

The notion of discrepancy was introduced to measure the distribution de-
viation of sequences from the expected ideal one, cf. [KN, Chap. 2], [DT,
Chap. 1].

• Let x1, . . . , xN be a given sequence of real numbers from the unit interval
[0, 1). Then the number

DN = DN (x1, . . . , xN ) = sup
0≤α<β≤1

∣∣∣∣A([α, β);N ;xn)

N
− (β − α)

∣∣∣∣
is called the (extremal) discrepancy of this sequence. The number

D∗
N = sup

x∈[0,1]

∣∣∣∣A([0, x);N ;xn)

N
− x

∣∣∣∣
is called star discrepancy, and the number

D
(2)
N =

∫ 1

0

(
A([0, x);N ;xn)

N
− x

)2

dx

is called its L2 discrepancy.

Notes: (I) In [KN, p. 97] the L2 discrepancy is defined as

√
D

(2)
N and is denoted

by TN .
(II) If the sequence xn of real numbers is infinite or if it has more than N terms,
then under the discrepancyDN (xn) of xn we understand the discrepancy of its initial
segment of the first N terms.
(III) The extremal discrepancy of the block An will be denoted by D(An), and
similarly D∗(An), or D

(2)(An), resp.

The above discrepancies are mutually related by the following inequalities

D∗
N ≤ DN ≤ 2D∗

N , [KN, p. 91],

(D∗
N )3 ≤ 3D

(2)
N ≤ (D∗

N )2, [H. Niederreiter (1973)].
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These inequalities hold for the arbitrary sequence x1, . . . , xN in [0, 1) hav-
ing N terms.

The following relations can be useful for some computational purposes

D∗
N =

1

2N
+ max

1≤n≤N

∣∣∣∣xn − 2n− 1

2N

∣∣∣∣ , (x1 ≤ x2 ≤ · · · ≤ xN ),

[H.Niederreiter (1972), cf. [KN, p. 91], H.Niederreiter (1992, p. 15,

Th. 2.6)],

DN =
1

N
+ max

1≤n≤N

( n
N

− xn

)
− min

1≤n≤N

( n
N

− xn

)
, (x1 ≤ x2 ≤ · · · ≤ xN ),

[L. de Clerck (1981), cf. H.Niederreiter (1992, p. 16, Th. 2.7)],

D
(2)
N =

1

3
+

1

N

N∑
n=1

x2n − 1

N

N∑
n=1

xn − 1

2N2

N∑
m,n=1

|xm − xn|.

Some of the important relations and estimates for the discrepancies listed below are
valid only under the additional assumption that the sequence x1 ≤ x2 ≤ · · · ≤ xN
is ordered according to the non–decreasing magnitude of its terms.

D∗
N = max

1≤n≤N
max

(∣∣∣ n
N

− xn

∣∣∣ , ∣∣∣ n
N

− xn+1

∣∣∣) , (x1 ≤ x2 ≤ · · · ≤ xN ),

[H.Niederreiter (1992, p. 16)]

= max
1≤n≤N

max

(∣∣∣∣ nN − xn

∣∣∣∣, ∣∣∣∣n− 1

N
− xn

∣∣∣∣) , (x1 ≤ x2 ≤ · · · ≤ xN ),

[H.Niederreiter (1992, p. 16)]

D
(2)
N =

1

12N2
+

1

N

N∑
n=1

(
xn − 2n− 1

2N

)2

, (x1 ≤ x2 ≤ · · · ≤ xN ),

[KN, p. 161, Exer. 5.12]

=
1

N2

(
N∑
n=1

(
xn − 1

2

))2

+
1

2π2N2

∞∑
h=1

1

h2

∣∣∣∣∣
N∑
n=1

e2πihxn

∣∣∣∣∣
2

,

[KN, p. 110, Lemma 2.8]

=
1

N2

(
N∑
n=1

(
xn − 1

2

))2

+
1

N2

∫ 1

0

(
N∑
n=1

(
{xn + x} − 1

2

))2

dx,

[KN, p. 144, Th. 5.2]

=
1

N2

N∑
n=1

(
xn − 1

2

)
+

1

N

N∑
n=1

(
xn − n

N

)2

− 1

6
(x1 ≤ x2 ≤ · · · ≤ xN ),
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[KN, p. 145, Ex. 5.2]

=
1

3
+

1

N

N∑
n=1

x2n +
1

N2

N∑
n=1

xn − 2

N2

N∑
n=1

nxn (x1 ≤ x2 ≤ · · · ≤ xN ),

[KN, p. 145, Ex. 5.2]

=
1

3
+

1

N

N∑
n=1

x2n − 1

N2

N∑
m,n=1

max(xm, xn),

[KN, p. 145, Th. 5.3], [J.F.Koksma ([a]1942/43)]

=

∫ 1

0

∫ 1

0

−|x− y|
2

d(FN (x)− x) d(FN (y)− y), [O. Strauch (1989)]

=
1

N2

N∑
m,n=1

F0(xm, xn), F0(x, y) =
1

3
+
x2 + y2

2
− x+ y

2
− |x− y|

2
,

[O. Strauch (1994)]

Theorem 1.9.0.1 (H.Niederreiter (1992, p. 15, Lemma 2.5)). If two finite
sequences x1, . . . , xN and y1, . . . , yN from [0, 1] satisfy |xn − yn| ≤ ε for 1 ≤ n ≤ N ,
then

|D∗
N (xn)−D∗

N (yn)| ≤ ε, and |DN (xn)−DN (yn)| ≤ 2ε.

More precisely,

Theorem 1.9.0.1’ ([KN, p. 132, Th. 4.1]). Let xn and yn, n = 1, 2, . . . , N , be two
finite sequences in [0, 1) such that |xn − yn| ≤ εn for n = 1, 2, . . . , N . Then, for any
ε ≥ 0, we have

|DN (xn)−DN (yn)| ≤ 2ε+
Nε
N
,

where Nε = #{n ≤ N ; εn > ε}.
Theorem 1.9.0.1”. For every x1, x2, . . . , xN ∈ [0, 1) we have

DN ((xn + y) mod 1) = DN (xn) for any y ∈ R, and
DN (qxn mod 1) ≤ qDN (xn) for any q ∈ N.

Notes:
(I) For an application of (1.10.1) see Ch.Mauduit and A. Sárközy (2000).

Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences. V: On nα and (n2α) se-
quences, Monatsh. Math. 129 (2000), no. 3, 197–216 (MR1746759 (2002c:11088); Zbl. 0973.11076)).

The following theorems demonstrate the role of the discrepancy notions:
Theorem 1.9.0.2 (H.Weyl (1916)). A sequence xn ∈ [0, 1) is u.d. if and
only if

lim
N→∞

DN (xn) = 0.
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Theorem 1.9.0.3 (J.F.Koksma (1942/43)). Let f : [0, 1] → R be a
function of bounded variation V (f) on [0, 1]. Then∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N .

Theorem 1.9.0.4 (I.M. Sobol’ (1961), S.K. Zaremba (1968)). If the
function f : [0, 1] → R is a continuously differentiable function then∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤
√
D

(2)
N

√∫ 1

0
(f ′(x))2 dx.

Cf. E.Hlawka (1984, p. 107).
Theorem 1.9.0.5 (H.Niederreiter (1972)). If f : [0, 1] → R is a contin-
uous function then∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ λf (D
∗
N ),

where
λf (t) = sup

x,y∈[0,1]
|x−y|≤t

|f(x)− f(y)|

is the modulus of continuity of f .

Cf. [KN, p. 146, Th. 5.4] and H.Niederreiter (1992, p. 19, Th. 2.10).
Notes: In [KN, p. 146, Cor. 5.2; Notes, p. 158] the following unpublished Koksma’s
result is quoted ∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫ 1

0

f(x) dx

∣∣∣∣∣ ≤ 3ND∗
Nλf (1/N).

The following trivial estimates [KN, p. 90]

1

N
≤ DN ≤ 1 and

1

12N2
≤ D

(2)
N ≤ 1

hold for every finite sequence in [0, 1) and the lower bounds are sharp, see
2.22.15.

van Aardenne – Ehrenfest (1945) showed (cf. note (0) below) that the esti-
mate DN (xn) = O(1/N) cannot hold for an infinite sequence xn (cf. [KN,
p. 109, Th. 2.3], [DT, p. 41, Th. 1.51]). The next result is the best possible.
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Theorem 1.9.0.6 (W.M. Schmidt (1972)). If xn is an infinite sequence
in [0, 1) then

DN > c
logN

N

for infinitely many positive integers N .

The best known value of c is (cf. H.Niederreiter (1992, p. 24))

c = max
a≥3

a− 2

4(a− 1) log a
= 0.120 . . . .

Notes: (0) van der Corput (1935, p. 816) conjectured that there is no infinite se-
quence xn in a fixed interval I which is justly distributed over I, i.e. for which
there exists a constant C such that for any pairs of subintervals I1, I2 ⊂ I and for
all N we have |I1| = |I2| =⇒ |A(I1;N ;xn)−A(I2;N ;xn)| ≤ C. The impossibility of
just distribution was proved by van Aardenne – Ehrenfest (1945).

(I) van Aardenne – Ehrenfest (1949) proved that NDN is never o
(

log logN
log log logN

)
.

Namely she showed that lim supn→∞
NDN

log logN
log log logN

≥ 1
2 and noticed far–sightedly ”As

far as I know for all special infinite sequences, for which NDN has been calculated,
it has been found that lim supn→∞

NDN

logN > 0”.

(II) K.F.Roth (1954) improved her result proving that NDN > c′
√

logN for in-
finitely many N .
(III) W.M. Schmidt (1972) showed that lim supN→∞ND∗

N/ logN ≥ 10−2.
(IV) R.Béjian (1979) improved (III) to lim supN→∞ND∗

N/ logN ≥ (12 log 4)−1 and
in (1982) he proved that lim supN→∞NDN/ logN ≥ maxa≥3(a−2)/(4(a−1) log 4).
(V) P. Liardet (1979) continued with the inequality lim supN→∞NDN/ logN ≥
maxa≥3(a− 2)/(8a log 4), cf. [DT, p. 41, Th. 1.51].
(VI) The fact that the best possible infinite sequence does not exist, i.e. that there
does not exit an infinite sequence xn for which every initial segment x1, . . . , xN has
minimal NDN , is called irregularities of distribution or Roth’s phenomenon.
(VII) Given a sequence xn, n = 1, 2, . . . , in [0, 1), and a subinterval I of [0, 1], de-
fine the local discrepancy function by D(N, I) =

∣∣A(I;N ;xn)−N |I|
∣∣. Then for

D(N, I) as N → ∞ we have (see the Introduction in W. Steiner (2006)):

(i) For every sequence xn there exists an interval I ⊂ [0, 1] for which D(N, I) is
unbounded (T. van Aardenne-Ehrenfest (1949));

(ii) The set of intervals I for which D(N, I) is bounded is at most countable
(W.M. Schmidt (1974));

(iii) If α is irrational and xn = nα mod 1, then D(N, I) is bounded if and only if
|I| = kα mod 1 for some integer k (E.Hecke (1921) and H.Kesten (1966));

(iv) If xn is van der Corput sequence in base q, then D(N, I) is bounded if and only
if the length |I| has a finite q-ary expansion (W.M. Schmidt (1974) and L. Shapiro
(1978));
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(v) If xn = αsq(n) with α irrational, and sq(n) is the sum-of-digit function, then
the only intervals I with bounded D(N, I) are the trivial ones |I| = 0 and |I| = 1
(P. Liardet (1987)).

The upper bounds for discrepancies of finite sequences x1, . . . , xN mod 1 are given in
the following LeVeque and Erdős – Turán inequalities (cf. [KN, p. 111, Th. 2.4;
p. 112–114,Th. 2.5], [DT, p. 23, Th. 1.27]):
Theorem 1.9.0.7 (W.J. LeVeque (1965)). The discrepancy DN of a finite se-
quence x1, . . . , xN reduced mod 1 satisfies

DN ≤

 6

π2

∞∑
h=1

1

h2

∣∣∣∣∣ 1N
N∑
n=1

e2πihxn

∣∣∣∣∣
2
1/3

.

Theorem 1.9.0.8 (P. Erdős, P. Turán (1948)). If x1, . . . , xN mod 1 is a finite
sequence and m a positive integer, then

DN ≤ 6

m+ 1
+

4

π

m∑
h=1

(
1

h
− 1

m+ 1

) ∣∣∣∣∣ 1N
N∑
n=1

e2πihxn

∣∣∣∣∣ .
In applications the following simpler versions are often useful (cf. [KN, p. 114, rela-
tion (2.42)])

DN ≤ c

(
1

m
+

m∑
h=1

1

h

∣∣∣∣∣ 1N
N∑
n=1

e2πihxn

∣∣∣∣∣
)

or (cf. G.Harman (1998))

DN ≤ c1
m

+ c2

m∑
h=1

1

h

∣∣∣∣∣ 1N
N∑
n=1

e2πihxn

∣∣∣∣∣
which hold for all positive integer m. Here c, c1, c2 are absolute constants, and their
best known values are

c1 = 1, c2 = 2 +
2

π
,

cf. R.C.Baker (1986, p. 20) and H.L.Montgomery (1994, p. 8).

The next inequality can be instrumental in lower estimates of the discrepancy: For
any N real numbers x1, . . . , xN we have (cf. [KN, p. 143, Cor. 5.1])∣∣∣∣∣ 1N

N∑
n=1

e2πixn

∣∣∣∣∣ ≤ 4D∗
N (xn mod 1).

A weaker inequality with 4 replaced by 2π can be found in van der Corput and
Pisot (1939).

Notes: (I) The star discrepancy was introduced by Weyl (1916), but the notion
of the discrepancy probably goes back to van der Corput and the first systematic
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investigation of this important notion can be found in his joint paper with C.Pisot
(1939). Consult [KN, p. 97–99, Notes] for further details.
(II) A weaker form of Erdős – Turán inequality was proved by van der Corput in 1935
but never published (cf. J.F.Koksma (1936, Kapitel IX, Satz 4) or Koksma (1950)).
(III) I.Z. Ruzsa (1994) investigated how bad the Erdős – Turán estimate can be. Let

BN = min
m∈N

(
1

m
+

m−1∑
h=1

1

h

∣∣∣∣∣ 1N
N∑
n=1

e2πihxn

∣∣∣∣∣
)
.

He showed that given N,D with N ≥ 2 and 2
N ≤ D ≤ 1, there exist N real numbers

x1, . . . , xN such that DN ≤ D and BN ≥ cD
2
3 , where the positive constant c is

absolute. Since 12DN ≥ B
3/2
N , this result is the best possible.

(IV) A multi–dimensional variant of the Erdős – Turán inequality was proved by
Koksma (1950), cf. 1.11.2.1.
(V) J.D.Vaaler (1985) using Beurling and Selberg majorising and minorising func-
tions proved modified forms of the Berry – Esseen and of the Erdős – Turán inequal-
ities.
(VI) A modified form of Erdős – Turán theorem was also proved by Y.Ohkubo (1999)
(cf. also Th. 1.10.7.2):
Theorem 1.9.0.9. For any 0 < δ ≤ 1 there exists a constant c(δ) such that for
every finite sequence x1, . . . , xN mod 1 we have

DN ≤ F (N) +
c(δ)

N

∑
1≤h≤Nδ

1

h
sup

h1/δ<b≤N

∣∣∣∣∣∣
∑

h1/δ≤n≤B

e2πihxn

∣∣∣∣∣∣ ,
where

F (N) =


(

1

21−δ − 1
+ 1

)
1

Nδ
, if 0 < δ < 1,(

1

log 2
+ 1

)
1 + logN

N
, if δ = 1.

(VII) An unsolved problem asks for the exact value of sup 1
ND∗

N

∣∣∣∑N
n=1 e

2πixn

∣∣∣, where
the supremum is extended over all finite sequence x1, . . . , xN , cf. [KN, p. 160,
Exer. 5.7].
(VIII) K.Goto and Y.Ohkubo (2004) proved that∣∣∣∣∣ 1N

N∑
n=1

e2πihxn

∣∣∣∣∣ ≤ 4hD∗
N (xn mod 1) for h = 1, 2, . . . .

R.C.Baker: Diophantine Inequalities, London Math. Soc. Monographs. New Series, Vol. 1, Ox-
ford Sci. Publ. The Clarendon Press, Oxford Univ. Press, Oxford, 1986 (MR0865981 (88f:11021);
Zbl. 0592.10029).



1 – 52 1 Basic definitions and properties
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1.10 Other discrepancies

1.10.1 Discrepancy for g–distributed sequences

The L2 discrepancy of a sequence xn ∈ [0, 1) with a.d.f. g(x), denoted by

D
(2)
N (xn, g) or in the abbreviated form by D

(2)
N , is defined through

D
(2)
N (xn, g) = D

(2)
N =

∫ 1

0

(
A([0, x);N ;xn)

N
− g(x)

)2

dx.

It can be expressed in the form

D
(2)
N =

1

N2

N∑
m,n=1

F (xm, xn),

where

F (x, y) =

∫ 1

0
g2(t) dt−

∫ 1

x
g(t) dt−

∫ 1

y
g(t) dt+ 1−max(x, y).

Similarly, the extremal discrepancy DN (xn, g) and the star discrepancy
D∗

N (xn, g) of a sequence xn ∈ [0, 1) with respect to a.d.f g(x) is defined by

DN = sup
0≤α<β≤1

∣∣∣∣A([α, β);N ;xn)

N
− (g(β)− g(α))

∣∣∣∣ ,
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and

D∗
N = sup

x∈[0,1]

∣∣∣∣A([0, x);N ;xn)

N
− g(x)

∣∣∣∣ ,
resp. Note that it is necessary to assume here that the d.f. g(x) is continuous
for every x ∈ [0, 1]. We again have:
Theorem 1.10.1.1. A sequence xn in [0, 1] has a.d.f g(x) if and only if

lim
N→∞

D
(2)
N (xn, g) = 0.

If g is continuous then also the limit limN→∞DN = 0 or limN→∞D∗
N = 0

characterizes the g–distribution.
Notes: (I) For the proof of this expression of the L2 discrepancy cf. O. Strauch
(1994, p. 618). Taking g(x) = cα(x) he found (1994, p. 619) that a sequence xn
statistically convergent to α (cf. 1.8.8) can be characterized by its L2 discrepancy

D
(2)
N → 0 which can be given in the form

D
(2)
N =

1

N

N∑
n=1

|xn − α| − 1

2N2

N∑
m,n=1

|xm − xn|.

(II) If g(x) is continuous and xn is g–distributed then the sequence g(xn) is u.d. and
the Erdős – Turán inequality takes the form (cf. K.Goto and T.Kano (1993))

DN ≤ 6

m+ 1
+

4

π

m∑
h=1

(
1

h
− 1

m+ 1

) ∣∣∣∣∣ 1N
N∑
n=1

e2πihg(xn)

∣∣∣∣∣ .
(III) Let ψ be an increasing function on [0, 1] such that ψ(0) = 0. P.D.Proinov (1985)

defined the ψ–discrepancy D
(ψ)
N by

D
(ψ)
N =

∫ 1

0

ψ

(∣∣∣∣A([0, x);N ;xn)

N
− g(x)

∣∣∣∣)dx,

and he proved that

Ψ(D∗
N ) ≤ D

(ψ)
N ≤ ψ(D∗

N ),

where Ψ(x) =
∫ x
0
ψ(t) dt.

K.Gotô – T.Kano: Discrepancy inequalities of Erdős – Turán and of LeVeque, in: Interdis-
ciplinary studies on number theory (Japanes) (Kyoto, 1992), Sūrikaisekikenkyūsho Kökyūroku,
no. 837, 1993, pp. 35–47 (MR1289237 (95m:11081); Zbl. 1074.11510).
P.D.Proinov: Generalization of two results of the theory of uniform distribution, Proc. Amer.
Math. Soc. 95 (1985), no. 4, 527–532 (MR0810157 (87b:11073); Zbl. 0598.10056).
O. Strauch: L2 discrepancy, Math. Slovaca 44 (1994), 601–632 (MR1338433 (96c:11085); Zbl.
0818.11029).
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1.10.2 Diaphony

The following modification of the L2 discrepancy is also used to characterize
the g–distributed sequences xn ∈ [0, 1)

DI
(2)
N =

∫∫
0≤x≤y≤1

(
A([x, y);N ;xn)

N
− (g(y)− g(x))

)2

dx dy =

=

∫ 1

0

(
A([0, x);N ;xn)

N
− g(x)

)2

dx−

−
(∫ 1

0

(
A([0, x);N ;xn)

N
− g(x)

)
dx

)2

.

It can be expressed as the classical L2 discrepancy in the form

DI
(2)
N =

1

N2

N∑
m,n=1

F (xm, xn),

where (cf. O. Strauch (1994, p. 621))

F (xm, xn) =

∫ 1

0
g2(x) dx−

(∫ 1

0
g(x) dx

)2

− (xm + xn)

∫ 1

0
g(x) dx+

+

∫ xm

0
g(x) dx+

∫ xn

0
g(x) dx+min(xm, xn)− xmxn.

The case in which g(x) = x was investigated by P. Zinterhof (1976). More
precisely, Zinterhof defined diaphony through

DIN =

 1

N2

N∑
m,n=1

π2

2

(
(1− 2{xm − xn})2 −

1

3

)1/2

which is equal to (cf. O. Strauch (1999, p. 80))4π2
∫∫

0≤x≤y≤1

(
A([x, y);N ;xn)

N
− (y − x)

)2

dx dy


1/2

,

i.e.

DIN =
(
4π2DI

(2)
N

)1/2
.
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Theorem 1.10.2.1. Assume that d.f. g(x) is continuous at 0 and 1. Then
the sequence xn in [0, 1] has a.d.f. g(x) if and only if

lim
N→∞

DI
(2)
N = 0.

Notes: (I) The following general expression was proved by O. Strauch (1994, p. 620):∫∫
0≤x≤y≤1

(
A([x, y);N ;xn)

N
− g(x, y)

)2

dxdy =
1

N2

N∑
m,n=1

F (xm, xn),

where

F (xm, xn) =

∫∫
0≤x≤y≤1

g2(x, y) dx dy −
∫ xm

0

dx

∫ 1

xm

g(x, y) dy −

−
∫ xn

0

dx

∫ 1

xn

g(x, y) dy +min(xm, xn)− xmxn.

Applying this to g(x, y) = g(y)− g(x) he found the expression for DI
(2)
N .

(II) For the classical L2 discrepancy with respect to g(x) = x we get the Koksma
formula

D
(2)
N =

1

N2

(
N∑
n=1

(
xn − 1

2

))2

+DI
(2)
N .

(III) The following expression was proved by L.Kuipers (1968)

DI
(2)
N =

1

2π2

∞∑
h=1

1

h2

∣∣∣∣∣ 1N
N∑
n=1

e−2πihxn −
∫ 1

0

e−2πihx dg(x)

∣∣∣∣∣
2

,

which, in the case g(x) = x can be found in W.J. LeVeque (1965).
(IV) Another expression can be found in C.Amstler (1997) and two alternative def-
initions of the diaphony subject to some restrictions can be found in the monograph
[DT, pp. 24–26].

C.Amstler: Some remarks on a discrepancy in compact groups, Arch. Math. 68 (1997), no. 4,
274–284 (MR1435326 (98c:11078); Zbl. 0873.11048).
L.Kuipers: Remark on the Weyl – Schoenberg criterion in the theory of asymptotic distribution of
real numbers, Niew Arch. Wisk. (3) 16 (1968), 197–202 (MR0238792 (39 #156); Zbl. 0216.31903).
W.J. LeVeque: An inequality connected with Weyl’s criterion for uniform distribution, in: Theory
of Numbers, Proc. Sympos. Pure Math., VIII, Calif. Inst. Tech., Amer.Math.Soc., Providence,
R.I., 1965, pp. 22–30 (MR0179150 (31 #3401); Zbl. 0136.33901).
O. Strauch: L2 discrepancy, Math. Slovaca 44 (1994), 601–632 (MR1338433 (96c:11085); Zbl.
0818.11029).
O. Strauch: Distribution of Sequences (in Slovak), Mathematical Institute of the Slovak Academy
of Sciences, DSc Thesis, Bratislava, Slovakia, 1999.
P. Zinterhof: Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichver-
teilungsmethoden, Österreich. Akad. Wiss. Math.–Natur. Kl. Sitzungsber. II 185 (1976), no. 1–3,
121–132 (MR0501760 (58 #19037); Zbl. 0356.65007).
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1.10.3 L2 discrepancy of statistically independent sequences

Given two sequences xn and yn, (xn, yn) ∈ [0, 1)2, write (cf. 1.11)

FN (x, y) =
1

N

N∑
n=1

c[0,x)(xn)c[0,y)(yn),

where for x = 1 we take the interval [0, x] and similarly for y = 1. The
L2 discrepancy characterizing the statistical independence of xn and yn (cf.
1.8.9) can be expressed in the forms

DS
(2)
N ((xn, yn)) =

∫ 1

0

∫ 1

0

(
FN (x, y)− FN (x, 1)FN (1, y)

)2
dx dy =

=
1

16π4

∞∑
k,l=−∞
k,l ̸=0

1

k2l2

∣∣∣∣∣ 1N
N∑

n=1

e2πi(kxn+lyn) −

− 1

N2

N∑
m,n=1

e2πi(kxn+lym)

∣∣∣∣∣
2

=
1

N2

N∑
m,n=1

(1−max(xm, xn))(1−max(ym, yn))+

+
1

N4

N∑
m,n,k,l=1

(1−max(xm, xk))(1−max(yn, yl))−

− 2

N3

N∑
m,k,l=1

(1−max(xm, xk))(1−max(ym, yl)).

Notes: The first expression was proved by P.J.Grabner and R.F.Tichy (1994) and
the second one by O. Strauch (1994). Grabner and Tichy (1994) proved that the
analogue of the standard extremal discrepancy

DS∗
N = sup

x,y∈[0,1]

∣∣∣∣A([0, x)× [0, y));N ; (xn, yn)

N
− A([0, x);N ;xn)

N

A([0, y);N ; yn)

N

∣∣∣∣
is not suitable for the characterization of statistical independence, but that the

L2 discrepancy DS
(2)
N is. The so–called Wiener L2 discrepancy of statistical

independence of xn and yn can be defined by

WS
(2)
N =

∫
X

∫
X

(
1

N

N∑
n=1

f(xn)g(yn)−
1

N

N∑
n=1

f(xn)
1

N

N∑
n=1

g(xn)

)2

df dg,
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where the set X = {f ; [0, 1] → R, f(0) = 0, f is continuous} is equipped with the
classical Wiener sheet measure df normed by

∫
X
f(x)f(y) df = min(x, y).

O. Strauch (1994) found an expression forWS
(2)
N which coincides with that for DS

(2)
N

given above, if all occurrences of the function 1 − max(x, y) are replaced by the

function min(x, y). Since DS
(2)
N is invariant under the transformation (xn, yn) →

(1− xn, 1− yn), this implies that WS
(2)
N = DS

(2)
N ; see also P.J.Grabner, O. Strauch

and R.F.Tichy (1996).

P.J.Grabner – O. Strauch – R.F.Tichy: Lp–discrepancy and statistical independence of se-
quences, Czechoslovak Math. J. 49(124) (1999), no. 1, 97–110 (MR1676837 (2000a:11108); Zbl.
1074.11509).
P.J.Grabner – R.F.Tichy: Remarks on statistical independence of sequences, Math. Slovaca 44
(1994), 91–94 (MR1290276 (95k:11098); Zbl. 0797.11063).
O. Strauch: L2 discrepancy, Math. Slovaca 44 (1994), 601–632 (MR1338433 (96c:11085); Zbl.
0818.11029).

1.10.4 Polynomial discrepancy

E.Hlawka ([a]1975, [b]1975, [c]1975) defined the so–called polynomial dis-
crepancy

PN (xn) = sup
k=1,2,...

∣∣∣∣∣ 1N
N∑

n=1

xkn − 1

k + 1

∣∣∣∣∣
for xn ∈ [0, 1) and he proved that

PN ≤ DN ≤ c
1

| logPN |
.

W.M. Schmidt (1993) showed that DN > e−1| logPN |−1.

Notes: Let γk, k = 1, 2, . . . , be an increasing sequence of positive real numbers.
Hlawka (1986) introduced the discrepancy

PN (xn, γk) = sup
k=1,2,...

∣∣∣∣∣ 1N
N∑
n=1

xγkn − 1

γk + 1

∣∣∣∣∣ .
We again have PN (xn, γk) ≤ DN (xn). Hlawka proved that if limk→∞ γk = ∞ and∑∞
k=1 1/γk = ∞, then limN→∞ PN (xn, γk) = 0 implies that xn is u.d. His proof

uses the known Müntz (1914) theorem: A continuous f : [0, 1] → R can be uniformly
approximated by polynomials in 1, xγ1 , xγ2 , . . . , with limit limk→∞ γk = ∞, if and
only if

∑∞
k=1 1/γk = ∞.

[a] E.Hlawka: Zur quantitativen Theorie der Gleichverteilung, Österreich. Akad. Wiss. Math.–
Natur. Kl. Sitzungsber. II 184 (1975), 355–365 (MR0422183 (54 #10175); Zbl. 0336.10049).
[b] E.Hlawka: Zur Theorie der Gleichverteilung, Anz. Österreich. Akad. Wiss. Math.–Natur.
Kl., (1975), no. 2, 13–14 (MR0387223 (52 #8066); Zbl. 0315.10030).
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[c] E.Hlawka: Zur Theorie der Gleichverteilung, Anz. Österreich. Akad. Wiss. Math.–Natur.
Kl., (1975), no. 3, 23–24 (MR0387223 (52 #8066); Zbl. 0319.10043).
E.Hlawka: Gleichverteilung und ein Satz von Műntz , J. Number Theory 24 (1986), no. 1, 35–46
(MR0852188 (88b:11050); Zbl. 0588.10057).
C.H.Müntz: Über den Approximationssatz von Weierstraß , in: Mathematische Abhandlungen
Hermann Amandus Schwarz, (C.Carathéodory, G.Hessenberg, E. Landau, L. Lichtenstein eds.),
Springer Berlin Heidelberg, Berlin, Heidelberg, 1914, 303–312 (JFM 45.0633.02).
W.M. Schmidt: Bemerkungen zur Polynomdiskrepanz , Österreich. Akad. Wiss. Math.–Natur. Kl.
Abt. Sitzungsber. II 202 (1993), no. 1–10, 173–177 (MR1268810 (95d:11095); Zbl. 0790.11056).

1.10.5 A–discrepancy

• [DT, p. 251, Def. 2.36]: Let A = (aN,n) be a positive Toeplitz matrix. The
A–discrepancy A–DN (xn) of the sequence xn ∈ [0, 1] is defined by

A–DN (xn) = sup
[x,y)⊂[0,1]

∣∣∣∣∣
∞∑
n=1

aN,nc[x,y)(xn)− (y − x)

∣∣∣∣∣ .
Similarly, the star discrepancy A–D∗

N (xn) is defined with the supremum
which runs over the all [0, x) ⊂ [0, 1].

1.10.6 Weighted discrepancies

Let the matrix A = (aN,n) be defined by

aN,n =

{
pn
PN
, if n ≤ N,

0, if n > N,

where pn, n = 1, 2, . . . , is a sequence (the so–called weight sequence) of
positive real numbers such that PN =

∑N
n=1 pn → ∞ for N → ∞. The

extremal and the star A–discrepancies are also called weighted extremal
and weighted star discrepancies of the given sequence xn ∈ [0, 1]; cf.
2.12.12, 2.6.3, 2.8.11.

Given a real p > 0, the weighted Lp discrepancy D
(p)
N of xn is defined by

D
(p)
N (xn) =

∫ 1

0

∣∣∣∣∣
N∑

n=1

pn
PN

c[0,x)(xn)− x

∣∣∣∣∣
p

dx.

If p is an even positive integer and x1 ≤ x2 ≤ · · · ≤ xN then

D
(p)
N (xn) =

1

p+ 1

N∑
n=1

((
xn − Pn−1

PN

)p+1

−
(
xn − Pn

PN

)p+1
)
.
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Notes: A similar expression for D
(p)
N for p = 2, 4 was proved by P.D.Proinov and

V.A.Andreeva (1986), and for the general even p by M.Paštéka (1988). The above
expression was given by G.Turnwald in his review MR 90c:11047.

M.Paštéka: Solution of one problem from the theory of uniform distribution, C. R. Acad. Bulgare
Sci. 41 (1988), no. 11, 29–31 (MR0985877 (90c:11047); Zbl. 0659.10060).
P.D.Proinov – V.A.Andreeva: Note on theorem of Koksma on uniform distribution, C. R.
Acad. Bulgare Sci. 39 (1986), no. 7, 41–44 (MR0868698 (88d:11070); Zbl. 0598.10055).

1.10.7 Logarithmic discrepancy

The logarithmic discrepancy can be viewed as a special case of weighted
discrepancy.

• Given a sequence xn in [0, 1], the logarithmic discrepancy is defined by

LN (xn) = sup
0≤x≤1

∣∣∣∣∣ 1∑N
n=1 n

−1

N∑
n=1

1

n
c[0,x)(xn)− x

∣∣∣∣∣ .
It characterizes the u.d. with respect to the logarithmically weighted
means (cf. [DT, p. 252], and 2.12.1, 2.12.31). Note that it coincides with the
star discrepancy for the related matrix. A logarithmically weighted version of
Erdős – Turán inequality was proved by R.F.Tichy and G.Turnwald (1986):
Theorem 1.10.7.1. For any finite sequence x1, . . . , xN and any positive
integer m, we have

LN ≤ 1

m+ 1
+ 3

(
N∑

n=1

1

n

)−1 m∑
h=1

∣∣∣∣∣
N∑

n=1

1

n
e2πihxn

∣∣∣∣∣ .
Notes: A more manageable version was given by R.C.Baker and G.Harman (1990):
Theorem 1.10.7.2. For any 0 < δ ≤ 1 there exists a constant c(δ) > 0 such that
the inequality(

N∑
n=1

1

n

)
LN < c(δ) + 24

∑
1≤h≤Nδ

1

h
max
A≥h1/δ

∣∣∣∣∣
A∑
n=1

1

n
e2πihxn

∣∣∣∣∣
holds for every finite sequence x1, . . . , xN .

(I) J. Rivat and G.Tenenbaum (2005) proved the following form of Erdős-Turán in-
equality for weighted discrepancies: Let xn, n = 1, 2, . . . , be a sequence in [0, 1),

wn > 0 be a sequence of weights and WN =
∑N
n=1 wn. Define the weighted discrep-

ancy with respect to weights wn by

DN = sup
0≤x≤1

∣∣∣∣ 1

WN

N∑
n=1

wnc[0,x)(xn)− x

∣∣∣∣.
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If the weights are wn = 1/n or wn = n log n for all n then for every natural numberH
we have

DN ≤ 3

2

(
2

H + 1
+

H∑
h=1

1

WN

∣∣∣∣ N∑
n=1

wne
2πihxn

∣∣∣∣).
R.C.Baker – G.Harman: Sequences with bounded logarithmic discrepancy, Math. Proc. Cam-
bridge Philos. Soc. 107 (1990), no. 2, 213–225 (MR1027775 (91d:11091); Zbl. 0705.11040).
J.Rivat – G.Tenenbaum: Constantes d’Erdős – Turán, (French), Ramanujan J. 9 (2005), no. 1–2,
111–121 (MR2166382 (2006g:11158); Zbl. 1145.11318).
R.F.Tichy – G.Turnwald: Logarithmic uniform distribution of (αn+β logn), Tsukuba J. Math.
10 (1986), no. 2, 351–366 (MR0868660 (88f:11069); Zbl. 0619.10031).

1.10.8 Abel discrepancy

Let xn, n = 0, 1, 2, . . . , be an infinite sequence in [0, 1].

• Let 0 < r < 1. Then the Abel discrepancy Dr(xn) is defined by (cf.
E.Hlawka (1973), [DT, pp. 268-275])

Dr(xn) = sup
[x,y)⊂[0,1]

∣∣∣∣∣(1− r)
∞∑
n=0

c[x,y)(xn)r
n − (y − x)

∣∣∣∣∣ ,
and similarly the star discrepancy

D∗
r(xn) = sup

[0,x)⊂[0,1]

∣∣∣∣∣(1− r)

∞∑
n=0

c[0,x)(xn)r
n − x

∣∣∣∣∣ .
Notes: (I) The theory of u.d. with respect to Abel’s summation method was initi-
ated by E.Hlawka (1973) and was further developed by Niederreiter (1975).
(II) The real sequence xn, n = 0, 1, 2, . . . , is said to be Abel limitable to x if

lim
r→1−0

(1− r)

∞∑
n=0

xnr
n = x.

Though the Abel summation method is not a matrix method, it is regular and

therefore the bounded sequences are Abel limitable if and only if they are Cesàro

limitable. Thus limr→1−0Dr(xn) = 0 characterizes the usual u.d..

(III) For any r such that 0 < r < 1 and any sequence xn, n = 0, 1, 2, . . . , in [0, 1] we

have

• D∗
r(xn) ≤ Dr(xn) ≤ 2D∗

r(xn)

• D∗
r(xn) ≥ 1−r

2 (Hlawka (1973)

• there exists a yn, n = 0, 1, 2, . . . , such that D∗
r(yn) =

1−r
2

• Dr(xn) ≤ 4 supN≥(1−r)−1/2 DN (xn)
(
[DT, p. 269, Th. 2.61]

)
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• DN (xn) ≤
(
− log(Dr(N)(xn))

)−1
, where r(N) = N−1/N and c > 0 is an absolute

constant.

(IV) For the analogs to the Koksma’s inequality, Erdős – Turán’s inequality and
LeVeque’s inequality consult [DT, pp. 271-272, Th. 2.64-65], or Niederreiter (1975,
Th. 5).

Given an infinite sequence xn, n = 0, 1, 2, . . . , in [0, 1] and 0 < r < 1, then:
• if f : [0, 1] → R is of bounded variation V (f) then∣∣∣∣∣(1− r)

∞∑
n=0

f(xn)r
n −

∫ 1

0

f(x) dx

∣∣∣∣∣ ≤ V (f)Dr(xn),

• if m is an arbitrary positive integer then

Dr(xn) ≤
(
3

2

)
·

(
2

m+ 1
+ (1− r)

m∑
h=1

1

h

∣∣∣∣∣
∞∑
n=0

e2πihxnrn

∣∣∣∣∣
)
,

• if r is any positive number with 0 < r < 1 and m is an arbitrary positive integer m
then

Dr(xn) ≤
4

m+ 1
+

4(1− r)

π

m∑
h=1

(
1

h
− 1

m+ 1

) ∣∣∣∣∣
∞∑
n=0

e2πihxnrn

∣∣∣∣∣ ,
• and

Dr(xn) ≤

 6

π2

∞∑
h=1

1

h2

∣∣∣∣∣(1− r)

∞∑
n=0

e2πihxnrn

∣∣∣∣∣
2
1/3

.

E.Hlawka: Über eine Methode von E.Hecke in der Theorie der Gleichverteilung, Acta Arith. 24
(1973), 11–31 (MR0417092 (54 #5153); Zbl. 0231.10029).
H.Niederreiter: Quantitative versions of a result of Hecke in the theory of uniform distribution
mod 1, Acta Arith. 28 (1975/76), no. 3, 321–339 (MR0389778 (52 #10609); Zbl. 0318.10037).

1.10.9 Discrepancy with respect to a set of distribution functions

Let H be a non–empty closed set of d.f.’s and xn ∈ [0, 1] be an arbitrary
sequence.

• The L2 discrepancy of xn with respect to H is defined by

D
(2)
N (xn,H) = min

g∈H

∫ 1

0
(FN (x)− g(x))2 dx.

In this notation the L2 discrepancy of a g–distributed sequence xn may be

written as D
(2)
N (xn, g). The following generalization of Theorem 1.9.0.2 can

be proved:
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Theorem 1.10.9.1. For every sequence xn ∈ [0, 1) we have

G(xn) ⊂ H ⇐⇒ lim
N→∞

D
(2)
N (xn,H) = 0.

Notes: O. Strauch (1997). He used this discrepancy notion in the following result:
Theorem 1.10.9.2. Let H be non–empty, closed, and connected set of d.f.’s. De-
note g

H
(x) = infg∈H g(x) and gH(x) = supg∈H g(x). Further, if g ∈ H let Graph(g)

be the continuous curve formed by all the points (x, g(x)) for x ∈ [0, 1], and the
all line segments connecting the points of discontinuity (x, lim infx′→x g(x

′)) and
(x, lim supx′→x g(x

′)). Assume that for every g ∈ H there exists a point (x, y) ∈
Graph(g) such that (x, y) /∈ Graph(g̃) for any g̃ ∈ H with g̃ ̸= g. If moreover
g = g

H
and g = gH for the lower d.f. g and the upper d.f. g of the sequence

xn ∈ [0, 1) (cf. p. 1 – 11 ) and G(xn) ⊂ H, i.e. if limN→∞D
(2)
N (xn,H) = 0, then

G(xn) = H.

O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).

1.10.10 Discrepancy of distribution functions

Let g1(x), g2(x) be two d.f.’s defined on the interval [−1, 1] (i.e. g1, g2 are
non–decreasing, g1(−1) = g2(−1) = 0 and g1(1) = g2(1) = 1). The difference
g(x) = g1(x)−g2(x) is called the signed Borel measure. The discrepancy
of g(x) is defined by

D(g) = sup
[x,y)⊂[−1,1]

|g(y)− g(x)|

and the logarithmic potential of g(x) with respect to the complex number z
is given by

U(g, z) =

∫ 1

−1
log

(
1

|z − x|

)
dg(x).

If Ea is the ellipse with foci ±1 and the major axis a+ 1
a , let

u(a) = max
z∈Ea

|U(g, z)|.

Theorem 1.10.10.1. Let M > 0, 0 < γ ≤ 1 be constants such that

g1(y)− g1(x) ≤M(y − x)γ
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holds for all subintervals [x, y) ⊂ [−1, 1]. Then there exists a constant c =
c(M,γ) such that

D(g) ≤ c u(a) log

(
1

u(a)

)
for all a ≤ 1 + u(a)1+1/γ and u(a) < 1/e.

Notes: H.–P.Blatt and H.N.Mhaskar (1993, Th. 2.1). For details concerning log-
arithmic potential see M.Tsuji (1950), and for applications of the above Theorem
consult V.V.Andrievskii, H.–P.Blatt and H.N.Mhaskar (2001).

V.V.Andrievskii – H.–P.Blatt – H.N.Mhaskar: A local discrepancy theorem, Indag. Mathem.,
N.S. 12 (2001), no. 1, 23–39 (MR1908137 (2003g:11084); Zbl. 1013.42017).
H.–P.Blatt – H.N.Mhaskar: A general discrepancy theorem, Ark. Mat. 31 (1993), no. 2, 219–
246 (MR1263553 (95h:31002); Zbl. 0797.30032).
M.Tsuji: Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo, 1959
(MR0114894 (22 #5712); Zbl. 0087.28401); Reprinted: Chelsea Publ. Co., New York, 1975
(MR0414898 (54 #2990); Zbl. 0322.30001).

1.10.11 Dispersion

Dispersion serves as a means for the quantitative measurement of the density
of a sequence.

• Let x1, x2, . . . , xN belong to [0, 1]. Then the dispersion dN of xn’s in [0, 1]
is defined as

dN = dN (x1, . . . , xN ) = sup
x∈[0,1]

min
1≤n≤N

|x− xn|.

An alternative definition requires the reordering of x1, . . . , xN into a non–
decreasing sequence xi1 ≤ xi2 ≤ · · · ≤ xiN . Then

dN = max

(
1

2
max

1≤j≤N−1
(xij+1 − xij ), xi1 , 1− xiN

)
.

Evidently

dN ≤ DN

and the infinite sequence xn ∈ [0, 1], n = 1, 2, . . . , is dense everywhere in [0, 1]
if and only if

lim
N→∞

dN = 0.

If we define the quantities

d∗N = min
1≤m̸=n≤N

|xm − xn|, d∗∗N = max
1≤j≤N−1

(xij+1 − xij ).
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then for every one–to–one infinite sequence xn in [0, 1], n = 0, 1, 2, . . . , with
x0 = 1, x1 = 0, we have

lim inf
N→∞

Nd∗N ≤ 1

log 4
≤ lim sup

N→∞
NdN

and the bounds are attained, cf. 2.12.3. For the dispersion of multidimen-
sional sequences, see 1.11.17.

Notes: (I) The inequality between dispersion and discrepancy in the multi–dimen-

sional case (cf. 1.11.17) was proved by H.Niederreiter (1983).

(II) The constant 1/ log 4 has been discovered independently by several authors:

N.G. de Bruijn and P.Erdős (1949), A.Ostrowski (1957, [a]1957), A. Schönhage

(1957) and G.H.Toulmin (1957). More precisely:

• Motivated by the T. van Aardenne – Ehrenfest results (1945, 1949), (cf. p. 1 – 49

(0)) the quantities d∗N and d∗∗N were first studied by de Bruijn and Erdős (1949)

for sequences xn lying on the circle of unit length. They found the exact values

inf
(xn)∞n=1

lim sup
N→∞

Nd∗∗N = 1/ log 2, sup
(xn)∞n=1

lim inf
N→∞

Nd∗N = 1/ log 4

and proved that these values are attained for the sequence 2.12.3.

• Ostrowski (1957) independently studied the quantity d∗N , and he proved that if xn
is an infinite sequence in [0, 1), then 1

2 ≤ lim infN→∞Nd∗N ≤ 1
4−2

√
2
= 0.853 . . .

and that the lower bound is attained for the sequence x1 = 0, x2 = 1
2 , x3 = 1

4 ,

x4 = 3
4 , . . . , x2k+i =

i−1
2k

+ 1
2k+1 . Here d

∗
2k+i =

1
2k+1 . Later ([a]1957) he improved

the upper bound to 1
log 4 = 0.7213 . . . .

• Toulmin (1957) reproved de Bruijn’s and Erdős’s result that the upper bound is

exactly 1/ log 4, and that this bound is attained by sequence 2.12.3 and he also

proved that lim supN→∞Nd∗∗N ≥ 1/ log 2 and that this bound is attained for the

same sequence 2.12.3.

• Schönhage (1957) also reproved the upper bound by means of sequences xn for

which limN→∞Nd∗N = αm and limm→∞ αm = 1/ log 4.

• A multi–dimensional generalization was proved by H.Groemer (1960).

(III) H.Niederreiter (1984, Th. 1) proved that the dispersion dN of the sequence
x1 ≤ x2 ≤ · · · ≤ xN in [0, 1) satisfies

dN ≤ c

(
1

m+ 1
+

m∑
h=1

(
1

h
− 1

m+ 1

)
.

∣∣∣∣∣
N∑
n=0

(xn+1 − xn)e
2πihxn

∣∣∣∣∣
)

for all m ∈ N, where x0 = 0, xN+1 = 1, and c is an absolute constant.
(IV) O. Strauch (1995) proved that for any sequence x1, . . . , xN in [0, 1] we have

dN ≤ max(AN , 1−BN , 2CN ),
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where

AN = min
1≤M≤N

1

M

M∑
n=1

xn, BN = max
1≤M≤N

1

M

M∑
n=1

xn,

and if the min and max are attained at M =M1 and M =M2, resp., then

CN = min
min(M1,M2)≤M≤max(M1,M2)

1

M2

M∑
m,n=1

|xm − xn|.

(V) Dispersion dN (θ) of the sequence nθ mod 1 can be found in 2.8.1(VIII).

N.G. de Bruijn – P. Erdős: Sequences of points on a circle, Nederl. Akad. Wetensch., Proc. 52
(1949), 14–17 (MR0033331 (11,423i); Zbl. 0031.34803). (=Indag. Math. 11 (1949), 46–49).
H.Groemer: Über den Minimalabstand der ersten N Glieder einer unendlichen Punktfolge,
Monatsh. Math. 64 (1960), 330–334 (MR0117466 (22 #8245); Zbl. 0094.02804).
H.Niederreiter: A quasi–Monte Carlo method for the approximate computation of the extreme
values of a function, (P.Erdős – L.Álpár – G.Halász – A.Sárkőzy eds.), in: To the memory of
Paul Turán, Studies in pure mathematics, Birkäuser Verlag & Akadémiai Kiadó, Basel, Boston,
Stuttgart & Budapest, 1983, pp. 523–529 (MR0820248 (86m:11055); Zbl. 0527.65041).
H.Niederreiter: On a measure of denseness for sequences, in: Topics in classical number theory,
Vol. I, II (Budapest 1981), (G.Halász ed.), Colloq. Math. Soc. János Bolyai, Vol. 34, North–
Holland Publishing Co., Amsterdam, New York, 1984, pp. 1163–1208 (MR0781180 (86h:11058);
Zbl. 0547.10045).
A.Ostrowski: Zum Schubfächerprinzip in einem linearen Intervall , Jber. Deutsch. Math. Verein.
60 (1957), Abt. 1, 33–39 (MR0089232 (19,638a); Zbl. 0077.26703).
[a] A.Ostrowski: Eine Verschärfung des Schubfächerprinzips in einem linearen Intervall , Arch.
Math. 8 (1957), 1–10 (MR0089233 (19,638b); Zbl. 0079.07302).
A. Schönhage: Zum Schubfächerprinzip im linearen Intervall , Arch. Math. 8 (1957), 327–329
(MR0093511 (20 #35); Zbl. 0079.07303).
O. Strauch: Uniformly maldistributed sequence in a strict sense, Monatsh. Math. 120 (1995),
153–164 (MR1348367 (96g:11095); Zbl. 0835.11029).
G.H.Toulmin: Subdivision of an interval by a sequence of points, Arch. Math 8 (1957), 158–161
(MR0093513 (20 #37); Zbl. 0086.03801).

1.11 The multi–dimensional case

In the multi–dimensioanl case we can proceed in a manner similar to the
one–dimensional one.

First of all, if x = (x1, . . . , xs) ∈ Rs is given, then x mod 1 denotes the
sequence ({x1}, . . . , {xs}). If xn = (xn,1, . . . , xn,s) is the sequence of points
in Rs then define:

• the s–dimensional counting function by

A([u1, v1)× · · · × [us, vs);N ;xn mod 1) =

#{n ≤ N ; {xn,1} ∈ [u1, v1), . . . , {xn,s} ∈ [us, vs)}.

• the s–dimensional step d.f. also called the empirical distribution by
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(i) FN (x) = 1
NA([0, x1)× · · · × [0, xs);N ;xn mod 1) if x ∈ [0, 1)s,

(ii) FN (x) = 0 for every x having a vanishing coordinate,

(iii) FN (1) = 1,

(iv) FN (1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) = FN (xi1 , xi2 , . . . , xil)

for every restricted l–dimensional face sequence (xn,i1 , xn,i2 , . . . , xn,il) of

xn for l = 1, 2, . . . , s.

Then

• If f : [0, 1]s → R is continuous, again

1

N

N∑
n=1

f(xn mod 1) =

∫
[0,1]s

f(x) dFN (x).

• A function g : [0, 1]s → [0, 1] is called a d.f. if

(i) g(1) = 1,

(ii) g(0) = 0, and moreover g(x) = 0 for any x with a vanishing coordinate,

(iii) g(x) is non–decreasing, i.e. ∆
(s)
hs

(. . . (∆
(1)
h1
g(x1, . . . , xs))) ≥ 0 for any

hi ≥ 0, xi+hi ≤ 1, where ∆
(i)
hi
g(x1, . . . , xs) = g(x1, . . . , xi+hi, . . . , xs)−

g(x1, . . . , xi, . . . , xs).

• If g is such d.f. then
∫
[0,1]2 dg(x) = 1.

• If dg(x) = ∆
(s)
dxs

. . .∆
(1)
dx1
g(x1, . . . , xs) is the differential of g(x) at the point

x = (x1, . . . , xs), then also dg(x) = ∆(g, J), where J = [x1, x1 +dx1]× · · · ×
[xs, xs + dxs], see 1.11.3. Moreover, g(x) is non–decreasing if and only if

dg(x) ≥ 0 for every x ∈ [0, 1]s.

• The d.f. g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) is called an l–

dimensional face d.f. of g in variables (xi1 , xi2 , . . . , xil) ∈ (0, 1)l, 0 ≤
l ≤ s.

• We shall identify two d.f.’s g(x) and g̃(x) if:

(i) g(x) = g̃(x) at every common point x ∈ (0, 1)s of continuity, and

(ii) g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) =

= g̃(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1)

at every common point (xi1 , xi2 , . . . , xil) ∈ (0, 1)l of continuity in every

l–dimensional face d.f. of g and g̃, l = 1, 2, . . . , s.

• The s–dimensional d.f. g(x) is a d.f. of the sequence xn mod 1 if

(i) g(x) = limk→∞ FNk(x) for all continuity points x ∈ (0, 1)s of g (the

so–called weak limit) and,
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(ii) g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) =

= limk→∞ FNk(xi1 , xi2 , . . . , xil)

weakly over (0, 1)l and every l–dimensional face sequence of xn for l =

1, 2, . . . , s, and for a suitable sequence of indices N1 < N2 < . . . .

• The Second Helly theorem (see 4.1.4.15) shows that the weak limit8

FNk(x) → g(x) implies∫
[0,1]s

f(x) dFNk(x) →
∫
[0,1]s

f(x) dg(x)

for every continuous f : [0, 1]s → R.
• G(xn mod 1) is the set of all d.f.’s of xn mod 1. It is again a non–empty,
closed and connected set, and either it is a singleton or it has infinitely many
elements.

1.11.1 u.d. sequences

Notes: Write x · y =
∑
i=1s xiyi for the standard inner product and r(x) =∏s

i=1 max(1, |xi|).
The sequence xn mod 1 is u.d. in [0, 1)s if

lim
N→∞

A([u1, v1)× · · · × [us, vs);N ;xn mod 1)

N
= (v1 − u1) . . . (vs − us)

for every subintervals [u1, v1)× · · · × [us, vs) ⊂ [0, 1)s.
Theorem 1.11.1.1 (Weyl’s limit relation). A sequence xn mod 1 is u.d.
if and only if

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫
[0,1]s

f(x) dx

holds for all continuous f : [0, 1]s → R.
Theorem 1.11.1.2 (Weyl’s criterion). A sequence xn mod 1 is u.d. if
and only if

lim
N→∞

1

N

N∑
n=1

e2πih·xn = 0

holds for all h ∈ Zs, h ̸= 0.

The concept of multi–dimensional u.d. sequences can be reduced to the con-
cept of a one–dimensional u.d. as the following result demonstrates.

8that is (i), and (ii) above are fulfilled
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Theorem 1.11.1.3 (H.Weyl (1916)). An s–dimensional sequence
xn mod 1 is u.d. if and only if for every integral vector (h1, . . . , hs) ̸=
(0, . . . , 0) the one–dimensional sequence

h1xn,1 + · · ·+ hsxn,s mod 1, n = 1, 2, . . . ,

is u.d.
H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).

1.11.2 Extremal and star discrepancy

The extremal discrepancy of xn mod 1 is defined by

DN (xn mod 1) =

= sup
[u1,v1)×···×[us,vs)⊂[0,1]s

∣∣∣∣∣A([u1, v1)× · · · × [us, vs);N ;xn mod 1)

N
−

− (v1 − u1) . . . (vs − us)

∣∣∣∣∣
and the star discrepancy by

D∗
N (xn mod 1) =

= sup
[0,v1)×···×[0,vs)⊂[0,1]s

∣∣∣∣∣A([0, v1)× · · · × [0, vs);N ;xn mod 1)

N
−

− v1 . . . vs

∣∣∣∣∣.
Both are connected by the relations

D∗
N ≤ DN ≤ 2sD∗

N [KN, p. 93].

Theorem 1.11.2.1 (Erdős – Turán – Koksma’s inequality). Let x1,
x2, . . . , xN be points in the s–dimensional unit cube [0, 1)s and H be an
arbitrary positive integer. Then

DN (xn) ≤
(
3

2

)s
 2

H + 1
+

∑
0<∥h∥∞≤H

1

r(h)

∣∣∣∣∣ 1N
N∑

n=1

e2πih·xn

∣∣∣∣∣
 ,

where r(h) =
∏s

i=1max(1, |hi|).
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Theorem 1.11.2.2 (H.Niederreiter (1992, p. 43, Coroll. 37). For ar-
bitrary s–dimensional sequence x1, . . . ,xN in [0, 1)s and for any non–zero
lattice point h = (h1, . . . , hs) we have

DN (xn) ≥
π

2((π + 1)m − 1)
· 1

r(h)

∣∣∣∣∣ 1N
N∑

n=1

e2πih·xn

∣∣∣∣∣ ,
where m is the number of non–zero coordinates of h.
Notes: (I) Though a multi–dimensional generalization of Erdős – Turán inequal-
ity to several dimensions had already been known to van der Corput in (1935) (cf.
J.F.Koksma (1936, Kapitel X, Satz 2)) it was not published. In 1950 Koksma (1950)
published a version thereof, and later, independently, also P. Szüsz (1952) (we refer
the reader, for instance, to the corresponding reviews in MR for more exact forms
of their results). Multi–dimensional generalizations are usually referred to as the
Erdős – Turán – Koksma inequality. ([KN, p. 116])
(II) The above version, with the given constant, is due to P.J.Grabner (1989), cf.
[DT, p. 15, Th. 1.21]. Grabner (1989) and Grabner and R.F.Tichy (1990) general-
ized an argument used by J.D.Vaaler (1985) (cf. p. 1 – 50 ).
(III) A similar result using a related technique was also proved by T.Cochrane (1988).
(IV) Generalizations of the inequality are also given by H.Niederreiter and W.Phi-
lipp (1972, 1973).
(V) If x1, . . . ,xN is a finite sequence, then the trivial lower bound is

DN (xn) ≥
1

N
,

but finite sequences satisfying the equality can only exist in the one–dimensional
case, see 2.22.15.
(VI) The star discrepancy D∗

N is also known as the two–sided Kolmogorov –
Smirnov statistic test in the goodness–of fit testing.
(VII) H.Niederreiter and I.H. Sloan (1990) proved: Let x1, . . . ,xN be a finite se-
quence in Rs and suppose that there exists an h = (h1, . . . , hs) ∈ Zs with

∑s
i=1 |hi| ≥

2 and θ ∈ [0, 1) such that {h · xn} = θ for n = 1, 2, . . . , N . Then the discrepancy
DN of xn mod 1 satisfies

DN ≥ 1

mmr(h)
,

where m is the number of non–zero coordinates of h (also cf. Niederreiter (1992,
p. 137, Lemma 5.36)).

T.Cochrane: Trigonometric approximation and uniform distribution modulo one, Proc. Amer.
Math. Soc. 103 (1988), no. 3, 695–702 (MR0947641 (89j:11071); Zbl. 0667.10031).
P.J.Grabner: Harmonische Analyse, Gleichverteilung und Ziffernentwicklungen, TU Vienna,
Ph.D. Thesis, Vienna, 1989.
P.J.Grabner – R.F.Tichy: Remark on an inequality of Erdős – Turán – Koksma, Anz. Öster-
reich. Akad. Wiss. Math.–Natur. Kl. 127 (1990), 15–22 (1991) (MR1112638 (92h:11065); Zbl.
0715.11037).
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J.F.Koksma: Diophantische Approximationen, Ergebnisse der Mathematik und Ihrer Grenzgebi-
ete, Vol. 4, Julius Springer, Berlin, 1936 (Zbl. 0012.39602; JFM 62.0173.01).
J.F.Koksma: Some theorems on Diophantine inequalities, Math. Centrum, (Scriptum no. 5),
Amsterdam, (1950) (i+51 pp.), (MR0038379 (12,394c); Zbl. 0038.02803).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
H.Niederreiter – W.Philipp: On a theorem of Erdős and Turán on uniform distribution, in:
Proc. Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972, Univ. Colorado, Boulder,
Colo. 1972, pp. 180–182 (MR0389821 (52 #10651); Zbl. 0323.10039).
H.Niederreiter – W.Philipp: Berry – Esseen bounds and a theorem of Erdős and Turán on
uniform distribution mod 1, Duke Math. J. 40 (1973), 633–649 (MR0337873 (49 #2642); Zbl.
0273.10043).
H.Niederreiter – I.H. Sloan: Lattice rules for multiple integration and discrepancy, Math.
Comp. 54 (1990), 303–312 (MR0995212 (90f:65036); Zbl. 0689.65006).
P. Szüsz: On a problem in the theory of uniform distribution (Hungarian. Russian and German
summary), in: Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 27 Août –
2 September 1950, Akadémiai Kiadó, Budapest, 1952, pp. 461–472 (MR0056036 (15,15c); Zbl.
0048.28001).
J.D.Vaaler: Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.) 12
(1985), no. 2, 183–216 (MR0776471 (86g:42005); Zbl. 0575.42003).

Theorem 1.11.2.3 (LeVeque’s inequality). Let x1, . . . ,xN be points in
the s–dimensional unit cube [0, 1)s. Then

DN (xn) ≤ 6

(
3

2

)s
 ∑

0̸=h∈Zs

1

r(h)2

∣∣∣∣∣ 1N
N∑

n=1

e2πih·xn

∣∣∣∣∣
2
 1

s+2

.

Notes: This result was proved by H. Stegbuchner (1979), cf. [DT, p. 23, Th. 1.28].

H. Stegbuchner: Eine mehrdimensionale Version der Ungleichung von LeVeque, Monatsh. Math.
87 (1979), 167–169 (MR0530461 (80i:10048); Zbl. 0369.10022).

The computation of the star discrepancy in multi–dimensional cases is much
more difficult than that for dimension s = 1 (cf. 1.9), e.g. for s = 2 we have:
Theorem 1.11.2.4. Let (xn, yn), n = 1, 2, . . . , N , be a finite sequence in
[0, 1)2 such that x1 ≤ x2 ≤ · · · ≤ xN . Let (x0, y0) = (0, 0) and (xN+1, yN+1) =
(1, 1). For every k = 0, 1, 2, . . . , N rearrange yi, i = 0, 1, 2, . . . , k, n + 1, in
a non–decreasing order and rewrite them as 0 = tk,0 ≤ tk,1 ≤ · · · ≤ tk,k <
tk,k+1 = 1. Then

D∗
N = max

0≤k≤N
max
0≤n≤k

max
(∣∣∣ n
N

− xktk,n

∣∣∣ , ∣∣∣ n
N

− xk+1tk,n+1

∣∣∣)
Notes: P.Bundschuh and Y. Zhu (1993) proved this theorem (and also for the
case s = 3) motivated by a result proved by L. de Clerck (1984) and (1986). She
considered only two–dimensional sequences such that xi < xj and yi ̸= yj for any
i < j. A general formula was proved by L.Achan, cf. [DT, p. 377, Th. 3.6], but it
seems practically intractable for large dimensions.



1 – 72 1 Basic definitions and properties

L.Achan: Discrepancy in [0, 1]s, (Preprint).
P.Bundschuh – Y. Zhu: A method for exact calculation of the discrepancy of low–dimensional fi-
nite point set. I., Abh. Math. Sem. Univ. Hamburg 63 (1993), 115–133 (MR1227869 (94h:11070);
Zbl. 0789.11041).
L. de Clerck: De exacte berekening van de sterdiscrepantie van de rijen van Hammersley in 2
dimensies, (Dutch), Ph.D. Thesis, Leuven, 1984.
L. de Clerck: A method for exact calculation of the stardiscrepancy of plane sets applied to the
sequences of Hammersley, Monatsh. Math. 101 (1986), no. 4, 261–278 (MR0851948 (87i:11096);
Zbl. 0588.10059).

For the extremal (and also for the star) discrepancy we have:
Conjecture 1.11.2.5. For every dimension s, s ≥ 2, there is a constant cs
depending only on the dimension s such that for every finite sequence x1, . . . ,
xN in [0, 1)s, s ≥ 2, we have

DN (xn) ≥ cs
logs−1N

N
.

Everything indicates that this lower bound is possibly the best one. It was
only proved for s = 2 by W. Schmidt (1972). The conjecture can be reformu-
lated for infinite sequences: the s–dimensional conjecture for finite sequences
gives the (s−1)–dimensional conjecture for infinite sequences, and vice–versa,
cf. [DT, p. 40, Th. 1.49].
Conjecture 1.11.2.6. There are constants cs such that for any infinite se-
quence xn in [0, 1)s, s ≥ 1, we have

DN (xn) ≥ cs
logsN

N

for infinitely many N .
Theorem 1.11.2.7 (K.F.Roth (1954)). For any infinite sequence xn in
[0, 1)s with s ≥ 1 we have

DN (xn) ≥
1

25
· 1

24s
· 1

(s log 2)s/2
· log

s/2N

N

for infinitely many positive integers N .

Cf. [KN, p. 105, Th. 2.2] and [DT, p. 40, Th. 1.50].

Notes: (I) The situation that in the s–dimensional unit cube [0, 1)s the optimal
discrepancy of finite sequences is better than the optimal discrepancy of infinite
sequences, is known under the name irregularities of distribution (or Roth’s
phenomenon), cf. the monograph J. Beck and W.W.L.Chen (1987).
(II) Roth’s theorem for finite sequences has the form 1.11.4.1.
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J. Beck – W.W.L.Chen: Irregularities of Distribution, Cambridge Tracts in Mathematics, Vol. 89,
Cambridge University Press, Cambridge, New York, 1987 (MR0906524 (89c:11117); Zbl. 0631.10034).
K.F.Roth: On irregularities of distribution, Mathematika 1 (1954), 73–79 (MR0066435 (16,575c);
Zbl. 0057.28604).
W.M. Schmidt: Irregularities of distribution. VII , Acta Arith. 21 (1972), 45–50 (MR0319933 (47
#8474); Zbl. 0244.10035).

1.11.3 The multi–dimensional numerical integration

Multivariate quadrature formulas.
Theorem 1.11.3.1 (Koksma – Hlawka’s inequality). Let f : [0, 1]s → R
be of the bounded variation V (f) in the sense of Hardy and Krause. Then
for any sequence x1, . . . ,xN in [0, 1)s we have∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N (xn).

Notes: (I) A multi–dimensional analogue to the Koksma’s inequality 1.9.0.3 was
proved by E.Hlawka (1961), cf. [KN, p. 151, Th. 5.5.], H.Niederreiter (1978, p. 966,
Th. 2.9), H.Niederreiter (1992, p. 20, Th. 2.11) and [DT, p. 10, Th. 1.14.].
(II) The Hardy – Krause variation V (f) is defined by

V (f) =

s∑
k=1

∑
1≤i1<i2<···<ik≤s

V (k)(fi1,...,ik)

where fi1,...,ik = f(1, . . . , 1, xi1 , 1, . . . , 1, xik , 1, . . . ) is the restriction of f to the k–
dimensional face

{(x1, . . . , xs) ∈ [0, 1]s;xj = 1 for j ̸= i1, . . . , ik}.

On the other hand, the Vitali variation V (k)(h) of an h : [0, 1]k → R is defined
by

V (k)(h) = sup
P

∑
J∈P

|∆(h, J)|,

where the supremum is extended over all partitions P of [0, 1]k into subintervals J ,
and ∆(h, J) is an alternating sum of the values of h at the vertices of J (function
values at the adjacent vertices have opposite signs), i.e.

∆(h, J) =

2∑
ε1=1

· · ·
2∑

εk=1

(−1)ε1+···+εkh(x(1)ε1 , . . . , x
(k)
εk

)

for an interval J = [x
(1)
1 , x

(1)
2 ]× [x

(2)
1 , x

(2)
2 ]×· · ·× [x

(k)
1 , x

(k)
2 ] ⊂ [0, 1]k. Vitali variation

can be written in a more convenient form

V (k)(h) =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣ ∂kh

∂x1 . . . ∂xk

∣∣∣∣dx1 . . . dxk
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provided the partial derivative is continuous on [0, 1]k.
Let g(x) be an s–dimensional d.f. with density h(x). E.Hlawka and R.Mück (1972)
constructed g−1(x) such that for the u.d. sequence xn, the sequence yn = g−1(xn)
has a.d.f. g(x). J. Spanier and E.Maize (1994) continued with the following general-
ization of the Koksma – Hlawka inequality: For every sequence x1, . . . ,xN in [0, 1)s

and every f : [0, 1]s → R with bounded Hardy – Krause variation V (f/h) we have∣∣∣∣∣ 1N
N∑
n=1

f(yn)

h(yn)
−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤ V (f/h)D∗
N (xn),

cf. also A.Keller (1998).
(III) E.Hlawka (1971) proved (cf. [KN, p. 158, Notes])∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤ (22s−1 + 1)λ∞f

([
(D∗

N (xn))
−1
]−1/s

)
.

Here λ∞f is the modulus of continuity of f

λ∞f (t) = sup
x,y∈[0,1]s

∥x−y∥∞≤t

|f(x)− f(y)|

with respect to the maximum distance ∥x − y∥∞ = max1≤i≤s |xi − yi| for x =
(x1, . . . , xs) and y = (y1, . . . , ys). If we replace ∥x− y∥∞ by the Euclidean distance
|x − y| =

√∑s
i=1(xi − yi)2 the corresponding modulus of continuity of f will be

denoted by λf (t).
(IV) P.D.Proinov (1988) proved the following multi–dimensional variant of Nieder-
reiter’s Theorem 1.9.0.5:∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤ 4λ∞f

(
(D∗

N (xn))
1/s
)
.

(V) An analogue to the Koksma – Hlawka’s inequality for A–discrepancy can be
found in [DT, p. 251, Th. 2.38].
(Va) More precisely, the Koksma – Hlawka inequality has the form (cf. H.Nieder-
reiter (1978, p. 966, Th. 2.9))∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤
s∑

k=1

∑
1≤i1<i2<...ik≤s

V (k)(fi1,...,ik)D
∗
N (x(i1,...,ik)

n ),

where x
(i1,...,ik)
n = (xn,i1 , . . . , xn,is).
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(Vb) I.M. Sobol’ (1969, p. 268) found the expression

∫
[0,1]s

f(x) dx− 1

N

N∑
n=1

f(xn) =

s∑
k=1

∑
1≤i1<i2<...ik≤s

(−1)k
∫
[0,1]k

(
xi1 . . . xik−

−
A
(
[0, xi1)× · · · × [0, xik);N ;x

(i1,...,ik)
n

)
N

)
∂kfi1,...,ik
∂xi1 . . . ∂xik

dxi1 . . . dxik

for f having continuous partial derivatives. This gives the following L2 discrepancy
variant of Koksma – Hlawka inequality∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤
≤

s∑
k=1

∑
1≤i1<i2<...ik≤s

√
D

(2)
N (x

(i1,...,ik)
n )

√∫
[0,1]k

(
∂kfi1,...,ik
∂xi1 . . . ∂xik

)2

dxi1 . . . dxik ,

see S.K. Zaremba (1968, Prop. 3) and I.M. Sobol’ (1969, p. 271, Th. 2) for discrep-

ancy D
(q)
N =

∫
[0,1]s

|FN (x)− x1 . . . xs|q dx, where x = (x1, . . . , xs) ∈ [0, 1]s.

(Vc) S.K. Zaremba (1970) proved that (cf. H.Niederreiter (1978, p. 970))∣∣∣∣∣∣∣
1

N

N∑
n=1
xn∈E

f(xn)−
∫
E

f(x) dx

∣∣∣∣∣∣∣ ≤ (V (f) + |f(1, . . . , 1)|)IN

for every convex subset E ⊂ [0, 1]s and every function f(x) of bounded Hardy –
Krause variation V (f), where IN is the isotropic discrepancy (cf. 1.11.9) of x1, . . . ,
xN .
H.Niederreiter (1973) extended this result to every Jordan–measurable set E ⊂
[0, 1]s, however with discrepancy DX

N (cf. 1.11.6) instead of IN , and with X being
a family of subsets of [0, 1]s which approximate E in some sense. O. Strauch (1997)
found a more complicated formula on how to approximate

∫
E
f(x) dx by

1

N

N∑
n=1
xn∈E

f(xn)−
1

N
·

∞∑
m=1

A(Jm;N ;xn)>0

1

A(Jm;N ;xn)
·

N∑
n=1

xn∈Jm

f(xn)

for every open subset E =
∪∞
m=1 Jm ⊂ [0, 1] (here Jm are pairwise disjoint open

one–dimensional intervals in [0, 1]).
Other quadrature formulas are in: 1.11.12, 3.15(XII), 3.17(II).

(Vd) N.N. Čencov (1961) proved: If xn ∈ [0, 1)s is an infinite sequence and f runs
over the class of all analytic functions defined on [0, 1]s then the best possible error
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term is

max
f

∣∣∣∣∣ 1N
N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ = O
(

1

N

)
,

see N.M.Korobov (1963, p. 51, Th. 4). Thus the result mentioned in 3.4.1 Note (X)
is the best possible. Korobov (1963, p. 45, Th. 1) also noted: Given a finite sequence
x1, . . . ,xN in [0, 1)s there exists an f ∈ Eαs (c) (for def. of E

α
s (c) see p. 3 – 72 ) such

that ∣∣∣∣∣ 1N
N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ > c.c1
Nα

,

where c1 depends only on α and s.
(VI) The Monte Carlo method may be described as a numerical method based on
random sampling and the quasi–Monte Carlo method as the deterministic ver-
sion of the Monte Carlo method. The effectiveness of the Monte Carlo versus quasi–
Monte Carlo methods for numerical multiple integration over the s–dimensional unit
cube with very large values of s is an open problem. For instance, when a classi-
cal financial problem which requires the evaluation of the mortage backed security
portfolio is expressed as an integral then this problem is nominally 360–dimensional
(cf. [DT, pp. 389–390]).
(VIa) The Monte Carlo method for numerical integration yields a probabilistic er-
ror bound of the form O(N−1/2) depending on the number N of nodes and this
order does not depend on the dimension s, but we need to repeat the computation
sufficiently enough times (we do not know exactly how many times). Precisely (cf.
H.Niederreiter (1992, p. 5))

lim
N→∞

Prob

(
c1σ(f)√

N
≤ 1

N

N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx ≤ c2σ(f)√
N

)
=

=
1√
2π

∫ c2

c1

e−t
2/2 dt

which implies

Prob

(∣∣∣∣ 1N ∑N
n=1 f(xn)−

∫
[0,1]s

f(x) dx

∣∣∣∣ ≤ 3σ(f)√
N

)
= 0.997 . . .

for large N . Here the variance

σ2(f) =
∫
[0,1]s

(
f(x)−

∫
[0,1]s

f(u) du
)2

dx

and Prob is the Borel measure on the space of all sequences in [0, 1]s.

Koksma – Hlawka formula yields for the quasi–Monte Carlo method a much better

deterministic error bound O(N−1(logN)s−1) for a suitably chosen sets of N nodes,

but for a big s we need a very big N (cf. H.Niederreiter (1992, Chap. 1)).

(VIb) Given dimension s and N ∈ N define
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• D
(2)
N (s) = infx1,...,xN∈[0,1)s D

(2)
N (xn),

• D∗
N (s) = infx1,...,xN∈[0,1)s D

∗
N (xn),

and their inverses

• N (2)(s, ε) = min{N ;D
(2)
N (s) ≤ ε},

• N∗(s, ε) = min{N ;D∗
N (s) ≤ ε}.

I.H. Sloan and H.Woźniakowski (1998) proved that

lim
s→∞

D
(2)
N (s)

D
(2)
0 (s)

= 1,

with N = [1.0463s]. Using the expression for D
(2)
N given in 1.11.4 with N = 0 we

get D
(2)
0 (s) = 3−s (a similar result also holds for the weighted L2 discrepancy).

Furthermore, the minimal number N of points in [0, 1]s with L2 discrepancy D
(2)
N ≤

ε3−s must satisfy N = N (2)(s, ε3−s) ≥ (1− ε2)(9/8)s and thus the L2 version of the
Koksma – Hlawka inequality is intractable.

(VIc) S.Heinrich, et al. (2001) proved the estimate D∗
N (s) ≤ c

√
s√
N

with an unknown

absolute constant c. They showed that the dependence on s cannot be improved.
This yields that N∗(s, ε) = O(sε−2) with an unknown O–constant. They also proved
another estimate not containing unknown constants (Th. 1)

D∗
N (s) ≤ 2

√
2N−1/2

(
s log

(⌈
sN1/2

2(log 2)1/2

⌉
+ 1

)
+ log 2

)1/2

which yields N∗(s, ε) = O(sε−2(ln s+ ln ε−1)) with a known O–constant. A bound
(Lem. 2 & Th. 6) implying N∗(s, ε) ≤ Cks

2ε−2−1/k with an explicitly given Ck is
also given (Th. 7). Some lower bounds for the inverse of the star discrepancy are
also known. The best one says (Th. 8) that positive numbers c and ε0 exist such
that N∗(s, ε) ≥ cs ln ε−1 for all s and all ε ∈ (0, ε0]. In particular, N∗(s, 1

64 ) ≥ 0.18s
for all positive integers s. Thus the classical star discrepancy version of the Koksma

– Hlawka inequality 1.11.3.1 is tractable, but, in practice the L2 discrepancy D
(2)
N

can be easily evaluated by reasonably fast algorithms (see [DT, pp. 372–377]), while
the computation of the star discrepancy D∗

N seems practically intractable for large
dimensions (see [DT, p. 377, Th. 3.6]).
(VId) See also J.Matoušek (1999).
(VII) Quasi-Monte Carlo integration in Hilbert space with reproducing
kernel. Denote

• x = x0

b + x1

b2 + . . . is a b-adic representation of x ∈ [0, 1).

• σ = σ0

b + σ1

b2 + . . .

• k = k0 + k1b+ k2b
2 + · · ·+ knb

n is a b-adic expression of the integer k, kn ̸= 0.

• walk(x) = e
2πi
b (k0x0+k1x1+···+knxn) is the k-th Walsh function walk : [0, 1] → C in

base b.

• walk(x) =
∏s
i=1 walki(xi).

• x⊕ σ = x0+σ0 (mod b)
b + x1+σ1 (mod b)

b2 + . . . .
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• x⊕ σ = (x1 ⊕ σ1, x2 ⊕ σ2, . . . , xs ⊕ σs).

• x+ σ mod 1 = ({x1 + σ1}, {x2 + σ2}, . . . , {xs + σs}).
• Let H be a Hilbert space of functions f, g, · · · : [0, 1]s → R with a scalar product
f(x) ⊙ g(x) and a norm ||f || =

√
f(x)⊙ f(x). The reproducing kernel K(x,y) of

H is a function K : [0, 1]2s → R satisfying (also see 1.11.12)

(i) K(x,y) ∈ H for each fixed y ∈ [0, 1]s.

(ii) f(x)⊙K(x,y) = f(y) for each fixed y ∈ [0, 1]s and for all f(x) ∈ H.

(iii) K(x,y) = K(y,x) for x,y ∈ [0, 1]s.

(iv) K(u,x)⊙K(x,v) = K(u,v).

(v) H is the closure of the linear envelope of K(x,y), y ∈ [0, 1]s.

(vi) K(x,y) is determined uniquely by (i)-(v).

(vii) K(x,y) is positive semi-definite, i.e.
∑N−1
m,n=0 tmtnK(xm,xn) ≥ 0 for all

choices of t0, . . . , tN−1 ∈ R and x0, . . . ,xN−1 ∈ [0, 1]s.

(viii) For every symmetric positive semi-definite K(x,y) there is a unique Hilbert
space H with reproducing kernel K(x,y).

I.H. Sloan and H. Woźniakowski (1998) found the following form for the square
worst-case quasi-Monte Carlo error

sup
f∈H

||f||≤1

∣∣∣∣ 1N
N−1∑
n=0

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣2

=

∫
[0,1]2s

K(x,y) dx dy − 2

N

N−1∑
n=0

∫
[0,1]s

K(xn,y) dy +
1

N2

N−1∑
n,m=0

K(xm,xn).

V. Baláž, J. Fialová, V.S. Grozdanov, S. Stoilova and O. Strauch (2013) replaced
the sequence x0, . . . ,xN−1 by Φ(x0 ⊕ σ), . . . ,Φ(xN−1 ⊕ σ) and expressed the mean
square worst-case error in the form
Theorem 1.11.3.2. For every sequence x0, . . . ,xN−1 in the unit cube [0, 1)s and ev-
ery u.d.p. map Φ(x) and an arbitrary kernel K(x,y) with Fourier-Walsh expansion
we have ∫

[0,1]s
sup
f∈H

||f||≤1

∣∣∣∣ 1N
N−1∑
n=0

f(Φ(xn ⊕ σ))−
∫
[0,1]s

f(x) dx

∣∣∣∣2 dσ
=
∑
k∈Ns0
k̸=0

K̂1(k,k)

∣∣∣∣ 1N
N−1∑
n=0

walk(xn)

∣∣∣∣2,
where K̂1(k,k) =

∫
[0,1]2s

K(Φ(x),Φ(y))walk(x)walk(y) dx dy.
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This is an extension of L.L. Cristea, J. Dick, G. Leobacher and F. Pillichshammer
(2007, Th. 4), and of J. Dick, and F. Pillichshammer (2010, Th. 12.7).

An application: Let b, α < β be integers and consider a Sobolev space with kernel

(i) K(x, y) = 1 + γB1(x)B1(y) +
γ2

4 B2(x)B2(y)− γ2

24B4(|x− y|),
(ii) b = 2, N = 2β ,

(iii) x0, x1, . . . , xN−1 be the van der Corput sequence in base b = 2.

Then ∫ 1

0

sup
f∈H

||f||≤1

∣∣∣∣ 1N
N−1∑
n=0

f(xn ⊕ σ)−
∫ 1

0

f(x) dx

∣∣∣∣2 dσ =
γ

12 · 22β
+

γ2

360 · 24β
;

∫ 1

0

sup
f∈H

||f||≤1

∣∣∣∣ 1N
N−1∑
n=0

f(Φ(xn ⊕ σ))−
∫ 1

0

f(x) dx

∣∣∣∣2 dσ =
γ2

30 · 24β

where Φ(x) denotes the tent transformation Φ(x) = 1− |2x− 1|.

The application of the tent transformation leads to an improvement of the estimation
O(1/N2) for the mean square worst-case error to O(1/N4), see F.J. Hickernell (2002),
L.L. Cristea, J. Dick, G. Leobacher and F. Pillichshammer (2007). V. Baláž, J.
Fialová, V. Grozdanov, S. Stoilova and O. Strauch (2013) considered also other
u.d.p. transformations Φ(x) and proved the given numerical values in the expressins
above. Note that the idea of using Walsh functions goes back to G. Larcher (1993).
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1.11.4 L2 discrepancy

The s–dimensional L2 discrepancy of x1, . . . ,xN in [0, 1)s, where xn =
(xn,1, . . . , xn,s) can be expressed in the form

D
(2)
N =

∫
[0,1]s

(
A([0, v1)× · · · × [0, vs);N ;xn)

N
− v1 . . . vs

)2

dv1 . . . dvs =

=
1

3s
+

1

N2

N∑
m,n=1

s∏
j=1

(1−max(xm,j , xn,j))−
1

2s−1N

N∑
n=1

s∏
j=1

(1− x2n,j).

Notes: (I) This formula can be found in T.T.Warnock (1972). S.Heinrich (1996)
found an efficient algorithm for computing L2 discrepancy of the worst case com-
plexity O(N(logN)s), cf. [DT, p. 372–377]. Previously known algorithms required

O(N2) operations. The quantity D
(2)
N in the associated goodness-of fit test in statis-

tics is known as the Cramér – von Mises statistic test.
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(II) As in 1.10.3, we can define the so–called Wiener L2 discrepancy of x1, . . . ,xN
by

W
(2)
N =

∫
X

(
1

N

N∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

)2

df,

where the set X = {f : [0, 1]s → R ; f(0) = 0, f is continuous} is equipped with the
Wiener measure df normed by

∫
X
f(x)f(y) df = min(x,y) =

∏s
i=1 min(xi, yi).

H.Woźniakovski (1991) proved that W
(2)
N (xn) = D

(2)
N (1− xn), where 1− xn = (1−

xn,1, . . . , 1−xn,s). (For s = 1 we have W
(2)
N (xn) = D

(2)
N (xn), a result independently

proved also by O. Strauch (1994)). This means that on average the integration error
depends only on the L2 discrepancy.
For integration over Wiener measure df cf. I.M.Gel’fand and A.M. Jaglom (1956).
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(50 #3526); Zbl. 0248.65018).
H.Woźniakowski: Average case complexity of multivariate integration, Bull. Amer. Math. Soc.
(N.S.) 24 (1991), no. 1, 185–194 (MR1072015 (91i:65224); Zbl. 0729.65010).

Theorem 1.11.4.1 (K.F.Roth (1954)). 9 For any finite sequence x1, . . . ,
xN in [0, 1)s with s ≥ 2 we have

DN (xn) ≥ D∗
N (xn) ≥

√
D

(2)
N (xn) ≥

1

24s
· 1

((s− 1) log 2)
s−1
2

· log
s−1
2 N

N
.

Theorem 1.11.4.2 (K.F.Roth (1980)). There are constants cs such that
for every N = 1, 2, . . . there exits a finite sequence x1, . . . ,xN in [0, 1)s such
that √

D
(2)
N (xn) ≤ cs

log
s−1
2 N

N
.

Notes: (I) The first constructions of sequences satisfying Th. 1.11.4.2 were given
by H.Davenport (1956)10 and Roth (1979) for dimensions s = 2 and s = 3 resp.,
and for an arbitrary dimension by Roth (1980). Another proof can be found in
N.M.Dobrovol’skĭı (1984). For the early history of this topic consult J. Beck and

9cf. [KN, p.105, Th. 2.1] and [DT, p. 29, Th. 1.40]
10His sequence is basically of the form

(
n
N
, {nα}

)
, n = 0, 1, 2, . . . , N−1, with an irrational α

having bounded partial quotients.
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W.W.L.Chen (1978) and for s = 2 see H.Niederreiter (1978, p. 977).
(II) The Roth’s bound for the L2 discrepancy is optimal. Roth’s bound for the
extremal and star discrepancies is the best known one for s > 3. For s = 3 it was
sharpened by J. Beck (1989) (cf. [DT, p. 44, Th. 1.58]):
Theorem 1.11.4.3. For any finite sequence x1,x2, . . . ,xN in [0, 1)3 and for any
ε > 0 we have

D∗
N ≥ logN

N
(log logN)

1
8−ε

for sufficiently large N .

(III) W.W.L.Chen and M.M. Skriganov (2002) proved:
Theorem 1.11.4.4. Let p ≥ 2s2 be a prime. Then given any N > 1, a sequence
x1, . . . ,xN of N points in the unit cube [0, 1)s can be explicitly constructed for which

N

√
D

(2)
N < 2s+1p2s(logN + 2s+ 1)

s−1
2 .

J. Beck: A two–dimensional van Ardenne-Ehrenfest theorem in irregularities of distribution, Com-
positio Math. 72 (1989), no. 3, 269–339 (MR1032337 (91f:11054); Zbl. 0691.10041).
J. Beck – W.W.L.Chen: Irregularities of Distribution, Cambridge Tracts in Mathematics, Vol. 89,
Cambridge University Press, Cambridge, New York, 1987 (MR0906524 (89c:11117); Zbl. 0631.10034).
W.W.L.Chen – M.M. Skriganov: Explicit constructions in the classical mean square problem
in irregularities of point distribution, J. Reine Angew. Math., 545 (2002), 67–95 (MR1896098
(2003g:11083); Zbl. 1083.11049).
H.Davenport: Note on irregularities of distribution, Mathematika 3 (1956), 131–135 (MR0082531
(18,566a); Zbl. 0073.03402).
N.M.Dobrovol’skĭı: An effective proof of Roth’s theorem on quadratic deviation, (Russian), Us-
pekhi. Mat. Nauk 39 (1984), 155–156 (MR0753777 (86c:11055); Zbl. 0554.10030).
H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).
K.F.Roth: On irregularities of distribution, Mathematika 1 (1954), 73–79 (MR0066435 (16,575c);
Zbl. 0057.28604).
K.F.Roth: On irregularities of distribution. III., Acta Arith. 35 (1979), no. 4, 373–384 (MR0553291
(81a:10065); Zbl. 0425.10056).
K.F.Roth: On irregularities of distribution. IV., Acta Arith. 37 (1980), 67–75 (MR0598865
(82f:10063); Zbl. 0425.10057).

The discrepancies DN , D∗
N and D

(2)
N are linked together by inequalities

csD
s+2
N ≤ D

(2)
N ≤ (D∗

N )2 H.Niederreiter (1973, Th. 4.2),

where the constant cs > 0 depends only on s.

If xn ∈ [0, 1)s is a g–distributed s–dimensional sequence then (cf. O. Strauch
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(1994))

D
(2)
N (xn, g) =

=

∫
[0,1]s

(
A
(
[0, v1)× · · · × [0, vs);N ;xn

)
N

− g(v1, . . . , vs)

)2

dv1 . . . dvs =

=
1

N2

N∑
m,n=1

F
(
(xm,1, . . . , xm,s), (xn,1, . . . , xn,s)

)
,

where

F ((xm,1, . . . , xm,s), (xn,1, . . . , xn,s)) =

=

∫
[0,1]s

g2(v1, . . . , vs) dv1 . . . dvs −
∫ 1

xm,1

dv1 . . .

∫ 1

xm,s

g(v1, . . . , vs) dvs−

−
∫ 1

xn,1

dv1 . . .

∫ 1

xn,s

g(v1, . . . , vs) dvs +
s∏

j=1

(1−max(xm,j , xn,j)) .

Notes: If in the multi–dimensional cases g(x) is continuous then the limit

limk→∞D
(2)
Nk

(xn, g) = 0 implies g ∈ G(xn) (see def. 1.11). If g(x) is discontinu-
ous then to obtain the inclusion g ∈ G(xn), the existence of the limits

lim
k→∞

D
(2)
Nk

(
(xn,i1 , . . . , xn,il), g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1)

)
= 0

is necessary for every face sequence (xn,i1 , . . . , xn,il) of xn, l = 1, 2, . . . , s.

H.Niederreiter: Application of diophantine approximations to numerical integration, in: Dio-
phantine Approximation and Its Applications (Washington, D.C., 1972), (C.F. Osgood ed.), Aca-
demic Press, New York, 1973, pp. 129–199 (MR0357357 (50 #9825); Zbl. 0268.65014).
O. Strauch: L2 discrepancy, Math. Slovaca 44 (1994), 601–632 (MR1338433 (96c:11085); Zbl.
0818.11029).

1.11.5 Diaphony

For the multi–dimensional finite sequence xn = (xn,1, . . . , xn,s) ∈ [0, 1)s,
n = 1, 2, . . . , N , the diaphony is defined by (cf. W.Morokoff and R.E.Caf-
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lisch (1994))

DI
(2)
N =

∫
[0,1]2s

0≤ui<vi≤1,i=1,...,s

(
A([u1, v1)× . . . [us, vs);N ;xn)

N
−

− (v1 − u1) . . . (vs − us)

)2

du1 . . . dus dv1 . . . dvs =

=
1

(12)s
+

1

N2

N∑
m,n=1

s∏
j=1

(
1−max(xm,j , xn,j)

)
min(xm,j , xn,j)−

− 1

2s−1N

N∑
n=1

s∏
j=1

(1− xn,j)xn,j .

Another definition of the diaphony says

DIN (xn) =

 ∑
0 ̸=h∈Zs

1

r(h)2

∣∣∣∣∣ 1N
N∑

n=1

e2πih·xn

∣∣∣∣∣
2
 1

2

(for ex. cf. 2.11.1, 2.11.2). W.Fleischer and H. Stegbuchner (1982) proved
that

DIN ≤ (5π + 1)sD∗
N

for any sequence xn ∈ [0, 1]s. This result is the best possible in exception of
the constant involved.

A.V.Bikovsky (1985) (cf. V.S.Grozdanov and S.S. Stoilova (2003)) proved
that

DIN > c(s)
(logN)

s−1
2

N

for every xn ∈ [0, 1)s, n = 1, 2, . . . , N .

Notes: P.Hellekalek and H. Leeb (1997), using the Walsh functions, and V.S.Groz-
danov and S.S. Stoilova (2001, 2003), using the Chrestenson functions (see below),
introduced a new version of diaphony called q–adic diaphony:

DFN (xn) =

 1

(q + 1)s − 1

∑
0̸=h∈Ns

0

1

ρ(h)2

∣∣∣∣∣ 1N
N∑
n=1

wh(xn)

∣∣∣∣∣
2
 1

2

.

Here the Chrestenson function wh(x) of order q is defined by:
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wh(x) =
∏s
i=1 whi

(xi), where h = (h1, . . . , hs) and x = (x1, . . . , xs),

wn(x) =
∏k(n)
i=0 (ri(x))

ai , if n =
∑k(n)
i=0 aiq

i is the q–adic digit expansion of n,

x ∈ [0, 1),

ri(x) = r0(q
ix), i = 1, . . . , k(n), while

r0(x) = e2πi(k/q) provided x ∈ [k/q, (k + 1)/q) for k = 0, 1, . . . q − 1.

Furthermore

ρ(h) =
∏s
i=1 ρ(hi) if h = (h1, . . . , hs), and

ρ(0) = 1 and ρ(h) = q−2k if qk ≤ h < qk+1, k ∈ N0.

If q = 2 then wn(x) reduces to Walsh function, cf. 2.1.1(II).

A.V.Bikovski: On the exact order of the error of the cubature formulas in space with dominat-
ing derivative and quadratic discrepancy of sets, (Russian), Computing center, DVNC AS SSSR,
Vladivostok, 1985 (preprint).
H.E.Chrestenson: A class of generalized Walsh functions, Pac. J. Math. 5 (1955), 17–31
(MR0068659 (16,920c); Zbl. 0065.05302).
W.Fleischer – H. Stegbuchner: Über eine Ungleichung in der Theorie Gleichverteilung mod 1,
Österreich. Akad. Wiss. Math.–Natur. Kl. Sitzungsber. II 191 (1982), no. 4–7, 133–139
(MR0705432 (85e:11050); Zbl. 0511.10037).
V.S.Grozdanov – S.S. Stoilova: On the theory of b–adic diaphony, C. R. Acad. Bulgare Sci. 54
(2001), no. 3, 31–34 (MR1829550 (2002e:11101); Zbl. 0974.60002).
V.S.Grozdanov – S.S. Stoilova: On the b–adic diaphony of the Roth net and generalized Zaremba
net , Math. Balkanica (N.S.) 17 (2003), no. 1–2, 103–112 (MR2096244 (2005f:11144); Zbl. 1053.11066).
P.Hellekalek – H. Leeb: Dyadic diaphony, Acta Arith. 80 (1997), no. 2, 187–196 (MR1450924
(98g:11090); Zbl. 0868.11034).
W.Morokoff – R.E.Caflisch: Quasi–random sequences and their discrepancies, SIAM J. Sci.
Comput. 15 (1994), no. 6, 1251–1279 (MR1298614 (95e:65009); Zbl. 0815.65002).

1.11.6 Discrepancy relative to sets systems X

Let X be a system of bounded measurable subsets X of Rs. The discrepancy
DX

N (xn) of the sequence x1, . . . ,xN of points in [0, 1)s is defined by

DX
N = sup

X∈X

∣∣∣∣A(X mod 1;N ;xn)

N
− |X|

∣∣∣∣ ,
where |X| denotes the Lebesgue measure of X and X mod 1 is defined by
considering the multiplicity x mod 1 of x ∈ X. The basic prototypes of X
are set boxes, cubes, balls, convex sets, etc. The classical discrepancies DN ,
D∗

N are defined relative to rectangular parallelepipeds aligned with the axes.

1.11.7 Discrepancy relative to cubes (cube-discrepancy)

Denote

DC
N = sup

C

∣∣∣∣A(C mod 1;N ;xn)

N
− |C|

∣∣∣∣
if xn ∈ [0, 1)s, where the supremum is taken over all cubes C ⊂ Rs aligned

with the axes. Similarly define discrepancy D
C(r)
N , where C(r) is the class of



1 – 86 1 Basic definitions and properties

all s–dimensional cubes of edge length not exceeding r (again aligned with
axes). If s = 2 then

DC
N ≤ DN ≤ 11DC

N

for any sequence xn ∈ [0, 1)2.

Notes: These boundaries were proved by I.Z.Ruzsa (1993), see also [DT, p. 35].

G. Larcher (1991) found boundaries ofD
C(r)
N for Kronecker sequences, cf. 3.4.1(IIIb).

G.Larcher: On the cube–discrepancy of Kronecker–sequences, Arch. Math. (Basel) 57 (1991),
no. 4, 362–369 (MR1124499 (93a:11064); Zbl. 0725.11036).
I.Z. Ruzsa: The discrepancy of rectangles and squares, in: Österreichisch – Ungarisch – Slowaki-
sches Kolloquium über Zahlentheorie (Maria Trost, 1992), (F.Halter–Koch, R.F.Tichy eds.), Grazer
Math. Ber., Vol. 318, Karl–Franzes – Univ. Graz, 1993, pp. 135–140 (MR1227410 (94j:11070); Zbl.
0784.11038).

1.11.8 Discrepancy relative to balls

• Let B(r) be the family of balls B = {x ∈ Rs ; |x − c| ≤ r} with radius r
and centered at c, where c is taken over all c ∈ Rs. The ball–discrepancy
of x1, . . . ,xN in [0, 1)s is

D
B(r)
N = sup

B∈B(r)

∣∣∣∣A(B mod 1;N ;xn)

N
− |B|

∣∣∣∣ .
Notes: J.J.Holt (1996) proved a variant of the Erdős – Turán inequality 1.9.0.8

for D
B(r)
N involving Bessel functions on the right–hand side. G.Harman (1998)

proved a stronger version which holds for all t > 0

D
B(r)
N ≤ c1(s)

(
rs−1

t
+

1

ts

)
+

+ c2(s)
∑

0<|h|<t,h∈Zs

(
1

ts
+min

(
rs,

r(s−1)/2

|h|(s+1)/2

)) ∣∣∣∣∣ 1N
N∑
n=1

e2πih·xn

∣∣∣∣∣
with |h| denoting the Euclidean metric. If B =

∪
0<r≤ 1

2
B(r) then this gives

DB
N ≤ c3(s)

1

t
+ c4(s)

∑
0<|h|<t,
h∈Zs

1

|h|(s+1)/2

∣∣∣∣∣ 1N
N∑
n=1

e2πih·xn

∣∣∣∣∣ .
J. Beck and W.W.L.Chen (1986) proved that DX

N does not satisfy Roth’s phe-
nomenon (for def. cf. 1.9 Note (VI)).

J. Beck – W.W.L.Chen: Note on irregularities of distribution, Mathematika 33 (1986), 148–163
(MR0859507 (88a:11071); Zbl. 0601.10039).
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G.Harman: On the Erdős–Turán inequality for balls, Acta Arith. 85 (1998), no. 4, 389–396
(MR1640987 (99h:11086); Zbl. 0918.11044).
J.J. Holt: On a form of the Erdős – Turán inequality, Acta Arith. 74 (1996), no. 1, 61–66
(MR1367578 (96k:11098); Zbl. 0851.11042).

1.11.9 Isotropic discrepancy

• The isotropic discrepancy IN of the sequence xn in [0, 1)s is defined by

IN = sup
C

∣∣∣∣A(C;N ;xn)

N
− |C|

∣∣∣∣ ,
where the supremum is taken over all convex subset C of [0, 1]s.

For any x1, . . . ,xN in [0, 1)s we have

DN (xn) ≤ IN (xn) ≤ 4sDN (xn)
1/s.

Notes: (I) This was proved by H.Niederreiter (1992, p. 17) using the bound IN ≤

s
(

4cs
s−1

)(s−1)/s

D
1/s
N with an absolute constant c (cf. also the paper H.Niedereiter

and J.M.Wills (1975)). In [KN, p. 95, Th. 1.6.] the form IN ≤ (4s
√
s+ 1)D

1/s
N can

be found.
(II) G. Larcher (1986, 1988) achieved some improvements for special sequences (see
3.4.1, 3.18.2, 3.18.1).

(III) E.Hlawka (1971) originally proved that IN ≤ 72sD
1/s
N .

E.Hlawka: Zur Definition der Diskrepanz , Acta Arith. 18 (1971), 233–241 (MR0286757 (44
#3966); Zbl. 0218.10063).
G.Larcher: Über die isotrope Discrepanz von Folgen, Arch. Math. (Basel) 46 (1986), no. 3,
240–249 (MR0834843 (87e:11091); Zbl. 0568.10029).
G.Larcher: On the distribution of s–dimensional Kronecker sequences, Acta Arith. 51 (1988),
no. 4, 335–347 (MR0971085 (90f:11065); Zbl. 0611.10033).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
H.Niederreiter – J.M.Wills: Diskrepanz und Distanz von Maßen bezüglich konvexer und Jor-
danschen Mengen, Math. Z. 144 (1975), no. 2, 125–134 (MR0376588 (51#12763); Zbl. 0295.28028).

1.11.10 Spherical–cap discrepancy

• [DT, p. 231]: Let S = {x ∈ Rs+1 : |x| = 1} be the s–dimensional sphere
and C = C(x, r) = {y ∈ S ; x ·y ≥ r}, −1 ≤ r ≤ 1, be a spherical cap with
normalized surface measure σ(C). The spherical–cap discrepancy is
defined by

SN = sup
C

∣∣∣∣A(C;N ;xn)

N
− σ(C)

∣∣∣∣ ,
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where xn is a sequence on S, and the supremum is taken over all spherical
caps. Moreover, SN ≫ N−1/2−1/(2s) for every sequence xn ∈ S.

Notes: The analogue to the Erdős – Turán – Koksma’s inequality for the spherical–
cap dicrepancy was proved by P.J.Grabner (1991).

P.J.Grabner: Erdős – Turán type discrepancy bounds, Monatsh. Math. 111 (1991), no. 2, 127–
135 (MR1100852 (92f:11108); Zbl. 0719.11046).

1.11.11 L2 discrepancy relative to a counting function

Let X =
{
X(t) ; t ∈ [0, 1]s

}
be a system of subsets of [0, 1]s. Let A

(
X(t);x1,

. . . ,xN

)
be the generalized counting function defined for t,x1, . . . ,xN

from [0, 1]s by the conditions
(i) A

(
X(t);x1, . . . ,xN

)
=
∑N

n=1A
(
X(t);xn

)
,

(ii) A
(
X(t);x

)
= 0 ∨ 1,

(iii) t ≤ t′ ⇒ A
(
X(t);x

)
≤ A

(
X(t);x

)
, where t = (t1, . . . , ts) ≤ t′ =

(t′1, . . . , t
′
s) if ti ≤ t′i for i = 1, 2, . . . , s,

(iv) T (x) =
{
t ∈ [0, 1]s ; A

(
X(t);x

)
= 1

}
is measurable in the Lebesque

sense.

In what follows we assume that (i)–(iv) holds for every t, t′, x1, . . . ,xN , x in
[0, 1]s. Then if g(x) is a d.f. defined on [0, 1]s then the L2 discrepancy

D
(2)
N (A, g) =

∫
[0,1]s

(
A(X(t);x1, . . . ,xN )

N
− g(x)

)2

dt

can be expressed in the form

D
(2)
N (A, g) =

1

N2

N∑
m,n=1

F (x,y),

where

F (x,y) =

∫
[0,1]s

g2(t) dt−
∫
T (x)

g(t) dt−
∫
T (y)

g(t) dt+

∫
T (x)∩T (y)

1 · dt,

and limN→∞D
(2)
N (A, g) = 0 if and only if

A(X(t);x1, . . . ,xN )

N
→ g(t)

for every point t ∈ [0, 1]s of continuity of g(t).

Notes: For a more general form which can be applied to 1.10.1, 1.10.2, 1.10.3,
1.11.4, 1.11.5 consult O. Strauch (1994, p. 608–609, Th. 2,3). The above expression
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of the L2 discrepancy D
(2)
N (A, g) gives impetus to the following generalization:

D
(2)
N (F,xn) =

1

N2

N∑
m,n=1

F (xm,xn)

where F (x,y) is continuous on [0, 1]2s. For such discrepancy Strauch (1994, p. 612,
Th. 4) proved that

G(xn) ⊂ G(F ) ⇐⇒ limN→∞D
(2)
N (F,xn) = 0,

where

G(F ) =
{
d.f. g(x) ;

∫
[0,1]2s

F (x,y) dg(x) dg(y) = 0
}
.

O. Strauch: L2 discrepancy, Math. Slovaca 44 (1994), 601–632 (MR1338433 (96c:11085); Zbl.
0818.11029).

1.11.12 Discrepancy relative to reproducing kernel

Reproducing kernel K(x,y) (see also 1.11.3, Note (VIII)) is a function on
[0, 1)s × [0, 1)s which satisfies
(i) K(x,y) = K(y,x) for all x,y ∈ [0, 1)s,
(ii)

∑N
m,n=1 tmtnK(xm,xn) ≥ 0 for all tn ∈ R, xn ∈ [0, 1)s, N = 1, 2, . . . ,

i.e. K(x,y) is symmetric and positive definite. Then the discrepancy
involving the reproducing kernel K is defined as

DK
N =

∫
[0,1]2s

K(x,y) dx dy

− 2

N

N∑
n=1

∫
[0,1]s

K(xn,y) dy +
1

N2

N∑
m,n=1

K(xm,xn).

The definition of this discrepancy is motivated by the following quadrature
error formula: Let W be a Hilbert space of all real valued function f(x) on
[0, 1)s endowed with an inner product f(x) · g(x) which satisfies
(j) K(x,y) ∈W for every fixed y ∈ [0, 1)s,
(jj) f(y) = K(x,y) · f(x) for all f ∈W and y ∈ [0, 1)s.

Then for every f ∈W and x1, . . . ,xN in [0, 1)s we have∣∣∣∣∣
∫
[0,1]s

f(x)− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤
√
DK

NVK(f),

where VK(f) = ∥f(x)− (f(x) · 1)/(1 · 1)∥ with ∥h(x)∥ =
√
h(x) · h(x). Here

the error bound is attained for constant functions.
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Notes: F.J.Hickernell (1998). He also noted that the choice of K(x,y) which

satisfies (i) and (ii) uniquely determines W and the accompanying inner product

(see G.Wahba (1990)). In (2002) he gave the following two examples of Hilbert

spaces W1 and W2 of integrands:

• If u ⊂ S = {1, 2, . . . , s} then |u| denotes the cardinality of u,

• xu denotes the vector of elements of x = (x1, . . . , xs) indexed by elements of u,

• [0, 1]u denotes the |u|–dimensional unit cube,

• γi, i = 1, 2, . . . , s, are arbitrary positive numbers,

• γu =
∏
i∈u γi,

• ||f ||1 =
∑
u⊂S γ

−2
u

∫
[0,1]u

(∫
[0,1]S\u

∂|u|f
∂xu

dxS\u

)2
dxu,

• ||f ||2 =
∑
u⊂S

∑
v⊂u γ

−2
u γ−2

v

∫
[0,1]v

(∫
[0,1]S\v

∂|u|+|v|f
∂xu∂xv

dxS\v

)2
dxv,

• Wj = {f ; ||f ||j <∞},
• Kj(x,y) =

∏s
i=1

(
− (−γ2

i )
j

(2j)! B2j

(
{xi − yi}

)
+
∑j
k=0

γ2k
i

(k!)2Bk(xi)Bk(yi)
)
,

where j = 1, 2 and Bk(x) denotes the kth Bernoulli polynomial (the so-called Sobolev
weighted space).

F.J.Hickernell: Lattice rules: How well do they measure up? (P.Hellekalek and G. Larcher eds.),
in: Random and quasi-random point sets, Lecture Notes in Statistics 138, pp. 109–166, Springer,
New York, NY, 1998 (MR1662841 (2000b:65007); Zbl. 0920.65010).
F.J.Hickernell: Obtaining O(N−2+ε) convergence for lattice quadrature rules, (K.–T. Fang,
F.J.Hickernell, H.Niederreiter eds.), in: Monte Carlo and quasi-Monte Carlo methods 2000. Pro-
ceedings of a conference, held at Hong Kong Baptist Univ., Hong Kong SAR, China, November 27
– December 1, 2000, pp. 274–289, Springer, Berlin, 2002 (MR1958860; Zbl. 1002.65009).
G.Wahba: Spline Models for Observational Data, CBMS–NSF Regional Conference Series in Ap-
plied Mathematics, 59, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990
(MR1045442 (91g:62028); Zbl. 0813.62001).

1.11.13 Non–uniformity

We shall use the following notations:

• a dyadic interval is an interval of the
[

j
2m ,

j+1
2m

)
,

• a dyadic box B ⊂ [0, 1]s is a Cartesian product of s dyadic intervals,
• t1, . . . , ts denote the (new) coordinates in the coordinate system with the

origin moved to the center of B,
• B+ denotes the union of those ”quadrants” ofB for which sign(t1 . . . ts) > 0,
• B− denotes the union of the elements of the partition of B not belonging

to B+,

• C
(s)
N = supB |A(B+;N ;xn) − A(B−;N ;xn)| is called the s–dimensional

non–uniformity of the given collection of points xn ∈ [0, 1)s, n = 1, 2, . . . ,
N , where the supremum is extended over all possible dyadic boxes B ⊂
[0, 1]s.



1.11 The multi–dimensional case 1 – 91

(I) Project the given points x1, . . . ,xN orthogonally onto the various k–
dimensional faces of [0, 1]s and calculate the k–dimensional non–uniformity

C
(k)
N of the projected points in the respective face. The non–uniformity of

x1, . . . , xN is then defined as

φ∞(N) = max
1≤k≤s

C
(k)
N .

Notes: (I) This discrepancy was introduced by I.M. Sobol’ (1960) (cf. H.Niederrei-
ter (1978, p. 967)). He proved that φ∞(N) = o(N) characterizes the u.d. of xn.
(II) Niederreiter (1978, p. 968) noted that φ∞(N) ≤ 2sNDN for any N points in
[0, 1]s.
(III) Sobol’ (1960) (cf. Sobol’ (1969, Ch. 4)) proved that if f(t) = f(t1, . . . , ts)

is a function which possesses continuous mixed partial derivative ∂kf
∂ti1 ...∂tik

for all

1 ≤ i1 < i2 < · · · < ik ≤ s, and all 1 ≤ k ≤ s, then∣∣∣∣∣ 1N
N∑
n=1

f(xn)−
∫
[0,1]s

f(t) dt

∣∣∣∣∣ ≤ c(f)φ∞(N)
(logN)s

N
.

(IV) For a fixed integer q, Sobol’ (1957) introduced the quantity

φq(N) = sup
(m1,...,ms)

 ∑
(j1,...,js)

|A(B+;N ;xn)−A(B−;N ;xn)|q
1/q

,

where

B =

[
j1
2m1

,
j1 + 1

2m1

)
× · · · ×

[
js
2ms

,
js + 1

2ms

)
.

He claims that φq(N) = o(N) characterizes the u.d. of xn, and that limq→∞ φq(N)
is hard to compute.
(V) Sobol’ (1969, p. 114, Chap. 3) mentioned that the non–uniformity φ∞ does not
satisfy Roth’s phenomenon (for the def. cf. 1.9, Note (VI)). In other words there exist
infinitely many sequences xn ∈ [0, 1) such that their every initial segment x1, . . . , xN
attains the absolute minimum of φ∞(N), e.g. every (0, 1)–sequence (cf. 1.8.18).

H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).
I.M. Sobol’: Multidimensional integrals and the Monte–Carlo method , (Russian), Dokl. Akad.
Nauk SSSR (N.S.) 114 (1957), no. 4, 706–709 (MR0092205 (19,1079b); Zbl. 0091.14601).
I.M. Sobol’: Accurate estimate of the error of multidimensional quadrature formulas for functions
of class Sp, (Russian), Dokl. Akad. Nauk SSSR 132 (1960), 1041–1044cpa (English translation:
Soviet Math. Dokl. 1 (1960), 726–729 (MR0138198 (25 #1645); Zbl. 0122.30702)).
I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).
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1.11.14 Partition discrepancy

The notion of non–uniformity from the previous item can be generalized as
follows:

• Let P = {Xt ; t ∈ T} be a partition of X =
∪

t∈T Xt into disjoint classes Xt

of sets of equal measure in [0, 1]s. For the sequence x1, . . . ,xN of points in
[0, 1)s define the partition discrepancy by

DP
N =

1

N
max
t∈T

(
max
X∈Xt

N∑
n=1

cX(xn)− min
X∈Xt

N∑
n=1

cX(xn)

)
.

We immediately get

DX
N ≤ DP

N ≤ 2DX
N .

Notes: I.M. Sobol’ and O.V.Nuzhdin (1991) gave this definition based on the dyadic
boxes

Xt =

 ∏
i=1,...,s

[(ui − 1)2−mi , ui2
−mi] ; ui = 1, . . . , 2mi , i = 1, . . . , s

 ,

where t = (m1, . . . ,ms) ∈ Ns0 − {0} (cf. also Sobol’ and B.V. Shukhman (1992)).
P.J.Grabner (1992) modified it for general X.

P.J.Grabner: Metric results on a new notion of discrepancy, Math. Slovaca 42 (1992), no. 5,
615–619 (MR1202177 (93m:11071); Zbl. 0765.11031).
I.M. Sobol’ – O.V.Nuzhdin: A new measure of irregularity of distribution, J. Number Theory 39
(1991), no. 3, 367–373 (MR1133562 (93a:11065); Zbl. 0743.11039).
I.M. Sobol’ – B.V. Shukhman: On computational experiments in uniform distribution, Österreich.
Akad. Wiss. Math.–Natur. Kl. Abt. Sitzungsber. II 201 (1992), no. 1–10, 161–167 (MR1237371
(95d:11097); Zbl. 0784.11039).

1.11.15 Abel discrepancy

• [DT, p. 268, 2.2.3.]: Let xn, n = 0, 1, . . . , be a sequence in the s–dimensional
unit cube [0, 1)s and put [x,y) = [x1, y1) × · · · × [xs, ys). If 0 < r < 1 then
define the s–dimensional Abel’s discrepancy Dr(xn) by

Dr(xn) = sup
[x,y)⊂[0,1]s

∣∣∣∣∣(1− r)
∞∑
n=0

c[x,y)(xn)r
n − (y1 − x1) . . . (ys − xs)

∣∣∣∣∣ .
The Erdős – Turán – Koksma’s inequality for Abel discrepancy has the form
(cf. [DT, p. 272, Th. 2.65.] and H. Niederreiter (1975, Th. 4)):
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Theorem 1.11.15.1. For an arbitrary positive integer H

Dr(xn) ≤
(
3

2

)s
 2

H + 1
+ (1− r)

∑
0<∥h∥∞≤H

1

r(h)

∣∣∣∣∣
∞∑
n=0

e2πih·xnrn

∣∣∣∣∣
 .

The Koksma – Hlawka inequality has the form (cf. [DT, p. 271, Th. 2.64]):
Theorem 1.11.15.2. Let f : [0, 1]s → R be of bounded variation V (f) in
the sense of Hardy and Krause. Then for any sequence xn, n = 0, 1, 2, . . . ,
in [0, 1)s we have∣∣∣∣∣(1− r)

∞∑
n=0

f(xn)r
n −

∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤ V (f)Dr(xn).

H.Niederreiter: Quantitative versions of a result of Hecke in the theory of uniform distribution
mod 1, Acta Arith. 28 (1975/76), no. 3, 321–339 (MR0389778 (52 #10609); Zbl. 0318.10037).

1.11.16 Polynomial discrepancy

• If x1, . . . ,xN (where xn = (xn,1, . . . , xn,s)) is a finite sequence in the s–
dimensional unit cube then the polynomial discrepancy PN is defined by

PN = sup
(m1,...,ms)∈Ns

∣∣∣∣∣∣ 1N
N∑

n=1

xm1
n,1 . . . x

ms
n,s −

s∏
j=1

1

mj + 1

∣∣∣∣∣∣ .
Its relation to the standard discrepancy DN is given by the inequalities

PN ≤ DN ≤ cs
1

| logPN |
.

Given an ε > 0, there exists an integer N and a set x1, . . . ,xN in [0, 1]s such
that PN < ε and

DN > c∗s
1

| logPN |s

where c∗s depends only on the dimension s.
Notes: The notion of the multi–dimensional polynomial discrepancy PN was also
introduced by E.Hlawka (1975) (for the one–dimensional case cf. 1.10.4). The double–
sided inequality for the extremal discrepancy was proved by R.F.Tichy (1984) and
the above lower bound by B.Klinger and R.F.Tichy (1997).

E.Hlawka: Zur quantitativen Theorie der Gleichverteilung, Österreich. Akad. Wiss. Math.–
Natur. Kl. Sitzungsber. II 184 (1975), 355–365 (MR0422183 (54 #10175); Zbl. 0336.10049).
B.Klinger – R.F.Tichy: Polynomial discrepancy of sequences, J. Comput. Appl. Math. 84
(1997), no. 1, 107–117 (MR1474405 (98j:11058); Zbl. 0916.11045).
R.F.Tichy: Beiträge zur Polynomdiskrepanz , Österreich. Akad. Wiss. Math.–Natur. Kl.
Sitzungsber. II 193 (1984), no. 8–10, 513–519 (MR0817922 (87g:11091); Zbl. 0564.10052).
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1.11.17 Dispersion

See H. Niederreiter (1992, p. 147–159, Chap. 6) and [DT, p. 11–13]:

• If x1,x2, . . . ,xN belong to [0, 1]s then the dispersion dN of xn’s in [0, 1]s

is defined by

dN = dN (x1, . . . ,xN ) = sup
x∈[0,1]s

min
1≤n≤N

|x− xn|,

where |x− xn| is the Euclidean distance. The dispersion based on the maxi-
mum distance ∥x− xn∥∞ will be denoted by d∞N . We immediately have

d∞N ≤ dN ≤
√
s d∞N ,

and for an arbitrary finite sequence x1,x2, . . . ,xN of points in [0, 1]s with the

extremal discrepancy DN we have

• dN ≤
√
sD

1/s
N (Niederreiter (1983, Th. 3)),

• d∞N ≤ 1
2 D

1/s
N (see Niederreiter (1992, p. 152, Th. 6.6) and [DT, p. 12,

Th. 1.17]),

• d∞N ≥ 1
2[N1/s]

, and this bound is sharp, because for every N and s there

exists a sequence xn, n = 1, 2, . . . , N , in [0, 1]s such that d∞N = 1
2[N1/s]

(see

Niederreiter (1985, Th. 1; 1992, p. 154, Th. 6.8) and [DT, p. 12, Remark 5]).

• For every dimension s, there is an infinite sequence xn, n = 1, 2, . . . ,

in [0, 1]s such that

d∞N = O(N−1/s)

and the order of magnitude of the error is the best possible. Sequences xn

fulfilling this condition are called low–dispersion sequences (see Nieder-

reiter (1984; 1985; 1986; 1992, p. 154, Th. 6.8), also cf. 3.19).

• [DT, p. 12, Th. 1.16]: The infinite sequence xn, n = 1, 2, . . . , in [0, 1]s is

dense in [0, 1]s if and only if

lim
N→∞

dN = 0.

• G.Larcher and H.Niederreiter (1993) showed that the dispersion of infinite

sequences xn, n = 1, 2, . . . , satisfies the lower estimate

lim sup
N→∞

N
1
s dN ≥ 1

2

(
s− 1

s(2(s−1)/s − 1)

)1/s

.
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• Niederreiter (1984; 1992, p. 153, Th. 6.7) proved that for an infinite se-

quence xn in [0, 1]s we have

lim sup
N→∞

NdN ≥ 1

log 4

and that (1985; 1992, p. 155, Th. 6.9) there exists a sequence xn such that

lim
N→∞

N1/sd∞N =
1

log 4
.

Notes: For the one-dimensional variant of the dispersion see 1.10.11.
(I) Niederreiter (1983; 1992, p. 148) proposed a quasi–Monte Carlo method for the
approximate evaluation of the extremes of continuous functions (called quasiran-
dom search or crude search) and showed that

mN ≤ sup
x∈[0,1]s

f(x) ≤ mN + λf (dN ),

and

mN ≤ sup
x∈[0,1]s

f(x) ≤ mN + λ∞f (d∞N ),

where m1 = f(x1) and

mn+1 =

{
mn, if f(xn+1) ≤ mn,

f(xn+1), if f(xn+1) > mn.

Here λf (t) and λ∞f (t) denote the moduli of the continuity of f (cf. p. 1 – 74 ). A
refinement of the crude search was proposed by Niederreiter and P. Peart (1986).
(II) J.P. Lambert (1988) describes a recursive method for the generation of points
of a low–dispersion sequence in the unit square.
(III) An explicit formula for the dispersion of two–dimensional g.l.p. sequences is
given in G. Larcher (1986), see 3.15.2(V).
(IV) Niederreiter (1992, p. 155) notes that the problem of determining the minimal
value of dN for a fixed N is equivalent to a difficult geometric problem of finding
the most economical covering of Rs by balls of equal radius in the Euclidean metric.
This problem has been solved only for s = 1, 2.

J.P. Lambert: A sequence well dispersed in the unit square, Proc. Amer. Math. Soc. 103 (1988),
no. 2, 383–388 (MR0943050 (89i:11090); Zbl. 0655.10055).
G.Larcher: The dispersion of a special sequence, Arch. Math. (Basel) 47 (1986), no. 4, 347–352
(MR 88k:11044; Zbl. 584.10031).
G.Larcher – H.Niederreiter: A lower bound for the dispersion of multidimensional sequences,
in: Analytic number theory and related topics (Tokyo, 1991), World Sci. Publishing, River Edge,
NJ, 1993, pp. 81–85 (MR1342309 (96e:11097); Zbl. 0978.11035).
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H.Niederreiter: A quasi–Monte Carlo method for the approximate computation of the extreme
values of a function, (P.Erdős – L.Álpár – G.Halász – A.Sárkőzy eds.), in: To the memory of
Paul Turán, Studies in pure mathematics, Birkäuser Verlag & Akadémiai Kiadó, Basel, Boston,
Stuttgart & Budapest, 1983, pp. 523–529 (MR0820248 (86m:11055); Zbl. 0527.65041).
H.Niederreiter: On a measure of denseness for sequences, in: Topics in classical number theory,
Vol. I, II (Budapest 1981), (G.Halász ed.), Colloq. Math. Soc. János Bolyai, Vol. 34, North–
Holland Publishing Co., Amsterdam, New York, 1984, pp. 1163–1208 (MR0781180 (86h:11058);
Zbl. 0547.10045).
H.Niederreiter: Quasi–Monte Carlo methods for global optimization, in: Proc. Fourth Pannon-
ian Symp. on Math. Statistics (Bad Tatzmannsdorf, 1983), Riedel, Dordrecht, 1985, pp. 251–267
(MR0851058 (87m:90092); Zbl. 0603.65043).
H.Niederreiter: Good lattice points for quasirandom search methods, in: System Modelling
and Optimization, (A. Prékopa, J. Szelezsán, and B. Strazicky eds.), Lecture Notes in Control and
Information Sciences, Vol. 84, Springer, Berlin, 1986, pp. 647–654 (MR0903508 (89f:11112); Zbl.
0619.90066).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
H. Niederreiter – P. Peart: Localization of search in quasi–Monte Carlo methods for global
optimization, SIAM J. Sci. Statist. Comput.) 7 (1986), no. 2, 660–664 (MR0833928 (87h:65017);
Zbl. 0613.65067).

1.11.18 Spectral test

• Let xn be a sequence of points from [0, 1)s. The spectral test σN (xn) of
its first N elements is given by the quantity

σN (xn) = sup
k∈Zs,k ̸=0

1

|k|

∣∣∣∣∣ 1N
N∑

n=1

e2πik·xn

∣∣∣∣∣ ,
where |k| =

√
k21 + · · ·+ k2s denotes the Euclidean norm of k = (k1, . . . , ks).

Then xn is u.d. in [0, 1)s if and only if

lim
N→∞

σN (xn) = 0.

P.Hellekalek: On the assessment of random and quasi–random point sets, in: Random and
Quasi–Random Point Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statistics, 138, Sprin-
ger Verlag, New York, Berlin, 1998, pp. 49–108 (MR1662840 (2000c:11127); Zbl. 0937.65004).

1.12 Quasi–Monte Carlo applications

• E.Hlawka (1998) discusses the following modelling problems: Mendel’s
laws from genetics; entropy; Bell’s inequality (in quantum physics); Bayesian
statistics; regression; random flight; a model for light; the Coulomb gas;
average length of a molecule; model of turbulence.

• M.Drmota and R.F.Tichy in [DT, pp. 368–432, Chap. 3] discusses: nu-
merical integration in mathematical finance; average case analysis; spherical
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designs and Chebyshev quadrature; slice dispersion and polygonal approxi-
mation of curves; the heat equation; the Boltzmann equation.

• In [Monte Carlo and Quasi–Monte Carlo Methods 2000] (2002) are dis-
cussed: finance and insurance; experimental design; control variates; simu-
lation of diffusion; Markov chain simulation in statistical physics; evaluation
of the Asian basket option; transport problems; computing extremal eigen-
values; American option pricing; non–linear time series; etc.

• In [Quasi–Monte Carlo Methods in Finance and Insurance] (2002) are dis-
cussed: strategies for pricing Asian options; value at risk; simulation of gen-
eralized ruin model; differential equations with multiple delayed arguments.

• N.M.Korobov (1963, p. 190–213) applied the theory of good lattice points
(see 3.15) to approximations of solutions of Fredholm integral equations of
the second type.

• HuaLoo Keng and WangYuan (1981, pp. 159–224, Chap. 8–10) show the
applications to: estimations of numerical errors for quadrature formulas; in-
terpolation of functions by polynomials; approximate solutions of Fredholm
integral equations of the second type; Volterra equation; eigenvalues; Cauchy
and Dirichlet problem of partial differential equations.

• R.F.Tichy (1990) used quasi–Monte Carlo method to compare three dif-
ferent types of sequences (good lattice points sequences, cf. 3.15.1, practical
lattice points. see 3.15.1 Note(X), and lattice rules, see 3.17) in order to find
an approximate solution of a special class of partial differential equation.

• S.Tezuka (1998) surveys applications in financial mathematics.

• A.Keller (1998) used a low discrepancy sequence for quasi–Monte Carlo
integration of the Neumann series, where it is applied to global illumination
problem.

• O. Strauch (2003) computed the a.d.f. for scalar product xn ·yn and applied
it to a modified one–time pad cipher, see 2.3.24.
• M.Drmota (1988) investigated a robust control system by using the so–
called practical lattice points (cf. 3.15.1 Note (X)).

M.Drmota: Such– und Prüfprozesse mit praktischen Gitterpunkten, Anz. Österreich. Akad.
Wiss. Math.–Natur. Kl. 125 (1988), 23–28 (MR1003653 (90m:11113); Zbl. 0825.11005).
E.Hlawka: Statistik und Gleichverteilung, Grazer Math. Ber. 335 (1998), ii+206 pp (MR1638218
(99g:11093); Zbl. 0901.11027).
L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).
A.Keller: The quasi–random walk , in: Monte Carlo and Quasi–Monte Carlo Methods 1996 (Pro-
ceedings of a conference at the University of Salzburg, Austria, July 9-12, 1996), (H.Niederreiter,
P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in Statistics, 127, Springer Verlag, New
York, Berlin, 1998, pp. 277–299 (MR1644526 (99d:65368); Zbl 0885.65150).
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N.M.Korobov: Number–theoretic Methods in Approximate Analysis, (Russian), Library of Ap-
plicable Analysis and Computable Mathematics, Fizmatgiz, Moscow, 1963 (MR0157483 (28 #716);
Zbl. 0115.11703).
Monte Carlo and Quasi–Monte Carlo Methods 2000 (Proceedings of a Conference held at Hong
Kong Baptist University, Hong Kong SAR, China, Nov. 27–Dec. 1, 2000, (Kai–Tai Fang, F.J.Hicker-
nell, H.Niederreiter eds.), Springer Verlag, New York, Berlin, 2002 (MR1958842
(2003i:65006); Zbl. 0980.00040).
Quasi–Monte Carlo Methods in Finance and Insurance, (R.Tichy ed.), Grazer Math. Ber., 345,
2002, 129 pp. (MR1985927 (2004a:62012); Zbl. 1006.00021).
O. Strauch: On distribution functions of sequences generated by scalar and mixed product , Math.
Slovaca 53 (2003), no. 5, 467–478 (MR2038514 (2005d:11108); Zbl. 1061.11042).
R.F.Tichy: Random points in the cube and on the sphere with applications to numerical analysis,
J. Comput. Appl. Math. 31 (1990), no. 1, 191–197 (MR1068159 (91j:65009); Zbl. 0705.65003).
S.Tezuka: Financial applications of Monte–Carlo and quasi–Monte Carlo methods, in: Random
and Quasi–Random Point Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statistics, 138,
Springer Verlag, New York, Berlin, 1998, pp. 303–332 (MR1662845; Zbl. 0928.91023).



2. One–dimensional sequences

2.1 Criteria for asymptotic distribution functions

2.1.1. Weyl’s limit relation. The sequence xn mod 1 is u.d. if and only
if for every continuous function f : [0, 1] → R we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0
f(x) dx.

Notes: (I) (H.Weyl (1916), cf. [KN, p. 2, Th. 1.1]): The maximal class of the appli-
cable functions f is the class of the Riemann integrable functions, cf. J.F.Koksma
and R. Salem (1950), N.G. de Bruijn and K.A.Post (1968), or Ch.Binder (1971).
On the other hand, the same conclusion follows if f is restricted to some proper
subclasses of the class of continuous functions as
(a) the set of all polynomials, or even the set of polynomials of the form xh with

h = 1, 2, . . . ,
(b) the set of the all trigonometric polynomials, or simply the set of exponentials

e2πihx with h = ±1,±2, . . . (cf. 2.1.2),
(c) the set of periodic Bernoulli polynomials Bh(x), h = 1, 2, . . . .

(II) B.G. Sloss and W.F.Blyth (1993) replaced the class of continuous functions
by the class of Walsh’s functions wh(x), h = 1, 2, . . . , which are orthogonal in
[0, 1]. These are defined for h =

∑∞
k=0 ak2

k by wh(x) =
∏∞
k=0(rk(x))

ak , where
rk(x) = r(2kx) and

r(x) =

{
1, if x ∈ [0, 1/2),

−1, if x ∈ [1/2, 1].

Generally, let

• k = k0 + k1b+ k2b
2 + · · ·+ knb

n, kn ̸= 0, be a b-adic expression of an integer k,

• x = x0

b + x1

b2 + . . . be a b-adic representation of x ∈ [0, 1). Then

• walk(x) = e
2πi
b (k0x0+k1x1+···+knxn), walk : [0, 1] → C, is the k-th Walsh function in

the base b, and

• walk(x) =
∏s
i=1 walki(xi), where

• k = (k1, k2, . . . , ks) is a vector with nonnegative integer coordinates.
(III) J.Horbowicz (1981) reduced the length of interval of the integration: Let f be
Riemann integrable and assume that the set {x ∈ [0, 1]; f(x) = 0} has zero Lebesgue

2 – 1
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measure. Then the sequence xn mod 1 is u.d. if and only if for every subinterval
[α, β) ⊂ [0, 1] we have

lim
n→∞

N−1
N∑
n=1

f(xn)c[α,β)(xn) =

∫ β

α

f(x) dx.

If f(x) = x this gives the criterion proved by Pólya and Szegő (1964, Aufg. 163).
The condition ”zero Lebesgue measure” can be replaced by ”zero Jordan measure”,
cf. T. Šalát (1987).
(IV) Let f : [0, 1] → R be a bounded function and X be the set of all limit points of

the integral sums
∑N
n=1 f(tn)(yn− yn−1), where tn ∈ [yn−1, yn] and the diameter of

the partition 0 = y0 < y1 < · · · < yN = 1 tends to 0 (i.e. X is the set of all Riemann
integrals of the function f over [0, 1]). S. Salvati and A.Volčič (2001) proved that
for every non–empty compact and connected set C ⊂ X there exists a u.d. sequence
xn in [0, 1) such that the set of all limit points of

1

N

N∑
n=1

f(xn), N = 1, 2, . . . ,

coincides with C.

Ch.Binder: Über einen Satz von de Bruijn und Post , Österreich. Akad. Wiss. Nath.–Natur. Kl.
Sitzungsber. II 179 (1971), 233–251 (MR0296224 (45 #5285); Zbl. 0262.26010).
N.G. de Bruijn – K.A.Post: A remark on uniformly distributed sequences and Riemann integra-
bility, Nederl. Akad. Wetensch. Proc. Ser. A 71 30 (1968), 149–150 (MR0225946 (37 #1536);
Zbl. 0169.38401). (=Indag. Math. 30 (1968), 149–150).
J.Horbowicz: Criteria for uniform distribution, Nederl. Akad. Wetensch. Indag. Math. 43
(1981), no. 3, 301–307 (MR0632169 (82k:10068); Zbl. 0465.10039).
J.F.Koksma – R. Salem: Uniform distribution and Lebesgue integration, Acta Sci. Math. (Szeged)
12B (1950), 87–96 (MR0032000 (11,239b); Zbl. 0036.03101).
G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).
T. Šalát: Criterion for uniform distribution of sequences and a class of Riemann integrable func-
tions, Math. Slovaca 37 (1987), no. 2, 199–203 (MR0899436 (88j:11042); Zbl. 0673.10038).
S. Salvati – A.Volčič: A quantitative version of a de Bruijn – Post theorem, Math. Nachr. 229
(2001), 161–173 (MR1855160 (2002g:11108); Zbl. 0991.11045).
B.G. Sloss – W.F.Blyth: Walsh functions and uniform distribution mod 1, Tôhoku Math. J.
(2) 45 (1993), no. 4, 555–563 (MR1245722 (94k:11087); Zbl. 0799.11020).
H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).

2.1.2. Weyl’s criterion. The sequence xn mod 1 is u.d. if and only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 for all integers h ̸= 0.
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Notes: H.Weyl (1916), cf. [KN, p. 7, Th. 2.1]. It is sufficient to consider only the
values h = 1, 2, . . . .

H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).

2.1.3. L2 discrepancy criterion. The sequence xn in [0, 1) is u.d. if and
only if

lim
N→∞

(
1

3
+

1

N

N∑
n=1

x2n − 1

N

N∑
n=1

xn − 1

2N2

N∑
m,n=1

|xm − xn|

)
= 0,

or equivalently, if and only if

(i) limN→∞
1
N

∑N
n=1 xn = 1

2 , and

(ii) limN→∞
1
N

∑N
n=1 x

2
n = 1

3 , and

(iii) limN→∞
1
N2

∑N
m,n=1 |xm − xn| = 1

3 .

Notes: [KN, p. 145, Th. 5.3]

2.1.4.

(I) The sequence xn mod 1 has the given a.d.f. g(x) if and only if for every
continuous function f : [0, 1] → R we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0
f(x) dg(x),

and xn mod 1 has the a.d.f. if and only if the limit on the left hand side
exists for every continuous f . Note that it is sufficient to take the polynomials
x, x2, x3, . . . for f(x).

(II) In order that xn mod 1 has the a.d.f., it is both necessary and sufficient
that (1) the limit

βk = lim
N→∞

1

N

N∑
n=1

e2πikxn

exists for every integer k. This a.d.f. will then be continuous if and only if
(2)

lim inf
N→∞

1

2N + 1

N∑
k=−N

|βk|2 = 0,
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and absolutely continuous with the derivative belonging to L2(0, 1) if and
only if (3)

∞∑
k=−∞

|βk|2 <∞.

(III) Let g(x) be continuous at x = 0 and x = 1. Then the sequence xn mod 1
has a.d.f. g(x) if and only if

lim
N→∞

1

N

N∑
n=1

e2πihxn =

∫ 1

0
e2πihx dg(x) for all integers h ̸= 0.

(IV) Given a d.f. g(x), the sequence xn mod 1 has a.d.f. g(x) if and only if

lim
N→∞

1

N

N∑
n=1

e2πi
h
2
{xn} =

∫ 1

0
e2πi

h
2
x dg(x) for all integers h ̸= 0.

Notes: (I) This is a modification to the Weyl’s limit relation. The second Helly

theorem 4.1.4.13
(
saying that 1

N

∑N
n=1 f({xn}) =

∫ 1

0
f(x) dFN (x) →

∫ 1

0
f(x) dg(x)

)
implies the necessary condition in (I). The sufficiency follows from the first Helly
theorem 4.1.4.12.
The reduction to f(x) = x, x2, x3, . . . is clear, it follows, for instance, from the ap-
proximation of f(x) by Bernstein polynomial of degree n

Bn(x; f) =
n∑
k=0

f
(
k
n

) (
n
k

)
xk(1− x)n−k.

Let us mention the Hausdorff moment problem here: Let s0 = 1, s2, s3, . . . be a
given sequence in [0, 1]. Then there exists a d.f. g(x) such that

sn =
1∫
0

xn dg(x), n = 0, 1, 2, . . . ,

if and only if
m∑
i=0

(−1)i
(
m
i

)
si+k ≥ 0 for m, k = 0, 1, 2, . . . ,

and the solution function g(x) is unique (cf. N.I. Achyeser (1961), J.A. Shohat and
J.D.Tamarkin (1943)).
(II) The assertion (2) involving the continuity of the a.d.f. is due to N.Wiener (1924)
and I.J. Schoenberg (1928), and is calledWiener – Schoenberg theorem (cf. [KN,
p. 55, Th. 7.5]). The case (3) involving the absolute continuity is due to R.E. Edwards
(1967), cf. P.D.T.A.Elliott (1979, Vol. 1, p. 67, Lemma 1.46). Note that the con-
ditions in (II) are equivalent to the following ones: (1) the coefficients βk exist for

k = 1, 2, . . . , (2) limN→∞
1
N

∑N
k=1 |βk|2 = 0, and (3)

∑∞
k=1 |βk|2 <∞.

(III) The Weyl criterion cannot be modified immediately, for instance because c0(x),
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c1(x), hβ(x) cannot be distinguished by e2πihx with h = 0,±1,±2, . . . .
(IV) Note that every continuous f : [0, 1] → R can be approximated by polynomials

in e2πi
h
2 x with h = 0,±1,±2, . . . (cf. O. Strauch (1999, p. 34, Th. 1,2)).

N.I. Achyeser (Achieser): The Classical Problem of Moments, (Russian), Gos. Izd. Fiz. – Mat.
Literatury, Moscow, 1961.
S.Bernstein: On the Best Approximation of Continuous Functions by Polynomials of a Given
Degree, (Russian), Charkov, 1912 (JFM 43.0493.01).
R.E.Edwards: Fourier Series. A Modern Introduction, Vol. I, Holt, Rinehart and Winston, Inc.,
New York, Toronto, London, 1967 (MR0216227 (35 #7062); Zbl. 0152.25902).
P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).
F.Hausdorff: Momentprobleme für ein endliches Interval , Math. Zeitschr. 16 (1923), 220–248
(MR1544592; JFM 49.0193.01).
I.J. Schoenberg: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928),
171–199 (MR1544950; JFM 54.0212.02).
J.A. Shohat – J.D.Tamarkin: The Problem of Moments, Mathematical Surveys, Vol. 1, Amer.
Math. Soc., Providence, Rhode Island, 1943 (MR0008438 (5,5c) ; Zbl. 0063.06973).
O. Strauch: Distribution of Sequences (in Slovak), Mathematical Institute of the Slovak Academy
of Sciences, DSc Thesis, Bratislava, Slovakia, 1999.
N.Wiener: The quadratic variation of a function and its Fourier coefficients, J. Math. Phys. 3
(1924), 72–94 (JFM 50.0203.01).

2.1.5. L2 discrepancy criterion. The sequence xn in [0, 1) has the a.d.f.
g(x) if and only if

lim
N→∞

(
1 +

∫ 1

0
g2(x) dx− 2

∫ 1

0
g(x) dx+

2

N

N∑
n=1

∫ xn

0
g(x) dx−

− 1

N

N∑
n=1

xn − 1

2N2

N∑
m,n=1

|xm − xn|
)

= 0,

or equivalently, if and only if

(i) limN→∞
1
N

∑N
n=1 xn =

∫ 1
0 x dg(x),

(ii) limN→∞
1
N

∑N
n=1

∫ xn
0 g(x) dx =

∫ 1
0

(∫ x
0 g(t) dt

)
dg(x),

(iii) limN→∞
1
N2

∑N
m,n=1 |xm − xn| =

∫ 1
0

∫ 1
0 |x− y| dg(x) dg(y).

Notes: O. Strauch (1994, p. 176, Th. 1). This is also true if xn ∈ [0, 1].

O. Strauch: A new moment problem of distribution functions in the unit interval , Math. Slovaca
44 (1994), no. 2, 171–211 (MR1282534 (95i:11082); Zbl. 0799.11023).
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2.1.5.1 The sequence xn in [0, 1) has an a.d.f. if and only if

lim
M,N→∞

(
1

MN

M∑
m=1

N∑
n=1

|xm − xn|

− 1

2M2

M∑
m,n=1

|xm − xn| −
1

2N2

N∑
m,n=1

|xm − xn|
)

= 0.

O. Strauch – J.T.Tóth: Distribution functions of ratio sequences, Publ. Math. (Debrecen) 58
(2001), 751–778 (MR1828725 (2002h:11068); Zbl. 0980.11031).

2.1.6. The sequences

xn mod 1, n = 1, 2, . . . and (xm − xn) mod 1, m, n = 1, 2, . . . ,

are simultaneously

u.d.

and for their discrepancies we have

DN ≤ c
√
DN2(1 + | logDN2 |), with an absolute constant c.

Here DN denotes the discrepancy of xn mod 1, while DN2 stands for the
discrepancy of xm − xn mod 1, where the sequence xm − xn, m,n = 1, 2, . . . ,
is ordered in such a way, that the first N2 terms are xm − xn for m,n =
1, 2, . . . , N .

Notes: J.W.S.Cassels (1953), cf. [KN, p. 163, Th. 6.1].
(I) I.M.Vinogradov (1926) proved that DN < C 3

√
DN2 . His proof is based on the

case k = n of the following identity, called Vinogradov’s one by J.G. van der Corput
and Ch.Pisot (1939, p. 478), who extended the original Vinogradov’s result to the
form: Let k ≥ 2 be an integer such that the numbers kx1, . . . , kxN are integers. If

RN (α, β) = A([α, β) mod 1;N ;xn mod 1)−N(β − α),

R∗
N2(α, β) = A([α, β) mod 1;N2; (xm − xn) mod 1)−N2(β − α).

then for every integer t we have

k−1∑
h=0

R2
N

(
h

k
,
h+ t

k

)
=

τ−1∑
ℓ=0

R∗
N2

(
−ℓ
k
,
ℓ+ 1

k

)
where τ stands for the distance of t to the nearest integral multiple of k (with the
convention that the empty sum vanishes). An account on Vinogradov’s method can
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also be found in A.O.Gel’fond and Yu.V. Linnik (1966, Ch. 7, § 2).
(II) Another proof of Vinogradov’s result was given by Cassels (1950), who simulta-
neously specified the constant c = 12.
(III) Vinogradov’s method and his result was further strengthened by van der Corput
who proved (cf. J.F.Koksma (1936, p. 95)) that

DN ≤ 25+
√

2| logDN2 |
√
DN2 .

J.G. van der Corput and C.Pisot (1939)) proved later

DN < 2
7
2+

√
| log D

N2 |
log 2

√
DN2 ,

or that

DN ≤ 2
7
2+

1
4εD

1
2−ε
N2 for every ε > 0.

This gives Vinogradov’s result for ε = 1/6 and also the value C = 26.
(IV) If k → ∞ then J.G. van der Corput and C.Pisot (1939, p. 478) deduced from (I)
that ∫ 1

0

R2
N (α, α+ t) dα =

∫ µ

0

R∗
N2(−α, α) dα,

where µ the distance of t to the nearest integer. (For another form of this relation
cf. [KN, p. 166, Th. 6.3]).

J.W.S.Cassels: A theorem of Vinogradoff on uniform distribution, Proc. Cambridge Phil. Soc.
46 (1950), 642–644 (MR0045166 (13,539c); Zbl. 0038.19101).
J.W.S.Cassels: A new inequality with application to the theory of diophantine approximation,
Math. Ann. 162 (1953), 108–118 (MR0057922 (15,293a); Zbl. 0051.28604).
A.O.Gel’fond – Yu.V. Linnik: Elementary Methods in Analytic Number Theory, International
Series of Monographs on Pure and Applied Mathematics. 92, Pergamon Press, Oxford, New York,
Toronto, 1966 (Russian original: Moscow, 1962 (MR0188134 (32 #5575a); Zbl. 0111.04803);
French translation: Gauthier – Villars, Paris 1965 (MR0188136 (32 #5576); Zbl. 0125.29604); En-
glish translation also published by Rand McNally & Co., Chicago 1965 (MR0188135 (32 #5575b));
Zbl. 0142.01403).
J.F.Koksma: Diophantische Approximationen, Ergebnisse der Mathematik und Ihrer Grenzgebi-
ete, Vol. 4, Julius Springer, Berlin, 1936 (Zbl. 0012.39602; JFM 62.0173.01).
J.G. van der Corput – C.Pisot: Sur la discrépance modulo un. (Première communication),
Proc. Akad. Wet. Amsterdam 42 (1939), 476–486 (JFM 65.0170.02; Zbl. 0021.29701). (=Indag.
Math. 1 (1939), 143–153).
I.M.Vinogradov: On fractional parts of integer polynomials, (Russian), Izv. AN SSSR 20 (1926),
585–600 (JFM 52.0182.03).

2.1.7. The sequence

xn ∈ [0, 1), n = 1, 2, . . . ,
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is u.d. if and only if the sequence

|xm − xn|, m, n = 1, 2, . . . ,

has the a.d.f.

g(x) = 2x− x2.

Here the double sequence |xm − xn|, for m,n = 1, 2, . . . , is ordered to an
ordinary sequence yn in such a way that the first N2 terms of yn are |xm−xn|
for m,n = 1, 2, . . . , N .

If D
(2)
N denotes the L2 discrepancy of x1, . . . , xN with respect to g(x) = x

and D
(2)
N2 denotes the L2 discrepancy of |xm−xn| for m,n = 1, 2, . . . , N , with

respect to g(x) = 2x− x2, then

12(D
(2)
N )2 ≤ D

(2)
N2 ≤ 12D

(2)
N .

Notes: In the first inequality it is assumed that for every 1 ≤ m ≤ N there exists
an n, 1 ≤ n ≤ N , such that xn = 1− xm. This criterion is also true for xn ∈ [0, 1].

O. Strauch: On the L2 discrepancy of distances of points from a finite sequence, Math. Slovaca
40 (1990), 245–259 (MR1094777 (92c:11078); Zbl. 0755.11022).

2.2 Sufficient or necessary conditions for a.d.f.’s

2.2.1. van der Corput difference theorem. If the sequence of differences

(xn+h − xn) mod 1, n = 1, 2, . . . ,

is u.d. for every h = 1, 2, . . . , then the original sequence

xn mod 1, n = 1, 2, . . . ,

is also

u.d.

Notes: (I) J. G. van der Corput (1931). Several authors noticed that the assump-
tion on h can be weakened by restricting the range of h. E.Hlawka (1984, p. 31)
calls van der Corput difference theorem the main theorem of the theory of u.d.
(II) T.Kamae and M.Mendès France (1978) and M.Mendès France (1978) called
a set H of positive integers a van der Corput (abbreviated vdC) one if the u.d.
of xn+h − xn mod 1 for all h ∈ H implies that also xn mod 1 itself is u.d. For
instance:
(i) H = {[nα] ; n ∈ N} is vdC for all α ≥ 1.
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(ii) H ⊂ N with asymptotic density 1 is vdC.
(iii) H = {p − 1 ; p prime} and H = {p + 1 ; p prime} are vdC, but H = {p +

k ; p prime}, for k ̸= ±1 is not vdC.
(iv) Let p(x) be a polynomial with integer coefficients. Then H = {p(n) ; n ∈ N}

is vdC if and only if the congruence p(n) ≡ 0 (mod q) has a solution for every
integers q ≥ 1. E.g. taking p(n) = nk, or p(n) = n2 − 1 we get vdC sets, but
for p(n) = n2 + 1, or p(n) = 2n+ 1 the resulting sets are not vdC.

(v) If A ⊂ N is infinite then the difference set H = A− A = {i− j > 0 ; i, j ∈ A}
is vdC.

(vi) If H = {h1 < h2 < . . . } is lacunary (i.e. if hn+1

hn
≥ α > 1 for n = 1, 2, . . . ) then

H is not vdC.

T.Kamae and M.Mendès France (1978) proved that a sufficient condition for H to
be a vdC set is: to every ε > 0 there exists a trigonometric polynomial f(x) =∑
k∈H ak cos(kx) such that f(0) = 1 and f(x) > −ε for all x. I.Z. Ruzsa (1982)

completed the theory of vdC sets and in 1984 he proved that this condition is also
necessary. Kamae and Mendès France (1978) also observed that every vdC set is
a Poincaré set (also called recurrent set: a subset Λ of positive integers is a
Poincaré set whenever (X,B, µ, T ) is a dynamical system and A a measurable set
of positive measure, then µ(T−m(A) ∩ A) > 0 for some m ∈ Λ). J. Bourgain (1987)
proved that there is a recurrence set which is not vdC. Other characterizations of
recurrence sets and vdC sets can be found in Kamae and Mendès France (1978),
A.Bertrand – Mathis (1986) and Ruzsa (1982), (1982/83), (1983), [DT, p. 199–200].
(III) Another general version of van der Corput’s difference theorem was given by
R.J. Taschner (1983).
(IV) N.M.Korobov and A.G.Postnikov (1952) proved that u.d. of differences (xn+h−
xn) mod 1 also implies that the subsequence xqn+r mod 1, n = 1, 2, . . . , is u.d. for
all integers q ≥ 1 and r ≥ 0.
(V) E.Hlawka (1960) called a property E of sequences xn of real numbers heredi-
tary if the following implication holds: If xn+h − xn has the property E for every
positive integer h, then xn itself and all its subsequences of the form xqn+r with
integral r ≥ 0 and q ≥ 1 also have the property E. He found several hereditary
properties different from u.d., e.g. completely u.d.
(VI) van der Corput difference theorem for well distributed sequences was proved by
B. Lawton (1952).
(VII) The sequence xn = log(3/2)n mod 1 is u.d. but xn+1 − xn = log 3 − log 2 is
obviously not. A more simple example provides the sequence nα with irrational α.
(VIII) In 1.8.4 (II) M.Tsuji’s reformulation of van der Corput difference theorem for
weighted u.d. sequences is given.
(IX) van der Corput weighted difference theorem. B.Massé nd D. Schneider
(2014) gives the following generalization: Let xn be a sequence of real numbers, and

wn > 0 a sequence of weights satisfying WN =
∑N
n=1 wn → ∞. Set

lh,k = lim sup
N→∞

∣∣∣∣ 1

WN

N∑
n=1

wne
2πik(xn+h−xn)

∣∣∣∣.
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If

lim
H→∞

H∑
h=1

lh,k = 0

for all k, then xn mod 1 is u.d. with respect to weights wn.

A.Bertrand–Mathis: Ensembles intersectifs et récurrence de Poincaré, Israel J. Math. 55 (1986),
no. 2, 184–198 (MR0868179 (MR 87m:11071); Zbl. 0611.10032).
J. Bourgain: Ruzsa’s problem on sets of recurrence, Israel J. Math. 59 (1987), no. 2, 150–166
(MR0920079 (89d:11012); Zbl. 0643.10045).
E.Hlawka: Erbliche Eigenschaften in der Theorie der Gleichverteilung, Publ. Math. Debrecen 7
(1960), 181–186 (MR0125103 (23 #A2410); Zbl. 0109.27501).
E.Hlawka: The Theory of Uniform Distribution, A B Academic Publishers, Berkhamsted, 1984
(translation of the original German edition Hlawka (1979)) (MR0750652 (85f:11056); Zbl. 0563.10001).
T.Kamae – M.Mendès France: van der Corput difference theorem, Israel J. Math. 31 (1978),
335–342 (MR0516154 (80a:10070); Zbl. 0396.10040).
N.M.Korobov – A.G.Postnikov: Some general theorems on the uniform distribution of frac-
tional parts, (Russian), Dokl. Akad. Nauk SSSR (N.S.) 84 (1952), 217–220 (MR0049246 (14,143e);
Zbl. 0046.27802).
B.Lawton: A note on well distributed sequences, Proc. Amer. Math. Soc. 10 (1959), 891–893
(MR0109818 (22 #703); Zbl. 0089.26902).
B.Massé – D. Schneider: The mantissa distribution of the primorial numbers, Acta Arith. 163
(2014), no. 1, 45–58 (MR3194056; Zbl. 1298.11074).
M.Mendès France: Les ensembles de van der Corput , in: Séminaire Delange-Pisot-Poitou, 19e
année: 1977/78, Théorie des nombres, Fasc. 1, Exp. No. 12, Secrétariat Mathématique, Paris,
1978, 5 pp. (MR0520307 (80d:10074); Zbl. 0405.10033).
I.Z. Ruzsa: Uniform distribution, positive trigonometric polynomials and difference sets, Seminar
on Number Theory, 1981/1982, Exp. No. 18, Univ. Bordeux I, Talence 1982, 18 pp. (MR0695335
(84h:10073); Zbl. 0515.10048).
I.Z. Ruzsa: Ensembles intersectifs, Séminaire de Théorie des Nombres de Bordeaux 1982/1983,
Univ. Bordeux I, Talence.
I.Z. Ruzsa: Connections between the uniform distribution of a sequence and its differences, in:
Topics in classical number theory, Vol. I, II, (Budapest 1981), (G.Halász ed.), Colloq. Math. Soc.
János Bolyai, Vol. 34, North–Holland Publishing Co., Amsterdam, New York, 1984, pp. 1419–1443
(MR0781190 (86e:11062); Zbl. 0572.10035).
R.J.Taschner: A general version of van der Corput’s difference theorem, Pacific J. Math. 104
no. 1, (1983), 231–239 (MR0683740 (84m:10045); Zbl. 0503.10034).
J.G. van der Corput: Diophantische Ungleichungen I. Zur Gleichverteilung modulo Eins, Acta
Math. 56 (1931), 373–456 (MR1555330; JFM 57.0230.05; Zbl. 0001.20102).

2.2.2. Open problem. If the sequence

k(xn+h − xn)− h(xn+k − xn) mod 1, n = 1, 2, . . . ,

is u.d. for every k, h = 1, 2, . . . , k > h, then the original sequence

xn mod 1, n = 1, 2, . . . ,

is also

u.d.

Notes: This problem was posed by M.H.Huxley at the Conference on Analytic and
Elementary Number Theory, Vienna, July 18–20, 1996.
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2.2.3. If the sequence

(xpn − xn) mod 1, n = 1, 2, . . . ,

is u.d. for all primes p, then

xn mod 1, n = 1, 2, . . . ,

is also

u.d.

Notes: An unpublished result attributed to G.Halász and R.Vaughan (cf. MR
84m:10045).

2.2.4. If the sequence

(xpn − xqn) mod 1, n = 1, 2, . . . ,

is u.d. for all primes p ̸= q, then

xn mod 1, n = 1, 2, . . . ,

is also

u.d.

Notes: Attributed to P.D.T.A.Elliot or Daboussi (by M.Mendès France).

2.2.5. Let P be a set of primes such that
∑

p∈P 1/p diverges. If the sequence

xhn mod 1, n = 1, 2, . . . ,

is u.d. for every h composed only from primes taken from P then

xn mod 1, n = 1, 2, . . . ,

is

u.d.
G.Myerson – A.D.Pollington: Notes on uniform distribution modulo one, J. Austral. Math.
Soc. 49 (1990), 264–272 (MR1061047 (92c:11075); Zbl. 0713.11043).



2 – 12 2 One–dimensional sequences

2.2.6. Let DN be the extremal discrepancy of

x1, . . . , xN mod 1

and let DN−j be the extremal discrepancy of

xj+1 − x1, xj+2 − x2, . . . , xN − xN−j mod 1.

Then for every integer H with 1 ≤ H ≤ N , we have

DN ≤ cB(1 + | logB|),

where

B2 =
1

H

1 +
1

N

H−1∑
j=1

(N − j)DN−j


and c is an absolute constant.

Notes: ([KN, p. 165, Th. 6.2]) J.G. van der Corput and Ch.Pisot (1939) proved that

DN ≤ 2(H − 1)

N
+ 2α

√
ω,

where α = 7
2 +

√
| logω|
log 2 and

ω =
1

H

(
1 +

1

N

)
+

2

H

H−1∑
j=1

DN−j +
2(H − 1)

N
.

J.G. van der Corput – C.Pisot: Sur la discrépance modulo un. III , Nederl. Akad. Wetensch.,
Proc. 42 (1939), 713–722 (MR0000396 (1,66c); JFM 65.0170.02; Zbl. 0022.11605). (=Indag. Math.
1 (1939), 260–269).

2.2.7. Almost–arithmetical progressions.

Notes: A finite sequence x1 < x2 < · · · < xN in [0, 1) is called an almost–
arithmetical progression, denoted (δ, η) for 0 ≤ δ < 1, η > 0, if
• 0 ≤ x1 ≤ η + δη,
• η − δη ≤ xn+1 − xn ≤ η + δη for n = 1, 2, . . . , N − 1,
• 1− η − δη ≤ xN < 1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For an almost–arithmetical progression (δ, η) we have

D∗
N ≤


1
N + δ

1+
√
1−δ2

, if δ > 0,

min
(
η, 1

N

)
, if δ = 0.
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Notes: [KN, p. 118, Th. 3.1]. We have slightly modified the definition used in [KN,
p. 118, Def. 3.1].

H.Niederreiter: Almost–arithmetic progressions and uniform distribution, Trans. Amer. Math.
Soc. 161 (1971), 283–292 (MR0284406 (44 #1633); Zbl. 0219.10040).

2.2.8. If xn, n = 1, 2, . . . , is a monotone sequence that is u.d. mod 1, then

lim
n→∞

|xn|
log n

= ∞.

Notes: (I) H.Niederreiter (1984).
(II) This is an improvement to a result proved by F.Dress (1967/68), that if λn is
a non–decreasing sequence of integers which satisfies λn = o(log n) then there does
not exist a real number x such that xλn mod 1 is u.d.
(III) A.Topuzoǧlu (1981) proved this for λn = O(log n).
(IV) M.Mendès France (1967/68) showed that given a f(n) tending to infinity
there exists a sequence of integers λn satisfying λn = O(f(n)), such that the se-
quence xλn mod 1 is u.d. for every irrational x.
(V) Actually, Niederreiter (1984) proved a more general result: If PN =

∑N
n=1 pn

where pn ≥ 0 are the weights (cf. 1.8.4) then the validity of the relation

|xn|
logPN

→ ∞

is necessary for the P–u.d. of the monotone sequence xn. K.Goto and T.Kano
reproved this result in (1991).

F.Dress: Sur l’équiréparation de certaines suites (xλn), Acta Arith. 14 (1968), 169–175 (MR0227118
(37 #2703); Zbl. 0218.10055).
K.Gotô – T.Kano: A necessary condition for monotone (P, µ)–u.d. mod 1 sequences, Proc.
Japan Acad. Ser. A Math. Sci. 67 (1991), no. 1, 17–19 (MR1103973 (92d:11075); Zbl. 0767.11032).
M.Mendès France: Deux remarques concernant l’équiréparation des suites, Acta Arith. 14
(1968), 163–167 (MR0227117 (37 #2702); Zbl. 0177.07202).
H.Niederreiter: Distribution mod 1 of monotone sequences, Neder. Akad. Wetensch. Indag.
Math. 46 (1984), no. 3, 315–327 (MR0763468 (86i:11041); Zbl. 0549.10038).
A.Topuzoǧlu: On u.d. mod 1 of sequences (anx), Nederl. Akad. Wetensch. Indag. Math. 43
(1981), no. 2, 231–236 (MR0707256 (84k:10039); Zbl. 0455.10023).

2.2.9. If xn is a sequence that is u.d. mod 1, then

lim sup
n→∞

n|xn+1 − xn| = ∞.

Notes: P.B.Kennedy (1956), cf. [KN, p. 15, Th. 2.6].
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P.B.Kennedy: A note on uniformly distributed sequences, Quart. J. Math. Oxford Ser. 2 7
(1956), 125–127 (MR0096922 (20 #3404); Zbl. 0071.04401).

2.2.9.1 Let xn ∈ [0, 1), n = 0, 1, 2, . . . be u.d. Then we have

lim
N→∞

1

logN

N−1∑
n=0

|xn+1 − xn| = ∞.

Let xn, yn ∈ [0, 1), n = 0, 1, 2, . . . be two u.d. sequences. Then we have

lim sup
N→∞

1

N

N−1∑
n=0

|xn − yn| ≤
1

2
.

In particular, we have

lim sup
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| ≤
1

2
.

Notes: Theorem 1 and Theorem 3 in F. Pillichshammer and S. Steinerberger (2009).
They also found:

(a) If xn is the van der Corput sequence and q an arbitrary base then

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| =
2(q − 1)

q2
.

(b) Let xn = nα mod 1 with irrational α then

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| = 2{α}(1− {α}).

F.Pillichshammer – S. Steinerberger: Average distance between consecutive points of uniformly
distributed sequences, Unif. Distrib. Theory 4 (2009), no. 1, 51–67 (MR2501478 (2009m:11116);
Zbl. 1208.11088).

2.2.10. Generalized Fejér’s difference theorem. Given a sequence x(n)
and a positive integer k, define recursively the difference operator ∆k by
∆1x(n) = ∆x(n) = x(n + 1) − x(n) if k = 1 and ∆kx(n) = ∆(∆k−1x(n) if
k > 1. If for a k ∈ N we have that
(i) ∆kx(n) tends monotonically to 0 as n→ ∞,
(ii) lim

n→∞
n
∣∣∆kx(n)

∣∣ = ∞,
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then the sequence
x(n) mod 1

is

u.d.

Notes: [KN, p. 29, Th. 3.4]. The generalized Fejér’s difference theorem for se-
quences expressed in terms of differentiable functions is given in 2.6.1.

2.2.11. Fejér’s difference theorem. Let xn be a sequence such that
(i) xn → ∞, and
(ii) ∆xn ↓ 0, where ∆xn = xn+1 − xn.

Then
xn mod 1

is

u.d.

if and only if

(iii) limn→∞ n∆xn = ∞.

Notes: (I) Fejér’s result says that condition (iii) is sufficient.
(II) J. Cigler (1960, p. 211) proved that if xn satisfies (i) and (ii) then either xn mod 1
is u.d. or xn mod 1 does not have the a.d.f. whatsoever.
(III) J.H.B.Kemperman (1973, p. 149) noted (compare this to formula (9) for k = 1
in Cigler (1960)) that the assumptions (i), (ii) in Cigler’s result could be weakened
to: xn is strictly increasing with xn → ∞, ∆xn → 0 such that

sup
n

n−1∑
k=1

k|∆xk −∆xk+1|+ n|∆xn|

xn+1 − x1
<∞.

(IV) J.H.B.Kemperman (1961) and (1973, Th. 3) proved that condition (iii) is neces-
sary and sufficient for xn mod 1 to possess the a.d.f. provided xn satisfies (i) and (ii).
Consequently, if the sequence xn satisfies (i) and (ii) and lim infn→∞ |n∆xn| < ∞,
then xn mod 1 does not posses the a.d.f.
(V) Generalized Fejér’s theorem is given in 2.6.1(II).
(VI) W.J. LeVeque (1953, Th. 3) proved the following variant of Fejér’s theorem for
u.d. modulo subdivision ∆ = (zn)

∞
n=1 (cf. p. 1 – 6 ): Let zn and xn be sequences

satisfying
(i) zn − zn−1 ≥ zn−1 − zn−2 for n = 2, 3, . . . and zn → ∞,
(ii) ∆xn ↓ 0 as n→ ∞ and xn → ∞,

(iii) lim
k→∞

#{n∈N ; xn<zk+1}
#{n∈N ; xn<zk} = 1.
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Then xn is u.d. mod ∆.
(VII) For the multidimensional Fejér’s theorem see 3.3.2.1.

Related sequences: 2.2.14, 2.2.15, 2.2.16

J.Cigler: Asymptotische Verteilung reeller Zahlen mod 1, Monatsh. Math. 44 (1960), 201–225
(MR0121358 (22 #12097); Zbl. 0111.25301).
J.H.B.Kemperman: Review of an article by J. Cigler (1960), Math. Reviews 22 (1961)# 12097,
p. 2064
J.H.B.Kemperman: Distribution modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3)
21 (1973), 138–163 (MR0387224 (52 #8067); Zbl. 0268.10038).
W.J. LeVeque: On uniform distribution modulo a subdivision, Pacific J. Math. 3 (1953), 757–771
(MR0059323 (15,511c); Zbl. 0051.28503).

2.2.12. Let xn be a sequence which satisfies limn→∞∆kxn = θ with θ
irrational. Then

xn mod 1

is

u.d.

Notes: J.G. van der Corput (1931), cf. [KN, p. 31, Exer. 3.6], for k = 1 [KN, p. 28,
Th. 3.3] and for continuous variant cf. 2.6.5.

J.G. van der Corput: Diophantische Ungleichungen I. Zur Gleichverteilung modulo Eins, Acta
Math. 56 (1931), 373–456 (MR1555330; JFM 57.0230.05; Zbl. 0001.20102).

2.2.13. If
n(xn+1 − xn − α)

tends to a non–zero limit as n→ ∞ for rational α, then the sequence

xn mod 1

is

H∞–u.d. (cf. 1.8.5) but not u.d.
P. Schatte: On H∞–summability and the uniform distribution of sequences, Math. Nachr. 113
(1983), 237–243 (MR0725491 (85f:11057); Zbl. 0526.10043).

2.2.14. Let f be a function which is
(i) differentiable on [0,∞] and f ′(x) ↓ 0 as x→ ∞, and
(ii) unbounded for x→ ∞,
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(iii) xf(x) → ∞ as x→ ∞.

Let yn be an increasing sequence of positive real numbers such that
(v) ∆yn = yn+1 − yn is non–increasing, and
(vi) ∆yn/yn ≥ c/n for a positive constant c.

Then the sequence

f(yn) mod 1

is

u.d.

Notes: J.H.B.Kemperman (1973, p. 139–140). As an application take the sequence
yn = cnα(log n)β with 0 < α < 1, or α = 1 and β ≤ 0. Note that sequences
of the type yn = (log n)β are not covered by the result in general as the example
f(x) = (log x)γ with γ > 1 shows.

Related sequences: 2.2.11

J.H.B.Kemperman: Distribution modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3)
21 (1973), 138–163 (MR0387224 (52 #8067); Zbl. 0268.10038).

2.2.15. Let xn be a non–decreasing sequence such that
(i) xn → ∞ and ∆xn → 0 as n→ ∞, where ∆xn = xn+1 − xn,
(ii) there exists a constant B ≥ 1 such that ∆xn ≥ B∆xm whenever n ≥ m,
(iii) lim infn→∞ n∆xn <∞.

Then

xn mod 1

cannot have the a.d.f.

Notes: J.H.B.Kemperman (1973, Lemma 1). This result contains the necessary
part of 2.2.11. The assumption ∆xn ≥ 0 cannot be omitted (cf. J.H.B.Kemperman
(1973, Remark on p. 143)).

Related sequences: 2.2.11

J.H.B.Kemperman: Distribution modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3)
21 (1973), 138–163 (MR0387224 (52 #8067); Zbl. 0268.10038).

2.2.16. Let A = (an,k) be a regular summation matrix with an,k = 0 for
k > kn. Let xn be a sequence such that
(i) xn ̸= 0 and ∆xn → 0, where ∆xn = xn+1 − xn,
(ii) an,k/∆xk is monotone in k when 1 ≤ k ≤ kn for each fixed n,
(iii) limn→∞ an,kn/∆xkn = 0.
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Then the sequence xn mod 1 is

A–u.d.

Notes: J.H.B.Kemperman (1973, Th. 6). The result contains Fejér’s theorem.

Related sequences: 2.2.11, 2.12.1

J.H.B.Kemperman: Distribution modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3)
21 (1973), 138–163 (MR0387224 (52 #8067); Zbl. 0268.10038).

2.2.17. Let A = (an,k) be defined through

an,k =


λk

λ1 + · · ·+ λn
, if 1 ≤ k ≤ n,

0, if k > n,

where we assume that

λn > 0 and

∞∑
n=1

λn = +∞.

If the sequence xn is such that
(i) ∆xn → 0 where ∆xn = xn+1 − xn,
(ii) ∆xn/λn is monotone in n,
(iii) limn→∞(λ1 + · · ·+ λn)∆xn/λn = ∞,

then xn mod 1 is

A–u.d. (i.e. λn–weighted u.d.)

Notes: (I) J.H.B.Kemperman (1973, Cor. 1 to Th. 6).
(II) For an analogous result see also Tsuji (1952, p. 316) which contains the addi-
tional assumption that ∆xn is monotone.
(III) Condition (ii) can be replaced (J.H.B.Kemperman (1973, p. 148)) by the re-
quirement that ∆xk ̸= 0 and

n−1∑
k=1

∣∣∣∣ λk∆xk
− λk+1

∆xk+1

∣∣∣∣ = o(λ1 + · · ·+ λn).

(IV) Let xn be a strictly increasing unbounded sequence and N(t) =
∑
xj≤t λj .

Then a sufficient condition that xn mod 1 is

A–u.d.

is that

lim
t→∞

N(t+ w)−N(t)

N(t+ 1)−N(t)
= w if 0 < w < 1.
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For a discussion on the possible values of the limit on the left–hand side cf.
J.H.B.Kemperman (1973, pp. 157–158).
(V) In the case λk = 1/k it is sufficient to require that ∆xn → 0, (n log n)∆xn → ∞,
and that n∆xn is monotone (J.H.B.Kemperman (1973, p. 148), cf. also M.Tsuji
(1952, p. 318)).
(VI) J.H.B.Kemperman (1973, Cor. 2 to Th. 6): If λn = ∆xn and xn is a sequence
such that xn → ∞, ∆xn > 0, and ∆xn → ∞, then xn mod 1 is A–u.d.
(VII) J.H.B.Kemperman (1973, Th. 12) describes some perturbations of xn preserv-
ing the A–u.d. mod 1.

Related sequences: 2.2.11, 2.2.16, 2.12.1, 2.2.18

J.H.B.Kemperman: Distribution modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3)
21 (1973), 138–163 (MR0387224 (52 #8067); Zbl. 0268.10038).
M.Tsuji: On the uniform distribution of numbers mod 1, J. Math. Soc. Japan 4 (1952), 313–322
(MR0059322 (15,511b); Zbl. 0048.03302).

2.2.18. Let the elements λ’s of matrixA defined in 2.2.17 also satisfy λn+1 =
o(λ1+ · · ·+λn) as n→ ∞. Let xn be a non–decreasing sequence such that
(i) xn → ∞, ∆xn → 0, where ∆xn = xn+1 − xn,
(ii) ∆xn/λn ≤ B∆xm/λm whenever n ≥ m for some constant B ≥ 1,
(iii) lim infn→∞(λ1 + · · ·+ λn)∆xn/λn <∞.

Then xn mod 1

does not have the A–a.d.f.

Notes: J.H.B.Kemperman (1973, Th. 8).

Related sequences: 2.12.1, 2.2.16, 2.2.17

J.H.B.Kemperman: Distribution modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3)
21 (1973), 138–163 (MR0387224 (52 #8067); Zbl. 0268.10038).

2.2.19. Let λn > 0 and
∑∞

n=1 λn = +∞, and let f be a complex valued
function of a real argument. Given a sequence xn of real numbers, define

µn(f) = (λ1 + · · ·+ λn)
−1

n∑
k=1

λkf(xk).

Suppose that
(i) f is continuous and satisfies f(x+ 1) = f(x),
(ii) ∆xn → 0,
(iii) limn→∞(λ1 + · · ·+ λn)∆xn/λn = u with u finite,
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(iv) Nk is a given strictly increasing sequence of positive integers.

Then the limit
lim
k→∞

µNk(f) = µ(f)

exists for every f which satisfies (i) if and only if there exists the limit

lim
k→∞

xNk = ξ mod 1.

Moreover, this limit µ(f) depends only on u and ξ and is given by

µ(f) = µξ(f) =

∫ ∞

0
f(ξ − ut)e−t dt.

Note that the existence of the limit µ(f) for every continuous f is equivalent
to the existence of an A–d.f. (i.e. λn–weighted d.f.) g(x) of xn mod 1 with
respect to the given selected sequence Nk (for def. of A–d.f. see 1.8.3(III)).
The density of g(x) is

g′(x) =
e

{x−ξ}
u

u(e1/u − 1)
, x ∈ [0, 1].

Notes: (I) J.H.B.Kemperman (1973, Th. 9). If λn = 1 and u ̸= 0 then a sufficient
condition for (iii) is (J.H.B.Kemperman (1973, p. 152))

lim
n→∞

(
1

∆xn+1
− 1

∆xn

)
=

1

u

(II) The case λn = 1, xn = u log n, is due to Pólya and Szegő (1964, Part II, Chap. 4,
§ 5, no. 180), cf. 2.12.1(IV).
(III) If in the hypotheses given above u ̸= 0 and f is Riemann integrable, then
the set J [f ] of all the accumulation points of the real sequence {µn(f)} coincides
with the interval {µξ(f) | ξ ∈ I}, where I denotes the interval which consists of
all accumulation points modulo 1 of the given sequence xn. If u = 0 then J [f ] =
{f(ξ) | ξ ∈ I}.
(IV) The result also holds if s is a positive integer and xn a sequence of points in
Rs which satisfies (ii) and (iii) with u ∈ Rs (J.H.B.Kemperman (1973, Th. 10)).

Related sequences: 2.12.1, 2.2.16, 2.2.17

J.H.B.Kemperman: Distribution modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3)
21 (1973), 138–163 (MR0387224 (52 #8067); Zbl. 0268.10038).
G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).
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2.2.20. Let f be a function defined on [0, 1] with a continuous second deriva-
tive. If xn is a sequence with discrepancy DN , then∣∣∣∣∣

N∑
n=1

(
f

({
xn +

1

N

})
− f({xn})

)
− (f(1)− f(0))

∣∣∣∣∣ ≤
≤
(
DN +

1

N

)∫ 1

0
dt

∣∣∣∣∫ 1

0
dτf ′′

({
t+

τ

N

})∣∣∣∣ .
Notes: (I) E.Hlawka (1980). He previously proved that if xn mod 1, n = 1, 2, . . . ,
is an u.d. sequence, and if f is a continuously differentiable function on [0, 1], then

lim
N→∞

N∑
n=1

(
f

({
xn +

1

N

})
− f({xn})

)
= f(1)− f(0)

(
=

∫ 1

0

f ′(x) dx

)
.

(II) H.Rindler – J. Schoißengeier (1977) proved that the truth of the above equality
for every u.d. sequence xn in [0, 1) such that xn+

1
n ∈ [0, 1) for all n ≥ 1 is equivalent

to the Riemann integrability of f ′.
(III) If f has jumps α1, . . . , αr in points ξ1, . . . , ξr of [0, 1], then (I) may be replaced
by

lim
n→∞

N∑
n=1

(
f

({
xn +

1

N

})
− f({xn})

)
= f(1)− f(0)− (α1 + · · ·+ αr).

(IV) As in (I), also (II) can be proved using the mean value theorem 4.1.4.18. The
general result is proved in Hlawka (1980, pp. 449–451) as a consequence of a result
holding in compact connected spaces.

Related sequences: 3.1.3

E.Hlawka: Über einige Satze, Begriffe und Probleme in der Theorie der Gleichverteilung. II ,
Österreich. Akad. Wiss. Math.–Natur. Kl. Sitzungsber. II 189 (1980), no. 8–10, 437–490
(MR0645297 (84j:10061); Zbl. 0475.10039).
H.Rindler – J. Schoißengeier: Gleichverteilte Folgen und differenzierbare Funktionen, (Ger-
man), Monatsh. 84 (1977), 125–131 (MR0491572 (58 #10801); Zbl. 0371.10040).

2.2.21. Given parameters (u1, v1, u2, v2) ∈ [0, 1]4, let h(x) denote the d.f. defined by

h(x) =


0, if 0 ≤ x ≤ v1,
u2−u1
v2−v1

x+ u1 − v1
u2−u1
v2−v1

, if v1 < x ≤ v2,

1, if v2 < x ≤ 1.

Thus always h(0) = 0 and h(1) = 1. Its graph is
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�
�
�

g

0 1v1 v2

u1

u2

Given (X1, X2, X3) ∈ [0, 1]3 define further d.f.’s g(i) for i = 1, . . . , 7 and i = 7∗ by

g(1) = g(0, (1−X1)− 3(X1 −X3) , 1 , (1−X1) + 3(X1 −X3)),

g(2) = g

(
X1 −

√
3(X3 −X2

1 ) , 0 , X1 +
√

3(X3 −X2
1 ) , 1

)
,

g(3) = g

(
1− 3

2
· 1 +X3 − 2X1

1−X1
, 0 , 1 ,

4

3
· (1−X1)

2

(1 +X3 − 2X1)

)
,

g(4) = g

(
0 , 1− 4X2

1

3X3
,
3X3

2X1
, 1

)
,

g(5) = g

(
X1 −X3

1−X1
, 0 ,

X1 −X3

1−X1
,

(1−X1)
2

1 +X3 − 2X1

)
,

g(6) = g

(
X3

X1
, 1− X2

1

X3
,
X3

X1
, 1

)
,

g(7) = g

(
1− 2X3 , 0 , 1− 2X3 ,

1

4X3

)
,

g(7
∗) = g

(
2X3 , 1−

1

4X3
, 2X3 , 1

)
.

Their graphs are

g(1) g(2) g(3) g(4)

�
�
�
�
�
�

������ �
�
�

��
g(5) g(6)

If the areas under their graphs are 1/2 then we put g(5) = g(7) and g(6) = g(7
∗).
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Finally define the surfaces Πi for i = 1, . . . , 7 in [0, 1]3 by

Π1 =

{
(X1, X2, X3) ∈ [0, 1]3 ; X2 =

1

2
− 1

2
(1−X1)

2 − 3

2
(X1 −X3)

2,

max
(4
3
X1 −

1

3
,
2

3
X1

)
≤ X3 ≤ X1, 0 ≤ X1 ≤ 1

}
,

Π2 =

{
(X1, X2, X3) ∈ [0, 1]3 ; X2 =

1

2
X1 +

1

2

√
1

3
(X3 −X2

1 ),

X2
1 ≤ X3 ≤ min

(4
3
X2

1 ,
4

3
X2

1 − 2

3
X1 +

1

3

)
, 0 ≤ X1 ≤ 1

}
,

Π3 =

{
(X1, X2, X3) ∈ [0, 1]3 ; X2 =

1

2
− 4

9

(1−X1)
3

(1 +X3 − 2X1)
,

4

3
X2

1 − 2

3
X1 +

1

3
≤ X3 ≤ 4

3
X1 −

1

3
,
1

2
≤ X1 ≤ 1

}
,

Π4 =

{
(X1, X2, X3) ∈ [0, 1]3 ; X2 = X1 −

4

9

X3
1

X3
,
4

3
X2

1 ≤ X3 ≤ 2

3
X1, 0 ≤ X1 ≤ 1

2

}
,

Π5 =

{
(X1, X2, X3) ∈ [0, 1]3 ; X2 =

1

2
− 1

2

(1−X1)
3

(1 +X3 − 2X1)
,

X2
1 ≤ X3 ≤ X1, 0 ≤ X1 <

1

2

}
,

Π6 =

{
(X1, X2, X3) ∈ [0, 1]3 ; X2 = X1 −

1

2

X3
1

X3
, X2

1 ≤ X3 ≤ X1
1

2
< X1 ≤ 1

}
,

Π7 =

{(1
2
,
1

2
− 1

16X3
, X3

)
;
1

4
< X3 <

1

2

}
.

Let xn be a sequence in [0, 1] for which there exist the limits in the expressions
on right hand side

X1 = 1− lim
N→∞

1

N

N∑
n=1

xn,

X2 =
1

2
− 1

2
lim

N→∞

1

N

N∑
n=1

x2n,

X3 = 1− lim
N→∞

1

N

N∑
n=1

xn − 1

2
lim

N→∞

1

N2

N∑
m,n=1

|xm − xn|.

If (X1, X2, X3) ∈
∪

1≤i≤7
Πi, then the sequence xn has a limit law. More-

over, if (X1, X2, X3) ∈ Πi for i = 1, . . . , 6, then xn has a.d.f. g(i), and if
(X1, X2, X3) ∈ Π7, then xn has a.d.f. This is either g(7) or g(7

∗), depending



2 – 24 2 One–dimensional sequences

on whether

lim
N→∞

1

N

N∑
n=1

∫ xn

0
g(7)(t) dt = X1 −X3,

or

lim
N→∞

1

N

N∑
n=1

∫ xn

0
g(7

∗)(t) dt = X1 −X3.

Notes: O. Strauch (1994) gave a complete solution to the moment problem

(X1, X2, X3) =

(∫ 1

0

g(x) dx,

∫ 1

0

xg(x) dx,

∫ 1

0

g2(x) dx

)
in d.f. g(x) which implies the above conditions. An open problem is to solve the
moment problem

(X1, X2, X3, X4) =

(∫ 1

0

g(x) dx,

∫ 1

0

xg(x) dx,

∫ 1

0

x2g(x) dx,

∫ 1

0

g2(x) dx

)
.

E.g. for g(x) = 2x− x2 it has the unique solution.

O. Strauch: A new moment problem of distribution functions in the unit interval , Math. Slovaca
44 (1994), no. 2, 171–211 (MR1282534 (95i:11082); Zbl. 0799.11023).

2.2.22. Given two different d.f.’s g1(x), and g2(x), define

Fg2(x, y) =

∫ x

0

g2(t) dt+

∫ y

0

g2(t) dt−max(x, y) +

∫ 1

0

(1− g2(t))
2 dt,

Fg1,g2(x) =

∫ x
0
(g2(t)− g1(t)) dt−

∫ 1

0
(1− g2(t))(g2(t)− g1(t)) dt∫ 1

0
(g2(t)− g1(t))2 dt

,

Fg1,g2(x, y) = Fg2(x, y)− Fg1,g2(x)Fg1,g2(y)

∫ 1

0

(g2(t)− g1(t))
2 dt.

Let g1(x) ̸= g2(x) be two d.f.’s. Then the set of d.f.’s G(xn) of xn in [0, 1)
satisfies

G(xn) = {tg1(x) + (1− t)g2(x) ; t ∈ [0, 1]}

if and only if
(i) limN→∞

1
N2

∑N
m,n=1 Fg1,g2(xm, xn) = 0,

(ii) lim infN→∞
1
N

∑N
n=1 Fg1,g2(xn) = 0,

(iii) lim supN→∞
1
N

∑N
n=1 Fg1,g2(xn) = 1.
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Notes: O. Strauch (1997). His proof is based on Theorem 1.10.9.2. Another appli-
cation is given in Strauch (1999, p. 99): Put

F1(x, y) = 1−max(x, y)− 3

4
(1− x2)(1− y2),

F2(x, y) =
x+ y

2
−max(x, y) +

1

4
− 3(x− x2)(y − y2),

F3(x, y) = 1−max(x, y),

F4(x, y) =
x+ y

2
−max(x, y) +

1

4
,

and

H1 = {tx+ (1− t)c1(x) ; t ∈ [0, 1]},
H2 = {tx+ (1− t)h1/2(x) ; t ∈ [0, 1]}.

H1

0 1

H2

0 1

H1 ∪H2

0 1

Then G(xn) = H1 ∪H2 for a sequence xn in [0, 1) if and only if

(i) limN→∞
1
N4

∑N
m,n,k,l=1 F1(xm, xn)F2(xk, xl) = 0,

(ii) lim infN→∞
1
N2

∑N
m,n=1 F3(xm, xn) = 0,

(iii) lim infN→∞
1
N2

∑N
m,n=1 F4(xm, xn) = 0.

Here c1(x) is the one–jump d.f. with jump at x = 1 and h1/2(x) is the d.f. taking
constant value 1/2.

O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).
O. Strauch: Distribution of Sequences (in Slovak), Mathematical Institute of the Slovak Academy
of Sciences, DSc Thesis, Bratislava, Slovakia, 1999.

2.3 General operations with sequences

2.3.1. If the sequence xn mod 1 is

u.d.
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and if the sequences yn is such that limn→∞(xn − yn) exists, then the se-
quence yn mod 1 is also

u.d.

Notes: ([KN, p. 3, Th. 1.2]) Consequently, if the sequence xn mod 1 is u.d.,
then also the sequence α + xn mod 1 is u.d. for every real number α ([KN, p. 3,
Lemma 1.1]).

2.3.2. If xn mod 1 is u.d. then so is the sequence

hxn mod 1, n = 1, 2, . . . ,

for any non–zero integer h.

Notes: This directly follows from Weyl’s criterion 2.1.2. G.Myerson and A.Pol-
lington (1990) proved that there is a sequence xn mod 1 which is not u.d. even
though hxn mod 1 is u.d. for every integer h ≥ 2.

G.Myerson – A.D.Pollington: Notes on uniform distribution modulo one, J. Austral. Math.
Soc. 49 (1990), 264–272 (MR1061047 (92c:11075); Zbl. 0713.11043).

2.3.3.

• If sequences xn and yn satisfy

lim
N→∞

1

N

N∑
n=1

∣∣{xn} − {yn}
∣∣ = 0,

then the sets of distribution functions of xn mod 1 and yn mod 1 coincide.

• If every d.f. in G({xn}) (or in G({yn})) is continuous at 0 and 1, then the
limit

lim
N→∞

1

N

N∑
n=1

|xn − yn| = 0 (∗)

implies that G({xn}) = G({yn}).
• If every d.f. in G({xn}) and G({yn}) is continuous at 0, then the limit (∗)
again implies that G({xn}) = G({yn}). The same holds in the case of conti-
nuity at 1.

Notes: (I) O. Strauch (1999, p. 91, Chap. 6, Th. 5 and 5′). Since 0 ≤ {xn − yn} =
xn− yn− [xn− yn] = (xn− [xn− yn])− yn = un− yn and un ≡ xn mod 1, the limit
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lim
N→∞

1
N

N∑
n=1

{xn − yn} = 0

can be used instead of (∗).
(II) The following simple variant of the above result can be found in [KN, p. 23,
Exer. 2.11]: the relation (∗) implies that xn mod 1 and yn mod 1 are simultane-
ously u.d.
(III) Because xn = n + (1/n) mod 1 has a.d.f. c0(x) and yn = n − (1/n) mod 1
has a.d.f. c1(x), the relation (∗) does not imply the equality G({xn}) = G({yn}) in
general.
(IV) The above results can be modified as follows:

(i) If the all d.f.s in G({xn}) and G({yn}) are continuous at 0, then

{xn − yn} → 0 =⇒ G({xn}) = G({yn}).

The same follows from the continuity at 1.

(ii) The limit {xn − yn} → 0 also implies

{g ∈ G({xn}); g is continuous at both 0, 1}
= {g̃ ∈ G({yn}); g̃ is continuous at both 0, 1}.

(iii) Assume that the all d.f.s in G({xn}) are continuous at 0. Then

{xn − yn} → 0 =⇒ {g̃ ∈ G({yn}); g̃ is continuous at 0} ⊂ G({xn}).

(iv) If xn, yn ∈ [0, 1), n = 1, 2, . . . , then

|xn − yn| → 0 =⇒ G(xn) = G(yn)

(i.e. the continuity assumption can be omitted).

(v) If xn, yn ∈ [0, 1), n = 1, 2, . . . , then

1

N

N∑
n=1

|xn − yn| → 0 =⇒ G(xn) = G(yn)

(i.e. the continuity assumption can be omitted).

(vi) The implication (v) follows from: If F
(1)
N (x) = 1

N

∑N
n=1 c[0,x)(xn) and F

(2)
N (x) =

1
N

∑N
n=1 c[0,x)(yn) then∫ 1

0

(F
(1)
N (x)− F

(2)
N (x))2 dx =

1

N2

N∑
m,n=1

|xm − yn|

− 1

2

1

N2

N∑
m,n=1

|xm − xn| −
1

2

1

N2

N∑
m,n=1

|ym − yn|

≤ 1

N

N∑
n=1

|yn − xn|.
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(vii) Parent [p. 257, Ex. 5.37]: To an arbitrary sequence xn ∈ [0, 1), n = 1, 2, . . . ,
one can associate a real number α such that limn→∞({n!α}−xn) = 0. Thus by (iv)
G({n!α}) = G(xn).

D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).
O. Strauch: Distribution of Sequences (in Slovak), Mathematical Institute of the Slovak Academy
of Sciences, DSc Thesis, Bratislava, Slovakia, 1999.

2.3.4. Let the sequence xn from (0, 1) has continuous a.d.f. g(x). Then the
sequence

yn =
1

xn
mod 1

has the a.d.f.

g̃(x) =
∞∑
n=1

g

(
1

n

)
− g

(
1

n+ x

)
Notes: (I) I.J. Schoenberg (1928), E.K.Haviland (1941), L.Kuipers (1957), a proof
can be found in [KN, p. 56, Th. 7.6]. E.Hlawka (1961, 1964) considered the multi–
dimensional case). G. Pólya (cf. I.J. Schoenberg (1928)) proved that for g(x) = x
we have

∞∑
n=1

(
1

n
− 1

n+ x

)
=

∫ 1

0

1− tx

1− t
dt.

For history consult [KN, p. 66, Notes].
(II) O. Strauch (1997) gave the following generalization: Let f : [0, 1] → [0, 1] be a
function such that, for all x ∈ [0, 1] the set f−1([0, x)) can be expressed as a union
of finitely many pairwise disjoint subintervals Ii(x) ⊆ [0, 1], say, with endpoints
αi(x) ≤ βi(x). Then given a d.f. g(x), associate with this decomposition the function

gf (x) =
∑
i

g
(
βi(x)

)
− g
(
αi(x)

)
.

After this preparatory definition, let xn mod 1 be such that each its term appears
only finitely many times in it, and let g(x) be the d.f. of xn mod 1 based on a
sequence of indices Nk (for the def. consult 1.7). Then gf (x) is the d.f. for the same
sequence of indices Nk of the sequence f(xn mod 1), and vice versa every d.f. of
f(xn mod 1) has this form, i.e.

G(f(xn mod 1)) = {gf ; g ∈ G(xn mod 1)}.

Related sequences: 2.22.13, 2.15.5
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E.K.Haviland: On the distribution function of the reciprocal of a function and of a function
reduced modulo 1, Amer. J. Math. 63 (1941), 408–414 (MR0003843 (2,280e); Zbl. 0025.18604).
E.Hlawka: Cremonatransformation von Folgen modulo 1 , Monatsh. Math. 65 (1961), 227–232
(MR0130242 (24 #A108); Zbl. 0103.27701).
E.Hlawka: Discrepancy and uniform distribution of sequences, Compositio Math. 16 (1964),
83–91 (MR0174544 (30 #4745); Zbl. 0139.27903).
L.Kuipers: Some remarks on asymptotic distribution functions, Arch. der Math. 8 (1957), 104–
108 (MR0093054 (19,1202d); Zbl. 0078.04003).
I.J. Schoenberg: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928),
171–199 (MR1544950; JFM 54.0212.02).
O. Strauch: On distribution functions of ζ(3/2)n mod 1, Acta Arith. 81 (1997), no. 1, 25–35
(MR1454153 (98c:11075); Zbl. 0882.11044).

2.3.5. Let xn and yn be sequences in [0, 1) such that
(i) xn and yn are statistically independent (cf. 1.8.8), and
(ii) xn is u.d.

Then the sequence

xn + yn mod 1

is

u.d.

Notes: (I) This is a special case of a result proved by G.Rauzy (1976, p. 96) for
compact metrisable Abelian groups. See also 2.3.6, Note (III).
(II) This Rauzy’s result implies the following result proved by P. Schatte (2000,
Lem. 2.3): Let xn and yn be two arbitrary sequences, n = 1, 2, . . . . Order the
double sequence xi + yj , i, j = 1, 2, . . . , to the sequence zn according to the scheme

x1 + y1,
x1 + y2, x2 + y1, x2 + y2,
x1 + y3, x2 + y3, x3 + y1, x3 + y2, x3 + y3,
x1 + y4, x2 + y4, x3 + y4, x4 + y1, x4 + y2, x4 + y3, x4 + y4,

. . . , etc. If xn mod 1 or yn mod 1 is u.d., then also zn mod 1 is u.d. (Note that the
sequence x1, x1, x2, x2, x1, x2, x3, . . . or y1, y2, y1, y2, y3, y3, y1, . . . is u.d. mod 1 and
are statistically independent).

G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).
P. Schatte: On the points on the unit circle with finite b–adic expansions, Math. Nachr. 214
(2000), 105–111 (MR1762054 (2001f:11125); Zbl. 0967.11028).
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2.3.6. Given a sequence xn, then the sequences

xn mod 1 and (xn + log n) mod 1

are simultaneously

u.d.

Notes: (I) G.Rauzy (1973). His proof in (1976, p. 96) starts with the statistical
independence of log n mod 1 (cf. 1.8.8) related to any u.d. sequence xn and then he
uses 2.3.5.
(II) Another proof can be found in D.P. Parent (1984, pp. 249–250, Exer. 5.11). It
also works for sequences λ log n and log log n, but not for logτ n, τ > 1, because the
sequence logτ n mod 1 is u.d. (cf. 2.12.7).
(III) Rauzy (1976, p. 97) and (1973) gave the following four equivalent characteriza-
tions of sequences yn for which the sequence (xn + yn) mod 1 is u.d. if and only if
xn mod 1 is u.d.:
(i) yn is statistically independent with any u.d. sequence.
(ii) For any infinite sequence zn of complex numbers such that |zn| ≤ 1,

lim
N→∞

z1 + · · ·+ zN
N

= 0 implies lim
N→∞

e2πiy1z1 + · · ·+ e2πiyN zN
N

= 0.

(iii) To every ε > 0 there exists a θ > 1 such that

lim sup
k→∞

1

θk

k−1∑
j=0

inf
λ∈C

∑
θj≤n<θj+1

|e2πiyn − λ| ≤ ε.

(iv) For every ε > 0 there exists δ > 0 such that for every sequence of indices nk
for which (nk+1/nk) → α with 1 < α < 1 + δ, we have

lim sup
k→∞

1

nk

k∑
h=1

 inf
y∈R

∑
nh≤n<nh+1

||yn − y||

 ≤ ε

(see (1973)).

Related sequences: 2.19.7, 2.12.1, 2.12.31

D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).
G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).

G.Rauzy: Étude de quelques ensembles de fonctions définis par des propertiétés de moyenne,
Séminaire de Théorie des Nombres (1972–1973), 20, Lab. Théorie des Nombres, Centre Nat.
Recherche Sci., Talence, 1973, 18 pp. (MR0396463 (53 #328); Zbl. 0293.10018).
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2.3.6.1 An arbitrary u.d. sequence xn mod 1 and log(n log n) mod 1 are
statistically independent. Thus

xn mod 1 and (xn + log(n log n)) mod 1

are simultaneously

u.d.

Y.Ohkubo: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238
(MR2904049; Zbl. 1313.11090)

2.3.6.2 Let pn, n = 1, 2, . . . , be the increasing sequence of all primes.
An arbitrary u.d. sequence xn mod 1 and the sequence log pn mod 1 are
statistically independent. Thus

xn mod 1 and (xn + log pn) mod 1

are simultaneously

u.d.

Notes: Y. Ohkubo (2011). The result follows from the fact that every u.d. sequence
xn mod 1 is statistically independent with the sequence log(n log n) mod 1 and that

lim
n→∞

(log pn − log(n log n)) = 0.

Y.Ohkubo: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238
(MR2904049; Zbl. 1313.11090)

2.3.6.3 Let pn, n = 1, 2, . . . , be the increasing sequence of all primes. An
arbitrary u.d. sequence xn mod 1 and the sequence pn

n mod 1 are statistically
independent. Thus for every sequence xn,

xn mod 1 and

(
xn +

pn
n

)
mod 1

are simultaneously

u.d.
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Notes: Y. Ohkubo (2011). The result follows from the fact that every u.d. sequence
xn mod 1 is statistically independent with the sequence log(n log n) mod 1 and that

lim
n→∞

(
pn
n

− log(n log n)

)
= −1.

Y.Ohkubo: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238
(MR2904049; Zbl. 1313.11090)

2.3.7. If the sequence xn mod 1 has continuous a.d.f. g(x) then the sequence

g ({xn})

is

u.d.

Notes: I.J. Schoenberg (1928), cf. [KN, p. 68, Ex. 7.19].

I.J. Schoenberg: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928),
171–199 (MR1544950; JFM 54.0212.02).

2.3.8. Let g(x) be a continuous d.f. and xn be a van der Corput sequence
(cf. 2.11.1). Then the sequence

yn = sup{x ∈ [0, 1] ; g(x) ≤ xn}

has the a.d.f.

g(x)

with

D∗
N ≤ log(N + 1)

N log 2
.

Notes: [KN, p. 137, Lemma 4.2].

2.3.9. Let the sequence xn in [0, 1) have at least one irrational limit point
and An, n = 1, 2, . . . , be the block of 2n numbers

An = (ε1x1 + ε2x2 + · · ·+ εnxn ; εi = ±1) mod 1.

Then the sequence of individual blocks An, n = 1, 2, . . . , is

u.d.

Notes: This problem was proposed by A.M.Odlyzko (1987) and then solved by
D.G.Cantor (1989).
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D.G.Cantor: Solution of Advanced Problems # 6542 , Amer. Math. Monthly 96 (1989), no. 1,
66–67 (MR1541447).
A.M.Odlyzko: Solution of Advanced Problems # 6542 , Amer. Math. Monthly 96 (1989), no. 1,
66–67 (MR1541447).

2.3.9.1 Let xn, n = 1, 2, . . . , be a sequence in (0, 1]. If every g(x) ∈ G(xn)
is strictly increasing, then the block sequence of the 2N -terms blocks of the
form ∑

n∈X
xn mod 1, with X running over all subsets of {1, 2, . . . , N}

is u.d., if N → ∞.

Notes: O. Strauch (2009).

2.3.10. Let xn be a u.d. sequence in [0, 1) with extremal discrepancy
DN (xn), and let g(x) be a d.f. with continuous derivative satisfying 0 ≤
g′(x) ≤M . If AN = (y

(N)
1 , . . . , y

(N)
N ) is the block of numbers defined by

y
(N)
k =

1

N

N∑
i=1

(1 + xk − g(xi)),

then the block sequence AN , N = 1, 2, . . . , is

u.d.

and for every function f of bounded variation V (f) on [0, 1] one has∣∣∣∣∣ 1N
N∑

n=1

f(y(N)
n )−

∫ 1

0
f(t)g′(t) dt

∣∣∣∣∣ ≤ (1 +M)DN (xn)V (f).

Notes: E.Hlawka and R.Mück (1972). This result was extended to the multi–
dimensional case in ([a]1972), cf. 3.2.7.

E.Hlawka – R.Mück: A transformation of equidistributed sequences, in: Applications of Number
Theory to Numerical Analysis, Proc. Sympos., Univ. Montréal, Montreal, Que., 1971, Academic
Press, New York, 1972, pp. 371–388 (MR0447161 (56 #5476); Zbl. 0245.10038).
[a] E.Hlawka – R.Mück: Über eine Transformation von gleichverteilten Folgen. II , Computing
(Arch. Elektron. Rechnen) 9 (1972), 127–138 (MR0453682 (56 #11942); Zbl. 0245.10039).
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2.3.11. Assume that
(i) f : R → R is a continuous and almost periodic function in the sense of

H.Bohr (1933) (cf. 2.4.2),
(ii) απ, α ∈ R, cannot be written as a finite linear combination (with ratio-

nal coefficients) of Fourier exponents of f ,
(iii) the sequence xnt mod 1 is u.d. for every real t ̸= 0 (i.e. xn is u.d. in R).
Then the sequence

(αxn + f(xn)) mod 1

is

u.d.

Notes: (I) H.Niederreiter and J. Schoißengeier (1977). Conditions (i) and (ii) imply
that (αx + g(x)) mod 1 is c.u.d. This is also true if the almost periodicity of f(x)
in the sense of Besicovitch is assumed in (i) (cf. 2.4.4).
(II) If f in (i) is periodic with period ω, then (ii) can be replaced by the condition
that αω is irrational.

H.Bohr: Fastperiodische Funktionen, Ergebnisse d. Math. 1, Nr. 5, Springer, Berlin, 1932 (JFM
58.0264.01; Zbl. 0278.42019 Reprint 1974 Zbl. 0278.42019). (Reprint: Almost Periodic Functions,
New York, Chelsea Publ. Comp., 1947 (MR0020163 (8,512a))).
H.Niederreiter – J. Schoißengeier: Almost periodic functions and uniform distribution mod 1,
J. Reine Angew. Math. 291 (1977), 189–203 (MR0437482 (55 #10412); Zbl. 0338.10053).

2.3.12. Let x
(i)
n , i = 1, 2, . . . , k, be u.d. sequences mod 1 and let xn be the

sequence composed from the terms x
(i)
n , i = 1, 2, . . . , k, in such a way that

the order from the original sequences remains preserved. Then

xn mod 1

is

u.d.

Notes: Given an N , let Ni denote the number of terms of x
(i)
n in the initial segment

x1, . . . , xN . The u.d. of xn follows directly from Weyl’s criterion 2.1.2, since

lim
N→∞

1

N

N∑
n=1

e2πihxn = lim
N→∞

k∑
i=1

Ni
N

(
1

Ni

Ni∑
n=1

e2πihx
(i)
n

)
= 0.
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2.3.13. Let yn and zn be two sequences in [0, 1) having a.d.f.’s g1(x) and
g2(x), resp. Let xn be the sequence composed from the terms of yn and zn in
such a way that their order from the original sequences remains preserved.
Given an N , let N1 and N2 denote the number of terms of yn and zn, resp.,
in the initial segment x1, . . . , xN . Then the set of d.f.’s G(xn) of xn satisfies

G(xn) ⊂ {tg1(x) + (1− t)g2(x), t ∈ [0, 1]} (= H)

and

D
(2)
N (xn,H) ≤

(
N1

N

√
D

(2)
N1

(yn, g1) +
N2

N

√
D

(2)
N2

(zn, g2)

)2

while

G(xn) = H ⇐⇒ lim sup
N→∞

N1

N
= lim sup

N→∞

N2

N
= 1.

Notes: O. Strauch (1997). Clearly, if yn mod 1 and zn mod 1 are u.d., then so is
the sequence y1, z1, y2, z2, . . . mod 1.

O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).

2.3.14. Suppose that the sequence of blocks An = (xn,1, . . . , xn,Nn) satis-
fies

(i) lim
n→∞

A([0, x);An])
Nn

= g(x) a.e. on [0, 1], and

(ii) lim
n→∞

Nn
N1 + · · ·+Nn

= 0.

Then the block sequence ω = (An)
∞
n=1 has the a.d.f.

g(x).

Notes: [KN, p. 136, Lem. 41]. The case g(x) = x was studied in Š. Porubský,
T. Šalát and O. Strauch (1990, Prop. 1) where it is proved that:
(a) Property (i) implies that ω is almost u.d.
(b) Properties (i) and (ii) imply that ω is u.d. independently of the order in which
the terms of the blocks An are given.
(c) If (i) but not (ii) is true then it is possible to rearrange the terms of the blocks An
in such a way that the corresponding ω is not u.d.
(d) If (i) holds and ω is not u.d., then the terms of An can be rearranged in such
a way that the corresponding sequence ω is u.d. Moreover, if the terms of the
blocks An were originally ordered according to their magnitude, then there exits
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such rearrangement which depends only on the number Nn of terms in An and not
on the terms themselves.

Š. Porubský – T. Šalát – O. Strauch: On a class of uniform distributed sequences, Math. Slo-
vaca 40 (1990), 143–170 (MR1094770 (92d:11076); Zbl. 0735.11034).

2.3.15. Let xn be the sequence in [0, 1] with an infinite set G(xn) of d.f.’s.
Let f : [0, 1] → R be a given continuous function of modulus |f | ≤ c. Then
the sequence yn of arithmetic means

yn =
1

n

n∑
i=1

f(xi)

is dense in the interval [m,M ], where

m = min
g∈G

∫ 1

0
f(x) dg(x) and M = max

g∈G

∫ 1

0
f(x) dg(x).

The dispersion dN = max
x∈[m,M ]

min
1≤n≤N

|x− yn| is bounded by

dN ≤ max

(
yN1 −m,M − yN2 ,

c

min(N1, N2)

)
for any N1, N2 ≤ N .

O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).

2.3.16. Let xn be a non–decreasing sequence of positive real numbers. Then
the sequence

yn =
xn

n+ xn

is

dense in the interval [lim infn→∞ yn, lim supn→∞ yn].

Notes: G.Pólya and G. Szegő (1964, Part 2, Ex. 103).
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G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).

2.3.17. Let xn and yn be two sequences of positive real numbers. If
(i) xn and yn are unbounded, and
(ii) lim supn→∞

xn+1

xn
= 1,

then the double sequence

xm
yn
, m, n = 1, 2, . . . ,

is

dense in the interval [0,∞).

Notes: D.Andrica and S.Buzeteanu (1987, 2.1. Th.)

Related sequences: 2.3.22

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

2.3.18. Let xn and yn be two sequences of positive real numbers. If
(i) xn and yn are unbounded, and
(ii) lim supn→∞(xn+1 − xn) = 0,

then the double sequence

xm − yn, m, n = 1, 2, . . . ,

is

dense in (−∞,∞).

Notes: D.Andrica and S.Buzeteanu (1987, 2.3. Coroll.)

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

2.3.19. Let x1, x2, . . . , xN and y1, y2, . . . , yN be two finite sequences in [0, 1).
The star discrepancy of |x1 − y1|, |x2 − y2|, . . . , |xN − yN | with respect to the
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d.f. g(x) = 2x−x2 and the star discrepancy of (x1, y1), (x2, y2), . . . , (xN , yN )
with respect to the d.f. g(x, y) = xy satisfy

D∗
N (|xn − yn|) ≤ 4

√
D∗

N ((xn, yn)).

Notes: O. Strauch, M.Paštéka and G.Grekos (2003). The given constant 4 is better
than 8

√
2+1 given in [KN, p. 95, Th. 1.6.] for the isotropic discrepancy 1.11.9. They

also proved that for the Kth moment, K = 1, 2, . . . ,∣∣∣∣∣ 1N
N∑
n=1

|xn − yn|K − 2

(K + 1)(K + 2)

∣∣∣∣∣ ≤ 4D∗
N ((xn, yn)).

O. Strauch – M.Paštéka – G.Grekos: Kloosterman’s uniformly distributed sequence, J. Number
Theory 103 (2003), no. 1, 1–15 (MR2008062 (2004j:11081); Zbl. 1049.11083).

2.3.20. If the sequence (x1, y1), . . . , (xN , yN ) of points in [0, 1)2 is invariant
under the maps
(i) (x, y) → (y, x),
(ii) (x, y) → (1− x, 1− y),

i.e. for any m ≤ N there exist n1, n2 ≤ N such that (xn1 , yn1) = (ym, xm)
and (xn2 , yn2) = (1− xm, 1− ym), then

D∗
N (|xn − yn|) ≤ 3DN ((xn, {yn − xn})) +DN ((xn, yn)).

HereD∗
N (|xn−yn|) denotes the star discrepancy of |x1−y1|, |x2−y2|, . . . , |xN−

yN | with respect to the d.f. g(x) = 2x − x2 and DN ((xn, {yn − xn})) and
DN ((xn, yn)) are the classical extremal discrepancies of sequences (x1, {y1 −
x1}), . . . , (xN , {yN−xN}) and (x1, y1), (x2, y2), . . . , (xN , yN ), resp., with {yi−
xi} denoting the fractional part of yi − xi.

Notes: O. Strauch, M.Paštéka and G.Grekos (2003). They generalized a result
proved by W.Zhang (1996). The invariance under (ii) can be replaced by the con-
dition that xn ̸= yn for n = 1, 2, . . . , N .

Related sequences: 2.20.35.

O. Strauch – M.Paštéka – G.Grekos: Kloosterman’s uniformly distributed sequence, J. Number
Theory 103 (2003), no. 1, 1–15 (MR2008062 (2004j:11081); Zbl. 1049.11083).
W.Zhang: On the distribution of inverse modulo n, J. Number Theory 61 (1996), no. 2, 301–310
(MR1423056 (98g:11109); Zbl. 0874.11006).
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2.3.21. Let xn and yn be two sequences in [0, 1) and let G((xn, yn)) denote
the set of all d.f.’s of the two–dimensional sequence (xn, yn). If zn = xn +
yn mod 1. Then the set G(zn) of all d.f.’s of zn has the form

G(zn) =

{
g(t) =

∫
0≤x+y<t

1. dg(x, y)+

+

∫
1≤x+y<1+t

1. dg(x, y) ; g(x, y) ∈ G((xn, yn))

}

provided that the all Riemann – Stieltjes integrals exist.

Notes: O. Strauch and O.Blažeková (2003) and for an application cf. 2.12.16.

O. Strauch – O.Blažeková: Distribution of the sequence pn/n mod 1, Math. Institute, Slovak
Acad. Sci., Bratislava, Slovak Republic, 2003, 15 pp.

2.3.22. Let xn and yn be two sequences of positive real numbers and let
f(x) and g(x) be two positive real functions defined on (0,∞). Assume that
(i) xn and yn are unbounded,

(ii) there exists a subsequence xkn such that lim supn→∞
xkn+1

xkn
= 1,

(iii) f(xy) ≥ f(x)f(y) for every x, y > 0,
(iv) f(x) is increasing and unbounded on (0,∞),
(v) f(x) is continuous at x = 1 and f(1) = 1,
(vi) limx→∞ g(x) = ∞.

Then the double sequence

f(xm)

g(yn)
, m, n = 1, 2, . . . ,

is

dense in the interval [0,∞).

Related sequences: 2.3.17

B.László – J.T.Tóth: Relatively (R)–dense universal sequences for certain classes of functions,
Real Anal. Exchange 21 (1995/96), no. 1, 335–339 (MR1377545 (97a:26013); Zbl. 0851.11016).
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2.3.23. Let yn be the normal order of xn. Then the sequence

xn
yn
, n = 1, 2, . . . ,

has with respect to (−∞,∞) the a.d.f.

c1(x).

Notes: Note, that the sequence xn has the normal order yn (Hardy – Wright (1954,
pp. 356–359)) if for every positive ε and almost all values n we have (1 − ε)yn <
xn < (1+ε)yn. Clearly (as it is mentioned in A. Schinzel and T. Šalát (1994)) xn has
the normal order yn if and only if xn/yn statistically converges to 1. Some known
examples are:
(I) The normal order of ω(n) is log log n, where ω(n) denotes the number of different
prime factors of n (Hardy – Wright (1954, pp. 356–359)).
(II) The normal order of Ω(n) is log log n, where Ω(n) denotes the total number of
prime factors of n Hardy – Wright (1954, pp. 356–359).
(III) The normal order of log d(n) is log 2 log log n, where d(n) denotes the number
of divisors of n, i.e. d(n) =

∑
d|n,d>0 1. Hardy – Wright (1954, pp. 356–359).

(IV) The normal order of ω(φ(n)) is (log log n)2/2, cf. Mitrinović – Sándor – Crstici
(1996, p. 36).
(V) The normal order of ω(σk(n)) is d(k)(log log n)

2/2, where σk(n) =
∑
d|n,d>0 d

k,

cf. Mitrinović – Sándor – Crstici (1996, p. 96).
(VI) ω(p ± 1) has the normal order log log p, where p is a prime, cf. Mitrinović –
Sándor – Crstici (1996, p. 171).

G.H.Hardy – E.M.Wright: An Introduction to the Theory of Numbers, 3nd edition ed., Claren-
don Press, Oxford, 1954 (MR0067125 (16,673c); Zbl. 0058.03301).
D.S.Mitrinović – J. Sándor – J.Crstici: Handbook of Number Theory, Mathematics and its
Applications, Vol. 351, Kluwer Academic Publishers Group, Dordrecht, Boston, London, 1996
(MR1374329 (97f:11001); Zbl. 0862.11001).
A. Schinzel – T. Šalát: Remarks on maximum and minimum exponents in factoring, Math.
Slovaca 44 (1994), no. 5, 505–514 (MR1338424 (96f:11017a); Zbl. 0821.11004).

2.3.24. Let xn = (xn,1, . . . , xn,s) and yn = (yn,1, . . . , yn,s) be infinite se-
quences in [0, 1)s and assume that the sequence (xn,yn) is u.d. in [0, 1]2s

(i.e. xn,yn are u.d. and statistically independent). Then the sequence of the
inner (i.e. scalar) products

xn = xn · yn =
s∑

i=1

xn,iyn,i
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has the a.d.f. gs(x) on the interval [0, s], where

gs(x) =
∣∣{(x,y) ∈ [0, 1]2s ; x · y < x}

∣∣ =
= (−1)s

∫
x1+···+xs<x

x1∈[0,1],...,xs∈[0,1]

1. log x1 . . . log xs dx1 . . . dxs,

and its density is

g′s(x) =


∫ x
0 g

′
j(t)g

′
s−j(x− t) dt, if x ∈ [0, j],∫ j

0 g
′
j(t)g

′
s−j(x− t) dt, if x ∈ [j, s− j],∫ j

x−s+j g
′
j(t)g

′
s−j(x− t) dt, if x ∈ [s− j, s].

For x ∈ [0, 1] we have

g1(x) =x− log x,

g2(x) =
x2

2

(
(log x)2 − 3 log x+

7

2
− 1

6
π2
)
,

g3(x) =
x3

27

(
− 9

2
(log x)3 +

99

4
(log x)2 +

(
−255

4
+

9

4
π2
)
log x

+
575

8
− 33

8
π2 − 9ζ(3)

)
,

while for general s (and x ∈ [0, 1]) we have

gs(x) = (−1)sxs
s∑

j=0

(
s

j

)
(log x)s−j g̃j ,

where

g̃j =

∫
x1+···+xs<1

x1∈[0,1],...,xs∈[0,1]

log x1 . . . log xj dx1 . . . dxs

=
1

(s− j)!
·
∫

[0,1]j

j∏
i=1

(
log x1 + · · ·+ log xj−1+

+ log(1− xj)
)
xs−1
1 . . . xs−j

j dx1 . . . dxj .
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Notes: (I) O. Strauch (2003). The formula for gs(x) with x ∈ [0, 1] was proved by
L.Habsieger (Bordeaux) (personal communication). He also observed that g̃j is a
composition of integrals of the type∫ 1

0

(log x)mxn dx =
(−1)mm!

(n+ 1)m+1
,∫ 1

0

(log x)mxn log(1− x) dx =(−1)m+1m!

∞∑
k=1

1

k(k + n+ 1)m+1

=a0 + a1ζ(2) + · · ·+ amζ(m+ 1), ai ∈ Q.

The explicit formula of gs(x) for x ∈ [1, s] is open.
(II) E.Hlawka (1982) investigated the question of the distribution of the scalar prod-
uct of two vectors on an s–dimensional sphere and also the problem of the associated
discrepancies.

E.Hlawka: Gleichverteilung auf Produkten von Sphären, J. Reine Angew. Math. 330 (1982),
1–43 (MR0641809 (83i:10066); Zbl. 0462.10034).
O. Strauch: On distribution functions of sequences generated by scalar and mixed product , Math.
Slovaca 53 (2003), no. 5, 467–478 (MR2038514 (2005d:11108); Zbl. 1061.11042).

2.3.25. Let x
(i)
n = (x

(i)
n,1, . . . , x

(i)
n,s), i = 1, . . . , s, be infinite sequences in

the s–dimensional ball B(r) with the center at (0, . . . , 0) and radius r. As-
sume that these sequences are u.d. and statistically independent in B(r), i.e.

(x
(1)
n , . . . ,x

(s)
n ) is u.d. in B(r)s. Then the sequence

xn =
∣∣det(x(1)

n , . . .x(s)
n )
∣∣

has the a.d.f. gs(r, x) defined on the interval [0, rs] by

gs(r, x) =

∣∣{(x(1), . . . ,x(s)) ∈ B(r)s ; | det(x(1), . . . ,x(s))| < x}
∣∣

|B(r)|s
,

and for

λ =
x

rs

there exists g̃s(λ) such that

gs(r, x) = g̃s(λ) if λ ∈ [0, 1].
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Here we have

g̃1(λ) = λ,

g̃2(λ) =
2

π
(1 + 2λ2) arcsinλ+

6

π
λ
√
1− λ2 − 2λ2,

g̃3(λ) = 1 +
9

4
λ

∫ 1

λ

arccosx

x
dx− 3

4
λ3 arccosλ−

√
1− λ2 +

7

4
λ2
√
1− λ2.

Notes: (I) O. Strauch (2003). The explicit form of g̃s(λ) for s > 3 is open.
(II) A further open question is the explicit form of the a.d.f. of the above sequence
with [0, 1]s instead of B(r).
(III) Note that the integral in g̃3(λ) cannot be expressed as a finite combination of
elementary functions, cf. I.M.Ryshik and I.S.Gradstein (1951, p. 122).
(IV) The d.f.’s g̃s(λ) and gs(x) from 2.3.24 form the basis of a new one–time pad
cryptosystem introduced in Strauch (2002).

I.M.Ryshik – I.S.Gradstein: Tables of Series, Products, and Integrals, (German and English
dual language edition), VEB Deutscher Verlag der Wissenschaften, Berlin, 1957 (translation from
the Russian original Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951 (MR0112266
(22 #3120))).
O. Strauch: On distribution functions of sequences generated by scalar and mixed product , Math.
Slovaca 53 (2003), no. 5, 467–478 (MR2038514 (2005d:11108); Zbl. 1061.11042).
O. Strauch: Some modification of one–time pad cipher , Tatra Mt. Math. Publ. 29 (2004),
157–171 (MR2201662 (2006i:94066); Zbl. 1114.11065).

2.3.26. Let xn =
∑n

i=1 yi be the sequence of the partial sums of the series∑∞
n=1 yn of real numbers yn satisfying limn→∞ yn = 0. Then the sequence

xn

is

dense in the interval [lim infn→∞ xn, lim supn→∞ xn].

Notes: G.Pólya and G. Szegő (1964, Part 2, Exer. 101).

G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).

2.3.27. Let xn be a bounded sequence of real numbers for which a sequence
of positive real numbers εn exists such that limn→∞ εn = 0 and

xn+1 > xn − εn
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for every sufficiently large n. Then the sequence

xn

is

dense in the interval [lim infn→∞ xn, lim supn→∞ xn].

Notes: G.Pólya and G. Szegő (1964, Part 2, Exer. 102).

G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).

2.3.28. If the unbounded sequence xn satisfies

lim
n→∞

(xn+1 − xn) = 0,

then the sequence

xn mod 1

is

dense in the interval [0, 1].

Notes: The proof is immediate. For a generalization cf. 2.6.32.

2.3.29. Let (an, bn) be points in the interval K = [u, u+ v]× [0, 1] and let
Φ(a, b) be a density defined on K, i.e. Φ(a, b) ≥ 0 and

∫∫
K Φ(a, b) da db = 1.

Define the extremal discrepancy D̃N of the sequence (an, bn) related
to Φ by

D̃N = sup
J⊂K

∣∣∣∣∣∣ 1N
N∑

n=1

cJ((an, bn))−
∫∫
J

Φ(a, b) dadb

∣∣∣∣∣∣ ,
where J are intervals and cJ(x, y) is the characteristic function of J . If the
partial derivatives ∂Φ

∂a and ∂Φ
∂b are bounded onK, then for every t > (D̃N )−1/4

and every M > 0, the one–dimensional sequence

ant+ bn mod 1
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has the classical extremal discrepancy

DN ≤ C1

(
1

M
+
C2

t
+ D̃N tM

2

)
,

where C1 > 0 is an absolute constant and C2 > 0 depends on Φ.

Notes: E.Hlawka (1998) gave this quantitative version of a Poincaré result dealing
with the planetary motions. In this connection an is interpreted as the angular
velocity and bn as the starting angle of the orbit of the nth planet Pn at time t = 0.
(All angles are measured on the circle which has the unit length.) Thus, if (an, bn)
is distributed with density Φ(a, b), then ant+ bn mod 1 is u.d. as t→ ∞.

E.Hlawka: Gleichverteilung und die willkürlichen Funktionen von Poincaré, Math. Slovaca 48
(1998), no. 5, 457–506 (MR1697611 (2000j:11120); Zbl 0956.11016).

2.3.30. Let φn, n = 1, 2, . . . , be the sequence in [0, 1) which has the limit
distribution with density ρ(φ) and the extremal discrepancy Dρ

N with respect
to ρ(φ). Let Jkr =

[
k
s + r

2s ,
k
s + r+1

2s

]
, r = 0, 1, k = 0, . . . , s − 1, be a two–

colored decomposition of [0, 1], say, using the colors 0 and 1. Define the 0–1
sequence

xn = cJ(φn),

where J =
∪s

k=1 Jk1. Assuming the Lipschitz condition |ρ(φ) − ρ(φ′)| ≤
α|φ− φ′| we have

DN ≤ α

s
+ sDρ

N ,

where DN is the extremal discrepancy of xn with respect to a.d.f. h1/2(x).

Notes: E.Hlawka (1998) proved this quantitative version of a Poincaré result deal-
ing with roulettes. He identified a roulette with the couple ρ(φ) and Jkr, where
the density ρ(φ) characterizes the rotation of the roulette. Thus for roulettes with
various densities the resulting sequence xn has discrete distribution close to the u.d.
Hlawka also gave similar bounds for m–colored roulette and for a composition of
roulettes.

E.Hlawka: Gleichverteilung und die willkürlichen Funktionen von Poincaré, Math. Slovaca 48
(1998), no. 5, 457–506 (MR1697611 (2000j:11120); Zbl 0956.11016).

2.4 Subsequences

2.4.1.
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Notes: Given an infinite sequence xn mod 1, the spectrum of xn, denoted by
sp(xn), is defined through

sp(xn) = {α ∈ [0, 1] ; (xn − nα) mod 1 is not u.d.}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A necessary and sufficient condition for the sequence

xqn+r mod 1

to be

u.d.

for all integers q ≥ 1 and r ≥ 0 is that sp(xn) ∩Q = ∅.
Notes: (I) M.Mendès France (1975). The definition of sp(xn) can be found in his
paper (1973).
(II) N.M.Korobov and A.G.Postnikov (1952) proved that the u.d. of the sequence of
differences (xn+h−xn) mod 1 implies the u.d. of all the subsequences xqn+r mod 1,
n = 1, 2, . . . , with integral q ≥ 1 and r ≥ 0 (cf. 2.2.1).
(III) G.Myerson and A.Pollington (1990) proved that there is a sequence xn which
is u.d. mod 1 even though no subsequence of the form xqn+r mod 1 with q ≥ 2 is
u.d.
(IV) Note that if the subsequence xqn+r mod 1 is u.d. for a fixed positive integer q
and for every 0 ≤ r < q , then xn mod 1 is u.d.

N.M.Korobov – A.G.Postnikov: Some general theorems on the uniform distribution of frac-
tional parts, (Russian), Dokl. Akad. Nauk SSSR (N.S.) 84 (1952), 217–220 (MR0049246 (14,143e);
Zbl. 0046.27802).
M.Mendès France: Les suites à spectre vide et la répartition modulo 1 , J. Number Theory 5
(1973), 1–15 (MR0319909 (47 #8450); Zbl. 0252.10033).
M.Mendès France: Les ensembles de Bésineau, in: Séminaire Delange-Pisot-Poitou (15e année:
1973/74), Théorie des nombres, Fasc. 1, Exp. No. 7, Secrétariat Mathématique, Paris, 1975, 6 pp.
(MR0412139 (54 #266); Zbl. 0324.10049).
G.Myerson – A.D.Pollington: Notes on uniform distribution modulo one, J. Austral. Math.
Soc. 49 (1990), 264–272 (MR1061047 (92c:11075); Zbl. 0713.11043).

2.4.2.
Notes: A non–decreasing unbounded sequence kn of positive integers is called al-
most periodic if the generalized characteristic function χ(j) = #{n ∈ N ; kn = j},
j = 1, 2, . . . , is almost periodic in the sense of Besicovitch. Here (cf. also 2.4.4)
a function ψ : N → C is called almost periodic if for every ε > 0 there exists a

trigonometric polynomial t(x) =
∑L
l=0 ale

2πiλlx (L ≥ 0,al ∈ C,λl ∈ R) such that

lim sup
N→∞

1

N

N−1∑
n=1

|ψ(n)− t(n)| < ε.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If xn has empty spectrum, i.e. sp(xn) = ∅ (in the sense of M.Mendès
France cf. 2.4.1), then the sequence

xkn mod 1

is

u.d.

for every non–decreasing and unbounded sequence kn of positive integer if
and only if kn is almost periodic.
Notes: (I) Firstly noted by M.Mendès France (1973), and later also by H.Daboussi
and M.Mendès France (1975) (cf. [DT, p. 103, Th. 1.113]). As examples of empty
spectra they give the following instances:
• If the difference (xn+k−xn) mod 1 is u.d. for every k = 1, 2, . . . , then sp(xn) = ∅.
• If q ≥ 2 is a given integer and θ is normal in the base q, then sp(θqn) = ∅.
• If p(x) is a real polynomial of degree ≥ 2 such that p(x) − p(0) has at least one

irrational coefficient, then sp(p(n)) = ∅.
• If f is a real entire function, other than a polynomial, and if for |z| → ∞ |f(z)| =

O(e(log |z|)δ), where 1 < δ < 5/4, then again sp(p(n)) = ∅.
• If f is a real function with a continuous second derivative such that

(i) f ′(x)− f ′(εx) = O(1) for all ε > 0, and
(ii) x2f ′′(x) → ±∞ when x→ +∞,
then sp(f(n)) = ∅. For example, the conditions (i) and (ii) are fulfilled for f(x) =
(log x)δ with δ > 1, and for f(x) = x(log x)δ with δ ̸= 0.

The following examples of almost periodic sequences kn are contained in their results
(cf. [DT, p. 102–103, Lemma 1.111–2]):
• kn = [βn] for β > 0.
• the sequence kn of those positive integers which are not divisible by any q ∈ E,

where E is a set of positive integers such that
∑
q∈E 1/q <∞.

(II) Y. Peres (1988) showed that the u.d. of the differences also implies the u.d. of
x[αn] for any non–zero α ∈ R, cf. 2.2.1(IV).
(III) H.Rindler (1973/74) and V. Losert and H.Rindler (1978) also studied strictly
increasing sequences kn of integers for which the u.d. of xn implies the u.d. of xkn ,
for every sequence xn.

H.Daboussi – M.Mendès France: Spectrum, almost periodicity and equidistribution modulo 1 ,
Studia Sci. Math. Hungar. 9 (1974/1975), 173–180 (MR0374066 (51 #10266); Zbl. 0321.10043).
V.Losert – H.Rindler: Teilfolgen gleichverteilter Folgen, J. Reine Angew. Math. 302 (1978),
51–58 (MR0511692 (80a:10071); Zbl. 0371.10039).
M.Mendès France: Les suites à spectre vide et la répartition modulo 1 , J. Number Theory 5
(1973), 1–15 (MR0319909 (47 #8450); Zbl. 0252.10033).
Y.Peres: Application of Banach limits to the study of sets of integers, Israel J. Math. 62 (1988),
no. 1, 17–31 (MR0947826 (90a:11088); Zbl. 0656.10050).
H.Rindler: Ein Problem aus der Theorie der Gleichverteilung, II , Math. Z. 135 (1973/1974),
73–92 (MR0349614 (50 #2107); Zbl. 0263.22009).
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2.4.3. Let h(n) be an increasing sequence of positive integers satisfying
h(n) ≤ cn for some constant c. If the sequence xn in [0, 1) has a.d.f. g(x)
then the sequence

xh(n)

again has the a.d.f.

g(x)

if and only if the sequence zn defined by

zn =

{
1, if n ∈ h(N),
0, otherwise

is statistically independent with xn.

Notes: G.Rauzy (1976, p. 95, 5.1. Th.).

G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).

2.4.4.

Notes: Following G. Rauzy (1976, p. 100) define:
(i) The strictly increasing function h : N → N is called almost periodic in the

sense of Besicovitch, if for every ε > 0 there exists an s ≥ 1 and complex
numbers c1, . . . , cs and real numbers α1, . . . , αs mod 1 such that

lim sup
N→∞

1

N

N∑
n=1

∣∣∣∣∣χ(n)−
s∑

k=1

cke
2πiαkn

∣∣∣∣∣ < ε,

where χ(n) is a characteristic function of the set h(N) (cf. J.Marcinkiewicz
(1939)).

(ii) The Bohr spectrum (or Fourier – Bohr spectrum) Bsp(ψ) of the func-
tion ψ : N → C is the set of all α mod 1 for which

lim sup
N→∞

∣∣∣∣∣ 1N
N∑
n=1

ψ(n)e−2πiαn

∣∣∣∣∣ > 0.

(iii) The Bohr spectrum Bsp(xn) of the sequence xn ∈ [0, 1) is the union of all
Bsp(ψ) with ψ(n) = f(xn), where f is continuous (note that Bsp(xn) does not
coincides with sp(xn) defined in 2.4.1). For another definition of Bsp(xn) see
3.11.



2.4 Subsequences 2 – 49

(iv) The Bohr spectrum Bsp(h) of the increasing function h : N → N is
defined as Bsp(χ) where χ is the characteristic function of h(N).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let the sequence xn in [0, 1) have the a.d.f. g(x) and let h(n) be almost
periodic in the sense of Besicovitch. If 0 is the only common point of Bsp(h)
and Bsp(xn), then the sequence

xh(n)

again has the a.d.f.

g(x).

Notes: G.Rauzy (1976, p. 100, 6.4. Th.). He also proved (1976, p. 102, 6.5. Cor.):

Let xn mod 1 be u.d. If xn + nα mod 1 is u.d. for every α, and h(n) is almost
periodic, such that h(n) ≤ cn for some constant c, then

xh(n)

is

u.d.

J.Marcinkiewicz: Une remarque sur les espaces de Besicovitch, C. R. Acad. Sci. Paris 208
(1939), 157–159 (Zbl. 0020.03104).
G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).

2.4.4.1 Let xn, n = 1, 2, . . . , be a dense sequence in [0, 1] having an a.d.f.
g(x). Put d0 = infx∈[0,1] g

′(x) (here inf is taken over those x ∈ [0, 1] at which
g(x) is differentiable). Then for every 0 ≤ d ≤ d0 there exists a subsequence

xh(n)

which is

u.d.

and the asymptotic density of h(n) is d, i.e.

lim
n→∞

n

h(n)
= d.

Notes:
Y.Dupain and J. Lesca applied this result to the sequence xn = θn mod 1, where θ
is a Salem number (see 3.21.5). In particular, they observed, that the asymptotic
density of h(n) gets arbitrarily close to 1, as the degree of θ increases. In other
words, xn ”approaches” the u.d. with increasing degree of θ.
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Y.Dupain – J. Lesca: Répartition des sous-suites d’une suite donnée, Acta Arith. 23 (1973),
307–314 (MR0319884 (47 #8425); Zbl. 0263.10021).

2.5 Transformations of sequences

Notes: Given a sequence xn in [0, 1), let the sequence yn be defined by one of the
following ways:
• yn = x1 + · · ·+ xn mod 1,
• yn = x1+···+xn

n ,
• yn = nxn mod 1,
• yn = (xn+1, . . . , xn+s),
• yn = (x2n−1, x2n),
• yn is the sequence F (xm, xn) mod 1 for m,n = 1, 2, . . . , ordered in such way that

the values F (xm, xn) mod 1 with m,n = 1, 2, . . . , N , form the first N2 terms
of yn, n = 1, 2, . . . , where F : [0, 1]2 → R.

In every of the above cases the connection between G(xn) and G(yn) is an open
problem. In what follows some results will be presented if G(xn) is a singleton and
yn = f(xn), where f : [0, 1] → [0, 1].

2.5.1. u.d.p. maps. The map f : [0, 1] → [0, 1] is called uniform dis-
tribution preserving (abbreviated u.d.p.) if for any u.d. sequence xn,
n = 1, 2, . . . , in [0, 1] the sequence f(xn) is also u.d.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Riemann integrable function f : [0, 1] → [0, 1] is a u.d.p. transformation if
and only if one of the following conditions is satisfied:

(i)
∫ 1
0 h(x) dx =

∫ 1
0 h(f(x)) dx for every continuous h : [0, 1] → R.

(ii)
∫ 1
0 (f(x))

k dx = 1
k+1 for every k = 1, 2, . . . .

(iii)
∫ 1
0 e

2πikf(x) dx = 0 for every k = ±1,±2, . . . .
(iv) There exists an increasing sequence of positive integers Nk and an

Nk–almost u.d. sequence xn for which the sequence f(xn) is also
Nk–almost u.d.

(v) There exists an almost u.d. sequence xn in [0, 1) such that the sequence
f(xn)− xn converges to a finite limit.

(vi) There exists at least one x ∈ [0, 1] which orbit x, f(x), f(f(x)), . . . is
almost u.d.

(vii) f is measurable in the Jordan sense and |f−1(I)| = |I| for every subin-
terval I ⊂ [0, 1].

(viii)
∫ 1
0 f(x) dx =

∫ 1
0 x dx = 1

2 ,∫ 1
0 (f(x))

2 dx =
∫ 1
0 x

2 dx = 1
3 ,
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∫ 1
0

∫ 1
0 |f(x)− f(y)|dx dy =

∫ 1
0

∫ 1
0 |x− y|dx dy = 1

3 .

From the other properties of u.d.p. transformations let us mention:
(ix) Let f1, f2 be u.d.p. transformations and α a real number. Then

f1(f2(x)), 1 − f1(x) and f1(x) + α mod 1 are again u.d.p. transfor-
mations.

(x) Let fn be a sequence of u.d.p. transformations uniformly converging
to f . Then f is u.d.p.

(xi) Let f : [0, 1] → [0, 1] be piecewise differentiable. Then f is u.d.p. if
and only if

∑
x∈f−1(y)

1
|f ′(x)| = 1 for all but a finite number of points

y ∈ [0, 1].
(xii) A piecewise linear transformation f : [0, 1] → [0, 1] is u.d.p. if and only

if |Jj | = |Jj,1| + · · · + |Jj,nj | for every Jj = (yj−1, yj), where 0 = y0 <
y1 < · · · < ym = 1 is the sequences of ordinates of the ends of line
segment components of the graph of f and f−1(Jj) = Ij,1 ∪ · · · ∪ Jj,nj .

Notes: (I) The problem to find all continuous u.d.p. is formulated in Ja.I. Rivkind
(1973).
(II) The results (i)-(vii), (ix)-(xii) are proved in Š. Porubský, T. Šalát and O. Strauch
(1988). The criterion (viii) is given in O. Strauch (1999, p. 116).
(III) Some parts of these results are also proved independently in W.Bosch (1988).
(IV) R.F.Tichy and R.Winkler (1991) gave a generalization for compact metric
spaces.
(V) Some related results can be found in: M.Paštéka (1987), Y. Sun (1993, 1995),
P. Schatte (1993), S.H.Molnár (1994) and J. Schmeling and R.Winkler (1995).
(VI) W.J. LeVeque (1953) found the following u.d.p. maps for u.d. sequences modulo
subdivision ∆ = (zn)

∞
n=1 (for the def. cf. p. 1 – 6 ): Suppose that xn is u.d. mod ∆

and that
(i) f is a function which is differentiable except possibly at the points zn, n =

1, 2, . . . ,
(ii) f(x) increases to ∞ as x→ ∞,

(iii) limn→∞
infx∈(zn−1,zn) f

′(x)

supx∈(zn−1,zn) f
′(x)

= 1.

Then the sequence f(xn) is u.d. mod ∆∗ = (f(zn))
∞
n=1.

W.Bosch: Functions that preserve uniform distribution, Trans. Amer. Math. Soc. 307 (1988),
no. 1, 143–152 (MR0936809 (89h:11046); Zbl. 0651.10032).
W.J. LeVeque: On uniform distribution modulo a subdivision, Pacific J. Math. 3 (1953), 757–771
(MR0059323 (15,511c); Zbl. 0051.28503).
S.H.Molnár: Sequences and their transforms with identical asymptotic distribution function mod-
ulo 1, Studia Sci. Math. Hungarica 29 (1994), no. 3–4, 315–322 (MR1304885 (95j:11071); Zbl.
0849.11053).
M.Paštéka: On distribution functions of sequences, Acta Math. Univ. Comenian. 50–51 (1987),
227–235 (MR0989415 (90e:11115); Zbl. 0666.10033).
Š. Porubský – T. Šalát – O. Strauch: Transformations that preserve uniform distribution, Acta
Arith. 49 (1988), 459–479 (MR0967332 (89m:11072); Zbl. 0656.10047).
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Ja.I. Rivkind: Problems in Mathematical Analysis, (Russian), 2nd edition ed., Izd. Vyšeǰsaja
škola, Minsk, 1973. (For the English translation of the first edition see MR0157880 (28 #1109) or
Zbl. 0111.05203).
P. Schatte: On transformations of distribution functions on the unit interval- a generalization of
the Gauss – Kuzmin – Lévy theorem, Z. Anal. Anwend. 12 (1993), no. 2, 273–283 (MR1245919
(95d:11098); Zbl. 0778.58042).
J. Schmeling – R.Winkler: Typical dimension of the graph of certain functions, Monatsh. Math.
119 (1995), 303–320 (MR1328820 (96c:28005); Zbl. 0830.28004).
O. Strauch: Distribution of Sequences (in Slovak), Mathematical Institute of the Slovak Academy
of Sciences, DSc Thesis, Bratislava, Slovakia, 1999.
Y. Sun: Some properties of uniform distributed sequences, J. Number Theory 44 (1993), no. 3,
273–280 (MR1233289 (94h:11068); Zbl. 0780.11035).
Y. Sun: Isomorphisms for convergence structures, Adv. Math. 116 (1995), no. 2, 322–355
(MR1363767 (97c:28031); Zbl. 0867.28003).
R.F.Tichy – R.Winkler: Uniform distribution preserving mappings, Acta Arith. 60 (1991),
no. 2, 177–189 (MR1139054 (93c:11054); Zbl. 0708.11034).

2.5.2. u.d.p. sequences of maps. Open problem. A sequence of maps
fn(x) : [0, 1] → [0, 1], n = 1, 2, . . . , is called uniform distribution pre-
serving (abbreviated u.d.p.) if for any u.d. sequence xn, n = 1, 2, . . . , the
sequence fn(xn) remains u.d. The problem is to characterize such sequences
of maps.

Notes: (I) Sequences of such maps were introduced by R.Winkler (1998). He gave
a complete characterization of u.d.p. sequences of maps on finite sets: Let X and Y
be finite sets equipped with probability measures λ and µ, resp., such that λi > 0 for
i ∈ X. Then the sequence fn : X → Y , n ∈ N, is called (λ, µ)–u.d.p. sequence
of maps if the induced sequence fn(xn) is µ–u.d. for every λ–u.d. sequence xn.

A sequence fn : X → Y is (λ, µ)–u.d.p. if and only if the following conditions
hold:
(i) fn is almost constant (the definition is given below),
(ii) The set of n ∈ N for which fn is neither a constant map nor a u.d.p. map has

zero asymptotic density,
(iii) The sequence fn = cn = const. is µ–u.d. with respect to the set C of n ∈ N for

which the map fn is a constant (i.e.

limN→∞
#{n ∈ C ∩ (0, N ] ; cn = j} − µj ·#(C ∩ (0, N ])

N
= 0

for all j ∈ Y ).

Here, according to Winkler, the sequence fn is almost constant, if for every ε > 0
there exists a q > 1 such that for every k ∈ N either fn is a fixed function for
all n ∈ ([qk−1], [qk]], or fn are constant functions (not necessary the same) for all
n ∈ ([qk−1], [qk]] except for a set of n’s of upper asymptotic density < ε.
(II) A complete characterization of u.d.p. sequence fn(x) with fn(x) = constant =
yn, has been given by G.Rauzy (1973), cf. 2.3.5.
(III) H.Rindler [Acta Arith. 35 (1979), no. 2, 189–193; MR 84a:22010] generalized
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Rauzy’s result to compact metric groups.
(IV) V. Losert [Monatsh. Math. 85 (1978), no. 2, 105–113; MR 57# 16237] found a
characterization of u.d.p. fn(x) if the fn(x) are measure–preserving maps defined on
a compact metric probability space, or if they are affine transformations on compact
metric groups.

G.Rauzy: Étude de quelques ensembles de fonctions définis par des propertiétés de moyenne,
Séminaire de Théorie des Nombres (1972–1973), 20, Lab. Théorie des Nombres, Centre Nat.
Recherche Sci., Talence, 1973, 18 pp. (MR0396463 (53 #328); Zbl. 0293.10018).
R.Winkler: Distribution preserving sequences of maps and almost constants sequences, Monatsh.
Math. 126 (1998), no. 2, 161–174 (MR1639383 (99h:11088); Zbl. 0908.11035).

2.5.3. d.p. sequences of maps. A sequence of maps fn : [0, 1] → [0, 1],
n = 1, 2, . . . , is called distribution preserving (abbreviated d.p.) if for
any two sequences xn, x

′
n ∈ [0, 1), the coincidence of the sets of distribution

functions G(xn) = G(x′n) always implies G(fn(xn)) = G(fn(x
′
n)).

A sequence of maps fn : [0, 1] → [0, 1] is d.p. if and only if
(i) fn is almost constant (cf. 2.5.2),
(ii) fn is almost equicontinuous.

Here, fn is almost equicontinuous if for every ε > 0 there is a δ > 0 such
that the set of all n for which fn((x − δ, x + δ)) ̸⊆ (fn(x) − ε, fn(x) + ε)
for some x ∈ [0, 1] has the upper asymptotic density < ε. For instance,
the sequence fn is almost constant if for every sequence of positive integers
a0 < a1 < a2 < . . . with limk→∞ ak/ak−1 = 1 there is an f∗n such that
(i) lim supN→∞

1
N

∑N
n=1 supx∈[0,1] |fn(x)− f∗n(x)| = 0, and

(ii) if k = 1, 2, . . . , then either all f∗n with n ∈ (ak−1, ak] are constant maps,
or all f∗n with n ∈ (ak−1, ak] coincide.

Notes: Definitions and results stem from R.Winkler (1999) and they also remain
valid for compact metric spaces. Cf. also (1997).

R.Winkler: Sets of block structure and discrepancy estimates, J. Théor. Nombres Bordeaux 9
(1997), no. 2, 337–349 (MR1617402 (99c:11099); Zbl. 0899.11036).
R.Winkler: Distribution preserving transformations of sequences on compact metric spaces,
Indag. Math., (N.S.) 10 (1999), no. 3, 459–471 (MR1819902 (2002c:11086); Zbl. 1027.11053).

2.5.4. f–invariant distributed sequence. Let f : R → R be a func-
tion. A sequence of real numbers xn, n = 1, 2, . . . , is called f–invariant
distributed sequence mod 1 if the sequences xn mod 1 and f(xn) mod 1
have the same a.d.f. In special cases
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• If xn mod 1 and 1
xn

mod 1 have the same a.d.f. (i.e. f(x) = 1
x), then xn is

said to be reciprocal invariant distributed sequence mod 1.

• If xn mod 1 and
√
xn mod 1 have the same a.d.f. (i.e. f(x) =

√
x), then

xn is said to be square root invariant distributed sequence mod 1.

Notes: (I) S.H.Molnár (1994). As an example he gives the reciprocal invariant
sequence 2.24.7.
(II) Since xn cannot be in [0, 1), we cannot use 2.3.4, i.e. the notion f–invariant
distributed sequence is the property of the sequence xn but not of its a.d.f.

S.H.Molnár: Sequences and their transforms with identical asymptotic distribution function mod-
ulo 1, Studia Sci. Math. Hungarica 29 (1994), no. 3–4, 315–322 (MR1304885 (95j:11071); Zbl.
0849.11053).

2.5.5. Given the basis q ≥ 2, fix
• the permutation π : {0, 1, . . . , q − 1} → {0, 1, . . . , q − 1}, and
• the permutations πb : {0, 1, . . . , q − 1} → {0, 1, . . . , q − 1} for every b =
(b1, . . . , bk) with bi ∈ {0, 1, . . . , q − 1} and every k = 1, 2, . . . .

If x ∈ [0, 1) has the q–ary representation x = 0.a1a2a3 . . . then define the
map σ : [0, 1) → [0, 1), called the q–ary scrambling, by

σ(x) = 0.π(a1)πa1(a2)π(a1,a2)(a3) . . . .

If xn is a given sequence, the sequence σ(xn) is called the scrambling se-
quence of xn.

Notes: A.B.Owen (1997) discusses this mapping σ with permutations πb chosen
fully randomly and mutually independently and its application to the deterministic
low discrepancy sequences 1.8.15, cf. J.Matoušek (1998).

J.Matoušek: On the L2–discrepancy for anchored boxes, J. Complexity 14 (1998), no. 4, 527–556
(MR1659004 (2000k:65246); Zbl. 0942.65021).
A.B.Owen: Monte–Carlo variance of scrambled net quadrature, SIAM J. Number. Analysis 34
(1997), no. 5, 1884–1910 (MR1472202 (98h:65006); Zbl. 0890.65023).

2.6 Sequences involving continuous functions

2.6.1. Generalized Fejér’s theorem. Let k be a positive integer, and let
f(x) be a function defined for x ≥ 1 such that
(i) it is k times differentiable for x ≥ x0,
(ii) f (k)(x) tends monotonically to 0 as x→ ∞,
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(iii) lim
x→∞

x|f (k)(x)| = ∞.

Then the sequence
f(n) mod 1

is

u.d.

Notes: (I) [KN, p. 29, Th. 3.5]. The case k = 1 is known as Fejér’s theorem.
(II) Fejér’s theorem is sometimes formulated under slightly different assumptions,
e.g. requiring in addition to our assumptions, that f(x) has continuous derivative for
sufficiently large x (cf. [KN, p. 24, Ex. 2.22]) or under the hypotheses (cf. G. Pólya
and G. Szegő (1964, Part 2, Ex. 174))
• f(x) is continuously differentiable,
• f(x) tends monotonically to ∞ as x→ ∞,
• f ′(x) tends monotonically to 0 as x→ ∞,
• lim
x→∞

xf ′(x) = ∞.

(III) In G.Pólya and G. Szegő (1964, Part 2, Ex. 182) the following variant is proved:

Let f(x) be a function defined for x ≥ 1 such that
• f(x) is continuously differentiable,
• f(x) tends monotonically to ∞ as x→ ∞,
• f ′(x) tends monotonically to 0 as x→ ∞,
• lim
x→∞

xf ′(x) = 0,

then the sequence f(n) mod 1 is dense but not u.d.
(IV) G.Rauzy (1976, p. 43, 1.2. Coroll.) proved that if
• f ′(x) tends to 0 (not necessarily monotonically), and
• limx→∞ xf ′(x) exists and is finite,

then the sequence f(n) mod 1 is not u.d.
(V) J. Cigler (1960) proved that if
• f(x) is twice continuously differentiable,
• f(x) tends monotonically to ∞ as x→ ∞,
• f ′(x) tends monotonically to 0 as x→ ∞,

then the u.d. is the only (C, 1) distribution which f(n) mod 1 can have.
(VI) L.Kuipers (1953) gives (III) in a slightly more general form 2.6.6.
(VII) Fejér’s theorem in terms of finite differences is given in 2.2.10.

J.Cigler: Asymptotische Verteilung reeller Zahlen mod 1, Monatsh. Math. 44 (1960), 201–225
(MR0121358 (22 #12097); Zbl. 0111.25301).
L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).
G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).
G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).
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2.6.2. Let f(x) be a monotone increasing function defined for x ≥ 1 and
continuously differentiable for x ≥ x0 and

(i) limx→∞ f(x) = ∞,

(ii) limx→∞ xf ′(x) = ∞,

(iii) limx→∞ f ′(x) = 0 monotonically.

Then the sequence
f(n) mod 1

has the discrepancy

DN = O
(
f(N)

N
+

1

Nf ′(N)

)
.

Notes: This quantitative form of Fejér’s theorem was proved by H.Niederreiter
(1971, p. 290, Th. 4.1).

H.Niederreiter: Almost–arithmetic progressions and uniform distribution, Trans. Amer. Math.
Soc. 161 (1971), 283–292 (MR0284406 (44 #1633); Zbl. 0219.10040).

2.6.3. Let pn be a sequence of weights with PN ∼ g(N), where ∼ denotes the
asymptotic equality and PN =

∑N
n=1 pn. Let f(x) and g(x) be continuously

differentiable functions for x ≥ 1 such that
(i) f ′(x)/g(x) decreases monotonically towards 0 with x→ ∞,
(ii) g(x)f ′(x)/g′(x) tends monotonically towards ∞ with x→ ∞.

Then the sequence
f(n), n = 1, 2, . . . ,

has weighted discrepancy

sup
0≤α<β≤1

∣∣∣∣∣ 1

PN

N∑
n=1

pnc[α,β)({f(n)})− (β − α)

∣∣∣∣∣ = O
(
f(N)

g(N)
+

g′(N)

g(N)f ′(N)

)
.

Notes: (I) R.F.Tichy (1982). A corresponding estimate for the discrepancy can
also be proved for double sequences related to the Φ–(M,N,m)–uniform distribution,
where the Φ–processing is described in Tichy (1978).
(II) Y.Ohkubo (1986) proved a similar result: For p(x) ∈ C1[1,∞) and f(x) ∈
C2[1,∞] assume that

• p(x) is positive, non–increasing such that sN =
∑N
n=1 pn → ∞ as N → ∞ where

pn = p(n),
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• s(t) =
∫ t
1
p(x) dx and s(N)/sN → 1,

• f(x) is positive, strictly increasing and f(x) → ∞ as x→ ∞,
• f ′(x) → constant < 1 monotonically as x→ ∞,
• f ′(x)/p(x) is monotone for x ≥ 1.

Then the extremal weighted discrepancy DN with respect to weights pn of the se-
quence f(n) mod 1 satisfies

DN = O

(
1

s(N)

∫ N

1

p(x)f ′(x) dx+
p(N)

s(N)f ′(N)

)
.

Y.Ohkubo: Discrepancy with respect to weighted means of some sequences, Proc. Japan Acad.
62 A (1986), no. 5, 201–204 (MR0854219 (87j:11075); Zbl. 0592.10044).
R.F.Tichy: Gleichverteilung von Mehrfachfolgen und Ketten, Anz. Österreich. Akad. Wiss.
Math.–Natur. Kl. (1978), no. 7, 174–207 (MR0527512 (83a:10087); Zbl. 0401.10061).
R.F.Tichy: Einige Beiträge zur Gleichverteilung modulo Eins, Anz. Österreich. Akad. Wiss.
Math.–Natur. Kl. 119 (1982), no. 1, 9–13 (MR0688688 (84e:10061); Zbl. 0495.10030).

2.6.4. Let f(x) be a real function which kth difference satisfies the inequality
∆kf(n) ≥ r > 0 for n = 1, 2, . . . , N − k, where k is an integer less than N .
Then the discrepancy of the finite sequence

f(1), f(2), . . . , f(N) mod 1

satisfies

DN < c

((
ρ2

r

) 1
K−1

+

(
1

rNk

) 2
K

+

(
ρ

rN

2
K
log

1

ρ

))
,

where c is a constant, K = 2k, and

ρ =
1

N − k

(
∆k−1f(N − k + 1)−∆k−1f(1)

)
.

J.G. van der Corput – C.Pisot: Sur la discrépance modulo un. III , Nederl. Akad. Wetensch.,
Proc. 42 (1939), 713–722 (MR0000396 (1,66c); JFM 65.0170.02; Zbl. 0022.11605). (=Indag. Math.
1 (1939), 260–269).

2.6.5. Let k be a positive integer, and let f(x) be a function defined for
x ≥ 1 such that
(i) it is k times differentiable for sufficiently large x, and
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(ii) lim
x→∞

f (k)(x) = θ with irrational θ.

Then the sequence
f(n) mod 1

is

u.d.

Notes: [KN, p. 31, Exer. 3.7]. For k = 1 this was proved by L.Kuipers (1953) and
a related result involving differences was proved by J.G. van der Corput (1931), cf.
2.2.12.

L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).
J.G. van der Corput: Diophantische Ungleichungen I. Zur Gleichverteilung modulo Eins, Acta
Math. 56 (1931), 373–456 (MR1555330; JFM 57.0230.05; Zbl. 0001.20102).

2.6.6. Let f(x) be a function defined for x ≥ 0 such that
(i) f(x) is differentiable,
(ii) |xf ′(x)| ≤M for 0 ≤ x <∞.

Then the sequence
f(n) mod 1

is

u.d.
L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).

2.6.7. Let α be an irrational number and f(x) be a three-times differentiable
function defined for x ≥ 0 such that
(i) f ′(x) → 0 as x→ ∞,
(ii) f ′′(x) → 0 as x→ ∞,

(iii) limx→∞
f ′′′(λx)
f ′′′(x) = λρ for each λ > 0 and some fixed ρ < −2,

(iv) f ′′′(x) is ultimately non–decreasing,
(v) xf ′(x) is ultimately non–increasing.

Then for the extremal discrepancy of the sequence

xn = αn+ f(n) mod 1

we have

DN ≥ c
(f ′(N))1/4

N1/2
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for every N with a constant c > 0.

Related sequences: 2.12.31, 2.19.9, 2.15.3, 2.3.6, 2.3.11, 2.10.2.

K.Goto – Y.Ohkubo: Lower bounds for the discrepancy of some sequences, Math. Slovaca 54
(2004), no. 5, 487–502 (MR2114620 (2005k:11153); Zbl. 1108.11054).

2.6.8. Let f(x) be a function such that
(i) f is continuously differentiable for x ≥ x0,
(ii) limx→∞ f(x) = ∞,
(iii) xf ′(x) is increasing,
(iv) 0 < f ′(x)xσ < 1 for σ > 0.

Then the sequence

xn = f(n) mod 1,

is

H∞–u.d.

with discrepancy

DN (H∞, xn) ≤ c
1

logN
.

Notes: R.F.Tichy (1985). For the definition ofH∞–u.d. consult 1.8.5, or P. Schatte
(1983).

P. Schatte: On H∞–summability and the uniform distribution of sequences, Math. Nachr. 113
(1983), 237–243 (MR0725491 (85f:11057); Zbl. 0526.10043).
R.F.Tichy: Uniform distribution and Diophantine inequalities, Monatsh. Math. 99 (1985), no. 2,
147–152 (MR0781691 (86f:11059); Zbl. 0538.10039).

2.6.9. Let f(x) be a function defined for x ≥ 0 such that
(i) f(x) has a continuous derivative,
(ii) limx→∞ f ′(x) log x→ c ̸= 0.

Then the sequence

f(n) mod 1

is

u.d.

Notes: L.Kuipers (1953), cf. [KN, p. 82, Th. 9.8].

L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).
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2.6.10. Let f(x) be a function defined for x ≥ 0 such that
(i) f(x) is differentiable,
(ii) limx→∞ f ′(x) → 0,
(iii) limx→∞ xf ′(x) → ∞,

(iv) limx→∞
f ′(x)

f ′
(
x+ θ

f(x)

) → 1 for some fixed θ, |θ| ≤ 1.

Then the sequence

f(n) mod 1

is

u.d.
J.F.Koksma: Asymptotische verdeling van reële getallen modulo 1. I, II, III , Mathematica (Lei-
den) 1 (1933), 245–248, 2 (1933), 1–6, 107–114 (Zbl. 0007.33901).

2.6.11. Let f(x) be a function defined for x ≥ 0 such that
(i) f(x) is differentiable,
(ii) 0 ≤ f ′(x) <∞ for x ≥ 0,
(iii) limx→∞ xβf ′(x) → α, where α > 0 and 0 < β < 1.

Then the sequence

f(n) mod 1

is

u.d.

Notes: L.Kuipers (1953), who mentions that this follows from 2.6.10.

L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).

2.6.12. Let f(x) be a function defined for x ≥ 0 such that
(i) f(x) has the continuous derivative of a constant sign,
(ii) f(x) mod 1 is c.u.d.,

(iii) limx→∞
f(x)
x → 0.

Then the sequence

f(n) mod 1

is
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u.d.

Notes: L.Kuipers (1953), cf. [KN, p. 82, Th. 9.7] and for applications 2.13.8,
2.13.10. Here the real valued Lebesgue–measurable function f(x) mod 1 defined for
0 ≤ x <∞ is called continuously uniformly distributed (abbreviated c.u.d.) if

lim
T→∞

1

T

∫ T

0

cI({f(x)}) dx = |I|

for every subinterval I ⊂ [0, 1] (cf. [KN, p. 78]).

L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).

2.6.13. Let w(t) have continuous derivatives of the first K + 2 orders such
that
(i) w(K+1)(t) and w(K+2)(t) have constant signs, and
(ii) lim

t→∞
w(K)(t)/t = 0, and

(iii) lim
t→∞

t
∣∣w(K+1)(t)

∣∣ = ∞.

Then, for arbitrary real numbers α0 ̸= 0, α1, . . . , αK , the sequence

α0w(n) + α1w
′(n) + · · ·+ αKw

(K)(n) mod 1

is

u.d.

Notes: This result was proved by J.Cigler (1968) using theorems of Fejér (2.6.1)
and van der Corput (Th. 2.2.1), cf. E.Hlawka (1984, pp. 36–37). Cigler calls the
functions which satisfy the above conditions tempered. The fact that w(n) mod 1 is
u.d. for every tempered w(t) was already known to van der Corput, cf. Hlawka (1984,
p. 38).

J.Cigler: Some remarks on the distribution mod 1 of tempered sequences, Nieuw Arch. Wisk.
(3) 16 (1968), 194–196 (MR0240057 (39 #1411); Zbl. 0167.32102).
E.Hlawka: The Theory of Uniform Distribution, A B Academic Publishers, Berkhamsted, 1984
(translation of the original German edition Hlawka (1979)) (MR0750652 (85f:11056); Zbl. 0563.10001).

2.6.14. Let f(x) be defined for x ≥ 1 and twice differentiable for sufficiently
large x with
(i) f ′′(x) tending monotonically to 0 as x→ ∞,
(ii) lim

x→∞
f ′(x) = ±∞, and
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(iii) lim
x→∞

(f ′(x))2

x2|f ′′(x)| = 0.

Then

f(n) mod 1

is

u.d.

Notes: [KN, p. 24, Exer. 2.26]

2.6.15. Let f(x, y) be a real valued function with its partial derivative fxy
defined for x ≥ 1, y ≥ 1. Assume that, for x ≥ 1, y ≥ 1
(i) fxy is continuous,
(ii) f increases in x and y,
(iii) fx is not increasing in x and y,
(iv) lim

x→∞
fx(x, 1) = lim

y→∞
fy(1, y) = 0,

(v) lim
x→∞

f(x,x)
x2 = 0,

(vi)
∫ N
1

∫ N
1 fx(x, y)fy(x, y) dx dy = o(N2),

(vii)
∫ N
1

dy
fx(N,y) = o(N2)

Let the double sequence f(m,n), m = 1, 2, . . . , n = 1, 2, . . . , be reordered
to an ordinary sequence xn, n = 1, 2, . . . , in such a way that for every N
the initial segment xn, n = 1, 2, . . . , N2, contains the terms f(m,n) for m =
1, 2, . . . , N and n = 1, 2, . . . , N . Then the sequence

xn mod 1

is

u.d.

Notes: [KN, p. 20, Th. 2.10].

2.6.16. Let α and β be positive real numbers and the real valued function
f(x) be twice differentiable for x ≥ 0 such that
(i) f(x) is increasing,
(ii) f ′(x) → 0 monotonically as x→ ∞,
(iii) limx→∞ xf ′(x) → ∞ as x→ ∞,
(iv) f ′′(x) is continuous for x > 0.



2.6 Sequences involving continuous functions 2 – 63

Let the double sequence f(αm+βn), m = 1, 2, . . . , n = 1, 2, . . . , be reordered
to an ordinary sequence xn, n = 1, 2, . . . , in such a way that for every N the
initial segment xn, n = 1, 2, . . . , N2, contains the terms f(αm + βn) for
m = 1, 2, . . . , N and n = 1, 2, . . . , N . Then the sequence

xn mod 1

is

u.d.

Notes: [KN, p. 21, Ex. 2.10]. This is an applications of 2.6.15.

Related sequences: 2.12.9, 2.15.2.

2.6.17. Let f1(x), . . . , fk(x) be twice differentiable functions such that
(i) limx→∞ fi(x) = ∞ for i = 1, . . . , k,
(ii) every derivative f ′i(x) is a monotonically decreasing function and

limx→∞ f ′i(x)f
k−1
i (x) = 0 for i = 1, . . . , k.

Then the multiple sequence

xn = f1(n1) . . . fk(nk) mod 1, n = (n1, . . . , nk) ∈ Nk,

with the product ordering of n = (n1, . . . , nk) is

u.d.

with respect to the weight f ′1(n1) . . . f
′
k(nk), i.e. for [x, y) ⊂ [0, 1]

lim
N→∞

1

P1(N1) · · ·Pk(Nk)

∑
n≤N

f ′1(n1) . . . f
′
k(nk)c[x,y)({f1(n1) . . . fk(nk)}) =

= y − x,

where Pi(Ni) =
∑

n≤Ni
f ′i(n), N = (N1, . . . , Nk) and n1 ≤ N1, . . . , nk ≤ Nk.

Notes: R.F.Tichy (1982, Satz 2.3) who generalized a result proved by J.Cigler
(1960).

J.Cigler: Asymptotische Verteilung reeller Zahlen mod 1, Monatsh. Math. 44 (1960), 201–225
(MR0121358 (22 #12097); Zbl. 0111.25301).
R.F.Tichy: Einige Beiträge zur Gleichverteilung modulo Eins, Anz. Österreich. Akad. Wiss.
Math.–Natur. Kl. 119 (1982), no. 1, 9–13 (MR0688688 (84e:10061); Zbl. 0495.10030).
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2.6.18. Let f(x), x ≥ 1 be a continuous increasing function with the inverse
function f−1(x). Assume that
(i) limn→∞∆f−1(n) = ∞,
(ii) for every x ∈ [0, 1] there exists the limit

lim
n→∞

f−1(n+ x)− f−1(n)

∆f−1(n)
= g(x).

If

lim inf
n→∞

f−1(n)

f−1(n+ x)
= χ(x),

then the sequence

f(n) mod 1

has the lower d.f. g(x) and upper d.f. g(x) of the form

g(x) = 1− χ(x)(1− g(x)).

Notes: (I) This was proved by J.F.Koksma (1933; 1936, Chap. 8), cf. [KN, p. 58,
Th. 7.7]. In [KN, p. 59] the lower and upper d.f. of logb n mod 1, b > 1 (cf. 2.12.1)
was found using this result.
(II) O. Strauch and O.Blažeková (2006) proved the following modification:

Theorem 2.6.18.1. Let f(x) be a strictly increasing function and let f−1(x) be its
inverse. Assume further that
(i) limx→∞ f ′(x) = 0,
(ii) limk→∞

(
f−1(k + 1)− f−1(k)

)
= ∞,

(iii) if w(k) ∈ [0, 1] is a sequence possessing the limit, say limk→∞ w(k) = w, then

limk→∞
f−1(k+w(k))

f−1(k) also exists and its value defines the value of a new function

ψ(x) : [0, 1] → [1, ψ(1)] at x = w,
(iv) ψ(1) > 1.

Then

G(f(n) mod 1) =

{
g̃w(x) =

min
(
ψ(x), ψ(w)

)
− 1

ψ(w)
+

ψ(x)− 1

ψ(w)
(
ψ(1)− 1

) ; w ∈ [0, 1]

}
.

The lower d.f. g(x) and the upper d.g. g(x) of f(n) mod 1 is

g(x) =
ψ(x)− 1

ψ(1)− 1
, and g(x) = 1− 1

ψ(x)
(1− g(x)), resp.,

where g(x) = g̃0(x) = g̃1(x) ∈ G(f(n) mod 1) and g(x) = g̃x(x) /∈ G(f(n) mod 1).
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If FN (x) denotes the step d.f. of the sequence f(n) mod 1, n = 1, 2, . . . , N (see 1.3)
and w(k) = {f(Nk)} → w, then FNk

→ g̃w(x) for every x ∈ [0, 1].
The above Theorem can be applied to f(x) = log x (see 2.12.1) and to f(x) =

log(x log(i) x) (see 2.12.16).

J.F.Koksma: Asymptotische verdeling van reële getallen modulo 1. I, II, III , Mathematica (Lei-
den) 1 (1933), 245–248, 2 (1933), 1–6, 107–114 (Zbl. 0007.33901).
J.F.Koksma: Diophantische Approximationen, Ergebnisse der Mathematik und Ihrer Grenzgebi-
ete, Vol. 4, Julius Springer, Berlin, 1936 (Zbl. 0012.39602; JFM 62.0173.01).
O. Strauch – O.Blažeková: Distribution of the sequence pn/n mod 1, Unif. Distrib. Theory 1
(2006), no. 1, 45–63 (MR2314266 (2008e:11092); Zbl. 1153.11038).

2.6.19. If g is a d.f. then there always exists a sequence

xn ∈ [0, 1)

with the a.d.f.

g(x).

Moreover, there exist such a sequence xn with all its terms mutually distinct.

Notes: This was first proved by R. von Mises (1933). The proof given in [KN,
p. 138, Th. 4.3] goes along the following lines:
(i) If g is a d.f. then there exists a sequence gm, m = 1, 2, . . . , of continuous d.f.’s
which converges pointwise to g, cf. [KN, p. 138, Lemma 4.3].

(ii) Take for y
(m)
n , n = 1, 2, . . . , a sequence with a.d.f. gm, m = 1, 2, . . . ; it may be

constructed for instance using 2.3.8
(iii) The constructed sequence xn is a block sequence starting with the first term

of y
(1)
n , then taking the first two terms of y

(2)
n , etc.. The proof can be finished

using 2.3.14.
For a given setH of d.f.’s the necessary and sufficient conditions for the existence of a
sequence xn ∈ [0, 1) with G(xn) = H is that H is non–empty, closed and connected,
cf. 1.7.0.2.

R. von Mises: Über Zahlenfolgen, die ein kollektiv–ähnliches Verhalten zeigen, Math. Ann. 108
(1933), no. 1, 757–772 (MR1512874; Zbl. 0007.21801).

2.6.20. Let f be the entire function

f(x) =

∞∑
n=0

vnx
n

n!

such that
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(i) there exists a constant c > 0 such that 0 < |vn+1| ≤ c|vn|(n+1)/(n−1) for
all n > n0, and

(ii) |vn|1/(n2
n) → 0 as n→ ∞.

Then the sequence

f(n) mod 1

is

u.d.
G.Rauzy: Fonctions entières et répartition modulo 1 , Bull. Soc. Math. France 100 (1972),
409–415 (MR0318089 (47 #6638); Zbl. 0252.10035).

2.6.21. Let f be an entire function that is real on the real axis and not a
polynomial such that log |f(z)| = O(logα |z|) for some 1 < α < 4/3. Then

f(n) mod 1

is

u.d.

Notes:
(I) R.C.Baker (1984) improved in this way previous results by G.Rauzy (1973)
and G.Rhin (1975). Baker (1986) showed that no quantitative version of the u.d.
can be deduced from the growth condition. In ([a]1986) he proved that given
a positive function F (x) ≥ 1 with F (x) → ∞ as x → ∞, an entire function
f(z) =

∑∞
k=1 z

k/q1 . . . qk such that log |f(Reiθ)| ≤ F (R) logR for R ≥ 1 and that
DN (f(n) mod 1) ≥ N/F (N) for infinitely many N can be constructed (using posi-
tive integers q1, q2, . . . ).
(II) H. Niederreiter (1978), p. 997, interpreted Rauzy’s result (1973) as follows: As-
sume that f is an entire function that is not a polynomial, which attains real values
on the real axis, and satisfies

lim sup
r→∞

log logM(f ; r)

log log r
<

5

4
,

where M(f ; r) = sup|z|≤r |f(z)|. Then

f(n) mod 1, n = 1, 2, . . .

is

completely u.d.

Related sequences: 2.19.12, 2.4.3.
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R.C.Baker: Entire functions and uniform distribution modulo one, Proc. London Math. Soc. (3)
49 (1984), no. 1, 87–110 (MR0743372 (86h:11055); Zbl. 0508.10023).
R.C.Baker: Entire functions and discrepancy, Monatsh. Math. 102 (1986), 179–182 (MR0863215
(88a:11070); Zbl. 0597.10035).
[a] R.C.Baker: On the values of entire functions at the positive integers, in: Analytic and ele-
mentary number theory (Marseille, 1983), Publ. Math. Orsay, 86–1, Univ. Paris XI, Orsay, 1986,
pp. 1–5 (MR0844580 (87m:11062); Zbl. 0582.10022).
H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).
G.Rauzy: Fonctions entières et répartition modulo un. II , Bull. Soc. Math. France 101 (1973),
185–192 (MR0342483 (49 #7229); Zbl. 0269.10029).
G.Rhin: Répartition modulo 1 de f(pn) quand f est une série entière, in: Actes Colloq. Mar-
seille – Luminy 1974, Lecture Notes in Math., Vol. 475, Springer Verlag, Berlin, 1975, pp. 176–244
(MR0392857 (52 #13670); Zbl. 0305.10046).

2.6.22. If θ > 1 is a real number and q > θ a positive integer, then the
sequence

xn = (q − θ)

∞∑
k=1

{
n

qk

}
θk mod 1

is

u.d. if and only if θ is not a P.V. number.

Notes: M.Mendès France (1976) applied his previous result (1973) to prove this.

Related sequences: 2.9.9

M.Mendès France: Les suites à spectre vide et la répartition modulo 1 , J. Number Theory 5
(1973), 1–15 (MR0319909 (47 #8450); Zbl. 0252.10033).
M.Mendès France: A characterization of Pisot numbers, Mathematika 23 (1976), no. 1, 32–34
(MR0419373 (54 #7394); Zbl. 0326.10032).

2.6.23. Let f(x) be a function defined for x ≥ 0. Let h(x) =
∫ x
0 f(t) dt and

l(x) =
∫ x
0 h(t) dt. Suppose that

(i) f(x) tends monotonically to 0 as x→ ∞,
(ii) h(x) tends to ∞ as x→ ∞,

Then
(1) the sequence h(n) mod 1 is dense in [0, 1],
(2) the sequence l(n) mod 1 is dense in [0, 1],
(3) the two–dimensional sequence (h(n), l(n)) mod 1 is dense in [0, 1]2.

Notes: F.S.Cater, R.B.Crittenden and C.Vanden Eyden (1976). Note that (1) and
(2) follow from 2.6.25 and (3) from 3.3.2. They also noted the following consequences:
All of the sequences
• nσ mod 1, 0 < σ < 2, σ ̸= 1 (by 2.15.1 it is u.d.),
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• (log n)σ mod 1, σ > 0,
• n(log n)σ mod 1, σ > 0 (by 2.12.10 it is u.d.),
• (arctann)σ mod 1, σ > 0,
• n(arctann)σ mod 1, σ > 0,
•
∫ n
1
(t+ sin t)σ dt mod 1, 0 < σ < 1,

•
∫ n
1
(t+ cos t)σ dt mod 1, 0 < σ < 1,

are dense in [0, 1].

F.S.Cater – R.B.Crittenden – Ch.Vanden Eynden: The distribution of sequences modulo one,
Acta Arith. 28 (1976), 429–432 (MR0392903 (52 #13716); Zbl. 0319.10042).

2.6.24. Let xn be a sequence of real numbers such that
(i) yn = (xn+1 − xn−1 − 2xn) → 0 as n→ ∞, but
(ii) yn changes signs only finitely many times.

Then the sequence

xn mod 1

is either dense in [0, 1] or its only limit points are

(s+ nr) mod 1, n = 1, 2, . . . ,

where s is some real and r some rational number. Indeed, one of the following
three cases occurs:
(1) there is a rational r and an real s such that (xn − nr) → s,
(2) the fractional parts {xn} are dense in [0, 1] and (xn − xn−1) converges,
(3) if I and J are open subintervals of [0, 1] then there exists an n such that

{xn} ∈ I and {xn−1} ∈ J .

Notes: F.S.Cater, R.B.Crittenden and C.Vanden Eyden (1976). This is a discrete
version of 2.6.23.

F.S.Cater – R.B.Crittenden – Ch.Vanden Eynden: The distribution of sequences modulo one,
Acta Arith. 28 (1976), 429–432 (MR0392903 (52 #13716); Zbl. 0319.10042).

2.6.25. Let f(x) be a function defined for x ≥ 1 and (k + 1)–times differ-
entiable here such that
(i) f (k)(x) → ∞ as x→ ∞,
(ii) f (k+1)(x) > 0,
(iii) f (k+1)(x) → 0 as x→ ∞.
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Then the sequence

f(n) mod 1

is

dense.

Related sequences: 2.6.1, 2.6.1.

P.Csillag: Über die Verteilung iterierter Summen von positiven Nullfolgen mod 1, Acta Litt.
Sci. Szeged 4 (1929), 151–154 (JFM 55.0129.01).

2.6.26. Let f(x), x ≥ 1, be a twice differentiable function such that
(i) f ′′(x) ≪ x−2+ε for some 0 < ε < 1, and
(ii) there are real numbers 1 = t0 < t1 < · · · < tH < ∞ such that f ′′(x)

is of constant sign and monotone in each of the intervals [tj−1, tj ], j =
1, . . . , H, and [tH ,∞).

Then the sequence

f(n) mod 1

is

u.d.

and for its discrepancy we have

DN ≪



1

N |f ′′(N)|1/2
, if 0 < ε < 4

5 ,

logN

N |f ′′(N)|1/2
, if ε = 4

5 ,

1

N5(2−ε)/6|f ′′(N)|1/2
, if 4

5 < ε < 1.

Notes: This result was presented by Y.Ohkubo at the Number Theory Conference
in Graz, 1998 (Austria). Its weaker version with DN ≪ 1/N |f(N)|1/2 for 0 < ε <
1/2 was published in Ohkubo (1999).

Related sequences: 2.15.3.

Y.Ohkubo: Notes on Erdős – Turán inequality, J. Austral. Math. Soc. A 67 (1999), no. 1, 51–57
(MR1699155 (2000d:11100); Zbl. 0940.11029).
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2.6.27. Let f(x) be a real valued function such that

diaxc

dxi
≤ dif(x)

dxi
≤ diaxc+δ

dxi

for i = 0, 1, 2 and for sufficiently large x with some real constants a, c, δ,
where a > 0, 1 < c < 2, and 0 < δ < 1 (small enough depending on c alone).
Denote by f−1 the inverse function to f and let kn be the sequence of all
square–free integers and Q(N) = #{n ≤ N ; n is square–free}. Then the
sequence

f−1(kn) mod 1

is

u.d.

and
Q(N)DQ(N) = O

(
N

3
5
+ c+2δ

5c(c+δ) +N
1− 1

2c(c+δ)

)
I.E. Stux: Distribution of squarefree integers in non–linear sequences, Pacif. J. Math. 59 (1975),
577–584 (MR0387218 (52 #8061); Zbl. 0297.10033).

2.6.28. Suppose that the sequence of blocks An = (xn,1, . . . , xn,q) is un-
bounded such that

lim sup
n→∞

(xn,i+1 − xn,i) = 0

for every i = 1, . . . , q. Given γi > 0, i = 1, . . . , q, let

yn = γ1xn,1 + · · ·+ γqxn,q.

Then for every continuous periodical function f : R → R the sequence

f(yn), n = 1, 2, . . . ,

is

dense in the interval [m,M ],

where m = min f(x) and M = max f(x) over x ∈ R.
Notes: D.Andrica and S.Buzeteanu (1987, 2.5. Cor.). The authors applied this
result to sequences sin(3n1/2 +n1/3) and cos(2n1/4 +5n1/7) which are thus dense in
[−1, 1].
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D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

2.6.29. If d and e are given positive integers then there exists an (effectively
computable) constant r = r(d, e) such that
(i) for every polynomial P of degree d, and
(ii) any periodic function f with period T which sth derivative satisfies

f (s)(0) ̸= 0 for some s ≥ r, and
(iii) any real number α with α/T irrational,

the sequence

P (n)f(neα/T ) mod 1

is

dense.

Notes: D.Berend and G.Kolesnik (1990, Th. 3.2).

D.Berend – G.Kolesnik: Distribution modulo 1 of some oscillating sequences, Israel J. Math.
71 (1990), no. 2, 161–179 (MR1088812 (92d:11079) Zbl. 0726.11042).

2.6.30. Let P be a polynomial of degree d ≥ 1, f1, and f2 two non–constant
functions with period 1 such that

• f ′2(x0) = f ′′2 (x0) = · · · = f
(l−1)
2 (x0) = 0, but f

(l)
2 (x0) ̸= 0, for some x0 ∈

[0, 1] and l ≥ 2,

• the functions f1 and f2 are differentiable at least 1
2 +

(7l+1)d
l−1 times in some

neighbourhoods of the points 0 and x0, respectively, and

• f
(s)
1 (0) ̸= 0 for some s ≥ d

l−1 + 1
2(l+1) .

Then for every irrational α the sequence

P (n)f1(nf2(nα)) mod 1

is

dense.

Notes: D.Berend, M.D.Boshernitzan and G.Kolesnik (1995, Th. 2.3).

D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. II , Israel J. Math. 92 (1995), no. 1–3, 125–147 (MR1357748 (96j:11105); Zbl. 0867.11052).
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2.6.31. Let f(x) be a real valued function defined for sufficiently large x
and h(x) be a non–constant periodic function with period 1. Assume that
• limx→∞ |f(x)| = ∞,
• limx,y→∞

(
f(x)− f(y)

)
= 0 as x/y → 1,

• h(x) satisfies the Lipschitz condition.

Then for every irrational α the sequence

f(n)h(nα) mod 1

is

dense in [0, 1].

Notes: D.Berend, M.D.Boshernitzan and G.Kolesnik (2002, Th. 3.1). They note
that the assumptions imply f(x) = O(log x) and that f(x) need not be continuous,
e.g. f(x) =

∑
n≤x

1
n satisfies the conditions.

D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. III , Acta Math. Hungar. 95 (2002), no. 1–2, 1–20 (MR1906205 (2003h:11085); Zbl.
0997.11058).

2.6.32. Let xn be an unbounded sequence of positive real numbers with
lim supn→∞(xn+1 − xn) = 0. Then for all continuous periodical functions
f : R → R the sequence

f(xn), n = 1, 2, . . . ,

is

dense in the interval [minx∈R f(x),maxx∈R f(x)].

Notes: M.Somos (1976) and D.Andrica and S.Buzeteanu (1987, 2.4. Th.).

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).
M.Somos: Solution of the problem E2506 , Amer. Math. Monthly 83 (1976), no. 1, 60 (MR1537958).

2.6.33. If f : R → R is a continuous periodical function with an irrational
period T , then the sequence

f(n), n = 1, 2, . . . ,

is

dense in the interval [minx∈R f(x),maxx∈R f(x)].
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D.Andrica: A supra unor siruri care an multimile punclelor limitǎ intervale, Gaz. Mat. (Bucha-
rest) 84 (1979), no. 11, 404–405.

2.6.34. Let sn be an increasing sequence of positive real numbers which is
multiplicatively closed and let f : R → R be a continuous periodical function
with period T . Then, for every real α for which α/T is irrational, the sequence

f(αsn), n = 1, 2, . . . ,

is

dense in the interval [minx∈R f(x),maxx∈R f(x)].

Notes: D.Andrica and S.Buzeteanu (1987, 4.10. Th.). This is a generalization of
2.8.3.

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

2.6.35. Let U denote the union of the all Hardy fields. If for f ∈ U we have
|f(x)| < xn for all x large enough and some n ≥ 1 then the sequence

f(n) mod 1

is

u.d.

if and only if for every polynomial p(x) ∈ Q[x] the limit

L(p) = lim
x→∞

f(x)− p(x)

log x

is infinite, i.e. if L(p) = ±∞.

The sequence
f(n) mod 1

is

dense in [0, 1]

if and only if for every polynomial p(x) ∈ Q[x] the limit

L(p) = lim
x→∞

(
f(x)− p(x)

)
is infinite, i.e. if L(p) = ±∞.
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Notes: M.D.Boshernitzan (1994, Th. 1.3, 1.4). He gave the following definition:
Denote by B the set of the so–called germs at +∞, that is the real valued functions
defined for all sufficiently large real variable x. A subfield of the ring B closed under
differentiation is called a Hardy field. Examples of Hardy fields:
• R(x), the field of real rational functions.
• L, the field of Hardy’s logarithmico–exponential functions (introduced by G.Hardy

(1912, 1924)) which consists of all functions defined for all sufficiently large x and
which can be expressed using ordinary arithmetical symbols in terms of finite com-
binations of the functional symbols log, exp operating on x and on real constants.

The union U of all Hardy fields has the following properties (cf. also Bosher-
nitzan (1987)):
• U is closed under differentiation and integration.
• If f ∈ U is a non–zero function then one of the relations f(x) > 0 or f(x) < 0

holds for all sufficiently large x.
• The non–constant functions in U must be strictly monotone for large x.
• If f ∈ U then the limit limx→∞ f(x), finite or infinite, always exists.
• Non–linear functions in U must ultimately be either convex or concave.
• If f ∈ U , then |f(x)|αxβ logγ x ∈ U , for any α, β, γ.

Note that the above limits L(p) exist in all cases and that this theorem includes as
a very special case the classical result of H.Weyl saying that f(n) mod 1 is u.d. if f
is a polynomial with at least one irrational coefficient. For another Boshernitzan’s
example see 2.12.17. He also formulates an open problem on the asymptotic behavior
of Γ(log x) mod 1.

Related sequences: 2.12.17

M.D.Boshernitzan: Second order differential equations over Hardy fields, J. London Math. Soc.
(2) 35 (1987), no. 1, 109–120 (MR0871769 (88f:26001); Zbl. 0616.26002).
M.D.Boshernitzan: Uniform distribution and Hardy fields, J. Anal. Math. 62 (1994), 225–240
(MR1269206 (95e:11085); Zbl. 0804.11046).
G.H.Hardy: Properties of logarithmico–exponential functions, Proc. London Math. Soc. 10
(1911), 54–90 (MR1576038; JFM 42.0437.02).
G.H.Hardy: Orders of Infinity, 2nd ed., Cambridge Tracts in Math. and Phys., Vol. 12, Cam-
bridge, 1924 (JFM 50.0153.04).

2.6.36.

Notes: If U is the union of the all Hardy fields (cf. 2.6.35) let

U+ = {f ∈ U ; lim
x→∞

f(x) = ∞}.

The following implication is true: If f ∈ U+, then log f ∈ U .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assume that
• f(x) ∈ U+ with f(x) = O(log x),
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• h(x) is a non–constant periodic function with period 1,
• h(x) satisfies the Lipschitz condition (i.e. |h(x) − h(y)| ≤ c|x − y| for

every x, y, where c > 0 is an appropriate constant).

Then for every irrational α the sequence

f(n)h(nα) mod 1

is

dense in [0, 1].

Related sequences: 2.6.30

D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. III , Acta Math. Hungar. 95 (2002), no. 1–2, 1–20 (MR1906205 (2003h:11085); Zbl.
0997.11058).

2.6.37. Assume that
• f(x) ∈ U+ (cf. 2.6.36),

• limx→∞
log f(x)
log x <∞, and limx→∞

f(x)
log x = ∞,

• m is a positive integer,
• h(x) is a periodic function with period 1 which is k times continuously

differentiable for sufficiently large k (depending on m),
• h(i)(x) has for every i ≤ k only finitely many zeros in [0, 1],
• |h(i)(x)|+ |h(i+1)(x)|+ · · ·+ |h(i+m)(x)| ≥ c > 0 for all x, every i ≤ k −m

and some absolute constant c > 0.

Then the sequence

f(n)h(nα) mod 1

is

u.d. for every non–Liouville number α.

Notes: D.Berend, M.D.Boshernitzan and G.Kolesnik (2002, Th. 2.2). They noted

(2002, Cor. 2.1) that if the assumption limx→∞
f(x)
log x = ∞ is omitted, then the se-

quence f(n)h(nα) mod 1 is dense in [0, 1] for every irrational α.

D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. III , Acta Math. Hungar. 95 (2002), no. 1–2, 1–20 (MR1906205 (2003h:11085); Zbl.
0997.11058).
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2.7 Sequences of iterations

2.7.1. Let f : [0, 1) → [0, 1) be a one–to–one and piecewise linear map
defined by

f(x) =

{
b+ 1−b

a x, if 0 ≤ x < a,
b

1−a(x− a), if a ≤ x < 1,

where a, b ∈ [0, 1) and a + b < 1. If (1 − b)/a and b/(1 − a) are multiplica-
tively independent over Q (i.e. log((1− b)/a) and log(b/(1− a)) are linearly
independent over Q), then the sequence of iterations (i.e. the orbit of x)

f(x), f(f(x)), f(f(f(x))), . . . , f (n)(x), . . . ,

is

dense in [0, 1] for any x ∈ [0, 1).

Moreover,
(i) f(x) belongs to Q for x ∈ [0, 1) if and only if x ∈ Q,
(ii) the rotation number of f is c = log((1−b)/a)/

(
log((1−b)/a)−log(b/(1−

a))
)
,

(iii) f is an automorphism of the unit circle.
Notes: M.D.Boshernitzan (1993) gives an example with a = 2/5 and b = 1/5, i.e.

f(x) =

{
1
5 + 2x, if 0 ≤ x < 2

5 ,
1
3 (x− 2

5 ), if 2
5 ≤ x < 1.

Related sequences: 2.19.12

M.D.Boshernitzan: Dense orbits of rationals, Proc. Amer. Math. Soc. 117 (1993), no. 4,
1201–1203 (MR1134622 (93e:58099); Zbl. 0772.54031).

2.7.2. Let k be a positive integer, β ̸= 0 a real number, q(x) a polynomial,
and f(x) a function defined on [1,∞) such that
• the degree of q(x) does not exceed k + 1,
• h(x) is positive, decreasing and differentiable, and
• limx→∞ h(x) = 0,

∫∞
1 h(x) dx = ∞,

∫∞
1 h2(x) dx <∞.

If

H0(x) =

∫ x

0
h(t) dt, . . . , Hk(x) =

∫ x

1
Hk−1(t) dt,

then the weighted discrepancy DN (cf. 1.10.6) with respect to the weights
pn = h(n) of the sequence

xn = (βHk(n) + q(n)) mod 1
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satisfies

DN ≤ c(β, k)
1

H0(N)αk
, where αk =

3!

2k+1(k + 3)!
.

Notes: E.Hlawka (1983). An improvement in the case h(x) = 1/x was given by
Y.Ohkubo (1995).

E.Hlawka: Gleichverteilung und das Konvergenzverhalten von Potenzreihen am Rande des Kon-
vergenzkreises, Manuscripta Math. 44 (1983), no. 1–3, 231–263 (MR0709853 (85c:11060); Zbl.
0516.10030).
Y.Ohkubo: The weighted discrepancies of some slowly increasing sequences, Math. Nachr. 174
(1995), 239–251 (MR1349048 (96h:11074); Zbl. 0830.11028).

2.7.3. Given the base q ≥ 2, let x =
∑∞

j=0 ajq
−j−1 and y =

∑∞
j=0 bjq

−j−1

be the q–adic digit expansion of x, y ∈ [0, 1] (for the sake of uniqueness we
assume an infinite number of non–zero digits in expansions if x, y are non–
zero). Define

x⊕ y =

∞∑
j=0

cjq
−j−1

by

cj = aj + bj + εj−1 − qεj ,

where

εj =


−1, if j = −1,

1, if aj + bj + εj−1 ≥ q,

0, otherwise.

If Ty(x) = x⊕ y then for every y ∈ [1/q, 1) and every x ∈ [0, 1], the sequence
of iterates

T (n)
y (x) = Ty(T

(n−1)
y (x)), n = 0, 1, 2, . . . ,

is

u.d.

with discrepancy

D∗
N ≤

1 + (q − 1)[logq(Nq)]

N
,

i.e. it is a low discrepancy sequence.
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Notes: B.Lapeyre and G.Pagès (1989). They note that T
(n)
1/q (1/q), n = 0, 1, 2, . . . ,

(with T
(0)
y (x) = 0) is the classical van der Corput sequence 2.11.3. For the multidi-

mensional case cf. 3.3.3.

B.Lapeyre – G.Pagès: Familles de suites à discrépance faible obtenues par itération de trans-
formations de [0, 1], C. R. Acad. Sci. Paris, Série I 308 (1989), no. 17, 507–509 (MR0998641
(90b:11076); Zbl. 0676.10038).

2.7.4. If an+1 = sin(an) with any starting point a1 ∈ (0, π) then the se-
quence

nσan mod 1,
1

2
< σ <

3

2

is

u.d.

Notes: This follows from 2.3.3, 2.14.7 and from the expression

an =

√
3√
n
− 3

√
3

10
· log n
n
√
n
+

9
√
3

50
· log n

n2
√
n
+ o

(
log n

n5/2

)
given by E. Ionascu and P. Stănică (2004). It seems that the coefficients in the
expression do not depend on the starting point a1.

E. Ionascu – P. Stănică: Effective asymptotic for some nonlinear recurrences and almost doubly–
exponential sequences, Acta Math. Univ. Comenian. 73 (2004), no. 1, 75–87 (MR2076045
(2005f:11018); Zbl. 1109.11013).

2.7.4.1 Let

xn+1 = xn − x2n, n = 1, 2, . . .

with the initial term x1 ∈ (0, 1). Then the sequences

n2xn mod 1,
1

xn
mod 1,

n = 1, 2, . . . , have the same d.f.s as the sequence log n mod 1.

Notes: This follows from the fact that G(log n + α mod 1) = G(log n mod 1) and
from the expansions

xn =
1

n
− log n

n2
− v

n2
+

(log n)2

n3
+ (2v − 1)

log n

n3
+ o

(
log n

n3

)
,
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1

xn
=n+ log n+ v +

log n

n
+
v − (1/2)

n
− 1

2

(log n)2

n2

+ (3/2− v)
log n

n2
+

(
3

2
v − 1

2
v2 − 5

6

)
1

n2
+

1

3

(log n)3

n3

+ (−2 + v)
(log n)2

n3

(
19

6
− 4v + v2

)
log n

n3
+ o

(
log n

n3

)
found by E. Ionascu and P. Stănică (2004).

E. Ionascu – P. Stănică: Effective asymptotic for some nonlinear recurrences and almost doubly–
exponential sequences, Acta Math. Univ. Comenian. 73 (2004), no. 1, 75–87 (MR2076045
(2005f:11018); Zbl. 1109.11013).

2.8 Sequences of the form a(n)θ

Notes: If a(n) is an increasing sequence of positive integers, then the set of all
x for which a(n)x mod 1 is not u.d. has zero Lebesgue measure (H.Weyl (1916))
and if a(n) is a polynomial with integral coefficient, then this set is enumerable. If
a(n+1)−a(n) <constant, then this set has Hausdorff dimension zero (P. Erdős and
S.J. Taylor (1957)).
For every bounded Lebesgue measurable f(x) on [0, 1] the limit

lim
N→∞

1

N

N∑
n=1

f({a(n)x}) =
∫ 1

0

f(t) dt

holds for almost all x (with respect to Lebesgue measure) for the sequence a(n)
of all integers generated multiplicatively by a finite set b1, . . . , bk of pairwise co-
prime integers > 1 ordered by magnitude and each a(n) is taken only once (cf.
J.M.Marstrand (1970), R.Nair (1990)). Note that for every of the following se-
quences a(n) there exists a bounded Lebesgue measurable function f(x) defined on

[0, 1] such that the limit N−1
∑N
n=1 f({a(n)x}) →

∫ 1

0
f(t) dt fails to hold almost

everywhere:
(i) a(n) = n,
(ii) a(m) and a(n) are coprime for m ̸= n,
(iii) A([0, x); a(n)) ∼ cxα, for some positive real c and α,
(iv) a(n) = 22

n

.

The cases (i)–(iii) are from Marstrand (1970) and (iv) from Nair (2003). In the first
case (i) we can take for f(x) the indicator function of a measurable set E ⊂ [0, 1]
with a positive measure. This disproves Khintchine’s conjecture (1923).

P.Erdős – S.J. Taylor: On the set of points of convergence of a lacunary trigonometric series
and the equidistribution properties of related sequences, Proc. London Math. Soc. (3) 7 (1957),
598–615 (MR0092032 (19,1050b); Zbl. 0111.26801).
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A.Khintchine (A.J. Chinčin): Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen,
Math. Z. 18 (1923), 289–306 (MR1544632; JFM 49.0159.03).
J.M.Marstrand: On Khinchin’s conjecture about strong uniform distribution, Proc. London
Math. Soc. (3) 21 (1970), 540–556 (MR0291091 (45 #185); Zbl. 0208.31402).
R.Nair: On strong uniform distribution, Acta Arith. 56 (1990), no. 3, 183–193 (MR1082999
(92g:11076); Zbl. 0716.11036).
R.Nair: On a problem of R.C.Baker , Acta Arith. 109 (2003), no. 4, 343–348 (MR2009048
(2004g:11062); Zbl. 1042.11049).
H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).

2.8.1. nθ sequences

(I) If θ is an irrational number then the sequence

xn = nθ mod 1, n = 1, 2, . . . ,

is

u.d.

Notes: We shall write DN (θ) and D∗
N (θ) instead of DN and D∗

N , resp., for discrep-
ancies of xn = nθ mod 1.

(II) Let θ = [a0; a1, a2, . . . ] be an irrational number with bounded partial
quotients, say ai ≤ K for i = 1, 2, . . . . Then

NDN (θ) ≤ 3 +

(
1

log((1 +
√
5)/2)

+
K

log(K + 1)

)
logN

and

NDN (θ) < C(K) log(N + 1)

for all N ≥ 1 where

C(K) =

{
2/ log 2, if K = 1, 2, 3, and

K+1
log(K+1) , if K ≥ 4.

(III)

c1

m∑
i=1

ai ≤ ND∗
N (θ) ≤ c2

m∑
i=1

ai

for all irrationals θ = [0; a1, . . . ] and qm ≤ N < qm+1.
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(IV) Let θ = [0; a1, . . . ] be an irrational number with convergents pn/qn.
Every positive integerN can be written in the form (the so–calledOstrowski
expansion) N =

∑m
i=0 biqi, where the integer m is uniquely determined

while the digits bi, 0 ≤ i ≤ m, satisfy bm > 0, b0 < a1, 0 ≤ bi ≤ ai+1, and if
bi = ai+1, then bi−1 = 0 for 0 < i ≤ m. Then

ND∗
N (θ) = max


m∑
j=0
2|j

bj

(
1− bj

aj+1

)
,

m∑
j=0
2-j

bj

(
1− bj

aj+1

)+O(m),

where the O–constant is absolute. This implies

ND∗
N (θ) = O(logN) ⇐⇒ lim sup

m→∞

1

m

m∑
j=1

aj <∞.

(IV’) If θ = [0; a1, . . . ] is an irrational number then for i, j ≥ 0 and m ≥ 0
define
• sij = qmin(i,j)(qmax(i,j)θ − pmax(i,j)),

• εi =
1
2(1− (−1)ai+1)

∏
0≤j≤i

j≡i (mod 2)

(−1)aj+1 ,

• Nm = 1
2

∑m
i=0(ai+1 + (−1)mεi)qi.

Then

4 max
1≤N<qm+1

NDN (θ) =

m∑
i=0

ai+1 −
∑

0≤i≤m

∑
0≤j≤m

j≡i (mod 2)

εiεj |sij |+O(1)

with an absolute implicit constant.

(IV”) Central limit theorem. Let α be any quadratic irrational and I =
[0, x) any interval with rational endpoint 0 < x < 1. There are effectively
computable constants C1 = C1(α, x) and C2 = C2(α, x) such that

1

N
#

{
n ≤ N : A ≤ (A([0, x);n : {kα})− nx)− C1 logN

C2
√
logN

≤ B

}

=
1√
2π

∫ B

A
e−u2/2 du+O

(
(logN)−1/10 log logN

)
.

Notes: In the following the Koksma classification of irrational numbers will be
used.
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(i) The irrational θ is said to be of type < ψ if ψ(q)q∥qθ∥ ≥ 1 holds for all positive
integers q, where ∥x∥ = min

(
{x}, 1− {x}

)
. If ψ is a constant function, then θ

is said to be of constant type.
(ii) The irrational number θ is said to be of finite type γ, where γ is a real

number, if γ is the supremum of all σ for which lim infq→∞ qσ∥qθ∥ = 0. In
all cases γ ≥ 1. If the supremum of such σ is infinity, then θ is said to be of
infinite type.

(V) If θ is of finite type γ then for every ε > 0

DN (θ) = O(N (−1/γ)+ε), and DN (θ) = Ω(N (−1/γ)−ε).

(VI) Thus, if θ is an algebraic irrational then γ = 1 and

DN (θ) = O(N−1+ε).

Notes: (I) The u.d. of nθ mod 1 was independently established by Bohl (1909),
W. Sierpiński (1910,[a]1910), and H.Weyl in (1909–1910), cf. (1916). M. Lerch (1904)

proved that
∑N
n=1({nθ} − 1/2) = O(logN). The sequence nθ mod 1 is also called

the Weyl sequence.1 The subject was taken up again by E.Hecke, A.Ostrowski,
G.H.Hardy and J.E. Littlewood, and H.Behnke. A detailed account of the history
can be found in the book [KN, pp. 21–23, 157–158, Notes] or in E.Hlawka and
Ch.Binder (1986).
(II) H.Niederreiter (1978), [KN, p. 125, Th. 3.4], Niederreiter (1992, p. 27, Cor. 3.5).
(III) H.Behnke (1924).
(IV) J. Schoißengeier (1984, §9, Cor. 3 and 5). As applications he shows (1984, § 9,
Ex. and Coroll. 4)

106D∗
106(π) = 41.064561094, lim sup

N→∞

(
log logN

logN

)2

ND∗
N (e) =

1

8
.

If θ = 1+
√
5

2 the lim sup was computed by Y.Dupain (1979)

lim sup
N→∞

ND∗
N (θ)

logN
=

3

20
· 1

log θ
.

The Ostrowski expansion
∑m
i=0 biqi of N with respect to basis θ = [a0; a1, a2, . . . ]

was often used, e.g. A.Ostrowski (1922), R.Descombes (1956), V.T. Sós (1958).
(IV’) C.Baxa and J. Schoißengeier (1994).
(IV”) J. Beck [p. 12](2014).

1The sequence nθ mod 1 is called golden for θ = (1 +
√
5)/2, and for θ = (3−

√
5)/2 it is

called silver (cf. Steinhaus (1956)). Often under the silver number the number 1 +
√
2

is understood. Both sequences provide the best possible u.d. mod 1.
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(V) [KN, p. 123–124, Th. 3.2-3.]. The known Koksma classification of irrational
numbers can be found e.g. in [KN, p. 121, Def. 3.2–3.].
(VI) [KN, p. 124, Examp. 3.1]. D.P. Parent (1984, pp. 253–254, Exer. 5.26) proved
only D∗

N (θ) = O(N−1/2).
(VII) The famous Steinhaus conjecture or three–gaps theorem says2: Let θ be a
real number and N a positive integer. If the points 0, {θ}, . . . , {Nθ}, 1 are arranged
in ascending order then the distances between the consecutive points can have at
most three distinct lengths, and if there are three, one equals the sum of the other
two. This conjecture was probably first proved by N.B. Slater (1950), and later
by K.Florek (1951), H. Steinhaus (1956), V.T. Sós ([a]1958), J. Surányi (1958) and
S. Świerczkowski (1959).3 Other proofs were given by P. Szüsz and P.Erdős, cf. [KN,
p. 22, Notes] for additional information. J.H.Halton (1965, Th. 2, Cor. 3) proved
the following quantitative result: Let pn/qn be the nth convergent of the continued
fraction of θ = [a0; a1, a2, . . . ] and rn = |qnθ − pn|. The Steinhaus three–gaps are:
rn+1, rn − irn+1 and rn − (i− 1)rn+1, where the integers n, i (and j) are uniquely
determined by conditions N = qn + iqn+1 + j, 1 ≤ i ≤ an+2, 1 ≤ j ≤ qn+1.
In N.B. Slater (1967) a summary of these results can be found. The finite–gaps
theorems are not valid for n2θ, cf. 2.14.1.

• N.B. Slater (1967) calls the Steinhaus three gaps problem as the step problem and
under the gap problem he understands the following problem: Let I be an interval in
(0, 1), A = {n ∈ N; {nα} ∈ I} = {a1 < a2 < . . . } and ∆ = {an+1−an;n = 1, 2, . . . }.
The problem is to find ∆. If |I| ≤ 1/2, Slater proved that ∆ = {a, b, a+b}, for {a, b}
see 4.1.3.
(VII’) J.F. Geelen, R.J. Simpson (1993) prove the following two-dimensional Stein-
haus theorem: If α, β are real numbers and M ≤ N positive integers then the point
{mα+nβ}, m = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1, partition the unit interval into
MN subintervals having at most M + 3 distinct widths. The bound M + 3 can be
attained, if M > 1.
(VIII) If θ is an irrational number and the points 0, {θ}, . . . , {Nθ}, 1 are arranged
in the ascending order 0 < {n1θ} < {n2θ} < · · · < {nNθ} < 1. 4 Then the Stein-
haus three–gaps can also be determined as follows, cf. Świerczkowski (1959): {n1θ},
1 − {nNθ}, and {n1θ} + 1 − {nNθ} the last one only if N < n1 + nN − 1. Thus

2The first conjecture in this direction goes back to J.Oderfeld and C.Rajski in connection
with their empirical investigation of the sequence for θ = (

√
5−1)/2, cf. Steinhaus (1956).

3Świerczkowski also proved the Oderfeld conjecture that if θ = (
√
5− 1)/2 and Fm is the

greatest Fibonacci number which does not exceed N then θm, θm−1, and θm−2 are the
possible values of the three gaps for the sequence nθ mod 1, n = 1, 2, . . . .

4J. Beck [p. 14](2014), Lemma on Restricted Permutations: Let α be an arbitrary
irrational, and let π be a permutation of the set of integers 1, 2, . . . , N such that

{π(1)α} < {π(2)α} < · · · < {π(N)α} < 1.

Then the whole permutation π can be reconstructed from the knowledge of π(1) and
π(N) (the point is that we do not need to know α).
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for dispersion dN (θ) of the sequence xn = nθ mod 1, n = 1, 2, . . . , N , we get (see
1.10.11)

dN (θ) = max
( 1

2
max

1≤i≤N

(
{niθ} − {ni−1θ}

)
, {n1θ}, 1− {nNθ}

)
= max

(
{n1θ}, 1− {nNθ}

)
.

Let

d̃N (θ) = max
(

max
1≤i≤N

({niθ} − {ni−1θ}), {n1θ}, 1− {nNθ}
)
.

R.L.Graham and J.H. van Lint (1968) proved that

sup
θ

lim inf
N→∞

Nd̃N (θ) =
1 +

√
2

2
, inf

θ
lim sup
N→∞

Nd̃N (θ) = 1 +
2
√
5

5

and that these limits are attained for θ = 1 +
√
2 and θ = (1 +

√
5)/2, resp. They

also proved that lim supN→∞Nd̃N (θ) is finite if and only if the partial quotients of
the simple continued fraction of θ are bounded.
H.Niederreiter (1984) proved that dN (θ) = O(1/N) if θ has bounded partial quo-
tients. If

D(θ) = lim supN→∞NdN (θ)

then he proved that
D(θ) ≥ 3−

√
3,

D(θ) = (5 + 3
√
5)/10 for θ = (1 +

√
5)/2,

D(θ) = (1 +
√
2)/2 for θ = 1 +

√
2.

and G. Ji and H. Lu (1996) found explicit values
D(θ) = (2d+ (d+ b)

√
d)/4d for θ = (b+

√
d)/2 and d ≡ b mod 4, d > 0.

Niederreiter (1984) notes an analogy between the Markov spectrum and D(θ) as θ
runs through the all irrationals with bounded partial quotients. Define the Markov
constant M(θ) as (M(θ))−1 = lim infn→∞ n∥nθ∥. He posed the question whether
M(θ1) < M(θ2) implies D(θ1) < D(θ2) which was disproved by V.Drobot (1986)
by producing a counterexample of two quadratic irrationals. A.Tripathi (1993)
gave some new families of counterexamples, e.g. for (3 +

√
21)/2) = [3, 1] and

(6 +
√
48)/3 = [4, 3] we have

M((3 +
√
21)/2) =

√
21 = 4.5 · · · < M((6 +

√
48)/3) =

√
192/3 = 4.6 . . . ,

D((3+
√
21)/2) = (5.5/

√
21)+1/2 = 1.7 · · · > D((6+

√
48)/3) = (16/

√
192)+1/2 =

1.6 . . . .

J. Schoißengeier (1993) found the exact values of
D(θ) = lim supN→∞NdN (θ),
lim infN→∞NdN (θ),

lim supN→∞Nd̃N (θ),

lim infN→∞Nd̃N (θ),
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for a wide class of irrational θ′s and he proved that θ has bounded partial quotients
if and only if 1 < lim infN→∞Nd̃N (θ).
H. Jager and J. de Jonge (1994) introduced the quantity

lim supN→∞N({n1θ}+ 1− {nNθ})
for irrational θ and they found its smallest value (2/

√
5)+ 1 for θ = (

√
5+ 1)/2 and

its smallest accumulation point (
√
5 + 4)/3.

(IX) The investigation of the sum CN (θ) = −N/2 +
∑N
n=1{nθ} has a long his-

tory. The first result seems to have been provided by M.Lerch (1904) who showed
CN (θ) = O(logN) for irrational θ with continued fraction expansion [a0; a1, . . . ]
having bounded partial quotients, thereby answering problems proposed by J. Franel
(1898, 1899) [L’Intermédiaire Math. 5 (1898), 77; 6 (1899), 149]. The subject was
taken up again by W. Sierpiński, E.Hecke, A.Ostrowski, G.H.Hardy and J.E. Little-
wood, and H.Behnke. It was shown by Ostrowski (1922) that CN (θ) is unbounded
for every irrational θ. Obviously |CN (θ)| ≤ ND∗

N (θ). J. Schoißengeier (1986) proved
that if 1

t

∑
1≤j≤t aj ≤ A for all t, then

|CN (θ)| < A

2 log τ
logN +A ·

(
log

√
5

2 log τ
− 1

2

)

for N ≥ 2, where τ = 1+
√
5

2 is the golden ratio. T.C.Brown and P.J.–S. Shiue (1995)
proved that if 1

t

∑
1≤j≤t aj ≤ A for infinitely many t, then there exists a positive

constant dA such that each of CN (θ) > dA logN and CN (θ) < −dA logN holds for
an infinitely many N . Note that dA ≥ 1/

(
7·64(A+1)2 log(A+1)

)
. They also give an

example: If θ = [0; a1, a2 . . . ] with a2n+1 = 1, a2n = n2 for n ≥ 0 then there exists a
constant C such that CN (θ) > C for all N ≥ 1 (obviously C < 0). V.T. Sós (1957)
showed that there exists a real θ with CN (θ) bounded below (or above) and noted
that there is a θ with CN (θ) > −ε for all N , where ε is an arbitrarily small positive
number. However it is impossible for CN (θ) to be positive for every N .

(i) J. Beck [p. 79](2014): Let MN (θ) = 1
N

∑N
n=1 Cn(θ). Then for any irrational

θ > 0 and any integer N ≥ 1 we have

MN (θ) =
−a1 + a2 − a3 + · · ·+ (−1)kak

12
+O

(
max
1≤j≤k

aj
)
,

where qk ≤ N < qk+1, [a0; a1, . . . , ak−1] = pk/qk and the O-constant is ≤ 10.

Let us change the value Cn(θ) to Sα(n) =
∑n
k=1

(
{kα} − 1

2

)
.

(ii) J. Beck [p. 26](2014) Ostrowski’s large fluctuation result: Suppose that
α = [a0; a1, a2, . . . ] with ai ≤ A for all i. Then there are positive constants 0 < c1 < 1
and c2 > 0 such that, for every sufficiently large N , the interval c1N < n < N
contains integers n1, n2 with the properties Sα(n1) > c2 logN , Sα(n2) < −c2 logN .
(iii) J. Beck [p. 20](2014)Central limit theorem: There are effectively computable
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constants C3 = C3(α) and C4 = C4(α) such that

1

N
#

{
n ≤ N : A ≤ Sα(n)− C3 logN

C4

√
logN

≤ B

}

=
1√
2π

∫ B

A

e−u
2/2 du+O

(
(logN)−1/10 log logN

)
.

(IX’)(i) P. Borwein (1978) solved problem of H.D. Ruderman (1977) that the series∑∞
n=1(−1)[n

√
2]/n converges.

(ii) P. Bundschuh (1977) proved that the series
∑∞
n=1 (−1)[nα]/n converges for num-

bers α with bounded by partial quotients bi of α/2 = [b0; b1, b2, . . . ].
(iii) J. Schoißengeier (2007) proved that the series∑∞
n=1 (−1)[nα]/n and∑∞
k=0,2-qk(−1)k(log bk+1)/qk

converges simultaneously, where pk
qk

are convergents of α/2 = [b0; b1, b2, . . . ].

(iv) A.E. Brouwer and J. van de Lune (1976) proved that Sα(n) =
∑n
j=1(−1)[jα] ≥ 0

for all n if and only if the partial quotients a2i of α = [a0; a1, a2, . . . ] are even for all
i ≥ 0.
(v) J. Arias de Reyna and J. van de Lune (2008) defined the sequence t0 = 0, t1, t2, . . .
of those n for which Sα(n) =

∑n
j=1(−1)[jα] assumes a value for the first time, i.e., is

larger/smaller than ever before. They proved that Sα(n) is not bounded, so that the
corresponding sequence tk is actually an infinite sequence. They also proved that for
every j ≥ 1 there is an index k such that tj−tj−1 = Qk, where Pk/Qk is a convergent
of α = [a0; a1, a2, . . . ]. They also give a fast algorithm for the computation of Sα(n)
in case of an irrational α and for very large n in terms of α/2 = [b0; b1, b2, . . . ], e.g.,
S√

2(10
1000) = −10, S√

2(10
10000) = 166, Sπ(10

10000) = 11726.
(vi) J. Arias de Reyna and J. van de Lune (2008) proposed the following Problem:
Determine whether the tk is recurrent sequence and whether the sequence sign(S(tk))
is purely periodic.
(X) For the Abel discrepancy of the sequence nθ, n = 0, 1, 2, . . . , we have (cf.
H.Niederreiter (1975, Th. 6.9)): Let θ be an irrational of type < ψ. Then the Abel
discrepancy satisfies

Dr(nθ) ≤ C

(
1

m+ 1
+ (1− r)

(
log2m+ ψ(m) +

m∑
h=1

ψ(h)

h

))
for all 0 < r < 1 and for all positive integers m, where the constant C only depends
on θ. Let θ be an irrational of finite type γ. Then the Abel discrepancy satisfies

Dr(nθ) = O((1− r)(1/γ)−ε), Dr(nθ) = Ω((1− r)(1/γ)+ε)

for every ε > 0.
(XI) The sequence xn = nθ mod 1 satisfies the the recurrence relation xn+1 ≡
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xn + θ mod 1, x0 ≡ 0 mod 1 and it is a prominent candidate for pseudorandom
number generators.

(XII) For θ =
√
m2+4−m

2 , m = 1, 2, . . . , L. Ramshaw (1981) proved that

lim sup
N→∞

NDN (θ)

logN
=


m

−4 log θ
, for even m,

(m2 + 3)m

−4(m2 + 4) log θ
, for odd m.

(XIII) W.J. LeVeque (1953) proved that the sequence nθ is u.d. mod ∆ (for the
def. see p. 1 – 6 ) for every θ > 0 provided the subdivision ∆ = (zn)

∞
n=0 (i.e. z0 = 0,

zn increases to infinity) satisfies:
(i) z0 = 0 and zn − zn−1 increases to infinity,
(ii) limn→∞

zn
zn−1

= 1.

Note that the assumption (ii) is necessary.
P.Kiss (1985) proved that for every irrational θ the sequence nθ mod ∆ is not
u.d. but only almost u.d. for every subdivision ∆ = (zn)

∞
n=0, where zn is a linear

recurring sequence of the order r defined by the recurrence relation zn = a1zn−1 +
a2zn−2 + · · ·+ arzn−r for n ≥ r, where
• a1, . . . , ar are integers, ar ̸= 0,
• the initial integer terms z1, . . . , zr−1 are not all zero, but z0 = 0,
• if αi are roots of the characteristic polynomial p(x) = xr−a1xr−1−· · ·−ar, then

|α1| > |αi|, i = 2, 3, . . . , r, and
• zn strictly increases.

(XIV) An integral sequence an, an ∈ Z, is called well distributed if

limN→∞
1
N

∑N
n=1 e

2πian+kt = 0

holds uniformly for k ≥ 0 and for every non–integral real number t.

If θ is an irrational number then a necessary and sufficient condition for the se-
quence bn = #{1 ≤ j ≤ n ; {nθ} ∈ I = (α, β)} to be well distributed for all
intervals I = (α, β), where β − α is not an integer multiple of θ reduced mod 1,
is that the continued fraction expansion of θ has bounded partial quotients (cf.
W.A.Veech (1971)). See also [DT, p. 131].
(XV) (i) Let D(N, I) =

∣∣#{n ≤ N ; {nα} ∈ I}−N |I|
∣∣ be the local discrepancy func-

tion of nα mod 1 with α be irrational. If |I| = {hα} for some integer h = h(I), then
E.Hecke (1921) and A.Ostrowski (1921, 1927, 1930) proved thatD(N, I) is bounded,
while Ostrowski (1930) gave the bound D(N, I) < |h(I)|. H.Kesten (1966/1967)
proved that the condition |I| = {h(I)α} is also necessary for the boundedness of
D(N, I).
(ii) For a simpler proof of (i) see H. Furstenberg, H.B.Keynes and L. Shapiro (1973),
K. Petersen (1973), K. Petersen and L. Shapiro (1973). For further references consult
[KN, p. 128, Notes] and [DT, p. 131, Notes].
(iii) A.V. Shutov (2006) improved (i) using the “generalized Fibonacci expansion”

T =
∑M
i=−1 εiLi(α) which was originally proposed by V.G. Zhuravlev for the golden
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section α = 1+
√
5

2 . Here, given α = [a0, a1, a2, . . . ], define ωi(α) as the ith term of the
binary sequence 0a1−11a20a3 . . . . Then define E0(α) = G0(α) = 1 and by induction
Ei+1(α) = Ei(α) and Gi+1(α) = Gi(α) + Ei(α) if ωi(α) = 0, or Gi+1(α) = Gi(α)
and Ei+1(α) = Gi(α) + Ei(α) if ωi(α) = 1. Then put Li(α) = Ei(α) if ωi(α) = 0
and Li(α) = Gi(α) if ωi(α) = 1. Now, given a positive integer T find M such
that EM + GM ≤ T < EM+1 + GM+1 and put εM = 1 and TM = T . Then com-
pute TM−1, . . . , T−1 and εM−1, . . . , ε−1 in such a way that if Ti ≥ Ei + Gi, then
Ti−1 = Ti − Li(α) and εi = 1, and if Ti < Ei +Gi then Ti−1 = Ti and εi = 0.
Shutov (2006) proved (Theorem 7.8):

(iii1) If |I| = {h(I)α} and |h(I)| =
∑M
i=−1 εiLi(α), then D(N, I) <

∑M
k=0 εk(k+ 1).

This implies (Shutov (2006), Theorem 9.1): Let α0 = min({α}, 1−{α}) have partial
quotients bounded byK. Then for every interval I with boundedD(N, I) as N → ∞
we have D(N, I) < (K + 2)(1 + (K − 1)ψ(|h(I)|)), where ψ(x) = log√

5+1
2

(
√
5x +

√
5 + 1

2 ).
(iv) A.V. Shutov (2007) proved for intervals of the form |I| = {hα} that:

(iv1) D(N, I) = O(log h) for all α’s with bounded partial quotients;

(iv2) D(N, I) = O(log2 h) for all α = [a0; a1, a2, . . . ] with bounded means 1
n

∑n
i=1 ai;

(iv3) D(N, I) = O(log2 h(log log h)1+ε) for any ε > 0 and almost all α.
(v) I. Oren (1981) proved that (i) also holds for a finite union of intervals.
(vi) Some generalizations can be found in G.Rauzy (1983–1984) and S. Ferenczi
(1992).
(vii) Strong form of Hecke’s lemma. Let I ⊂ (0, 1) be an arbitrary half-open
interval of length |I| = {qkα} for some integer k ≥ 0, where qk is the k-th convergent
denominator of α. Then for any integer N ≥ 1 the local discrepancy satisfies∣∣#{n ≤ N ; {nα} ∈ I} −N |I|

∣∣ < 2

(see J. Beck (2014), p. 14).

(XVI) (i) G.H. Hardy and J.E. Littlewood (1946) were the first who studied the
relation

(2) limN→∞
1
N

∑N
n=1 f({nα}) =

∫ 1

0
f(x)dx

for irrational α’s and certain non-Riemann-integrable functions f(x).

(ii) V.A. Oskolkov (1990) proved that (2) holds if and only if limm→∞
1
qm
f({qmα}) =

0, where pm/qm denotes the mth convergent of α, provided that

• f(x) is defined on [0, 1],

• f(0+) = f(1− 0) = ∞,

• the improper integral
∫ 1

0
f(x)dx exists,

• f(x) is non-increasing on (0, h) and non-decreasing on (1− h, 0), h ∈ (0, 1/2).

(iii) Ch. Baxa and J. Schoißengeier (2002) extended Oskolkov’s result in such a way
that two-elements set {0, 1} of singularities they replaced by a finite set of rational

points and in this case (2) holds if and only if (3) limN→∞
f({Nα})

N = 0.
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(iv) Baxa (2005) removed the assumption of the rationality of singularities. He
defined a new class of functions f(x), integrable in [0, 1], and monotone in some
neighbourhood of its each singularity and he proved that these functions (2) ⇔ (3)
if α has bounded partial quotients, or if lim infm→∞ ||βqm|| > 0 at each singularity
β of f . Moreover, he found that if lim supm→∞ ||βqm|| > 0 at all singularities β of
f then for every k, k = 1, 2, . . . , there exist infinite sets Mk of positive integers such

that limN∈Mk,N→∞
1
N

∑N
n=1 f({nα}) =

∫ 1

0
f(x)dx.
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Angew. Math. 135 (1909), 189–283 (MR1580769; JFM 40.1005.03).
A.E.Brouwer – J. van de Lune: A note on certain oscillating sums, Math. Centrum, (Afd.
zuivere Wisk. ZW 90/76), 16 p., Amsterdam, 1976 (Zbl. 0359.10029).
T.C.Brown – P.J.–S. Shiue: Sums of fractional parts of integer multiplies of an irrational , J.
Number Theory 50 (1995), no. 2, 181–192 (MR1316813 (96c:11087); Zbl. 0824.11041).
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nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).
K.Petersen: On a series of cosecants related to a problem in ergodic theory, Compositio Math.
26 (1973), 313–317 (MR0325927 (48 #4273); Zbl. 0269.10030).
K.Petersen – L. Shapiro: Induced flows, Trans. Amer. Math. Soc. 177 (1973), 375–390
(MR0322839 (48 #1200); Zbl. 0229.54036).
L.Ramshaw: On the discrepancy of sequence formed by the multiples of an irrational number , J.
Number Theory 13 (1981), no. 2, 138–175 (MR0612680 (82k:10071); Zbl. 0458.10035).
H.D.Ruderman: Problem 6105∗, Amer. Math. Monthly 83 (1976), no. 7, 573.
J. Schoißengeier: The integral mean of discrepancy of the sequence (nα), Monatsh. Math. 131
(2000), no. 3, 227–234 (MR1801750 (2001h:11098); Zbl. 0972.11067).
J. Schoißengeier: On the discrepancy of (nα), Acta Arith. 44 (1984), 241–279 (MR0774103
(86c:11056); Zbl. 0506.10031).



2.8 Sequences of the form a(n)θ 2 – 91

J. Schoißengeier: On the discrepancy of (nα), II , J. Number Theory 24 (1986), 54–64 (MR0852190
(88d:11074); Zbl. 0588.10058).
J. Schoißengeier: On the longest gaps in the sequence (nα) mod 1, in: Österreichisch – Ungarisch
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2.8.1.1 Let an, n = 1, 2, . . . , be sequences of positive integers such that
a1 = 1, a2 = 2, a2 = 2, a3 = 2 and for every n = 1, 2, . . .

an+3 =



1 +
[
5(na1a2...an+2)

1/3]
, if n = 3k, 501 | k,

an + [2 log4 an], if n = 3k, 501 - k,
4 + 33

a1a2...an+1
, if n = 3k + 1, 503 | k,

an + [log an log
3 log2 an], if n = 3k + 1, 503 - k,

5 + 44
na1a2...an

, if n = 3k + 2, 505 | k,
an + [log an log log

2 an log
3 log log an], if n = 3k + 2, 505 - k.

Then
∞∑
n=1

1
an
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is an irrational number.
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2.8.1.2 For every sequence cn, n = 1, 2, . . . , of positive integers the num-
ber

∞∑
n=1

1

22ncn

is irrational.

P.Erdős: Some problems and results on the irrationality of the sum of infinite series, J. Math.
Sci. 10 (1975), 1–7 (MR0539489 (80k:10029); Zbl. 0372.10023).

2.8.1.3 Let an, n = 1, 2, . . . , be defined by

an =

{
22
n
, if n is prime,

32
n
, if n is composite.

Then for every sequence cn, n = 1, 2, . . . , of positive integers the number
∞∑
n=1

1
ancn

,

is irrational.

J.Hančl – J. Štěpnička – J. Šustek: Linearly unrelated sequences and problem of Erdős, Ra-
manujan J. 17 (2008), no. 3, 331–342 (MR2456837 (2009i:11089); Zbl. 1242.11049).

2.8.1.4 The sequence

{(n+K)α}, {(n+ 2K)α}, . . . , {(n+NK)α},

has discrepancy

DN ({(n+ kK)α}) = DN ({(kK)α}) ≤ KDN ({kα}),

where DN ({kα}) is the extremal discrepancy of the sequence

{1α}, {2α}, . . . , {Nα}.



2.8 Sequences of the form a(n)θ 2 – 93

Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences. II. The Champernowne,
Rudin – Shapiro, and Thue – Morse sequences, a further construction, J. Number Theory 73
(1998), no. 2, 256–276 (MR1657960 (99m:11084); Zbl. 0916.11047).

2.8.2. Let α be an irrational number having bounded partial quotients in its
continued fraction and let M be an upper bound for these partial quotients.
Then the infinite symmetrized sequence

α1, −α1, α2, −α2, α3, −α3, . . . mod 1

is

u.d.

with L2 discrepancy satisfying

D
(2)
N ≤ 1

N2

1 +

(
4M +

9

2

)2 log
(

N
M+1

)
3 log 2

+
24

π2
− 4

3


for N ≥ 8(M + 1).

Notes: P.D.Proinov (1983, 1985). He gives the first construction of a sequence
from [0, 1) for which the L2 discrepancy has the least possible order. Note that
K.F.Roth (1954) (cf. H.Niederreiter (1973)) proved that there exists a constant c,(
c ≥ 1

216 log 2

)
such that

D
(2)
N ≥ c

logN

N2

for every infinite sequence xn and for all sufficiently large N . Proinov (1983)

proved that D
(2)
N ≤ 100 logN

N2 for α =
√
5−1
2 and later (1986) he improved this to

D
(2)
N ≤ 9.1521 logN

N2 .

Related sequences: 2.11.6

H.Niederreiter: Application of diophantine approximations to numerical integration, in: Dio-
phantine Approximation and Its Applications (Washington, D.C., 1972), (C.F. Osgood ed.), Aca-
demic Press, New York, 1973, pp. 129–199 (MR0357357 (50 #9825); Zbl. 0268.65014).
P.D.Proinov: Estimation of L2 discrepancy of a class of infinite sequences, C. R. Acad. Bulgare
Sci. 36 (1983), no. 1, 37–40 (MR0707760 (86a:11030); Zbl. 0514.10039).
P.D.Proinov: On the L2 discrepancy of some infinite sequences, Serdica 11 (1985), no. 1, 3–12
(MR0807713 (87a:11071); Zbl. 0584.10033).
P.D.Proinov: On irregularities of distribution, C. R. Acad. Bulgare Sci. 39 (1986), no. 9, 31–34
(MR0875938 (88f:11068); Zbl. 0616.10042).
K.F.Roth: On irregularities of distribution, Mathematika 1 (1954), 73–79 (MR0066435 (16,575c);
Zbl. 0057.28604).
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2.8.3. Let sn be an increasing sequence of positive integers which is multi-
plicatively closed (i.e. its terms form a multiplicative semigroup in R) which
satisfy

lim
n→∞

sn+1

sn
= 1.

Then, for every irrational α the sequence

snα mod 1, n = 1, 2, . . . ,

is

dense in [0, 1].

Notes:
(I) H. Furstenberg (1967). The sequence sn is called a non–lacunary multiplica-
tive semigroug of integers. It is not formed by the powers of a single integer.
M.D.Boshernitzan (1994) gave a short elementary proof for this and D.Berend (1983)
proved a multi–dimensional analogue.
(II) D.Berend’s (1986) extension:

Let K be a real algebraic number field and S a subsemigroup of the multiplicative
group of K such that

(i) S ⊂ (−∞,−1) ∪ (1,∞),

(ii) there exist multiplicatively independent elements λ, µ ∈ S (i.e. there exist no
integers m and n, not both vanishing, with λm = µn),

(iii) Q(S) = K.

Then for every α /∈ K the set Sα mod 1 is dense in [0, 1]. If, moreover

(iv) S ̸⊂ PS(K),

then Sα mod 1 is dense in [0, 1] for every α ̸= 0.

Here PS(K) denotes the semigroup of the all Pisot or Salem numbers of degree m
over Q, where m = [K : Q].

Furthermore, if Sα mod 1 is dense in [0, 1] for every α /∈ K or for all α ̸= 0, then S
has a subsemigroup generated by two elements having the properties (i)-(iii).

D.Berend: Dense ( mod 1) semigroups of algebraic numbers, J. Number Theory 26 (1987), no. 3,
246–256 (MR901238 (88e:11102); Zbl. 0623.10038).
D.Berend: Multi–invariant sets on tori , Trans. Amer. Math. Soc. 280 (1983), no. 2, 125–147
(MR0716835 (85b:11064); Zbl. 0532.10028).
M.D.Boshernitzan: Elementary proof of Furstenberg’s Diophantine result , Proc. Amer. Math.
Soc. 122 (1994), no. 1, 67–70 (MR1195714 (94k:11085); Zbl. 0815.11036).
H.Furstenberg: Disjointness in ergodic theory, minimal sets and a problem in diophantine
approximation, Math. Systems Theory 1 (1967), no. 1, 1–49 (MR0213508 (35 #4369); Zbl.
0146.28502).
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2.8.4. Let P be a subset of primes containing at least two distinct primes
and let sn be the increasing sequences of the all positive integers divisible
only by primes from P . Then

α(sn)
k mod 1

is

dense in [0, 1] for every irrational α and every k = 1, 2, . . . .

Notes: This follows from 2.6.34, cf. D.Andrica and S.Buzeteanu (1987, 4.9. Cor.).

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

2.8.5. Open problem. For a given sequence qn of positive integers, find
conditions on reals θ such that the sequence

qnθ mod 1

is

u.d.

Notes: (I) If the strictly increasing sequence qn of integers has the property that xqn
is u.d. provided xn is u.d, then qnθ mod 1 is u.d. for every irrational θ. Examples
of such sequences can be found in 2.4, and especially in H.Rindler (1973/74) and
V. Losert and H.Rindler (1978).
(II) Ch.Mauduit (1984) gave a sufficient condition for an integer sequence qn (which
are recognizable by a finite automaton) that for all irrational θ the sequence qnθ mod1
is u.d.
(III) D.Berend (1990) proved conditions (necessary and sufficient, cf. 2.8.6) for qn
for which qnθ mod 1 is dense or u.d., where qn are elements of an additive semigroup
generated by a strictly increasing sequence of integers.
(IV) I.Z.Ruzsa (1983) proved Niederreiter’s conjecture that there exists an increas-
ing sequence qn of positive integers which is u.d. modulo each positive integer m,
but nevertheless qnx mod 1 is not u.d. for any x.
(V) M.Mendès France (1967/68) showed that for any f(n) which tends to infin-
ity there exists an integer sequence qn satisfying qn = O(f(n)) such that the se-
quence qnx mod 1 is u.d. for any irrational x. F.Dress (1967/68) proved that the
sequence qn cannot be non–decreasing if qn = O(log n), cf. 2.2.8.
(VI) Constructions of such θ are given in 2.8.8.
(VII) For a given real sequence qn consider the so–called normal set associate
to qn

B(qn) = {θ ∈ R ; qnθ mod 1 is u.d. }.
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J. Lesca and M.Mendès France (1970) proved: Let a mapping h : N → N be
fixed. If for all increasing sequences qn of positive integers B(h(qn)) = B(qn), then
h(n) = n+ const. for all large n.
(VIII) O. Strauch (1992) proved that for the mean value of the L2 discrepancy

D
(2)
N (qnθ) we have

∫ 1

0

D
(2)
N (qnθ) dθ =

1

N2

 1

12

N∑
m,n=1

(qm, qn)
2

qmqn
+

1

12

N∑
m,n=1
qm=qn

1

 .

For the multi–dimensional sequence qnθ, cf. 3.4.3
(IX) Y.Bugeaud (2009): Let θ be an irrational number, X be a finite non-empty
set in [0, 1], and let λn, n = 1, 2, . . . , be an arbitrary sequence of real numbers such
that λn ≥ 1 and λn → ∞. Then there exists a sequence qn, n = 1, 2, . . . , of positive
integers such that qn ≤ nλn and the set of limit points of qnθ mod 1 is equal to X.

D.Berend: IP–sets on the circle, Canad. J. Math. 42 (1990), no. 4, 575–589 (MR 92c:11076; Zbl.
0721.11025).
Y.Bugeaud: On sequences (anξ)n≥1 converging modulo 1 , Proc. Amer. Math. Soc. 137 (2009),
no. 8, 2609–2612 (MR2497472 (2010c:11089); Zbl. 1266.11084)).
F.Dress: Sur l’équiréparation de certaines suites (xλn), Acta Arith. 14 (1968), 169–175 (MR0227118
(37 #2703); Zbl. 0218.10055).
J. Lesca – M.Mendès France: Ensembles normaux , Acta Arith. 17 (1970), 273–282 (MR0272724
(42 #7605); Zbl. 0208.05703).
V.Losert – H.Rindler: Teilfolgen gleichverteilter Folgen, J. Reine Angew. Math. 302 (1978),
51–58 (MR0511692 (80a:10071); Zbl. 0371.10039).
Ch.Mauduit: Automates finis et équirépartion modulo 1, C. R. Acad. Sci. Paris. Sér. I Math.
299 (1984), no. 5, 121–123 (MR0756306 (85i:11066); Zbl. 0565.10030).
M.Mendès France: Deux remarques concernant l’équiréparation des suites, Acta Arith. 14
(1968), 163–167 (MR0227117 (37 #2702); Zbl. 0177.07202).
H.Rindler: Ein Problem aus der Theorie der Gleichverteilung, II , Math. Z. 135 (1973/1974),
73–92 (MR0349614 (50 #2107); Zbl. 0263.22009).
I.Z. Ruzsa: On the uniform and almost uniform distribution of (anx) mod 1, Séminaire de Théorie
des Nombres de Bordeaux 1982/1983, Exp. No. 20, Univ. Bordeux I, Talence, 1983, 21 pp.
(MR0750320 (86c:11051); Zbl. 0529.10046).
O. Strauch: An improvement of an inequality of Koksma, Indag. Mathem., N.S. 3 (1992), 113–118
(MR1157523 (93b:11098); Zbl. 0755.11023).

2.8.5.1 Glasner sets. Following D. Berend and Y. Peres (1993) a strictly
increasing sequence of positive integers kn, n = 1, 2, . . . , is called a Glasner
set if for every infinite set A ⊂ [0, 1) and every ε > 0 there exists a kn such
that the dilation knA mod 1 = {knx mod 1 : x ∈ A} is ε–dense in [0, 1], i.e.
knA mod 1 intersects every subinterval of [0, 1] of length ϵ. The following
sequences kn, n = 1, 2, . . . , are Glasner sets:
(i) kn = n (D. Berend and Y. Peres (1993)).
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(ii) kn = P (n), where P (x) is a non-constant polynomial with integer
coefficients (D. Berend and Y. Peres (1993)).

(iii) kn = P (pn), where pn is the increasing sequence of all primes and
polynomial P (x) is as in (ii) (N. Alon and Y. Peres (1992)).

A strictly increasing sequence of positive integers kn, n = 1, 2, . . . , is said
to have quantitative Glasner property if for every ε > 0 there exists an
integer s(ε) such that for any finite set A ⊂ [0, 1) of cardinality at least s(ε)
there exists a kn such that the dilation knA mod 1 is ε–dense in [0, 1). The
following sequences kn, n = 1, 2, . . . , share this property:
(iv) kn = n with s(ε) = [ε−2−γ ], where γ > 0 is arbitrary and ε ≤ ε0(γ).
(v) kn = P (n), where P (x) is a non-constant polynomial with integer coef-

ficients.
(vi) kn = P (pn) as in (iii) with s(ε) = [ε−2d−δ], where d = degP (x), δ > 0

arbitrary and ε < ε0(P (x), δ).
(vii) kn, n = 1, 2, . . . , satisfying

(∗) uniformly distributed for each positive integer m (i.e. the relative
density of km ≡ i (mod m) is 1/m for each i = 0, 1, . . . ,m− 1), and
(∗∗) the sequence knα mod 1 is u.d. in [0, 1] for each irrational α.
Here s(ε) = [ε−2−3(log log(1/ε))−1

] + 1, for every ε < ε0, where ε0 depends
on the sequence kn, n = 1, 2, . . . .

(viii) kn = [f(n)], where f(x), x ∈ R, is a non-polynomial entire real function
such that |f(z)| = O(e(log |z|)

α
) with α < 4/3 and with s(ε) is as in (vii).

(ix) kn = [f(pn)] with pn denoting the increasing sequence of all primes and
f as in (viii) and with s(ε) as in (vii).

(x) kn = [nα] with α = 1 or any non-integral α > 1 and with s(ε) as in (vii).
N.Alon – Y. Peres: Uniform dilations, Geom. Funct. Anal. 2 (1992), no. 1, 1–28 (MR1143662
(93a:11061); Zbl. 0756.11020).
D.Berend – Y.Peres: Asymptotically dense dilations of sets on the circle, J. Lond. Math. Soc.,
II. Ser. 47 (1993), no. 1, 1–17 (MR1200973 (94b:11068); Zbl. 0788.11028).
S.Glasner: Almost periodic sets and measures on the torus, Israel J. Math 32 (1979), no. 2–3,
161–172 (MR0531259 (80f:54038); Zbl. 0406.54023).
H.H.Kamarul – R.Nair: On certain Glasner sets, Proc. R. Soc. Edinb., Sect. A, Math. 133
(2003), no. 4, 849–853 (MR2006205 (2005g:11014); Zbl. 1051.11042).
R.Nair: On asymptotic distribution on the a–adic integers, Proc. Indian Acad. Sci., Math. Sci.
107 (1997), no. 4, 363–376 (MR1484371 (98k:11110); Zbl. 0908.11036).
R.Nair – S.L.Velani: Glasner sets and polynomials in primes, Proc. Amer. Math. Soc. 126
(1998), no. 10, 2835–2840 (MR1452815 (99a:11095); Zbl. 0913.11031).

2.8.6. Let bn, n = 1, 2, . . . , be a sequence of integers and let qn, n = 1, 2, . . . ,
be the sequence of integers representable as the finite sum

bn1 + bn2 + · · ·+ bnk , where n1 < n2 < · · · < nk and k = 1, 2, . . . ,
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and ordered lexicographically (the sequence may assume some values more
than once). Then it is true:

(I) If bn is strictly increasing such that lim infn→∞(bn+1 − bn) < +∞, then
the sequence qnθ mod 1 is u.d for every irrational θ.

(II) If
∑∞

n=1
bn

bn+1
< +∞ then there exists an irrational θ such that qnθ mod 1

is not dense in [0, 1].

(III) If
∑∞

n=1

(
bn

bn+1

)2
< +∞ then there exists an irrational θ such that

qnθ mod 1 is not u.d.

(IV) If bn = n! then there exists an irrational θ such that qnθ mod 1 is not
dense in [0, 1].

(V) If bn = n! − 1 then the sequence qnθ mod 1 is dense in [0, 1] for every
irrational θ, but there exists an irrational θ such that qnθ mod 1 is not u.d.

(VI) If bn = [un], where u > 1 is rational, then the sequence qnθ mod 1 is
u.d. for any irrational θ.

(VII) If bn = Fn, n = 2, 3, . . . , the Fibonacci sequence, then for any irra-
tional θ the sequence qnθ mod 1 is dense in [0, 1]. On the other hand if we
omit F2, i.e. take bn = Fn for n = 3, 4, . . . , then there exists an irrational θ
such that qnθ mod 1 is not dense.

D.Berend: IP–sets on the circle, Canad. J. Math. 42 (1990), no. 4, 575–589 (MR 92c:11076; Zbl.
0721.11025).

2.8.7. Let qn be an increasing sequence of positive integers generated (mul-
tiplicatively) by a finite sequence Q1, Q2, . . . , Qk of pairwise coprime integers
≥ 2, i.e. any qn has the form qn = Qα1

1 . . . Qαk
k for some non–negative integers

α1, . . . , αk. If θ is a given real number then the sequence

xn = qnθ mod 1

is

u.d.

if there exist two positive constant c and σ such that for every subinterval
I ⊂ [0, 1], |I| > 0, we have

lim sup
N→∞

A(I;N ;xn)

N
≤ c|I|(1− log |I|)σ.

Notes: D.A.Moskvin (1970) extended thus a previous result of A.G.Postnikov
(1952), cf. 2.18.19. Moskvin (1970) also proved that any subsequence xn = qnθ mod1
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of the form xn∗ = qn∗θ mod 1, where qn∗ ’s are generated by integers of the form
Qm1

1 , . . . , Qmk

k where m1, . . . ,mk are fixed positive integers, is again u.d.

D.A.Moskvin: The distribution of fractional parts of a sequence that is more general than the
exponential function, Izv. Vyš. Učebn. Zaved. Matematika 12(103) (1970), 72–77 (MR0289425
(44 #6616; Zbl. 0216.31902)).
A.G.Postnikov: On distribution of the fractional parts of the exponential function, Dokl. Akad.
Nauk. SSSR (N.S.) (Russian), 86 (1952), 473–476 (MR0050637 (14,359d); Zbl. 0047.05202).

2.8.7.1 Let qn, n = 1, 2, . . . , be an increasing sequence of positive integers
having positive upper asymptotic density. Then for every irrational number
α the sequence

qnα mod 1, n = 1, 2, . . . ,

has infinitely many limit points.

A.Dubickas: On the limit points of (anξ)∞n=1 mod 1 for slowly increasing integer sequence
(an)∞n=1, Proc. Amer. Math. Soc. 137 (2009), no. 2, 449–456 (MR2448563 (2009h:11123)).

2.8.7.2 Let qn, n = 1, 2, . . . , be an increasing sequence of positive integers
of the form pk + qm, where p < q are two fixed primes and k,m run over all
non-negative integers. Then the question whether the sequence

qnα mod 1, n = 2, 3, . . .

is everywhere dense in [0, 1] is open.

Notes: Proposed by D.Meiri (1998) and discussed in A.Dubickas (2009).

A.Dubickas: On the limit points of (anξ)∞n=1 mod 1 for slowly increasing integer sequence
(an)∞n=1, (), Proc. Amer. Math. Soc. 137 (2009), no. 2, 449–456 (MR2448563 (2009h:11123)).
D.Meiri: Entropy and uniform distribution of orbits in Tn, Israel J. Math. 105 (1998), 155–183
(MR1639747 (99f:58129)).

2.8.8. Let fn be a sequence of positive integers and qn(c, k) = fn + cnk,
where c ̸= 0 and k are positive integers. Let (c, k) be such a pair that
there is a sequence of positive integers an with qn(c, k)an = qn+1(c, k) −
qn−1(c, k). Define α = [b1, . . . , bm, a1, a2, . . . ], where

q2(c,k)
q1(c,k)

= [bm, . . . , b1] is

the continued fraction expansion of q2(c,k)
q1(c,k)

. Then the sequence

αfn
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is

u.d.

P.Gerl: Konstruktion gleichverteilter Punktfolgen, Monatsh. Math. 69 (1965), 306–317
(MR0184922 (32 #2393); Zbl. 0144.28801).

2.8.9. Let f(x) = αkx
k + αk−1x

k−1 + · · · + α0 be a polynomial with real
coefficients and k > 1. Then the sequence

xn = tf(n) mod 1, n = 1, 2, . . . ,

is

u.d.

for every real t ̸= 0 (i.e. f(n) is u.d. in R, cf. 1.5) if and only if at least two
of the coefficients αk, αk−1, . . . , α1 are linearly independent over Q.

Notes: [KN, p. 283, Ex. 5.4].

2.8.10. If tn is a sequence of positive real numbers satisfying

tn+1

tn
≥ 51/3, for n = 1, 2, . . . ,

then there exist positive numbers θ and β such that

{tnθ} ∈ [β, 1− β], n = 1, 2, . . . .

Notes: E. Strzelecki (1975). The result is related to a problem proposed by P.Erdős
and S.J. Taylor (1957).

P.Erdős – S.J. Taylor: On the set of points of convergence of a lacunary trigonometric series
and the equidistribution properties of related sequences, Proc. London Math. Soc. (3) 7 (1957),
598–615 (MR0092032 (19,1050b); Zbl. 0111.26801).
E. Strzelecki: On sequences {ξtn (mod 1)}, Canad. Math. Bull 18 (1975), no. 5, 727–738
(MR0406949 (53 #10734); Zbl. 0326.10033).

2.8.11. Assume that f(x) ∈ C2[1,∞] satisfies
• f(x) is positive, strictly increasing and f(x) → ∞ as x→ ∞,
• f ′(x) → constant < 1 monotonically as x→ ∞,



2.8 Sequences of the form a(n)θ 2 – 101

If α is an irrational number of finite type γ (cf. 2.8.1(V)) then the sequence

f(n)α mod 1

has extremal weighted discrepancy DN with respect to weights f ′(n) satisfy-
ing

DN = O
(

1

f(N)

∫ N

1
(f ′(x))2 dx

) 1
γ
−ε

for every ε > 0. If α is an irrational of constant type, then

DN = O
(
(logF (N))2

F (N)

)
,

where f(N)/F (N) =
∫ N
1 (f ′(x))2 dx.

Y.Ohkubo: Discrepancy with respect to weighted means of some sequences, Proc. Japan Acad.
62 A (1986), no. 5, 201–204 (MR0854219 (87j:11075); Zbl. 0592.10044).

2.8.12. Open problem. Characterize the distribution of the sequence

xn =

{
{nα}α, if {nα} < 1− α,

(1− {nα})(1− α), if {nα} ≥ 1− α,

for 0 < α < 1.

Notes:
(I) A.F.Timan (1987) proved that the series

∑∞
n=1

xn

nr converges for all α ∈ (0, 1) if
and only if r > 1.
(II) S. Steinerberger’s Solution: For irrational 0 < α < 1 we have xn = f({nα}),
where

f(x) =

{
xα, if x ∈ [0, 1− α],

(1− x)(1− α), if x ∈ [1− α, 1].

Then a.d.f. g(x) of xn is

g(x) = |f−1([0, x))| =

{
1, if x ∈ [α(1− α), 1],

x
α(1−α) , others .

A.F.Timan: Distribution of fractional parts and approximation of functions with singularities by
Bernstein polynomials., J. Approx. Theory 50 (1987), no. 2, 167–174 (MR0888298 (88m:11054);
Zbl. 0632.41012).
S. Steinerberger: Personal communication.
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2.8.13. Let s > 0, a ≥ 0, b ≥ 0 be integers and θ an irrational number.
Then the double sequence

m+ θn, m, n = 1, 2, . . . , m ≡ a (mod s) , n ≡ b (mod s) ,

is

dense in R.
Notes: D.Andrica and S.Buzeteanu (1987, 3.2. Lemma) and S. Hartman (1949).

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).
S.Hartman: Sur une condition supplémentaire dans les approximations diophantiques, Colloq.
Math. 2 (1949), no. 1, 48–51 (MR0041174 (12,807a); Zbl. 0038.18802).

2.8.14. Let α, β be two real numbers such that 1, α, β are linearly indepen-
dent over Q, and I ⊂ [0, 1] an interval with |I| > 0. If n1 < n2 < . . . denotes
the sequence of integers n such that {nα} ∈ I, then the sequence

βnk mod 1, k = 1, 2, . . . ,

is

u.d.

Notes: D.P.Parent (1984, p. 254, Ex. 5.27).

Related sequences: 2.16.2

D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).

2.8.15. Let θ be an irrational number. Then for every k = 2, 3, . . . the
sequence

xn =
{θn}k + (−1)k+1[θn]k

θk!
mod 1

is

u.d.
J. Brezin: Applications of nilmanifold theory to diophantine approximations, Proc. Amer. Math.
Soc. 33 (1972), no. 2, 543–547 (MR0311587 (47 #149); Zbl. 0249.22007).
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2.8.16. Let qn ≥ 2 be a given sequence of positive integers with limn→∞ qn =
∞ and θ be a real number. Then the sequence

xn = θq1 . . . qn mod 1

is

u.d.

if and only if θ can be expressed in the form

θ = a0 +
∞∑
n=1

[ϑnqn]

q1 . . . qn
,

where ϑn is a sequence u.d. in [0, 1). Moreover, xn is also u.d. if ϑn = ϑ′n+kn,
where
(i) kn is a sequence of positive integers,
(ii) ϑ′n is u.d. in [0, 1),
(iii) limn→∞

kn
qn

= 0.

Notes: (I) This was proved by N.M.Korobov (1950, Th. 3).

(II) T. Šalát (1968) relaxed the condition limn→∞ qn = ∞ to
∑N
n=1 1/qn = o(N) as

N → ∞.
(III) Note that, for a given ϑ ∈ [0, 1), the series θ = a0 +

∑∞
n=1

[ϑnqn]
q1...qn

coincides(
if a0 = [θ]

)
with the Cantor expansion θ = a0 +

∑∞
n=1

[θnqn]
q1...qn

, where θ1 = {θ},
θn+1 = {θnqn}, [θnqn] = [ϑnqn]. Note also that θn and ϑn may be distinct.

(IV) Korobov (1950, Th. 4) also proved that if qn = q ≥ 2 and

θ = a0 +

∞∑
n=1

[ϑnq]

qn
,

and ϑn is a completely u.d. sequence in [0, 1), then the sequence

θqn mod 1

is

u.d.

(cf. 2.18.15). He mentioned that for qn = q, the u.d. mod 1 of θq1 . . . qn = θqn

implies the expression θ = a0+
∑∞
n=1

[ϑnq]
qn , where ϑn is u.d. in [0, 1]. For the reverse

implication we need that the qn’s are unbounded.

Related sequences: 2.8.17, 2.8.18, 2.18.15.
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N.M.Korobov: Concerning some questions of uniform distribution, (Russian), Izv. Akad. Nauk
SSSR, Ser. Mat. 14 (1950), 215–238 (MR0037876 (12,321a); Zbl. 0036.31104).
T. Šalát: Zu einigen Fragen der Gleichverteilung (mod 1), Czechoslovak Math. J. 18(93) (1968),
476–488 (MR0229586 (37 #5160); Zbl. 0162.34701).

2.8.17. Let 0 < λ < 1 and

θ =

∞∑
n=1

[n1+λ]

n!
.

Then the sequence

θn! mod 1

is

u.d.

Notes:
(I) N.M.Korobov (1950) proved this as an application of 2.8.16 with qn = n+1 and
ϑn = ϑ′n + kn = {nλ}+ [nλ] = nλ.
(II) Parent [p. 257, Ex. 5.37]: To an arbitrary sequence xn ∈ [0, 1), n = 1, 2, . . . ,
one can associate a real number α such that limn→∞({n!α} − xn) = 0. Thus by
2.3.3 G({n!α}) = G(xn).
(III) A. Aleksenko proved: Suppose that the sequence nk, k = 1, 2, . . . , of positive
numbers satisfies nk+1

knk
≥ ρ > 0, where ρ is a constant. Then there exists a real α

for which the sequence {αnk}, k = 1, 2, . . . has discrepancy DN = O
(
logN
N

)
. From

there she deduced that there exists a real α such that the discrepancy of {αn!},
n = 1, 2, . . . , N , is DN = O

(
logN
N

)
.

A.Aleksenko: On the sequence αn!, Unif. Distrib. Theory 9 (2014), no. 2, 1–6 (MR3430807; Zbl.
1340.11061).
N.M.Korobov: Concerning some questions of uniform distribution, (Russian), Izv. Akad. Nauk
SSSR, Ser. Mat. 14 (1950), 215–238 (MR0037876 (12,321a); Zbl. 0036.31104).
D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).

2.8.18. Let

θ =
∞∑
n=1

[4n logλ n]

2n2 .

If λ > 1 then the sequence

θ2n
2
mod 1
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is

u.d.

but if 0 < λ ≤ 1 it is

dense but not u.d.

Notes: N.M.Korobov (1950) via an application of 2.8.16 with qn = 22n−1 and
ϑn = ϑ′n + kn = {logλ n}+ [logλ n] = logλ n.

N.M.Korobov: Concerning some questions of uniform distribution, (Russian), Izv. Akad. Nauk
SSSR, Ser. Mat. 14 (1950), 215–238 (MR0037876 (12,321a); Zbl. 0036.31104).

2.8.19. If α, β are real numbers and P,Q positive integers, then the elements
of the sequence

iα+ jβ mod 1, i = 0, 1, . . . , P − 1, j = 0, 1, . . . , Q− 1,

partition the unit interval [0, 1] into PQ subintervals which have at most
P + 3 distinct lengths.
Notes: (I) J.F.Geelen and R.J. Simpson (1993). This generalizes the Steinhaus
three–gaps theorem, cf. 2.8.1.
(II) If one of the numbers α and β is irrational, then the double infinite sequence

xi,j = iα+ jβ mod 1, i = 0, 1, 2, . . . , j = 0, 1, 2, . . . ,

is (cf. [KN, p. 18, Ex. 2.9])

u.d.

J.F.Geelen – R.J. Simpson: A two–dimensional Steinhaus theorem, Australas. J. Combin 8
(1993), 169–197 (MR1240154 (94k:11083); Zbl. 0804.11020).

2.9 Sequences involving sum–of–digits functions

See also: 3.5, 3.11.2

Notes: Let q ≥ 2 be a positive integer and let n =
∑k(n)
j=0 aj(n)q

j be the q–adic
digit expansion of n with integral digits 0 ≤ aj(n) < q. The q–ary sum–of–digits
function sq(n) in base q is defined by

sq(n) =

k(n)∑
j=0

aj(n).

For the multi–dimensional sequences involving sum–of–digits function consult 3.5.
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2.9.1. If sq(n) denotes sum–of–digits function in base q then the sequence

sq(n)θ mod 1, n = 0, 1, 2, . . . ,

is

u.d.

if and only if θ is irrational. If θ = [b0; b1, b2, . . . ] has bounded partial quo-
tients bi, then

DN ≤ c(q, θ)
log log logN√

logN
,

for all N . It θ is irrational then there exists a constant c(q) > 0 such that

DN > c(q)
1√

logN

for all N .

Notes: (I) M.Mendès France (1967, Th. III.5.1) was the first who turned the at-
tention to problems of this type, cf. [KN, p. 76, Notes].
(II) Discrepancy bounds were proved by M.Drmota and G. Larcher (2001). More
precisely, they proved that there are positive constants c′(q) and d(q) such that

DN ≤ c′(q)
1√

logN

∑
1≤i<i0+1

bi,

where i0 is defined by qi0 ≤ d(q)
√

logN. log logN < qi0+1 and qi are the denomi-
nators of the convergents pi/qi = [b0; b1, b2, . . . , bi].
They also posed the following open problem: are there irrational numbers θ such
that for the discrepancy DN of sq(n)θ mod 1 we have

DN ≤ c
1√

logN

for every N?
(III) Previously, R.F.Tichy and G.Turnwald (1987) found the discrepancy bound

DN ≤ c(q, θ)

√
log logN√
logN

,

for θ with bounded partial quotients, cf. 2.9.3.
G. Larcher (1993) proved the best possible general lower bound of the form DN ≥
c(logN)−v/2 with some fixed v depending on θ.
(IV) Given a sequence xn ∈ [0, 1), a subset X ⊂ [0, 1] is called a bounded remain-
der set if there exists a t ∈ [0, 1] such that |A(X;N ;xn) − tN | is bounded as a
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function of N . P. Liardet (1987) proved that the only intervals I mod 1 which are
bounded remainder sets for the sequence sq(n)θ with irrational θ are the trivial ones
|I| = 0 and |I| = 1.

Related sequences: 2.19.10

M.Drmota – G. Larcher: The sum–of–digits–function and uniform distribution modulo 1 , J.
Number Theory 89 (2001), 65–96 (MR1838704 (2002e:11094); Zbl. 0990.11053).
G.Larcher: Zur Diskrepanz verallgemeinter Ziffernsummenfolgen, Österreich. Akad. Wiss.
Math.–Natur. Kl. Sitzungsber. II 22 (1993), no. 1–10, 179–185 (MR1268811 (95d:11096); Zbl.
0790.11057).
P. Liardet: Regularities of distribution, Compositio Math. 61 (1987), 267–293 (MR0883484
(88h:11052); Zbl. 0619.10053).
M.Mendès France: Nombres normaux. Applications aux fonctions pseudo–aléatoires, J. Analyse
Math. 20 (1967), 1–56 (MR0220683 (36 #3735); Zbl. 0161.05002).
R.F.Tichy – G.Turnwald: On the discrepancy of some special sequences, J. Number Theory 26
(1987), no. 1, 68–78 (MR0883534 (88g:11048); Zbl. 0628.10052).

2.9.2. If θ is irrational and α real, then the sequence

sq([nα])θ mod 1

is

u.d.

M.Mendès France: Les suites à spectre vide et la répartition modulo 1 , J. Number Theory 5
(1973), 1–15 (MR0319909 (47 #8450); Zbl. 0252.10033).

2.9.3.

Notes: If η is a real number, we say that the real number θ is of finite approx-
imation type η if for every ε > 0 we have ∥hθ∥ ≥ c(θ, ε)h−η−ε for all positive
integers h, where ∥x∥ denotes the distance of x to the nearest integer (see 2.8.1(ii)).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If s
(d)
q (n) denotes the sum of dth powers of the digits of positive integer n in

its q–adic digit expansion, then for the discrepancy of the sequence

s(d)q (n)θ mod 1

we have
• DN ≤ c(q, θ, ε)(logN)

− 1
2η

+ε
for every ε > 0 and every N = 1, 2, . . . , if θ is

of finite approximation type η.

• DN ≥ (logN)
− 1

2η
+ε

for every ε > 0 and infinitely many N , if θ is not of
finite approximation type η′ for any η′ < η.
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• DN ≥ c′(q, d, θ)(logN)−
1
2 for every irrational θ and infinitely many N .

R.F.Tichy – G.Turnwald: On the discrepancy of some special sequences, J. Number Theory 26
(1987), no. 1, 68–78 (MR0883534 (88g:11048); Zbl. 0628.10052).

2.9.4. Assume that
• f : N → Z is a function such that f(0) = 0,
• bn, n = 0, 1, . . . , is an arbitrary sequence of integers,

• F : N → Z satisfies F (0) = 0 and F (n) =
∑k(n)

j=0 f(aj)bj if n =
∑k(n)

j=0 ajq
j

is the q–adic digit expansion of n.

Then the sequence

F (n)θ mod 1

is

u.d.

if and only if
• f(a) ̸= 0 for some 1 ≤ a ≤ q − 1, and
•
∑∞

n=1 ∥bnhθ∥2 = ∞ for all h ∈ N, where ∥ · ∥ is the distance to the nearest
integer.

G.Larcher: On the distribution of sequences connected with digit–representation, Manuscripta
Math. 61 (1988), no. 1, 33–44 (MR0939138 (89f:11104); Zbl. 0647.10034).

2.9.5. Let q1, . . . , qm be coprime positive integers ≥ 2. If sqi(n) denotes the
sum of the qi–digits of n, then the sequence

m∑
j=1

αj(sqj (n))
2 mod 1

is

u.d. provided at least one of the αj ’s is irrational.

Related sequences: 2.9.1

J.Coquet: Sur les fonctions q–multiplicatives pseudo–aléatoires, C.R. Acad. Sci. Paris, Ser. A–B
282 (1976), no. 4, Ai, A175–A178 (MR0401691 (53 #5518); Zbl. 0316.10032).
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2.9.6. If sq(n) is the sum of the q–adic digits when n is expressed in the
q–adic digit expansion in base q then the sequence

xn = α1sq(n) + α2sq
([
n
√
2
])

+ α3sq
([
n
√
3
])

mod 1

is

u.d.

if and only if at least one of the real numbers α1, α2, α3 is irrational.

J.Coquet: Sur certain suites pseudo–alétoires. III , Monatsh. Math. 90 (1980), no. 1, 27–35
(MR0593829 (92d:10072); Zbl 0432.10030).

2.9.7. Let q ≥ 2, n ≥ 0 be integers, and let sq(n) be the sum of q–adic digits
in the q–adic digit expansion of n in the base q. If α1, α2 are real numbers
and h1, h2 distinct positive integers not divisible by q, then the sequence

α1sq(h1n) + α2sq(h2n) mod 1

is

u.d.

if and only if at least one of the numbers α1, α2 is irrational.

Notes: J.Coquet (1983). He also proved that if h1, h2 are distinct odd positive inte-
gers and b1, b2 are integers ≥ 2, then for any integers a1, a2 the set {n ∈ N; s2(h1n) ≡
a1 (mod b1) and s2(h2n) ≡ a2 (mod b2)} has asymptotic density (b1b2)

−1.

J.Coquet: Sur la représentation des multiples d’un entier dans une base, in: Hubert Delange
colloquium (Orsay, 1982), Publ. Math. Orsay, Vol.83-4, Univ. Paris XI, Orsay, 1983, pp. 20–37
(MR0728398 (85m:11045); Zbl 0521.10045).

2.9.8.

Let one of α1, α2 be irrational, and ω(n) denote the number of distinct prime
divisor of n. If q ≥ 2 and n ≥ 0 are integers, and sq(n) stands for the sum
of q–adic digits in the q–adic digit expansion of n in the base q, then the
sequence

α1sq(n) + α2ω(n) mod 1

is

u.d.
J.Coquet: Sur la représentation des multiples d’un entier dans une base, in: Hubert Delange
colloquium (Orsay, 1982), Publ. Math. Orsay, Vol.83-4, Univ. Paris XI, Orsay, 1983, pp. 20–37
(MR0728398 (85m:11045); Zbl 0521.10045).
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2.9.9. Let q ≥ 2 be a positive integer, θ > 1 real, and let n =
∑k(n)

j=0 aj(n)q
j

be the q–adic digit expansion of n. Then the sequence

xn =

k(n)∑
j=0

aj(n)θ
j mod 1

is

u.d. if and only if θ is not a P.V. number.

Notes: M.Mendès France (1967/68). J. Coquet and M.Mendès France (1977)
gave the following generalization: Let θ1 > 1, . . . , θm > 1 be real numbers, q1 ≥
2, . . . , qm ≥ 2 be distinct primes and n =

∑∞
j=0 aj,k(n)q

j
k be the qk–adic expansion

of n for k = 1, . . . ,m. Then the sequence

xn =

m∑
k=1

∞∑
j=0

aj,k(n)θ
j
k mod 1

is

u.d if and only if at least one θ1, . . . , θm is not a P.V. number.

Related sequences: 2.6.22

J.Coquet – M.Mendès France: Suites à spectre vide et suites pseudo–aléatoires, Acta Arith.
32 (1977), no. 1, 99–106 (MR0435019 (55 #7981); Zbl. 0303.10047).
M.Mendès France: Deux remarques concernant l’équiréparation des suites, Acta Arith. 14
(1968), 163–167 (MR0227117 (37 #2702); Zbl. 0177.07202).

2.9.10. Let Q = (qn)
∞
n=0 be a sequence of positive integers subject to the

conditions:
(i) q0 = 1, qn+1 > qn for all n = 0, 1, . . . ,
(ii) there exist α > 1 and a ∈ N such that for all n the inequality qn+i+1 ≥

αqn+i holds for some and i ∈ {0, 1, . . . , a− 1}.
Every non–negative integer n can be uniquely represented in the form n =∑k(n)

j=0 aj(n)qj , where the digits aj(n) are non–negative integers, if we impose

the additional condition that
∑i−1

j=0 aj(n)qj < qi for all i = 1, . . . , k(n). Let

sQ(n) =
∑k(n)

j=0 aj(n) denote the sum–of–digits function at n in this expan-
sion. Then for all irrational θ the sequence

sQ(n)θ mod 1
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is

u.d.

Notes: (I) Firstly proved by J.Coquet (1982) and later also by Ch.Radoux (1990).
Assuming additionally that
(iii) qn+1/qn tends to a value > 1 as n→ ∞,

(iv) Q is a linear recurring sequence, i.e. qn+m =
∑m−1
j=0 ajqn+j for n = 1, 2, . . .

with m fixed and integral aj ,

Coquet (1983) proved that the sequence sQ(n)θ mod 1 has empty Bohr spectrum
(see 2.4.4) for every irrational θ.
(II) The sequence Q satisfying (i) and (ii) is called the scale and Radoux (1990)
gives two examples: the sequence [αn], n = 0, 1, . . . , and the Fibonacci one.

J.Coquet: Représentations lacunaires des entiers naturels, Arch. Math. (Basel) 38 (1982), no. 2,
184–188 ( MR0650350 (83h:10092); Zbl 0473.10033).
J.Coquet: Représentations lacunaires des entiers naturels. II , Arch. Math. (Basel) 41 (1983),
no. 3, 238–242 (MR0721055 (86i:11040); Zbl. 521:10043).
Ch.Radoux: Suites à croissance presque géométrique et répartition modulo 1 , Bull. Soc. Math.
Belg. Sér. A, Ser. A 42 (1990), no. 3, 659–671 (MR1316216 (96a:11072); Zbl. 0733.11024).

2.9.11. Let G = (Gk)
∞
k=0 be a linear recurring sequence, say,

Gk+d = a1Gk+d−1 + a2Gk+d−2 + · · ·+ adGk

with integral coefficients and integral initial values. If d = 1 then we assume
that G0 = 1 and a1 > 1. If d ≥ 2 then a1 ≥ a2 ≥ · · · ≥ ad > 0, G0 = 1,
and Gk ≥ a1Gk−1 + · · · + akG0 + 1 for k = 1, 2, . . . , d − 1. Given n ∈
N, the greedy algorithm yields the digits 0 ≤ εk(n) < Gk+1/Gk such that
n = ε0(n)G0 + · · ·+ εk(n)(n)Gk(n) (the so–called G–expansion of n, or the
generalized Zeckendorf expansion). If sG(n) denotes the sum of the
digits in the G–expansion of n and if θ is irrational then the sequence

xn = sG(n)θ mod 1

is

u.d.

and if θ is of the approximation type η and a1 ≥ 2, then

DN = O
(
logN−(1/2η)+ε

)
for all N = 1, 2, . . . and ε > 0. If θ is irrational then the sequence xn has
empty spectrum in the sense of Mendès France (cf. 2.4.1 for the def. of the
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spectrum; the emptiness means that sG(n)θ + nα mod 1 is u.d. for every α)
and the sequence

sG(n)θ + nθ1 mod 1

is

w.d. (see 1.5) if at least one of the numbers θ and θ1 is irrational.

Notes: P.J.Grabner and R.F.Tichy (1990). The estimate of the discrepancy DN

can be found in P.J.Grabner (1990). Emptiness of the spectrum of xn and the w.d.
of sG(n)θ+nθ1 mod 1 was proved by P.J.Grabner, P. Liardet and R.F.Tichy (1995).

Related sequences: 2.9.1

P.J.Grabner: Ziffernentwicklungen bezüglich linearer Rekursionen, Österreich. Akad. Wiss.
Math.–Natur. Kl. Sitzungsber. II 199 (1990), no. 1–3, 1–21 (MR1101092 (92h:11066);
Zbl. 0721.11026).
P.J.Grabner – P. Liardet – R.F.Tichy: Odometres and systems of numeration, Acta Arith. 70
(1995), no. 2, 103–123 (MR1322556 (96b:11108); Zbl. 0822.11008).
P.J.Grabner – R.F.Tichy: Contributions to digit expansions with respect to linear recurrences,
J. Number Theory 36 (1990), no. 2, 160–169 (MR1072462 (92f:11111); Zbl. 0711.11004).

2.9.12. Let n =
∑∞

k=0 εk(n)Fk be the Zeckendorf representation of the
positive integer n, where Fk is the kth Fibonacci number, εk(n) = 0 or 1,

and εk(n)εk+1(n) = 0. Denote s
(1)
F (n) =

∑∞
k=1 εk(n) and define s

(j+1)
F (n) =

s(1)
(
s
(j)
F (n)

)
for j = 1, 2, . . . . If q(x)− q(0) is a real polynomial with at least

one irrational coefficient, then the sequence

q
(
s
(j)
F (n)

)
mod 1, n = 1, 2, . . . ,

is

u.d. for every j = 1, 2, . . . .
J.Coquet: Sur certaines suites uniformément équiréparties modulo un. II , Bull. Soc. Roy. Sci.
Liège 48 (1979), no. 11–12, 426–431 (MR0581914 (81j:10053a); Zbl. 0437.10025).
J.Coquet: Sur certaines suites uniformément équiréparties modulo 1, Acta Arith. 36 (1980),
no. 2, 157–162 (MR0581914 (81j:10053a); Zbl. 0357.10026).
E. Zeckendorf: Représentation des nombres naturels par une somme des nombres de Fibonacci
ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179–182 (MR0308032 (46 #7147);
Zbl. 0252.10011).

2.9.13. Let [a0; a1, a2, . . . ] be the continued fraction expansion of an ir-
rational number α, and let q0 = 1, q1, q2, . . . be the denominators of the
convergents. Let n =

∑∞
k=0 εk(n)qk be the so–called Ostrowski expansion

(cf. 2.8.1) of n, i.e. εk(n) are integers which satisfy 0 ≤ εk(n) ≤ ak+1 for
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k ≥ 1, 0 ≤ ε0(n) < a1, and εk−1(n) = 0 whenever εk(n) = ak+1. Define the
sum–of–digits function by σα(n) =

∑∞
k=0 εk(n).

(I) The sequence

xn = σα(n)θ mod 1

is

u.d. if and only if θ is irrational.

(II) If sq(n) denotes the sum of q–adic digits in the q–adic digit expansion in
base q ≥ 2 of the positive integer n then the sequence

yn = sq(n)γ + σα(n)θ mod 1

is

u.d. if and only if one of the numbers γ or θ is irrational.

(III) Let Φ : N → R be a function with Φ(0) = 0. Then the sequence

zn =

∞∑
k=0

Φ(εk(n)) mod 1

is

u.d. if Φ(1) is irrational and Φ(n) mod 1 is u.d.

Consequences:
(i) If the sequence an is unbounded and Φ(n) mod 1 is u.d., then zn is u.d.
(ii) If the sequence an is bounded and Φ(1) is irrational, then zn is u.d.
(iii) If an ≥ 3 for infinitely many n, Φ(1) is rational and Φ(2) is irrational

then the sequence

un =

∞∑
k=0

Φ(εk(n)) + θ

∞∑
k=0

εk(n) mod 1

is
u.d. for every real θ.

Notes: (I) J. Coquet (1982) proved that xn is w.d. for irrational θ.
(II) The u.d. of yn was proved by J.Coquet and P.Toffin (1981) and by J.Coquet,
G.Rhin and P.Toffin (1981). Coquet (1982) proved that if at least one of the num-
bers γ or θ is irrational the sequence yn is w.d.
(III) Kawai (1984).

Related sequences: 3.5.2.
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J.Coquet: Répartition de la somme des chiffres associéte à une fraction continue, Bull. Soc.
Roy. Sci. Liège 51 (1982), no. 3–4, 161–165 (MR0685812 (84e:10060); Zbl. 0497.10040).
J.Coquet: Représentation des entiers naturels et suites uniformément équiréparties , Ann. Inst.
Fourier (Grenoble) 32 (1982), no. 1, xi, 1–5 (MR0658939 (83h:10071); Zbl 0463.10039).
J.Coquet – G.Rhin – P.Toffin: Représentation des entiers naturels et indépendence statis-
tique. II , Ann. Inst. Fourier (Grenoble) 31 (1981), no. 1, ix, 1–15 (MR0613026 (83e:10071b); Zbl.
0437.10026).
J.Coquet – P.Toffin: Représentation des entiers naturels et indépendence statistique, Bull. Sci.
Math 105 (1981), no. 3, 289–298 (MR0629711 (83e:10071a); Zbl. 0463.10040).
H.Kawai: α–additive functions and uniform distribution modulo one, Proc. Japan Acad. Ser. A
Math. Sci. 60 (1984), no. 8, 299–301 (MR0774578 (86d:11056); Zbl. 0556.10037).

2.9.14.

Notes: A number system with the base q of an order O of an algebraic number
field is called canonical if every element z ∈ O has the unique representation of

the form z =
∑k(z)
j=0 ajq

j with aj ∈ {0, 1, 2, . . . , |N(q)| − 1}. The corresponding
sum–of–digits function is defined by

sq(z) =

k(z)∑
j=0

aj .

The only bases of canonical number systems of the ring of Gaussian integers Z[i] are
the Gaussian integers q = −b± i with positive integers b.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arrange the Gaussian integer Z[i] into a sequence zn, n = 1, 2, . . . , according
to their norm | · | and let q be a canonical base in Z[i]. For irrational θ the
sequence

sq(zn)θ mod 1

is

almost u.d.

(cf. 1.5) with respect to the sequence of indices [πN ], N = 1, 2, . . . , π =
3.14 . . . , i.e.

lim
N→∞

#{z ∈ Z[i] ; |z| <
√
N, {sq(z)θ} ∈ I}

πN
= |I|

for all intervals I ⊂ [0, 1].

Notes: P.J.Grabner and P. Liardet (1999). For the characterization of canonical
bases cf. I. Kátai and J. Szabó (1975).

Related sequences: 3.5.3
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P.J.Grabner – P. Liardet: Harmonic properties of the sum–of–digits function for complex base,
Acta Arith. 91 (1999), no. 4, 329–349 (MR1736016 (2001f:11126); Zbl. 0949.11004).
I. Kátai – J. Szabó: Canonical number systems for complex integers, Acta Sci. Math. (Szeged)
37 (1975), no. 3–4, 255–260 (MR0389759 (52 #10590); Zbl. 0309.12001).

2.10 Sequences involving q–additive functions

Notes: Let positive integer q > 1 be fixed and n =
∑∞
k=0 akq

k be the q–adic
digit expansion of n. A function f : Z+

0 → Z+
0 is called q–additive if f(n) =∑∞

k=0 f(akq
k) and strongly q–additive or completely q–additive if f(n) =∑∞

k=0 f(ak) for all n = 0, 1, 2, . . . , while f(0) = 0 in both cases. Every sum–of–
digits function sq(n) (see 2.9) is strongly q–additive. Circle sequences involving
q–additive functions are discussed in 3.11.2.
The notion of the q–additive function was introduced by A.O.Gelfond (1968).

A.O.Gelfond: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta
Arith. 13 (1968), 259–265 (MR0220693 (36 #3745); Zbl. 0155.09003).

2.10.1. Suppose that f(n) is strongly q–additive and that f(b) ̸= 0 for some
1 ≤ b ≤ q − 1. Then the sequence

αf(n) mod 1

is

u.d. if and only if α is irrational.

If α is an irrational of finite approximation type η then for every ε > 0 there
exists a constant c = c(q, α, ε, f) such that

DN ≤ c

(logN)
1
2η

−ε
for all N ≥ 1.

Notes: [DT, pp. 91–92, Th. 1.99, 1.100]. M.Drmota and G. Larcher (2001, p. 68)
noted that for all N and all irrational α we have DN > c(q) 1√

logN
with a constant

c(q) > 0.

M.Drmota – G. Larcher: The sum–of–digits–function and uniform distribution modulo 1 , J.
Number Theory 89 (2001), 65–96 (MR1838704 (2002e:11094); Zbl. 0990.11053).

2.10.2. Suppose that f(n) is strongly q–additive (for the definition cf.
2.10.1) and that f(b) ̸= 0 for some 1 ≤ b ≤ q − 1. Then the sequence

αf(n) + βn mod 1
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is

u.d. for every α /∈ Q and for every β ∈ R.
Notes: Proved by M.Mendès France (1973), see [DT, p. 101, Th. 1.108] and for
more general functions f see 2.6.7.

M.Mendès France: Les suites à spectre vide et la répartition modulo 1 , J. Number Theory 5
(1973), 1–15 (MR0319909 (47 #8450); Zbl. 0252.10033).

2.10.3. Let mn denote the sequence of all squarefree positive integers and
let f(n) be a strongly q–additive function (for the def. see 2.10.1) such that
f(b) ̸= 0 for some 1 ≤ b ≤ q − 1. Then the sequence

αf(mn) mod 1

is

u.d. if and only if α /∈ Q.

Notes: Proved by M.Mendès France (1973), see [DT, p. 104, Coroll. 1.115]. Note
that f(n) has empty spectrum, cf. 2.10.2, 2.4.2 and 2.4.1.

Related sequences: 2.16.3.

M.Mendès France: Les suites à spectre vide et la répartition modulo 1 , J. Number Theory 5
(1973), 1–15 (MR0319909 (47 #8450); Zbl. 0252.10033).

2.10.4. If f is a real q–additive function then the sequence

f(n), n = 0, 1, 2, . . . ,

has the a.d.f.

g(x) defined on (−∞,∞),

if and only if the following two series converge

(i)
∑∞

k=0

(∑q−1
a=1 f(aq

k)
)
,

(ii)
∑∞

k=0

(∑q−1
a=1(f(aq

k))2
)
.

The characteristic function h(t) =
∫∞
−∞ eitx dg(x) of g(x) is given by

h(t) =
∞∏
k=0

1

q

(
1 +

q−1∑
a=1

eitf(aq
k)

)
.
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Notes: H.Delange (1972). J. Coquet (1975) proved that if f1 is q1–additive and f2
is q2–additive, and if the a.d.f.’s of f1 and f2 exist, then also the a.d.f. of f1 + f2
exists. Moreover, if gcd(q1, q2) = 1, then the characteristic function of f1 + f2 is
equal to the product of the characteristic functions of f1 and f2.

J.Coquet: Sur les fonctions q–multiplicatives presque–périodiques, C. R. Acad. Sci. Paris Sér.
A–B 281 (1975), no. 2–3, Ai, A63–A65 (MR0384736 (52 #5609); Zbl. 0311.10050).
H.Delange: Sur les fonctions q–additives ou q–multiplicatives, Acta Arith. 21 (1972), 285–298
(MR0309891 (46 #8995); Zbl. 0219.10062).

2.10.5.

Notes: Let Qn, n = 0, 1, 2, . . . , be an increasing sequence of positive integers with
Q0 = 1. We can expand every positive integer n with respect to this sequence, i.e.
n =

∑∞
k=0 akQk and this expansion is finite and unique, if for every K we have∑K−1

k=0 akQk < QK . A function f(n) is called Q–additive if f(n) =
∑∞
k=0 f(akQk)

for all n = 0, 1, 2, . . . (cf. 2.10.1).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose that n =
∑K

k=0 akQk is the Q–adic digit expansion of n where Qn,
n = 0, 1, . . . , is a linear recurring sequence such that
• Qn+d = q0Qn+d−1+ · · ·+ qd−1Qn with integral coefficients q0 ≥ q1 ≥ · · · ≥
qd−1,

• the initial values are Q0 = 1 and Qk = q0Qk−1 + · · · + qk−1Q0 + 1 for
0 < k < d,

• the dominating root α of the characteristic equation xd − q0x
d−1 − · · · −

qd−1 = 0 is a P.V. number.

Furthermore, assume that
• f(n) is Q–additive,
•
∑∞

n=0

∣∣∑qs−1
i=0 f(q0Qn+d−1)+ · · ·+ qs−1Qn+d−s+ iQn+d−s−1

∣∣ converges for
every s = 0, . . . , d− 1,

•
∑∞

n=0

∑q0
i=0 f(iQn)

2 converges.

Then the sequence
f(n), n = 0, 1, 2, . . . ,

has the a.d.f.

g(x)

defined on (−∞,∞) and its characteristic function h(t) =
∫∞
−∞ eitx dg(x) can

be computed as the limit

h(t) = lim
N→∞

1

N

N−1∑
n=0

eitf(n).
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G.Barat – P.J.Grabner: Distribution properties of G–additive functions, J. Number Theory 60
(1996), no. 1, 103–123 (MR1405729 (97k:11112); Zbl. 0862.11048).

2.10.6. Suppose that n =
∑K

k=0 akQk is the Q–adic digit expansion of n
where Qn, n = 0, 1, . . . , is a linear recurring sequence such that
• Qn+d = q0Qn+d−1+ · · ·+ qd−1Qn with integral coefficients q0 ≥ q1 ≥ · · · ≥
qd−1,

• the initial values are Q0 = 1 and Qk = q0Qk−1 + · · · + qk−1Q0 + 1 for
0 < k < d,

• the dominating root α of the characteristic equation xd − q0x
d−1 − · · · −

qd−1 = 0 is a P.V. number.

Furthermore, assume that |β| < 1 is a real number, and f(n) an arithmetical
function which satisfy
• f(S(n)) = βf(n) for every n = 0, 1, 2, . . . , where
• S(

∑K
k=0 akQk) =

∑K
k=0 akQk+1 is the shift adjoint operator.

Then the sequence
f(n), n = 0, 1, 2, . . . ,

has the a.d.f.

g(x)

defined on (−∞,∞) and which has the following properties:
• if |αβ| < 1, then g(x) has zero derivative everywhere and the set where the

derivative does not vanish has Hausdorff dimension at most logα/(− log |β|),
• if f(n) is not identically 0, then g(x) is continuous,
• if β is positive then g(x) is the unique solution of the functional equation

g(x) =
∞∑
l=0

1

αl+1

∑
m∈Pl

g

(
x− f(m)

βl+1

)
and if β is negative then g(x) is the unique solution of the equation

g(x) =

∞∑
l=0

(−1)l

αl+1

∑
m∈Pl

g

(
x− f(m)

βl+1

)
+

∞∑
l=0

p2l
α2l+1

,

where Pl = {m ∈ N ; m =
∑l

k=0 akQk, ak ≥ qd−1, 0 ≤ al < qd−1} and
pl = #Pl.

G.Barat – P.J.Grabner: Distribution properties of G–additive functions, J. Number Theory 60
(1996), no. 1, 103–123 (MR1405729 (97k:11112); Zbl. 0862.11048).
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2.11 van der Corput sequences

2.11.1. van der Corput sequence. Let n =
∑s

j=0 aj2
j be the dyadic ex-

pansion of n for n = 0, 1, 2, . . . . Then the sequence

xn = γ2(n) =
s∑

j=0

aj2
−j−1 (i.e. n = asas−1 . . . a0 → xn = 0.a0a1 . . . as)

is

u.d.

and

NDN ≤ log(N + 1)

log 2
[J.G. van der Corput (1936)]

ND∗
N = NDN ≤ logN

3 log 2
+ 1 [R.Béjian an H. Faure (1977)]

lim sup
N→∞

NDN − logN

3 log 2
=

4

9
+

log 3

3 log 2
[R.Béjian an H. Faure (1977)]

DIN < 4

√
logN

N
(N ≥ 2) [P.D.Proinov and V.S.Grozdanov (1988)]

N2D
(2)
N ≤

(
logN

6 log 2

)2

+

(
11

3
+

2 log 3

log 2

)
logN

36 log 2
+

1

3
(N ≥ 1)

[H. Faure (1990)]

Notes: (I) J.G. van der Corput (1936). His sequence is also a (0, 1)–sequence in
base q = 2 (for def. cf. 1.8.18) and van der Corput’s construction actually provides
the basis of almost all constructions of s–dimensional (t, s)–sequences (cf. 3.19.2).
(II) I.M. Sobol’ (1957) defined the van der Corput sequence independently. He gave
(1966, 1967) the following generalization: For two dyadic rationals γ = c

2l
and

δ = d
2m in [0, 1) with dyadic expansions γ = 0.c1c2 . . . and δ = 0.d1d2 . . . define

γ ⊕ δ = 0.e1e2 . . . , by ei = ci + di (mod 2)
(
e.g. 7/8 ⊕ 11/16 = 0.111 ⊕ 0.1011 =

0.0101 = 5/16
)
. For a given sequence yn, n = 0, 1, 2, . . . , of dyadic rationals in [0, 1)

define
xn = a0y0 ⊕ a1y1 ⊕ · · · ⊕ asys,

where n =
∑s
j=0 aj2

j . Sobol’ calls xn the DR–sequence and yn as the directed
sequence of xn. Let yn = 0.yn,1yn,2 . . . be the dyadic expansion of yn and define
the directed matrix by Y = (yn,j) for n = 0, 1, 2, . . . , j = 1, 2, . . . . The DR–
sequence xn, n = 0, 1, 2, . . . , is a (0, 1)–sequence in base q = 2 and thus it is

u.d.
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if and only if
det(Ym) ≡ 1 (mod 2) for m = 1, 2, . . . ,

where Ym = (yn,j), n = 0, 1, 2, . . . ,m− 1, j = 1, 2, . . . ,m, cf. (1969, p. 123, Th. 7′).
(III) S.Haber (1996) proved that

lim sup
N→∞

N2D
(2)
N

log2N
=

1

(6 log 2)2
.

(IV) H. Faure (1990) improved this to

lim sup
N→∞

(
N2D

(2)
N −

(
logN

6 log 2

)2

−
(
11

3
+

2 log 3

log 2

)
logN

36 log 2

)
=

=
7

81
+

11 log 3

108 log 2
+

(
log 3

6 log 2

)2

.

(V) Béjian and Faure (1977) gave the explicit formula for the extremal discrepancy

DN =

∞∑
j=1

∥N/2j∥,

(VI) Similarly, Faure (1990) proved the formula for the L2 discrepancy

4N2D
(2)
N =

 ∞∑
j=1

∥N/2j∥

2

+

∞∑
j=1

∥N/2j∥2

which holds for all N ≥ 1. Here ∥x∥ = min({x}, 1 − {x}) and discrepancies are
over N points x0, . . . , xN−1.
(VII) For more information cf. [KN, p. 129], [DT, p. 368] and H.Niederreiter (1992,
p. 25).
(VIII) J. Beck [p. 29](2014): van der Corput sequence x0, x1, x2, . . . has the following
three properties

Property A: The set {xi : 0 ≤ i < 2k} of the first 2k elements is the equidistant set
{j2−k : 0 ≤ j < 2k} possibly in different order.

Property B: Let I ⊂ (0, 1) be an arbitrary half-open subinterval of length 2−k for
some integer k ≥ 1, and let n be an arbitrary integer divisible by 2k. Then the
number of elements of the set {xi : 0 ≤ i < 2k} that fall into interval I is exactly
n2−k.

Property C: If 2k ≤ n < 2k+1 then the consecutive points of the set {xi : 0 ≤ i < n}
have at most two distances: 2−k and 2−k−1.
(IX) J. Beck [p. 30](2014) Central limit theorem for the van der Corput sequence:
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Put S(n) =
∑n−1
k=0

(
xk − 1

2

)
. Then for any integer m ≥ 2 and any real numbers

−∞ < A < B <∞ we have

1

2m
#

{
0 ≤ n < 2m : A ≤ S(n) +m/8√

m/4
≤ B

}

=
1√
2π

∫ B

A

e−u
2/2 du+O(m−1/10 logm).

J. Beck: Probabilistic Diophantine approximation (Randomness in lattice point counting), Sprin-
ger Monographs in Mathematics, Springer, Cham, 2014 (MR3308897; Zbl. 1304.11003).
R.Béjian – H. Faure: Discrépance de la suite de van der Corput , C. R. Acad. Sci. Paris Sér.
A–B 285 (1977), A313–A316 (MR0444600; ((56 #2950))).
H.Faure: Discrépance quadratique de la suite van der Corput et de sa symétrique, Acta Arith. 55
(1990), 333–350 (MR1069187 (91g:11085); Zbl. 0705.11039).
S.Haber: On a sequence of points of interest for numerical quadrature, J. Res. Nat. Bur.
Standards, Sec. B 70 (1966), 127–136 (MR0203938 (34 #3785); Zbl. 0158.16002).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
P.D.Proinov – V.S.Grozdanov: On the diaphony of the van der Corput – Halton sequence, J.
Number Theory 30 (1988), no. 1, 94–104 (MR0960236 (89k:11065); Zbl. 0654.10050).
I.M. Sobol’: Multidimensional integrals and the Monte–Carlo method , (Russian), Dokl. Akad.
Nauk SSSR (N.S.) 114 (1957), no. 4, 706–709 (MR0092205 (19,1079b); Zbl. 0091.14601).
I.M. Sobol’: Distribution of points in a cube and integration nets, (Russian), Uspechi Mat. Nauk
21 (1966), no. 5(131), 271–272 (MR0198678 (33 #6833)).
I.M. Sobol’: Distribution of points in a cube and approximate evaluation of integrals, (Russian),
Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784–802 (MR0219238 (36 #2321)).
I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).
J.G. van der Corput: Verteilungsfunktionen III – VIII , Proc. Akad. Amsterdam 39 (1936), 10–
19, 19–26, 149–153, 339–344, 489–494, 579–590 (JFM 61.0204.01, 61.0204.02, 62.0206.06, 62.0207.01,
62.0207.02, 62.0207.03; Zbl. 0013.16001, 0013.20306, 0014.01106, 0014.01107, 0014.20803).

2.11.2. van der Corput sequence in the base q. Let q ≥ 2 be an integer
and

n = ak(n)(n)q
k(n) + · · ·+ a1(n)q + a0(n), aj(n) ∈ {0, 1, . . . , q − 1}, ak(n) > 0,

be the q–adic digit expansion of integer n in the base q. Then the van der Cor-
put sequence γq(n), n = 0, 1, 2, . . . , in the base q defined by

γq(n) =
a0(n)

q
+
a1(n)

q2
+ · · ·+

ak(n)(n)

qk(n)+1

is
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u.d.

and if N > q then

D∗
N <

1

N

(
q log(qN)

log q

)
,

and

lim sup
N→∞

ND∗
N

logN
= lim sup

N→∞

NDN

logN
=


q2

4(q + 1) log q
, for even q,

q − 1

4 log q
, for odd q.

For its diaphony we have

DIN < C(q)

√
log((q − 1)N + 1)

N
,

where

C(q) = π

√
r2 − 1

3 log q

Notes: (I) This sequence was introduced by J.H.Halton (1960) for an arbitrary
q ≥ 2 .
(II) The estimation for the discrepancy D∗

N holds for γq(n) with n = 1, 2, . . . , N , cf.
L.–K.Hua and Y.Wang (1981, p. 72, Lem. 4.3), but not for n = 0, 1, . . . , N − 1.
(III) The asymptotic result for discrepancy was established by H.Faure (1981).
(IV) The estimation for the diaphony was proved by P.D.Proinov and V.S.Goraz-
dov (1988).
(V) The γq(n) is called the radical inverse function of the natural q–adic digit
expansion of n. It can be defined recursively (cf. I.M. Sobol’ (1961)): In γq(n) =
0.a0a1 . . . am00 . . . we find ak < q − 1 with minimal k and then γq(n + 1) =
0.0 . . . 0(ak + 1)ak+1ak+2 . . . am . . . , or in other words γq(n + 1) = γq(n) + q−k +
q−(k−1) − 1.
(VI) Another recursive expression is: γq(0) = 0, γq(q

k) = q−k−1 for k = 0, 1, 2, . . .
and γq(q

k + j) = γq(q
k) + γq(j) for j = 1, 2, . . . , qk+1 − qk − 1. For a related pro-

gramming scheme, cf. I.M. Sobol’ (1969, p. 176).
(VII) The distribution of (γq(n), . . . , γq(n+ s)) in [0, 1]s is an open problem. How-
ever, for s = 1 we have, see O.Blažeková (2007),

DN (γq(n), γq(n+ 1)) =
1

4
+O(DN (γq(n))),

D∗
N ((γq(n), γq(n+ 1))) = max

(
1

q

(
1− 1

q

)
,
1

4

(
1− 1

q

)2
)

+O(DN (γq(n))).
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Consequently, van der Corput sequence is not pseudo-random.

Related sequences: 3.18.1.1, 3.18.1.2.

(VIII) The local discrepancy function D(N, I) =
∣∣A(I;N ; γq(n)) − N |I|

∣∣ as
a function of an interval I ⊂ [0, 1] is bounded for N → ∞ if and only if |I|
has finite q-ary expansion. This was proved by:

- W.M. Schmidt (1974) and L. Shapiro (1978) for q = 2;

- P.Hellekalek (1980) for q ≥ 2;

- H. Faure (1983), who extended this result for generalized van der Corput
sequences and in (2005) for digital (0, 1)-sequences.
(IX) The graph of von Neumann-Kakutani transformation T : [0, 1] → [0, 1]
is given by

0 1

1
q

1
q2

1
q3

1−1
q

1− 1
q2

1− 1
q3

�
�
�
�
�
�
�

�
�

��

�
�

where the line segments are

Y = X − 1 +
1

qi
+

1

qi+1
, X ∈

[
1− 1

qi
, 1− 1

qi+1

]
for i = 0, 1, . . . . We have

(i) The sequence of iterates (also called generalized van der Corput sequence)

x, T (x), T (T (x)), T (T (T (x))), . . .

is u.d. for every x ∈ [0, 1). Moreover, it is a low discrepancy sequence, see P.
Grabner, P. Hellekalek and P. Liardet (2011) and G. Pagés (1992).

(ii) The iterates
0, T (0), T (T (0)), T (T (T (0))), . . .

form van der Corput sequence γq(n), n = 0, 1, 2, . . . , and thus every point
(γq(n), γq(n+ 1)), n = 0, 1, 2, . . . , lies on the graph of T .
(X) P. Grabner, P. Hellekalek and P. Liardet (2012): The van der Corput
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sequence γq(n) is not only u.d. but also well-distributed (for definition cf.
1.5).
(XI) The sth iteration of von Neumann-Kakutani transformation T has the
form (cf. V.Baláž, J. Fialová, M.Hoffer, M.R. Iacó and O. Strauch (2015)) :

T s(x) =



x+ s
q if x ∈

[
0, 1− s

q

]
,

x+ s−1
q − 1 + 1

qi
+ 1

qi+1 if x ∈
[
1− s−1

q − 1
qi
, 1− s−1

q − 1
qi+1

]
∪
[
1− s−2

q − 1
qi
, 1− s−2

q − 1
qi+1

]
. . . . . .

∪
[
1− s−l+1

q − 1
qi
, 1− s−l−1

q − 1
qi+1

]
. . . . . .

∪
[
1− 1

qi
, 1− 1

qi+1

]
, where

i = 1, 2, . . .

Related sequences: 2.11.1.

V.Baláž– J. Fialová – M.Hoffer – M.R. Iacó – O. Strauch: The asymptotic distribution func-
tion of the 4-dimensional shifted van der Corput sequence, Tatra Mt. Math. Publ. 64 (2015), 75–92
(MR3458785; Zbl 06545459).
O.Blažeková: Pseudo-randomnes of van der Corput’s sequences , Math. Slovaca 59 (2009), no. 3,
291–298 (MR2505811 (2010c:11095); Zbl. 1209.11075)
H.Faure: Discrépances de suites associées à un système de numération (en dimension un), Bull.
Soc. Math. France 109 (1981), 143–182 (MR0623787 (82i:10069); Zbl. 0488.10052).

H.Faure: Étude des restes pour les suites de van der Corput généralisées, J. Number Theory 16
(1983), no. 3, 376–394 (MR0707610 (84g:10082); Zbl. 0513.10047).
H.Faure: Discrepancy and diaphony of digital (0, 1)-sequences in prime base, Acta Arith. 117
(2005), no. 2, 125–148 (MR2139596 (2005m:11141); Zbl. 1080.11054).
P.Grabner – P.Hellekalek – P. Liardet: The dynamical point of view of low-discrepancy
sequences, Unif. Distrib. Theory 7 (2012), no. 1, 11–70 (MR2943160; Zbl. 1313.11093)
P.Hellekalek: On regularities of the distribution of special sequences, Monatsh. Math. 90 (1980),
no. 4, 291–295 (MR0596894 (82a:10063); Zbl. 0435.10032).
P.Hellekalek: Regularities in the distribution of special sequences, J. Number Theory 18 (1984),
no. 1, 41–55 (MR0734436 (85e:11052); Zbl. 0531.10055).
J.H.Halton: On the efficiency of certain quasi–random sequences of points in evaluating multi–
dimensional integrals, Numer. Math. 2 (1960), 84–90 (MR0121961 (22 #12688); Zbl. 0090.34505).
L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).
G.Pagés: Van der Corput sequences, Kakutani transforms and one-dimensional numerical inte-
gration, J. Comput. Appl. Math. 44 (1992), 21–39.(MR1199252 (94c:11066); Zbl. 0765.41033).
P.D.Proinov – V.S.Grozdanov: On the diaphony of the van der Corput – Halton sequence, J.
Number Theory 30 (1988), no. 1, 94–104 (MR0960236 (89k:11065); Zbl. 0654.10050).
W.M. Schmidt: Irregularities of distribution VIII , Trans. Amer. Math. Soc. 198 (1974), 1–
22.(MR0360504 (50 #12952); Zbl. 0278.10036)
L. Shapiro: Regularities of distribution, in: Studies in probability and ergodic theory, Math.
Suppl. Stud., 2, Academic Press, New York, London, 1978, pp. 135–154 (MR0517257 (80m:10039);
Zbl. 0446.10045).
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I.M. Sobol’: Evaluation of multiple integrals, (Russian), Dokl. Akad. Nauk SSSR 139 (1961),
no. 4, 821–823 (English translation: Sov. Math., Dokl. 2 (1961), 1022-1025 (MR0140186 (25
#3608); Zbl 0112.08001)).
I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).

2.11.2.1 Subsequences of van der Corput sequence.

(i) Let Fn denote the nth Fibonacci number. Then the sequence γq(Fn),
n = 0, 1, . . . , in base q is u.d. if and only if q = 5k for some k ∈ N.
(ii) The sequence γq([logFn]), n = 0, 1, . . . , is u.d. in any base q.

(iii) Let α be irrational or α = 1/d for some nonzero integer d. Then, the
sequence γq([nα]), n = 0, 1, . . . , is u.d. in any base q.

(iv) Let sq̃(n) denote the q̃-ary sum-of-digits function, cf. 2.9. Then, the
sequence γq(sq̃(n)), n = 0, 1, . . . , is u.d. in any base q.

(v) The subsequence γq(pn), n = 1, 2, . . . , with primes pn in base q ≥ 2 is
not u.d.

Notes:
(I) The items (i)–(iv) were proved by R. Hofer, P. Kritzer, G. Larcher, and F.
Pillichshammer (2009).
(II) The u.d. of γ5(Fn) was also proved P. Hellekalek and H. Niederreiter (2011)
using another method.

R.Hofer – P.Kritzer – G. Larcher – F. Pillichshammer: Distribution properties of generalized
van der Corput-Halton sequences and their subsequences, Int. J. Number Theory 5 (2009), 719–746
(MR2532267 (2010d:11082); Zbl. 1188.11038).
P.Hellekalek – H.Niederreiter: Constructions of uniformly distributed sequences using the
b-adic method , Unif. Distrib. Theory 6 (2011), no. 1 185–200.(MR2817766; Zbl. 1333.11071)

2.11.3. Generalized van der Corput sequences in the base q. Let
q ≥ 2, n be integers and n =

∑∞
j=0 aj(n)q

j , aj ∈ {0, 1, . . . , q − 1}, the q–
adic digit expansion of n. If π is a permutation on {0, 1, 2, . . . , q − 1} then a
generalized van der Corput sequence in the base q is defined by

xn =

∞∑
j=0

π(aj(n))q
−j−1

for n = 0, 1, 2, . . . . It is

u.d.
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The sequence can also be defined recursively

x0 =
π(0)

q − 1
, and xqn+r =

1

q
(xn + π(r))

for n = 0, 1, 2, . . . and 0 ≤ r ≤ q − 1.

Notes: H.Niederreiter (1992, pp. 25–26). Currently, the best choice of parameters
was found by H.Faure (1992), who used q = 36 and a specific permutation π of
0, 1, 2, . . . , 35 given below, and showed that the resulting generalized van der Corput
sequence satisfies

lim sup
N→∞

NDN

logN
=

23

35 log 6
= 0.366 . . . .

Faure’s permutation π is (here the kth number stands for π(k)):

(0, 25, 17, 7, 31, 11, 20, 3, 27, 13, 34, 22, 5, 15, 29, 9, 23, 1, 18,

32, 8, 28, 14, 4, 21, 33, 12, 26, 2, 19, 10, 30, 6, 16, 24, 35).

At present, this sequence yields the smallest value of the upper limit on the left–
hand side for any known sequence of elements of [0, 1). For the star discrepancy,
the current record is a generalized van der Corput sequence in the base q = 12
constructed by H. Faure (1981), which satisfies

lim sup
N→∞

ND∗
N

logN
=

1919

3454 log 12
= 0.223 . . . .

Related sequences: 2.11.1, 2.11.2.

H.Faure: Discrépances de suites associées à un système de numération (en dimension un), Bull.
Soc. Math. France 109 (1981), 143–182 (MR0623787 (82i:10069); Zbl. 0488.10052).
H.Faure: Good permutations for extreme discrepancy, J. Number Theory 42 (1992), no. 1, 47–56
(MR1176419 (93j:11049); Zbl. 0768.11026).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).

2.11.4. Generalized van der Corput sequences for Cantor expan-
sion. Let rn be an integral sequence with rn ≥ 2. Let n =

∑∞
j=0 ajRj , be the

corresponding expansion of n (cf. e.g. 2.9.10) where aj ∈ {0, 1, . . . , rj+1 − 1}
and Rj = r0r1 . . . rj . If πn is a permutation of the set {0, 1, . . . , rn − 1},
n = 1, 2, . . . , then

xn =
∞∑
j=0

πj+1(aj)

Rj+1
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is

u.d.

and if πn, n = 1, 2, . . . , is the identity permutation then

DN = O
(
logN

N

)
if and only if

n∑
j=0

rj = O(n).

Notes: Generalized van der Corput sequences were introduced by H. Faure (1981,
1983) and the above estimate was proved by E.Y.Atanassov (1989).

Related sequences: 2.11.1, 2.11.2, 2.11.3

E.Y.Atanassov: Note on the discrepancy of the van der Corput generalized sequences, C. R. Acad.
Bulgare Sci. 42 (1989), no. 3 41–44 (MR1000628 (90h:11069); Zbl. 0677.10038).
H.Faure: Discrépance de suites associées à un système de numération (en dimension s), Acta
Arith. 41 (1982), 337–351 (MR0677547 (84m:10050); Zbl. 0442.10035).

H.Faure: Étude des restes pour les suites de van der Corput généralisées, J. Number Theory 16
(1983), no. 3, 376–394 (MR0707610 (84g:10082); Zbl. 0513.10047).

2.11.5. Zaremba sequence. Let γ2(n), n = 0, 1, 2, . . . , be the van der Cor-
put sequence 2.11.1. Then the Zaremba sequence xn defined by

γ2(0), 1− γ2(1), γ2(2), 1− γ2(3), γ2(4), 1− γ2(5), . . .

is

u.d.

J.H.Halton – S.K. Zaremba: The extreme and L2 discrepancies of some plane set , Monatsh.
Math. 73 (1969), 316–328 (MR0252329 (40 #5550); Zbl. 0183.31401).

2.11.6. Let γq(n), n = 0, 1, 2, . . . , be the van der Corput sequence in the
base q ≥ 2 (cf. 2.11.2). Then the symmetrized sequence xn defined by

γq(0), 1− γq(0), γq(1), 1− γq(1), γq(2), 1− γq(2), . . .

has the L2 discrepancy with the least possible order, namely

D
(2)
N = O

(
logN

N2

)
,
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where the implied constant depends only on q.

Notes: The first construction of a sequence in [0, 1) for which D
(2)
N has this least

possible order of magnitude was given by P.D.Proinov (1983), cf. Notes in 2.8.2.
The symmetrized sequence is defined in P.D.Proinov and V.S.Grozdanov (1987).

If q = 2 then H. Faure (1990) proved the expression N2D
(2)
N =

∑∞
j=1 ∥N/2j∥2(1 −

2∥2jxN+1∥) for x0, . . . , xN−1, from which he deduced the inequalities

0.089 < lim sup
N→∞

N2D
(2)
N

logN
< 0.103.

H.Faure: Discrépance quadratique de la suite van der Corput et de sa symétrique, Acta Arith. 55
(1990), 333–350 (MR1069187 (91g:11085); Zbl. 0705.11039).
P.D.Proinov: Estimation of L2 discrepancy of a class of infinite sequences, C. R. Acad. Bulgare
Sci. 36 (1983), no. 1, 37–40 (MR0707760 (86a:11030); Zbl. 0514.10039).
P.D.Proinov – V.S.Grozdanov: Symmetrization of the van der Corput – Halton sequence, A.
R. Acad. Bulgare Sci. 40 (1987), no. 8, 5–8 (MR0915437 (89c:11121); Zbl. 0621.10035).

2.11.7. Q–adic van der Corput sequence for a special Q–adic digit ex-
pansion. Let a and d be positive integers and Qn = Qn+d = a(Qn+d−1 +
· · ·+Qn) be recurring sequence such that
• Q0 = 1 and Qk = a(Qk−1 + · · ·+Q0) + 1 for 0 < k < d,
• α is the dominating root of the characteristic equation xd− a(xd−1+ · · ·+

1) = 0.

If n =
∑

k=0K akQk is the Q–adic digit expansion of n then the Q–adic
van der Corput sequence defined by

f(n) = f

(
K∑
k=0

akQk

)
=

K∑
k=0

ak
αk+1

is

u.d. in [0, 1]

having the star discrepancy

D∗
N = O

(
logN

N

)
.

Notes: (I) G.Barat and P.J.Grabner (1996, Prop. 13) and for proof they used the
theory of Q–additive functions, cf. 2.10.
(II) They also give another example (1996, Prop. 14): Let a be a positive integer
and Qn be defined by the recurrence such that:
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• Qn+2 = (a+ 1)Qn+1 + aQn,
• Q0 = 1 and Q2 = a+ 2,
• α is the dominating root of the characteristic equation x2 − (a+ 1)x− a = 0.

Let n =
∑K
k=0 akQk be the Q–adic digit expansion of n. Define the function f by

• f
(∑K

k=0 akQk

)
=
∑K
k=0 f(ak)/α

k,

• f(x) = x/a for 0 ≤ x ≤ a, and
• f(a+ 1) = a/(α− 1).

Then the sequence

f(n), n = 0, 1, . . . ,

is

u.d. in [0, 1].

(III) Barat and Grabner noticed that for the recurrence relation Qn+3 = 3Qn+2 +
Qn+1 + Qn, with initial values Q0 = 1, Q1 = 4 and Q2 = 14, the sequence f(n)
defined by

f

(
K∑
k=0

akQk

)
=

K∑
k=0

ak
αk+1

is

not u.d. mod 1.

Related sequences: 2.11.2

G.Barat – P.J.Grabner: Distribution properties of G–additive functions, J. Number Theory 60
(1996), no. 1, 103–123 (MR1405729 (97k:11112); Zbl. 0862.11048).

2.11.7.1 β-adic van der Corput sequence. Let β be an arbitrary
positive number greater than 1. Then every x ∈ [0, 1) has an expansion
x =

∑∞
k=1 ak(x)/β

k (abbreviated x = 0.a1a2 . . . ), where the digits ak(x)
may take on the values 0, 1, . . . , [β] and can be computed by the following
algorithm

x =
[βx] + {βx}

β
=

[βx]

β
+
β{βx}
β2

=
[βx]

β
+

[β{βx}]
β2

+
β{β{βx}}

β3
, etc.

The sequence of all finite β-expansion (ordered by the magnitude, see below)

xn = 0.a1a2 . . . ak, n = 0, 1, 2, . . .

is

u.d.
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and if β is a P.V. number with irreducible β-polynomial (see Notes II) then
for the extremal discrepancy we have

DN = O
(
logN

N

)
.

Here xn are ordered in such a way that if n < n′ and xn = 0.a1a2 . . . ak,
xn′ = 0.a′1a

′
2 . . . a

′
k′ then either k < k′ or k = k′ and there exists some j such

that aj < a′j and ai = a′i for i > j.
Notes:
(I) The notion of β-expansion of real numbers was introduced by A.Rényi (1957)
and further developed by W.Parry (1960).
(II) If the β-expansion of 1 is finite 1 = 0.a1a2 . . . ak or eventually periodic 1 =
0.a1a2 . . . ak−iak−i+1 . . . akak−i+1 . . . ak . . . then β is called a Parry number. In
this case 1 is the dominant root of the so-called β-polynomial defined by xk −
a1x

k−1 − · · · − ak, or by (xk − a1x
k−1 − · · · − ak)− (xk−i − a1x

k−i−1 − · · · − ak−i)
with minimal k, respectively. A.Bertrand (1977) and K. Schmidt (1980) proved that
all P.V. numbers are Parry numbers (cf. W. Steiner (2006)).
(III) β-adic van der Corput sequence was introduced independently by G.Barat and
P.J.Grabner (1996) and S.Ninomiya (1998 [a],[b]). who proved that this sequence
is a low discrepancy sequence.
(IV) For the local discrepancy function D(N, I) =

∣∣A(I;N ;xn) − N |I|
∣∣ W.Steiner

(2006) proved:

(i) If β is a Parry number and D(N, I) is bounded as N → ∞, then the length |I|
of interval I belongs to Q(β), the field generated by β over Q.

(ii) If β is a P.V. number with an irreducible β-polynomial, then D(N, [0, y)) is
bounded as N → ∞ if and only if the β-expansion of y is finite or eventually peri-
odic with the same minimal period as that of the expansion of 1.
(V) W. Steiner (2009) defined abstract van der Corput sequences using abstract nu-
meration systems and he explicitly computed their discrepancy.

G.Barat – P.J.Grabner: Distribution properties of G–additive functions, J. Number Theory 60
(1996), no. 1, 103–123 (MR1405729 (97k:11112); Zbl. 0862.11048).
A.Bertrand: Développements en base de Pisot et répartition modulo 1 , C. R. Acad. Sci., Paris,
Sér. A 285 (1977), 419–421 (MR0444600 (56 #2950); Zbl. 0362.10040).
[a] S.Ninomiya: Constructing a new class of low-discrepancy sequences by using the β-adic trans-
formation, Math. Comput. Simulation 47 (1998), no. 2–5, 403–418 (MR1641375 (99i:65009)).
[b] S.Ninomiya: On the discrepancy of the β-adic van der Corput sequence, J. Math. Sci. Univ.
Tokyo 5 (1998), no. 2, 345–366 (MR1633866 (99h:11087); Zbl. 0971.11043).
W.Parry: On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960),
401–416 (MR0142719 (26 #288); Zbl. 0099.28103)).
A.Rényi: Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci.
Hungar. 8 (1957), 477–493 (MR0097374 (20 #3843); Zbl. 0079.08901).
K. Schmidt: On periodic expansion of Pisot numbers and Salem numbers, Bull. London Math.
Soc. 12 (1980), no. 4, 269–278 (MR0576976 (82c:12003); Zbl. 0494.10040).
W.Steiner: Regularities of the distribution of β-adic van der Corput sequences, Monatsh. Math.
149 (2006), 67–81 (MR2260660 (2007g:11085); Zbl. 1111.11039).
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W.Steiner: Regularities of the distribution of abstract van der Corputt sequences, Unif. Distrib.
Theory 4 (2009), no. 2, 81–100 (MR2591843 (2011c:11123); Zbl. 1249.11076).

2.11.7.2 Kakutani sequence of partition: Let xn,1 < xn,2 < · · · <
xn,k(n) be a partition of [0, 1] in the n-th step. Let the partition in the
(n + 1)st step is obtained by subdividing of every interval [xn,i, xn,i+1] of
maximal length into two parts in proportion α/(1 − α). Then the sequence
of blocks

Xn = (xn,1, xn,2, . . . , xn,k(n)), n = 1, 2, . . .

is

u.d.

for any α ∈ (0, 1). (For the definition of block sequences see Part 1.8.23.

S.Kakutani: A problem of equidistribution on the unit interval [0, 1], in: Measure Theory Ober-
wolfach 1975 (Proceedings of the Conference Held at Oberwolfach 15–20 June, 1975, (A.Doldan
and B.Eckmann eds.), Lecture Notes in Mathematics, 541, Springer Verlag, Berlin, Heidelberg,
New York, 1976, pp. 369–375 (MR0457678 (56 #15882); Zbl. 0363.60023).

2.11.7.3 LS-sequences of partitions: Kakutani sequence of partition
can be generalized in a natural way in several ways:

ρ-refinements: Let ρ denote a non-trivial finite partition of [0, 1). Then
the ρ-refinement of a partition π, denoted by ρπ, is given by subdividing all
intervals of maximal length homotetically to ρ.

ρLS-refinements is the ρ-refinement of the trivial partition π = {[0, 1)}
where ρ consists of L + S intervals such that the first L > 0 have length α
and the remaining ones S > 0 have length α2, where L, S are positive integers
and 0 < α < 1. The sequence of successive of ρLS-refinements of the trivial
partition π is called LS sequence of partitions.

Notes:
(I) Necessarily, Lα+ Sα2 = 1 holds. For every n the partition ρnπ consists only of
intervals having either length αn or αn+1.
(II) This sequence of partitions has been introduced by I. Carbone (2012).
(III) If S ≥ 1 then by I. Carbone (2012) a LS sequence is a low-discrepancy sequences
if and only if L > S − 1.

(IV) If L = S = 1 then α =
√
5−1
2 and we obtain the so-called Kakutani-Fibonacci

sequence and the discrepancy is of the order 1
k(n) .
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Ch.Aistleitner – M.Hofer – V. Ziegler: On the uniform distribution modulo 1 of multidimen-
sional LS-sequence, Ann. Mat. Pura Appl. (4) 193 (2014), no. 5, 1329–1344 (MR3262635; Zbl
1323.11049).
M.Drmota – M. Infusino: On the discrepancy of some generalized Kakutani’s sequences of par-
titions, Unif. Distrib. Theory 7 (2012), no. 1, 75–104 (MR2943162; Zbl 1313.11084).
I. Carbone: Discrepancy of LS-sequences of partitions and points, Ann. Mat. Pura Appl. (4) 191
(2012), no. 4, 819–844 (MR2993975; Zbl 1277.11080).

2.12 Sequences involving logarithmic function

See also: 2.13.5, 2.13.7, 2.16.8, 2.19.7, 2.19.8, 2.19.9, 2.24.4, 2.24.5, 2.24.6

2.12.1. The sequence

xn = log n mod 1

has the set of d.f.’s

G(xn) =

{
gu(x) =

emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1
; u ∈ [0, 1]

}
,

where {logNk} → u implies FNk(x) → gu(x).

The lower and upper d.f. of log n mod 1 are

g(x) =
ex − 1

e− 1
, g(x) =

1− e−x

1− e−1
,

and g ∈ G(xn) but g /∈ G(xn).

g(x)

g(x)

0 1

Figure 1: Distribution functions of log n mod 1



2.12 Sequences involving logarithmic function 2 – 133

If the elements of the matrix A = (aN,n)N,n≥1 are

aN,n =


1/n∑N
i=1 1/i

, if n ≤ N,

0, if n > N,

then the sequence log n mod 1 is

A–u.d. (i.e. logarithmically u.d.)

Notes: (I) The set of d.f.’s was found by A.Wintner (1935, relation (7)).
(II) The lower and upper d.f.’s can be found using 2.6.18. Similarly, for logb n mod 1,
b > 1, we have (cf. [KN, p. 59])

g(x) =
bx − 1

b− 1
, g(x) =

1− b−x

1− b−1
.

(III) The sequence c log n with any real constant c is also not u.d. (cf. [KN, p. 24,
Exer. 2.13]). A proof can be found in D.P.Parent (1984, pp. 281–282, Solution 5.18)
which gives

lim
N→∞

∣∣∣∣∣ 1N
N∑
n=1

eic logn

∣∣∣∣∣ = 1

|1 + ic|
.

(IV) In G.Pólya and G. Szegő (1964, Part 2, Ex. 179) it is proved that the derivative
(density) g′(x) of any g(x) ∈ G(c log n mod 1), c > 0, has the form

g′(x) =


log q

q − 1
qx−α+1, if 0 ≤ x < α,

log q

q − 1
qx−α, if α < x ≤ 1,

where q = e1/c and α ∈ (0, 1). If α = 0 or α = 1 then

g′(x) =
log q

q − 1
qx

and c log n mod 1 is (λ, λ′)–distributed with λ = log q
q−1 and λ′ = q log q

q−1 , cf. J. Chauvi-

neau (1967/68).

The connection between g(x) and α is: if limk→∞{c logNk} = α then we have
limk→∞ FNk

(x) = g(x).
(IV’) O. Strauch and O.Blažeková (2006): The result (IV) can be rewriten in the
form. Given any base b > 1, the sequence logb n mod 1, n = 1, 2, . . . , has the
following set of d.f.’s

G(xn) =

{
gu(x) =

bmin(x,u) − 1

bu
+

1

bu
bx − 1

b− 1
;u ∈ [0, 1]

}
.
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The lower and upper d.f. of logb n mod 1 are given by

g(x) =
bx − 1

b− 1
, g(x) =

1− b−x

1− b−1
,

where g ∈ G(xn) but g /∈ G(xn).

Moreover {logbNk} → u implies FNk
(x) → gu(x). Note that in G. Pólya and G.

Szegő (1964) this implication does not appear.
(V) The u.d. of log n mod 1 under the above mentioned A (the so–called u.d. of the
logarithmically weighted means) was proved by M.Tsuji (1952).
(VI) B.D.Kotlyar (1981) also proved that logb n is not u.d.

(VII) R.Giuliano Antonini (1989, 1991) proved the u.d. of log10 n mod 1 with

respect to positive weights pn, PN =
∑N
n=1 pn → ∞, for which there exits a function

H on R+ such that:
• H(n) = ePn , and either
• H(y) = yαL(y) for some α > 0 and for a slowly oscillating function L(y) (i.e.

limy→∞ L(xy)/L(y) = 1 for every x > 0), or, if α = 0
• H(y) = L(y), where L(y) is a slowly oscillating function such that

lim
y→∞

L(x1y)− L(x2y)

L(x3y)− L(x4y)

log(x1/x2)

log(x3/x4)
= 1

for each positive reals x1, x2, x3, x4 such that x1 ̸= x2 and x3 ̸= x4.

The pn–weighted u.d. of log10 n mod 1 can be interpreted in such a way that the
sequence n = 1, 2, . . . obeys the pn–weighted Benford’s law, i.e. if A(a) is the set

of all n ∈ N having the first decimal digit equal to a, then 1
PN

∑N
n=1 pncA(a)(n) →

log10
(
1 + 1

a

)
. Here cA(a)(x) is the characteristic function of A(a) and pn–weighted

u.d. sequences are def. in 1.8.4.
(VIII) J. van de Lune (1969) considered the distribution of logn

P (n) , where P (n) is the

largest prime factor of n
(
see [DT, p. 153, Notes]

)
.

(IX) If {logNk} → u, then the Weyl limit relation (see p. 1 – 9 ) implies

1

Nk

Nk∑
n=1

e2πij logn →
∫ 1

0

e2πijx dgu(x),

for j = 0,±1,±2, . . . . Since the all d.f.’s of xn = log n mod 1 are continuous,
then 1.8.8(IV) implies that the asymptotic density of any sequence N1 < N2 < . . .
of positive integers for which {logNk} → u is zero. For example, we can take
Nk = [eKk+uk ], where Kk ∈ N, Kk → ∞ and uk → u.
(X) A.I. Pavlov (1981) proved for the lower and appear asymptotic density of those
n which r initial digits in base b are K = k1k2 · · · kr, that

lim inf
N→∞

#{n ≤ N ;n has the first r digits = K}
N

=
1

K(b− 1)
,

lim sup
N→∞

#{n ≤ N ;n has the first r digits = K}
N

=
b

(K + 1)(b− 1)
.
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V. Baláž, K. Nagasaka and O. Strauch (2010) using properties of distribution func-
tions of the sequence logb n mod 1 proved the following: If x1 = logb(k1.k2k3 · · · kr)
and x2 = logb(k1.k2k3 · · · (kr + 1)) then for a sequence Ni such that

lim
i→∞

logbNi mod 1 = u

we have

lim
i→∞

#{n ≤ Ni;n has the first r digits = K}
Ni

= gu(x2)− gu(x1),

and consequently

lim inf
N→∞

#{n ≤ N ;n has the first r digits = K}
N

= min
u∈[0,1]

(gu(x2)− gu(x1)),

lim sup
N→∞

#{n ≤ N ;n has the first r digits = K}
N

= max
u∈[0,1]

(gu(x2)− gu(x1)),

where the minimum is attained at u = x1 and the maximum at u = x2, in which
case we get Pavlov results.

Related sequences: 2.3.6, 2.19.7, 2.12.31, 2.6.18, 2.2.16

V. Baláž – K. Nagasaka – O. Strauch, Benford’s law and distribution functions of sequences in
(0, 1), Math. Notes, 88 (2010), no. 3-4, 449–463, (translated from Mat. Zametki 88 (2010), no. 4,
485–501) (MR2882211; Zbl. 1242.11055).
J.Chauvineau: Sur la répartition dans R et dans Qp, Acta Arit., 14 (1967/68), 225–313
(MR0245529 (39 #6835); Zbl. 0176.32902).
R.Giuliano Antonini: On the notion of uniform distribution mod 1, (Sezione di Analisi Matem-
atica e Probabilita’, 449), Dipart. di Matematica, Univ. di Pisa, Pisa, Italy, 1989, 9 pp.
R.Giuliano Antonini: On the notion of uniform distribution mod 1, Fibonacci Quart. 29 (1991),
no. 3, 230–234 (MR1114885 (92f:11101); Zbl. 0731.11044).
B.D.Kotlyar: A method for calculating the number of lattice points, (Russian), Ukrain. Math.
Zh. 33 no. 5, (1981), 678–681, 718 (MR0633747 (83b:10044); Zbl 0479.10024).
D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).
A.I. Pavlov: On the distribution of fractional parts and F.Benford’s law , Izv. Aka. Nauk SSSR
Ser. Mat. (Russian), 45 (1981), no. 4, 760–774 (MR0631437 (83m:10093); Zbl. 0481.10049).
G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).
O. Strauch – O.Blažeková: Distribution of the sequence pn/n mod 1, Unif. Distrib. Theory 1
(2006), no. 1, 45–63 (MR2314266 (2008e:11092); Zbl. 1153.11038).
M.Tsuji: On the uniform distribution of numbers mod 1, J. Math. Soc. Japan 4 (1952), 313–322
(MR0059322 (15,511b); Zbl. 0048.03302).
J. van de Lune: On the distribution of a specific number–theoretical sequence, Math. Centrum,
Amsterdam, Afd. zuivere Wisk. ZW, 1969–004, 1969, 8 pp. (Zbl. 0245.10033).
A.Wintner: On the cyclical distribution of the logarithms of the prime numbers, Quart. J. Math.
Oxford (1) 6 (1935), 65–68 (Zbl. 0011.14904).
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2.12.1.1 Sequences which satisfy Benford’s law

This is a continuation of 2.12.1.

• P. Diaconis (1977): A sequence xn, n = 1, 2, . . . , of positive real numbers
satisfies Benford’s law (abbreviated B.L.) 5 in base b, if for every s =
1, 2, . . . , and every s-digits integer D = d1d2 · · · ds we have the density

lim
N→∞

#{n ≤ N ; leading block of s digits (beginning with ̸= 0) of xn = D}
N

= logb

(
D + 1

bs−1

)
− logb

(
D

bs−1

)
.

Immediately

Theorem 2.12.0.1 . A sequence xn, n = 1, 2, . . . , satisfies B.L. in base b
if and only if the sequence logb xn mod 1 is u.d. in [0, 1).

Notes:
(I) Historical comments. B.L. or the first digit problem appeared in the following
original definitions:

Newcomb (1881): The law of probability of the occurrence of numbers is such that
all mantissæ of their logarithms are equally probable.

Benford (1938): The frequency of first digits follows closely the logarithmic relation
Fa = log10

(
a+1
a

)
, where Fa is the frequency of the digit a ∈ {1, 2, . . . , 9} in the first

place of used numbers.

Thus an infinite sequence xn ≥ 1 of real numbers satisfies Benford’s law, if the fre-
quency (the asymptotic density) of occurrences of a given first digit a ∈ {1, 2, . . . , 9}
(0 as a possible first digit is not admitted), when xn is expressed in the decimal form,
is given by log10

(
1 + 1

a

)
for every a = 1, 2, . . . , 9. Since a is the first digit of xn if

and only if log10 xn mod 1 ∈ [log10 a, log10(a + 1)), Benford’s law for sequence xn
follows from the u.d. of log10 xn mod 1. F.Benford (1938) compared the empirical
frequency of occurrences of a with log10((a+1)/a) in twenty different domains such
as the areas of 335 rivers; the size of 3259 U.S. populations; the street address of
first 342 persons listed in American Men of Sciences, etc. which led him to the con-
clusion that ”the logarithmic law applies particularly to those outlaw numbers that
are without known relationships ...” Actually F.Benford rediscovered S.Newcomb’s
observation from (1881) and Benford’s law is a special case of Zipf’s law.
(II) Examples. The sequence of Fibonacci numbers Fn, factorials n!, and nn, and

nn
2

satisfy B.L., but the sequence n, and the sequence of all primes pn do not (con-
sult (IV) and (V) below),
(III) General scheme of solution of the First Digit Problem: Let g(x) be a d.f. of

5precisely generalized or strong B.L.
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logb xn mod 1 and limi→∞ FNi
(x) = g(x). Then for D = d1d2 · · · ds

lim
Ni→∞

#{n ≤ Ni; first s digits (starting a non-zero digit) of xn = D}
Ni

= g

(
logb

(
D + 1

bs−1

))
− g

(
logb

(
D

bs−1

))
.

(IV) Natural numbers. By (III), if

f(n) = logb n
r, n = 1, 2, . . . , then f−1(x) = bx/r and

limk→∞
f−1(k + w)

f−1(k)
=
b(k+w)/r

bk/r
= bw/r = ψ(w), then

G(logb n
r mod 1) =

{
gw(x) =

1

bw/r
· b
x/r − 1

b1/r − 1
+

min(bx/r, bw/r)− 1

bw/r
;w ∈ [0, 1]

}
.

If limi→∞{f(Ni)} = limi→∞{logb(Nr
i )} = w, then we have

lim
i→∞

#{n ≤ Ni; first s digits of nr are d1d2 . . . ds}
Ni

= gw
(
logb d1.d2 . . . (ds + 1)

)
− gw

(
logb d1.d2 . . . ds

)
.

(V) Primes. Applying (III) to the sequence

f(pn) = logb p
r
n, n = 1, 2, . . . , where pn is the nth prime and r > 0, we have

G(logb p
r
n mod 1) =

{
gw(x) =

1

bw/r
· b
x/r − 1

b1/r − 1
+

min(bx/r, bw/r)− 1

bw/r
;w ∈ [0, 1]

}
.

If {f(pNi
)} = {logb(prNi

)} → w then

lim
i→∞

#{n ≤ Ni; first s digits of prn = d1d2 . . . ds}
Ni

= gw
(
logb d1.d2 . . . (ds + 1)

)
− gw

(
logb d1.d2 . . . ds

)
.

(VI) Summary. From (IV) and (V) there follows that both sequences

logb n
r mod 1, n = 1, 2, . . . ,

logb p
r
n mod 1, n = 1, 2, . . . ,

have the same set of distribution functions, namely{
gw(x) =

1

bw/r
· b
x/r − 1

b1/r − 1
+

min(bx/r, bw/r)− 1

bw/r
;w ∈ [0, 1]

}
.

Since limr→∞
bx/r − 1

b1/r − 1
= x, we get limr→∞ gw(x) = x for every w ∈ [0, 1].

Thus, with r → ∞ the sequences nr and prn tend to B.L.

This is a qualitative proof of results given in S. Eliahou, B.Massé and D. Schneider (2013).
(VII) Directly from the u.d. theory there follows
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(i) If a sequence xn > 0, n = 1, 2, . . . , satisfies B.L. in a base b, then

lim supn→∞ n
∣∣∣log xn+1

xn

∣∣∣ = ∞.

(ii) Let xn > 0, n = 1, 2, . . . . If the ratio sequence xn+k

xn
, n = 1, 2, . . . , satisfies B.L.

in a base b for every k = 1, 2, . . . , then the original sequence xn, n = 1, 2, . . . ,
also satisfies B.L. in this base b.

(iii) The positive sequences xn and 1
xn

, n = 1, 2, . . . , satisfy B.L. in a base b
simultaneously.

(iv) The positive sequences xn and nxn, n = 1, 2, . . . , satisfy B.L. in a base b
simultaneously.

(v) If a sequence 0 < x1 ≤ x2 ≤ . . . satisfies B.L. in an integer base b > 1 then
limn→∞

log xn

logn = ∞.

(vi) Given a sequence xn > 0, n = 1, 2, . . . such that

limn→∞ xn = ∞ monotonically and limn→∞ log xn+1

xn
= 0 monotonically,

then xn satisfies B.L. in every base b if and only if limn→∞ n log xn+1

xn
= ∞.

(vii) If a positive sequence xn satisfies limn→∞ logb
xn+1

xn
= θ with θ irrational, then

xn satisfies B.L. in base b.

(viii) If a sequence xn satisfies B.L., then the asymptotic density of n’s for which
xn has in the rth place the given digit a is

b−1∑
k1=1

b−1∑
k2=0

· · ·
b−1∑

kr−1=0

(
logb(k1.k2k3 . . . kr−1(a+ 1))− logb(k1.k2k3 . . . kr−1a)

)
.

(VIII) V.Baláž, K.Nagasaka and O. Strauch (2010): Assume that every d.f. g(x) ∈
G(xn) is continuous at x = 0. Then the sequence xn satisfies B.L. in the base b if
and only if for every g(x) ∈ G(xn) we have

x =

∞∑
i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))
for x ∈ [0, 1].

(i) Examples of solutions to (VIII):

g(x) =

{
x if x ∈

[
0, 1b

]
,

1 + log x
log b + (1− x) 1

b−1 if x ∈
[
1
b , 1
]
.

g∗(x) =


0 if x ∈

[
0, 1

b2

]
,

2 + log x
log b if x ∈

[
1
b2 ,

1
b

]
,

1 if x ∈
[
1
b , 1
]
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g∗∗(x) =


0 if x ∈

[
0, 1

b3

]
,

3 + log x
log b if x ∈

[
1
b3 ,

1
b2

]
,

1 if x ∈
[

1
b2 , 1

]
Related sequences: 2.19.7.2, 2.19.7.1, 2.12.26.
V. Baláž – K. Nagasaka – O. Strauch, Benford’s law and distribution functions of sequences in
(0, 1), Math. Notes, 88 (2010), no. 3-4, 449–463, (translated from Mat. Zametki 88 (2010), no. 4,
485–501) (MR2882211; Zbl. 1242.11055).
F.Benford: The law of anomalous numbers, Proc. Amer. Phil. Soc. 78 (1938), 551–572 (Zbl.
0018.26502; JFM 64.0555.03).
P.Diaconis: The distribution of leading digits and uniform distribution mod 1, Anals of Prob. 5
(1977), 72–81 (MR0422186 (54 #10178); Zbl. 0364.10025).
S.Newcomb: Note on the frequency of use of the different digits in natural numbers, Amer. J.
Math. 4 (1881), 39–41 (MR1505286 ; JFM 13.0161.01).
S. Eliahou – B.Massé – D. Schneider: On the mantissa distribution of powers of natural and
prime numbers, Acta Math. Hungar. 139 (2013), no. 1-2, 49–63 (MR3028653; Zbl 1299.60004).

2.12.2. The sequence
xn = log(k) n mod 1,

where log(k) n = log log . . . log n with k > 1 has the set of d.f.’s given by

G(xn) =
{
cα(x) ; α ∈ [0, 1]

}
∪
{
hα(x) ; α ∈ [0, 1]

}
,

where cα(x) denotes the one–jump d.f. and hα(x) the constant one.
Notes:

(I) O. Strauch (1995) settled the general case. B.D.Kotlyar (1981) proved that

log2 log2 n mod 1 is not u.d., and G.Myerson proved that log(k) n mod 1 is maldis-
tributed.

(II) For the sake of simplicity, take k = 2, i.e. xn = {log log n}, and let N1 < N2 <
. . . be a sequence of indices. If {log logNk} → v > 0, then

FNk
(x) =

A([0, x);Nk;xn)

Nk
→ cv(x)

and the Weyl limit relation (see p. 1 – 9 ) implies

1

Nk

Nk∑
n=1

e2πij log logn →
∫ 1

0

e2πijx dcv(x) = e2πijv,

for j = 0,±1,±2, . . . . Since for every v ∈ [0, 1] the set G(log log n mod 1) contains
a d.f. which is discontinuous at v (e.g. cv(x)), then by 1.8.8(IV) there exists a se-
quence Nk such that {log logNk} → v and which positive upper asymptotic density.

E.g. the sequence Nk = [ee
Jk+vk ] with Jk ∈ N, Jk → ∞ and vk → v can be used.

If {log logNk} → 0 we take a subsequence N ′
k of Nk for which

ee
J′
k

ee
J′
k
+v′

k
→ t ∈ [0, 1],
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where J ′
k = [log logN ′

k], and v
′
k = {log logN ′

k}. In this case FN ′
k
→ h1−t(x).

B.D.Kotlyar: A method for calculating the number of lattice points, (Russian), Ukrain. Math.
Zh. 33 no. 5, (1981), 678–681, 718 (MR0633747 (83b:10044); Zbl 0479.10024).
G.Myerson: A sampler of recent developments in the distribution of sequences, in: Number theory
with an emphasis on the Markoff spectrum (Provo, UT 1991), (A.D.Pollington and W.Moran eds.),
Lecture Notes in Pure and App.Math., Vol. 147, Marcel Dekker, New York, Basel, Hong Kong, 1993,
pp. 163–190 (MR1219333 (94a:11112); Zbl. 0789.11043).
O. Strauch: Uniformly maldistributed sequence in a strict sense, Monatsh. Math. 120 (1995),
153–164 (MR1348367 (96g:11095); Zbl. 0835.11029).

2.12.3. If x0 = 1 and

xn = log2(2n− 1) mod 1,

for n = 1, 2, . . . , then

lim inf
N→∞

Nd∗N =
1

log 4
, and lim sup

N→∞
NdN =

1

log 4
,

where d∗N and dispersion dN are defined in 1.10.11.

Notes: The number 1
log 4 is the upper bound for lim inf and also the lower bound

for lim sup for all one–to–one sequences xn, n = 0, 1, 2, . . . , for which x0 = 1 and
x1 = 0. The upper bound has been found by many authors: N.G. de Bruijn and
P.Erdős (1949), A.Ostrowski (1957, [a]1957), A. Schönhage (1957) and G.H.Toul-
min (1957). For details cf. 1.10.11(II).
Similarly, if x1 = 1, and xn = log2(2n − 3) mod 1 for n = 2, 3, . . . , then we know
the exact value

dN =
logN − log(N − 1)

log 4

if N ≥ 2 (I. Ruzsa, see H.Niederreiter (1984, p. 1172)).

N.G. de Bruijn – P. Erdős: Sequences of points on a circle, Nederl. Akad. Wetensch., Proc. 52
(1949), 14–17 (MR0033331 (11,423i); Zbl. 0031.34803). (=Indag. Math. 11 (1949), 46–49).
H.Niederreiter: On a measure of denseness for sequences, in: Topics in classical number theory,
Vol. I, II (Budapest 1981), (G.Halász ed.), Colloq. Math. Soc. János Bolyai, Vol. 34, North–
Holland Publishing Co., Amsterdam, New York, 1984, pp. 1163–1208 (MR0781180 (86h:11058);
Zbl. 0547.10045).
A.Ostrowski: Zum Schubfächerprinzip in einem linearen Intervall , Jber. Deutsch. Math. Verein.
60 (1957), Abt. 1, 33–39 (MR0089232 (19,638a); Zbl. 0077.26703).
[a] A.Ostrowski: Eine Verschärfung des Schubfächerprinzips in einem linearen Intervall , Arch.
Math. 8 (1957), 1–10 (MR0089233 (19,638b); Zbl. 0079.07302).A. Schönhage: Zum Schubfächer-
prinzip im linearen Intervall , Arch. Math. 8 (1957), 327–329 (MR0093511 (20#35); Zbl. 0079.07303).
G.H.Toulmin: Subdivision of an interval by a sequence of points, Arch. Math 8 (1957), 158–161
(MR0093513 (20 #37); Zbl. 0086.03801).
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2.12.4. The sequence

xn =

1 + (−1)

[√[√
log2 n

]]{√[√
log2 n

]}
has the set of d.f.’s

G(xn) = {cα(x) ; α ∈ [0, 1]}.
O. Strauch: Uniformly maldistributed sequence in a strict sense, Monatsh. Math. 120 (1995),
153–164 (MR1348367 (96g:11095); Zbl. 0835.11029).

2.12.5. The sequence
n log(k) n mod 1

is

u.d. for every k = 1, 2, . . . .

Notes: Cf. [KN, p. 24, Exer. 2.25]. By [KN, p. 132, Exer. 3.21] the sequence
n log log en mod 1 has discrepancy DN = O(N−1/5(logN)1/5(log logN)2/5).

2.12.6. The sequence
n2 log log n mod 1

is

u.d.

Notes: Cf. [KN, p. 31, Exer. 3.13].

2.12.7. The sequence

α logτ n mod 1, α > 0, τ > 1

is

u.d.

with
DN = O(log1−τ N).

Notes: Cf. [KN, p. 130, Exer. 3.3].

H.Niederreiter: Almost–arithmetic progressions and uniform distribution, Trans. Amer. Math.
Soc. 161 (1971), 283–292 (MR0284406 (44 #1633); Zbl. 0219.10040).
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2.12.8. The sequence

α logτ n mod 1, α > 0, 0 < τ < 1

is

dense but not u.d.

Notes: G.Pólya and G. Szegő (1964, Part 2, Ex. 183).

Related sequences: 2.12.7

G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).

2.12.9. Let α and β be positive reals and τ > 1. Let the double sequence
logτ (αm + βn), m = 1, 2, . . . , n = 1, 2, . . . , be rearranged to an ordinary
sequence xn, n = 1, 2, . . . , in such a way, that for every N , the initial seg-
ment xn, n = 1, 2, . . . , N2, contains logτ (αm + βn) for m,n = 1, 2, . . . , N .
Then the sequence

xn mod 1

is

u.d.

Notes: [KN, p. 25, Exer. 2.30]. The result follows directly from 2.6.16.

Related sequences: 2.12.7

2.12.10. The sequence

nσg(log n) mod 1, σ > 0,

where g(x) is a non–constant linear combination of arbitrary powers of x, is

u.d.

Notes: (cf. [KN, p. 31, Exer. 3.15])

2.12.11. The sequence
n2 log n mod 1

is

u.d.

Related sequences: The sequence of type 2.12.10 (cf. [KN, p. 31, Exer. 3.12]).
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2.12.12. The sequence

αnσ logτ n mod 1, α ̸= 0, σ > 0, σ /∈ N, τ ∈ R

is

u.d.

Notes: (I) This is a special case of the sequence 2.6.1 (cf. [KN, p. 31, Exer. 3.10]).
The sequence is of the type 2.12.10.
(II) Y.Ohkubo (1986) proved that the sequence αnσ logτ n mod 1 has logarithmic
discrepancy (cf. 1.10.7) DN = O(1/ logN) if α > 0, 0 ≤ σ < 1 and τ are such that
limn→∞ nσ logτ n = ∞.

Y.Ohkubo: Discrepancy with respect to weighted means of some sequences, Proc. Japan Acad.
62 A (1986), no. 5, 201–204 (MR0854219 (87j:11075); Zbl. 0592.10044).

2.12.13. The sequence

αnk logτ n mod 1, k ∈ N, α ̸= 0, τ < 0 or τ > 1

is

u.d.

Related sequences: This a special case of the sequence 2.6.1 (cf. [KN, p. 31,
Exer. 3.11]). The sequence is of the type 2.12.10.

2.12.14. The sequence

αn logτ n mod 1, α ̸= 0, 0 < τ ≤ 1

is

u.d.

Related sequences: The sequence is of the type 2.12.10. What concerns the
discrepancy, the sequence n log n mod 1 has discrepancy DN = O(N−1/5(logN)2/5),
cf. [KN, p. 132, Exer. 3.20].

2.12.15. The sequence

αn2 logτ n mod 1, α ̸= 0, 0 < τ ≤ 1

is

u.d.

Related sequences: The sequence is of the type 2.12.10.
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2.12.16. The sequence

xn = log(n log n) mod 1

is

everywhere dense in [0, 1], but it is not u.d.

More precisely, the sequence xn has the same set of d.f.’s as the sequence
log n mod 1 from 2.12.1, i.e.

G({log(n log n) mod 1}) =

=

{
gu(x) =

emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1
; u ∈ [0, 1]

}
.

Notes: (I) The non–uniformity is a consequence of Niederreiter’s theorem 2.2.8 and
by 2.6.18 the lower and upper d.f. of xn are

g(x) =
ex − 1

e− 1
, g(x) =

1− e−x

1− e−1
.

That the set of d.f.’s of xn coincides with that of log n mod 1 (cf. 2.12.1) was proved
by O. Strauch and O.Blažeková (2003) using Theorem 2.6.18.1 from 2.6.18 Note (II).
(II) Strauch and Blažeková (2003) present two methods for finding G({log(n log n)}).
The first one leads to the results mentioned in the previous Note (I). The second one
applies Th. 2.3.21 to d.f.’s of (log n, log log n) mod 1, cf. 3.13.5. This method also
gives the following functional equation

gw(x) =

{
gu(1 + x− v)− gu(1− v), if 0 ≤ x ≤ v,

gu(x− v) + 1− gu(1− v), if v < x ≤ 1,

where w = (u+ v) mod 1.
(III) Theorem 2.6.18.1 in 2.6.18 Note (II) also gives

G(log(n log(i) n) mod 1) = G(log n mod 1)

for i = 1, 2, . . . , where log(i) n is the ith iterated logarithm log log . . . log n.
(IV) Strauch and Blažeková (2003) also showed that xn has the same distribution
as pn/n mod 1 from 2.19.19.

O. Strauch – O.Blažeková: Distribution of the sequence pn/n mod 1, Math. Institute, Slovak
Acad. Sci., Bratislava, Slovak Republic, 2003, 15 pp.
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2.12.17. Let α ̸= 0, β, γ, and δ be real numbers. Then the sequence

xn = αnβ(logγ n) logδ(log n) mod 1

is

u.d.

if and only if (at least) one of the following conditions holds:

1. β is a positive and non–integeral,

2. β is a positive integer and either α is irrational, or γ ̸= 0, or δ ̸= 0,

3. β = 0 but γ > 1,

4. β = 0, γ = 1 and δ > 0.

The sequence xn is

dense but not u.d. in the interval [0, 1]

if and only if one of the following conditions holds:

1. β = 0, 0 < γ < 1,

2. β = 0, γ = 1 and δ ≤ 0,

3. β = 0, γ = 0 and δ > 0.

Related sequences: 2.6.35.

M.D.Boshernitzan: Uniform distribution and Hardy fields, J. Anal. Math. 62 (1994), 225–240
(MR1269206 (95e:11085); Zbl. 0804.11046).

2.12.18. If γ > 0 and α is irrational, then the sequence

(log1+γ n) cos(2πnα) mod 1

is

u.d.

and if α ∈
∪

0<u<1{x ∈ R; lim infq→∞ q1/u∥xq∥ > 0} (i.e. α is non–Liouville),
then

DN ≪ (logN)−γ/2.

D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. III , Acta Math. Hungar. 95 (2002), no. 1–2, 1–20 (MR1906205 (2003h:11085); Zbl.
0997.11058).
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2.12.19. If α is irrational, then the sequence

n(log n) cos(2πnα) mod 1

is

u.d.

and if lim infq→∞ q1/u∥αq∥ > 0 for some 0 < u < 1, then

DN ≪ (logN)−β,

with β = u.8−1−1/(2u)/(3 + 2u).

D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. III , Acta Math. Hungar. 95 (2002), no. 1–2, 1–20 (MR1906205 (2003h:11085); Zbl.
0997.11058).

2.12.20. If α is irrational, then the sequence

nβ(logγ n) cos(2πnα) mod 1

is

dense in [0, 1]

provided that either β > 0 or β = 0, γ > 0.

D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. III , Acta Math. Hungar. 95 (2002), no. 1–2, 1–20 (MR1906205 (2003h:11085); Zbl.
0997.11058).

2.12.21. The sequence

logFn mod 1, Fn is the nth Fibonacci number,

is

u.d.

Notes: (I) J.L. Brown, Jr. and R.L.Duncan (1972). The same holds for Lucas
numbers.

(II) Fibonacci numbers Fn can be defined by the recurrence relation

Fn = Fn−1 + Fn−2, F1 = F2 = 1,

or directly by Binet’s formula

Fn =
τn − (−τ)n

τ + τ−1
, where τ =

1 +
√
5

2
is the golden mean



2.12 Sequences involving logarithmic function 2 – 147

and consequently, as the closest integer to τn/
√
5, or more compactly

Fn = in−1 sin(nz0)

sin z0
, where z0 =

π

2
+ i log τ,

cf. M.R. Schroeder (1997).

J.L. Brown, Jr. – R.L.Ducan: Modulo one uniform distribution of certain Fibonacci–related se-
quences, Fibonacci Quart. 10 (1972), no. 3, 277–280, 294 (MR0304291 (46#3426); Zbl. 0237.10033).
M.R. Schroeder: Number Theory in Science and Communication. With Applications in Cryp-
tography, Physics, Digital Information, Computing and Self–similarity, 3rd ed., Springer Verlag,
Berlin, 1997 (MR1457262 (99c:11165); Zbl. 0997.11501).

2.12.22. If b > 1 is a positive integer, then the sequence

logb Fn mod 1, Fn is the nth Fibonacci number,

is

u.d. in [0, 1].

Notes:
(I) Consequently, Fibonacci numbers satisfy strong Benford’s law in any base b (see
2.12.26).
(II) Rediscovered by L.C. Washington (1981).
(III) L.Kuipers (1982) proved the density of logb Fn mod 1 in [0, 1]. Also see [KN,
p. 31, Exer. 3.4].
(IV) R.L.Duncan (1967) proved earlier that log10 Fn mod 1 is u.d.

Related sequences: 2.24.5.

R.L.Duncan: An application of uniform distribution to the Fibonacci numbers, Fibonacci Quart.
5 (1967), 137–140 (MR0240058 (39 #1412); Zbl. 0212.39501).
L.Kuipers: A property of the Fibonacci sequence (Fm),m = 0, 1, . . . , Fibonacci Quart. 20 (1982),
no. 2, 112–113 (MR0673290 (83k:10012); Zbl. 0481.10036).
L.C.Washington: Benford’s law for Fibonacci and Lucas numbers, Fibonacci Q. 19 (1981), 175–
177 (MR0614056 (82f:10009); Zbl. 0455.10004).

2.12.22.1 Let xn be a sequence generated by the linear recurrence relation

xn+k = ak−1xn+k−1 + · · ·+ a1xn+1 + a0xn, n = 1, 2, . . . ,

where a0, a1, . . . , ak−1 are non-negative rational numbers with a0 ̸= 0, k is
a fixed integer, and x1, x2, . . . , xk are initial values. Let its characteristic
polynomial

xk − ak−1x
k−1 − · · · − a1x− a0
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have k distinct roots β1, β2, . . . , βk satisfying 0 < |β1| < · · · < |βk| and such
that none of them has magnitude equal to 1, then

log xn mod 1, n = 1, 2, . . .

is

u.d. in [0, 1].

Furthermore, if in the general solution xn =
∑k

j=1 αjβ
n
j of the recurrence j0

is the largest value of j for which αj ̸= 0 and if logb βj0 is irrational, then
also

logb xn mod 1, n = 1, 2, . . .

is

u.d. in [0, 1].

Notes:
(I) J.L. Brown, Jr. and R.L.Ducan (1970).
(II) I.e. xn satisfies strong Benford law in the base b, see 2.12.26.
(III) This implies that Fibonacci and Lucas numbers obey strong Benford law, cf.
2.12.21, 2.12.22, a fact which was often rediscovered, e.g. L.C. Washington (1981),
etc.

J.L. Brown, Jr. – R.L.Ducan: Modulo one uniform distribution of the sequence of logarithms of
certain recursive sequences, Fibonacci Quart. 8 (1970), 482–486 (MR0360444 (50 #12894); Zbl.
0214.06802).
L.C.Washington: Benford’s law for Fibonacci and Lucas numbers, Fibonacci Q. 19 (1981), 175–
177 (MR0614056 (82f:10009); Zbl. 0455.10004).

2.12.23. The sequence

xn = ec log
τ n mod 1, c > 0, 1 < τ <

3

2
,

is

u.d.

with discrepancy

D∗
N = O

(
e−c1(logN)3−2τ

)
,

where both c1 > 0 and the O–constant depend only on τ .

Notes: This was proved by A.A.Karacuba (1971) (cf. also Karacuba (1975, p. 72
or 1983, p. 103) and [KN, p. 30, Notes]).
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A.A.Karacuba (A.A.Karatsuba): Estimates for trigonometric sums by the method of I.M.Vi-
nogradov and their applications, (Russian), Trudy Mat. Inst. Steklov. 112 (1971), 241–255, 388
(English translation: Proc. Steklov Inst. Math. 112 Amer. Math. Soc., Providence, R.I., (1973),
pp. 251–265 (MR0330068 (48 #8407); Zbl. 0259.10040)).
A.A.Karacuba (A.A.Karatsuba): Principles of Analytic Number Theory, (Russian), Izdat.
Nauka, Moscow, 1975 (MR0439767 (55 #12653); Zbl. 0428.10019). (2nd edition 1983).

2.12.24. Let α be an arbitrary real algebraic number of degree ≥ 2 and c
satisfies 0 < c < 1. If c′ > 0 and I ⊂ [0, 1] is an subinterval of the length

|I| ≥ e−c′ log1−cN

then for the sequence

xn = αe[log
c n] logn mod 1

we have
A(I;N ;xn) ≥ Ne−c1(log

1−cN+logcN log logN)

for N ≥ N1, where N1 and c1 > 0 are constants which depend on c and c′.

Notes: A.A.Karacuba (2001). He noted that the lower bound remains valid if α is
an irrational number with bounded partial quotients.

A.A.Karacuba (A.A.Karatsuba): On the fractional parts of rapidly increasing functions, (Rus-
sian), Izv. Ross. Akad. Nauk Ser. Mat. 65 (2001), no. 4, 89–110 (English translation: Izv. Math.
65 (2001), no. 4, 727–748 (MR1857712 (2002i:11066); Zbl. 1028.11045)).

2.12.25. The sequence
log n! mod 1

is

u.d.

and for any ε > 0 we have

DN ≤ c.N−1/2+ε

with a constant c = c(ε).

Notes: The u.d. was proved by P.Diaconis (1977, Th. 3) and for discrepancy cf.
K.Goto and T.Kano (1985, Th. 3).

P.Diaconis: The distribution of leading digits and uniform distribution mod 1, Anals of Prob. 5
(1977), 72–81 (MR0422186 (54 #10178); Zbl. 0364.10025).
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K.Goto – T.Kano: Uniform distribution of some special sequences, Proc. Japan Acad. Ser. A
Math. Sci. 61 (1985), no. 3, 83–86 (MR0796473 (87a:11069); Zbl. 0573.10023).

2.12.26. The sequence

log10 n! mod 1

is

u.d.

Notes: (I) P.Diaconis (1977, Th. 3). He noted that the u.d. of log10 n! mod 1
implies that the sequence n! obeys the Benford’s law. See also S.Kunoff (1987).
(II) The first digit problem: The infinite sequence xn ≥ 1 of real numbers obeys
the Benford’s law, if the frequency (the asymptotic density) of the occurrence of
a given first digit a, when xn is expressed in the decimal form

xn = ak(n)(n)ak(n)−1(n) . . . a0(n).a−1(n)a−2(n) . . .

is given by

lim
N→∞

#{n ≤ N ; ak(n)(n) = a}
N

= log10

(
1 +

1

a

)
for every a = 1, 2, . . . , 9 (0 as a possible first digit is not admitted). One writes

xn = 10k(n) · ak(n)(n).ak(n)−1(n)ak(n)−2(n) . . . ,

where ak(n)(n).ak(n)−1(n)ak(n)−2(n) . . . is the mantissa of xn. Since

log10 xn ≡ log10
(
ak(n)(n).ak(n)−1(n)ak(n)−2(n) . . .

)
mod 1

and
ak(n)(n) = a⇐⇒ {log10 xn} ∈ [log10 a, log10(a+ 1),

the Benford’s law for xn follows from the u.d. of log10 xn mod 1. The definition can
be extended to any sequence xn ̸= 0 requiring that the frequency with which the non–
zero digit a appears as the first digit is log10

(
1 + 1

a

)
. The u.d. of log10 |xn| mod 1

again implies this law.
(III) It was S.Newcomb (1881) who firstly noted ”That the ten digits not occur with
equal frequency must be evident to anyone making use of logarithm tables”.
(IV) F.Benford (1938) compared the empirical frequency of a with log10((a+ 1)/a)
in twenty different tables having lengths running from 91 entries (atomic weights)
to 5000 entries in a mathematical handbook which led him to the conclusion that
”the logarithmic law applies particularly to those outlaw numbers that are without
known relationships ...”
(V) J.Cigler suggested (cf. R.A.Raimi (1976) and P.Diaconis (1976)) to call xn
a strong Benford sequence if log10 xn mod 1 is u.d. and a weak Benford
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sequence if log10 xn mod 1 is logarithmically weighted u.d. (cf. 1.8.4) The sequence
xn is a strong Benford sequence if and only if

lim
N→∞

#{n ≤ N ; ak(n)(n)ak(n)−1(n) . . . ak(n)−l(n) = alal−1 . . . a0}
N

=

= log10(al.al−1 . . . a0 + 0.0 . . . 01)− log10(al.al−1 . . . a0) =

= log10

(
1 +

1

alal−1 . . . a0

)
for every initial string of digits alal−1 . . . a0 = al10

lal−110
l−1 + · · ·+ a0.

(VI) É. Janvresse and T. de la Rue (2003-04) proved that d.f. g(t) = log10 t is the
unique d.f. defined on [1, 10] satisfying

g(t) =

∫ t

1

(
1− t

x

)
dg(x) +

10

9

∫ 10

1

dg(x)

x

for every t ∈ [1, 10].
(VII) A similar Benford’s law can be defined with respect to base e.
(VIII) The bibliography given in Raimi (1976) is almost complete until 1976. For
another comprehensive survey on Benford’s law consult P. Schatte (1988), and some
results on the subject can be found in K.Nagasaka, S.Kanemitsu, J.–S. Shiue (1990).
(IX) For the weighted Benford’s law consult 2.12.1(VII).
(X) Strong or generalized Benford’s law of the sequence xn for the base b is equivalent
to the u.d. of logb xn mod 1.

Related sequences: Benford sequences are: 2.12.22, 2.12.27, 2.12.28, 2.24.4,
2.24.3, 2.24.4, 2.24.5, 2.19.8

F.Benford: The law of anomalous numbers, Proc. Amer. Phil. Soc. 78 (1938), 551–572 (Zbl.
0018.26502; JFM 64.0555.03).
P.Diaconis: The distribution of leading digits and uniform distribution mod 1, Anals of Prob. 5
(1977), 72–81 (MR0422186 (54 #10178); Zbl. 0364.10025).

É. – T. de la Rue: From uniform distribution to Benford’s law , Laboratoire de Mathématiques
Raphaël Salem, Université de Rouen, 2003-04, 10 pp. (Publication de l’umr 6085). (MR2122815
(2006b:60161); Zbl. 1065.60095).
S.Kunoff: N ! has the first digit property, Fibonacci Quart. 25 (1987), no. 4, 365–367 (MR0911988
(88m:11059); Zbl. 0627.10007).
K.Nagasaka – S.Kanemitsu – J.–S. Shiue: Benford’s law: the logarithmic law of first digit , in:
Number theory, Vol. I (Budapest, 1987), Colloq. Math. Soc. János Bolyai, Vol. 51, North–Holland
Publishing Co., Amsterdam, 1990, pp. 361–391 (MR1058225 (92b:11048); Zbl. 0702.11045).
S.Newcomb: Note on the frequency of use of the different digits in natural numbers, Amer. J.
Math. 4 (1881), 39–41 (MR1505286 ; JFM 13.0161.01).
R.A.Raimi: The first digit problem, Amer. Math. Monthly 83 (1976), no. 7, 521–538 (MR0410850
(53 #14593); Zbl. 0349.60014).
P. Schatte: On mantissa distribution in computing and Benford’s law , J. Inform. Process. Cy-
bernet. 24 (1988), no. 9, 443–455 (MR0984516 (90g:60016); Zbl. 0662.65040).
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2.12.27. Let θ = [0; a1, a2, . . . ] denote the continued fraction expansion of
θ ∈ (0, 1), and let pn(θ) and qn(θ) denote the numerator and denominator
of the nth convergent, resp. If θ is a quadratic irrational number, then the
sequences

log pn(θ) mod 1 and log qn(θ) mod 1

are

u.d.

Notes: (I) S.Kanemitsu, K.Nagasaka, G.Rauzy and J.–S. Shiue (1988) have stated
the result without proof in the terms of Benford’s law for qn (cf. 2.12.26). H. Jager
and P. Liardet (1988) gave the first proof of this fact. Actually, they proved that
every subsequence of the form log pa+bn(θ) mod 1 and log qa+bn(θ) mod 1 is u.d. and
if log10 θ is irrational, then also log10 pn(θ) mod 1 and log10 qn(θ) mod 1 are u.d.
(II) P. Schatte (1990) extended the result to the nth denominator of the regular
Hurwitzian continued fractions, i.e. for continued fraction expansions of the
form

θ = [0; b1, . . . , bh, f1(x), . . . , fk(x)]
∞
x=0 =

= [0; b1 . . . , bh, f1(0), . . . , fk(0), f1(1), . . . , fk(1), . . . ]

where the elements b1, . . . , bh are positive integers, and f1(x), . . . , fk(x) are polyno-
mials with rational coefficients assuming positive integral values at x = 0, 1, 2, . . . .
For instance, the continued fractions of ej/q is Hurwitzian for j = 1, 2 and arbitrary
q ∈ N.
Related sequences: 2.24.4

H. Jager – P. Liardet: Distributions arithmétiques des dénominateures de convergents de frac-
tions continues, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 2, 181–197 (MR0952514
(89i:11085); Zbl. 0655.10045).
S.Kanemitsu – K.Nagasaka – G.Rauzy – J.–S. Shiue: On Benford’s law: the first digit problem,
in: Probability theory and mathematical statistics (Kyoto, 1986), Lecture Notes in Math., 1299,
Springer Verlag, Berlin, New York, 1988, pp. 158–169 (MR0935987 (89d:11059); Zbl. 0642.10007).
P. Schatte: On Benford’s law for continued fractions, Math. Nachr. 148 (1990), 137–144
(MR1127337 (92m:11077); Zbl. 0728.11036).

2.12.28. The sequence of blocks Xn, n = 1, 2, . . . , with blocks

Xn =

(
log

(
n

0

)
, log

(
n

1

)
, . . . , log

(
n

n

))
mod 1

is

u.d.

and thus the block sequence ω = (Xn)
∞
n=1 is u.d.



2.12 Sequences involving logarithmic function 2 – 153

Notes: It was P.B. Sarkar (1973) who firstly conjectured that binomial coefficients(
n
k

)
, k = 0, 1, 2, . . . , n, satisfy the Benford law (see 2.12.26 (II)). He computed the

initial digits of these blocks for n = 1, 2, . . . , 500. This conjecture was firstly proved
by P. Diaconis (1977) in the form that the block sequence Xn mod 1, n = 1, 2, . . . , is

as u.d. He proved that
∣∣∑n

k=0 e
2πih log (nk)

∣∣ = O(n
1
2 log n). See also O. Strauch (1999,

p. 169).

P.Diaconis: The distribution of leading digits and uniform distribution mod 1, Anals of Prob. 5
(1977), 72–81 (MR0422186 (54 #10178); Zbl. 0364.10025).
P.B. Sarkar: An observation on the significant digits of binomial coefficients and fatorials, Sankhyã
B35 (1973), 363–364
O. Strauch: Distribution of Sequences (in Slovak), Mathematical Institute of the Slovak Academy
of Sciences, DSc Thesis, Bratislava, Slovakia, 1999.

2.12.29. The 0–1 sequence

xn =
1 + (−1)[log logn]

2
, n > 1,

has the set of d.f.’s

G(xn) = {hα(x) ; α ∈ [0, 1]}.
Note that here xn ∈ [0, 1], the corresponding G(xn) is defined on p. 1 – 11 .
O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).

2.12.30. The sequence

xn =
1

n

n∑
i=2

1 + (−1)[log log i]

2

is

dense in [0, 1]

and for dispersion dN we have

dN ≤ 1

N
1
e2

− 1
e3

.

Related sequences: This is a special case of the sequence 2.3.15, since 2.12.29
satisfies the conditions of 2.3.15.
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O. Strauch: On the set of distribution functions of a sequence, in: Proceedings of the Confer-
ence on Analytic and Elementary Number Theory in Honor of Edmund Hlawka’s 80th Birthday,
Vienna, July 18–20, 1996, (W.–G.Nowak, J. Schoißengeier eds.), Universität Wien & Universität
für Bodenkultur, Vienna, 1997, pp. 214–229 (Zbl. 0886.11044).

2.12.31. If α is irrational and β ̸= 0 is real, then the sequence

xn = αn+ β log n mod 1

is

u.d.

and if α is an irrational of a finite type η ≥ 1 then

DN ≪ N
− 1
η+1/2

+ε

for every ε > 0. If irrational α is of a constant type (cf. 2.8.1(V)), then

DN ≤ C(β)N− 2
3 logN.

If α, β ̸= 0 are real, and A is the matrix defined in 2.12.1 (the so–called
logarithmically weighted means) then this sequence is

A–u.d.

and for its logarithmic discrepancy we have

LN ≤ c(β)(logN)−1.

Notes: (0) The u.d. of xn follows from a result proved by G.Rauzy (1973, 1976),
cf. 2.3.6, saying that sequences yn and yn + β log n are simultaneously u.d. mod 1
for every sequence yn.
(I) E.Hlawka (1983) proved (cf. [DT, pp. 252–253]) that xn is logarithmically u.d.
thus extending a result by M.Tsuji 2.12.1 for log n mod 1.
(II) R.F.Tichy (1983) extended the results of Hlawka finding a bound for the loga-
rithmic discrepancy. R.F.Tichy and G.Turnwald (1986) proved that the logarithmic
discrepancy is of the order O(log log2N/ logN) with the O-constant depending only
on β. They conjectured that the log log2N–term is superfluous.
(III) The conjecture mentioned in (II) was proved by R.C.Baker and G.Harman
(1990). They used the following theorem (cf. [DT, p. 253, Th. 2.41]) which is appli-
cable to more general classes of sequences including the case αn+ βn1−δ, 0 < δ < 1.
Theorem 2.12.31.1. Assume that f is a real valued twice differentiable function
defined on [1,∞), and that there exist positive constants c,K, δ and a positive integer
H such that
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• x(f ′(x)− λ) is of class H (see below) for every real λ,
• f ′ is bounded on bounded intervals,
• if x ≥ 1 then either cx−2 ≤ f ′′(x) ≤ Kx−1−δ or cx−2 ≤ −f ′′(x) ≤ Kx−1−δ.

Then the sequence f(n) mod 1 has the logarithmic discrepancy

LN ≤ c(c,K, δ,H)(logN)−1.

Here f is said to be of class H if there are 1 = t0 < t1 < · · · < tH such that f is
monotone in each of the intervals [t0, t1], . . . , [tH−1, tH ], and [tH ,∞).
(IV) The above upper bound for the classical extremal discrepancy DN of xn
was given by Y.Ohkubo (1999) by applying a version of 2.6.26 similar to (III).
Ohkubo (1995) extended the Baker – Harman theorem for generalized pn–weighted
discrepancy and also for functions f which are (i + 2) times continuously differen-
tiable.
(V) In 3.13.6 a multi–dimensional analogue can be found.
(VI) If α is an irrational with bounded partial quotients and

xn = αn+ β(log n)γ

with γ ≥ 1, and β > 0 then the following lower bound of its extremal discrepancy

DN ≥ c
(logN)(γ−1)/4

N3/4

holding for every N and with a constant c > 0 was proved by K.Goto and Y.Ohkubo
(2004), cf. 2.6.7.

Related sequences: 2.19.9, 2.3.6, 2.3.11, 2.15.3, 2.6.7, 2.10.2.

R.C.Baker – G.Harman: Sequences with bounded logarithmic discrepancy, Math. Proc. Cam-
bridge Philos. Soc. 107 (1990), no. 2, 213–225 (MR1027775 (91d:11091); Zbl. 0705.11040).
K.Goto – Y.Ohkubo: Lower bounds for the discrepancy of some sequences, Math. Slovaca 54
(2004), no. 5, 487–502 (MR2114620 (2005k:11153); Zbl. 1108.11054).
E.Hlawka: Gleichverteilung und das Konvergenzverhalten von Potenzreihen am Rande des Kon-
vergenzkreises, Manuscripta Math. 44 (1983), no. 1–3, 231–263 (MR0709853 (85c:11060); Zbl.
0516.10030).
Y.Ohkubo: The weighted discrepancies of some slowly increasing sequences, Math. Nachr. 174
(1995), 239–251 (MR1349048 (96h:11074); Zbl. 0830.11028).
Y.Ohkubo: Notes on Erdős – Turán inequality, J. Austral. Math. Soc. A 67 (1999), no. 1, 51–57
(MR1699155 (2000d:11100); Zbl. 0940.11029).

G.Rauzy: Étude de quelques ensembles de fonctions définis par des propertiétés de moyenne,
Séminaire de Théorie des Nombres (1972–1973), 20, Lab. Théorie des Nombres, Centre Nat.
Recherche Sci., Talence, 1973, 18 pp. (MR0396463 (53 #328); Zbl. 0293.10018).
G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).
R.F.Tichy: Diskrepanz bezüglich gewichteter Mittel und Konvergenzverhalten von Potenzreihen,
Manuscripta Math. 44 (1983), no. 1–3, 265–277 (MR0709854 (85c:11066); Zbl. 0507.10040).
R.F.Tichy – G.Turnwald: Logarithmic uniform distribution of (αn+β logn), Tsukuba J. Math.
10 (1986), no. 2, 351–366 (MR0868660 (88f:11069); Zbl. 0619.10031).
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2.12.32. If f is a continuous periodical function with period T , then the
sequence

f(log n)

is

dense in the interval [m,M ],

where m = min f(x) and M = max f(x) both with x running over x ∈ R.
Notes: D.Andrica and S.Buzeteanu (1987, 2.6. Applications). They apply the
result to sequences sin(log n) and cos(log n) to show that they are dense in [−1, 1].

Related sequences: 2.6.32.

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

2.12.33. Let sn be an increasing sequence of positive numbers which is
multiplicatively closed and which satisfies

lim
n→∞

sn+1

sn
= 1.

Then for every continuous periodical function with period T , the sequence

f(log sn)

is

dense in the interval [m,M ],

where m = min f(x) and M = max f(x) both with x running over x ∈ R.
Notes: D.Andrica and S.Buzeteanu (1987, 4.7. Th.). Compare with 2.8.3.

Related sequences: 2.6.32, 2.6.34.

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

2.12.34. Let q ≥ 2 be an integer. A sequence sn, n = 1, 2, . . . , of positive
integers is called extendable in the base q if for every finite block of q–
adic digits, there exists an sn whose initial digits in q–adic digit expansion
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coincide with the given block. The sequence sn is extendable in base q if and
only if

logq sn mod 1

is

dense in [0, 1].

Notes: [KN, p. 24, Exer. 2.14]. Examples:
(i) If k is a positive integer then the sequence sn = nk, n = 1, 2, . . . , is extendable

in any base q ≥ 2 [KN, p. 24, Exer. 2.15].
(ii) Let q ≥ 2 and k be positive integers such that k is not a rational power of q.

Then the sequence sn = kn, n = 1, 2, . . . , is extendable in the base q [KN, p. 24,
Exer. 2.16],

(iii) The sequence sn = nn, n = 1, 2, . . . , is extendable in any base q [KN, p. 24,
Exer. 2.17].

(iv) The sequence sn = Fn, n = 1, 2, . . . , of Fibonacci numbers is extendable in any
base q [KN, p. 31, Exer. 3.4], cf. 2.12.22.

2.13 Sequences involving trigonometric functions

See also: 2.7.4, 2.12.18, 2.12.19, 2.12.20, 2.12.32, 2.14.9

2.13.1. The sequence
sinn mod 1

has the a.d.f.

g(x) = 1
π arcsinx+ 1

2 − 1
π arcsin(1− x).

Notes: The a.d.f g(x) can be found transforming the u.d. sequence n/2π mod 1
using function sin 2πx.

2.13.2. The sequence

nθ + sin 2π
√
n mod 1, θ irrational,

is

u.d.

Notes: (cf. [KN, p. 31, Exer. 3.2])
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2.13.3. The sequence

n2θ + sin 2π
√
n mod 1, θ irrational,

is

u.d.

Notes: (cf. [KN, p. 31, Exer. 3.8])

2.13.4. If α/π is irrational, then the sequence

xn = n cos(n cosnα) mod 1

is

dense

and for any non–trivial interval I ⊂ [0, 1]

|{n ≤ N ; {n cos(n cosnα)} ∈ I}| ≫ N2/3.

If α = p
qπ, (p, q) = 1, then the sequence xn is

u.d.

if q is odd. If q is even then the sequence xn has the a.d.f.

g(x) = (1− 1
q )x+ 1

q c0(x).

Notes: D.Berend, M.D.Boshernitzan and G.Kolesnik (1995, Prop. 2.3).

D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. II , Israel J. Math. 92 (1995), no. 1–3, 125–147 (MR1357748 (96j:11105); Zbl. 0867.11052).

2.13.5. If α is real, then the sequence

xn = (log n) cos(nα) mod 1

is

dense in [0, 1].

Notes:
(I) Proposition 2.4 in D.Berend, M.D.Boshernitzan and G.Kolesnik (1995). The
authors also claim that it can shown that there are uncountably many α’s for which
this sequence is not u.d. They also note that log n can be replaced by a function from
a more general class of functions having regular growth at infinity (e.g. belonging
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to a Hardy field, cf. 2.6.35) but approaching infinity slower, for instance
√
log n or

log log n, but that their proof fails for (log n)1+ε.
(II) Ch.Aistleitner, M.Hofer and M.Madritsch (2013): Let α be such that the dis-
crepancy DN of the sequence

α

2π
n mod 1, n = 1, 2, . . . , N,

is of asymptotic order DN = o
(

1
logN

)
. Then the sequence xn is u.d. in [0, 1].

(III) Ch.Aistleitner, M.Hofer and M.Madritsch (2013): Let α
2π = p

q , where p, q are
co-prime integers, and let N1 < N2 < . . . be a fixed integer sequence such that

lim
k→∞

{cos(αi) logNk} = βi for i = 1, . . . , q. (1)

Then there exists a d.f. of xn of the form g(x) = limk→∞ FNk
(x) with FN (x) =

{n≤N ;xn∈[0,x)}
N given by

g(x) =
1

q

q∑
i=1

hq,βi,ci(x), (2)

where

hq,βi,ci(x) =



fβi,ci(x+ 1− νi)− fβi,ci(1− νi), if 0 ≤ x ≤ νi and ci > 0,

fβi,ci(x− νi) + 1− fβi,ci(1− νi), if νi ≤ x ≤ 1 and ci > 0,

fβi,ci(x+ νi)− fβi,ci(νi), if 0 ≤ x ≤ 1− νi and ci < 0,

fβi,ci(x− (1− νi)) + 1− fβi,ci(νi), if 1− νi ≤ x ≤ 1 and ci < 0,

1{(0,1]}(x), if ci = 0,

with

fβ,c(x) =


gβ,c(x), if c > 0,

1− gβ,|c|(1− x), if c < 0,

1{(0,1]}(x), if c = 0,

and

gβ,c(x) =
e

min(x,β)
c − 1

e
β
c

+
1

e
β
c

e
x
c − 1

e
1
c − 1

,

and νi = {|ci| log(q)}, ci = cos(αi). Moreover, the set G(xn) is the set of all d.f.’s
of the form (2) for those (β1, . . . , βq) for which a subsequence (Nk)k≥1 satisfying (1)
exists.

The authors also note that for an arbitrary q, it is a difficult problem to determine
all possible vectors (β1, . . . , βq) for which there exists a sequence N1 < N2 < . . .
such that (1) holds, due to the fact that there can exist non-trivial linear relations
between the values cos(αi), i = 1, . . . , q (cf. K. Gristmair (1997)).
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Ch.Aistleitner – M.Hofer – M.Madritsch: On the distribution functions of two oscillating
sequences, Unif. Distrib. Theory 8 (2013), no. 2, 157–169 (MR3155465; Zbl. 1313.11087).
D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. II , Israel J. Math. 92 (1995), no. 1–3, 125–147 (MR1357748 (96j:11105); Zbl. 0867.11052).
K.Girstmair: Some linear relations between values of trigonometric functions at kπ/n, Acta
Arith. 81 (1997), no. 4, 387–398 (MR1472818 (98h:11133); Zbl. 0960.11048).

2.13.6. The sequence
(cosn)n

is

dense in [−1, 1].

Notes:
(I) The original problem posed by M.Bencze and F.Popovici (1996) was solved by
J.Bukor (1997) and as a consequence of a Diophantine approximation lemma by
F. Luca (1999).
(II) S.Hartman (1949) proved that if απ is irrational, then

lim inf
n→∞

(cosαn)n = lim inf
n→∞

(sinαn)n = −1.

(III) Ch.Aistleitner, M.Hofer and M.Madritsch (2013): Let

xn = cos(αn)n mod 1, n = 1, 2, . . . .

If α
2π /∈ Q put a = 3/4, and if α

2π = p
q ∈ Q with p, q co-prime integers, let

a =

{
q+1
2q + q−1

4q , if 4 | (q − 1),
q−1
2q + q+1

4q , if 4 - (q − 1)

for q odd and let

a =


1
2 + q−2

4q , if 4 - q and 8 | (q − 2),
1
2 + q+2

4q , if 4 - q and 8 - (q − 2),
q+2
2q + 1

4 , if 4 | q and 8 - q,
q+2
2q + q−4

4q , if 8 | q

for q even. Then the a.d.f. of xn is given by

ga(x) =


0, if x = 0,

a, if 0 < x < 1,

1, if x = 1.
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Ch.Aistleitner – M.Hofer – M.Madritsch: On the distribution functions of two oscillating
sequences, Unif. Distrib. Theory 8 (2013), no. 2, 157–169 (MR3155465; Zbl. 1313.11087).
M.Bencze – F. Popovici: OQ. 45 , Octogon Math. Mag.(Brasov) 4 (1996), 77
J. Bukor: On a certain density problem, Octogon Mathematical Magazine (Brasov) 5 (1997),
no. 2, 73–75.
Quoted in: 2.13.6
S.Hartman: Sur une condition supplémentaire dans les approximations diophantiques, Colloq.
Math. 2 (1949), no. 1, 48–51 (MR0041174 (12,807a); Zbl. 0038.18802).
F. Luca: {(cos(n))n}n≥1 is dense in [−1, 1], Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér.
42(90) (1999), no. 4, 369–376 (MR1879621 (2002k:11118); Zbl. 1053.11529).

2.13.6.1 The sequence

P (n) cosnα mod 1, n = 1, 2, . . . ,

is

completely u.d.

for any non-constant polynomial P (x) and any α such that cosα is transcen-
dental.
Notes:
(I) D.Berend and G.Kolesnik (2011).
(II) If cosα is not transcendental Berend and Kolesnik (2011) proved: Let α be such
that eiα is either a transcendental number or an algebraic number of degree d which
is not a root of unity. Then the sequence(

P (n) cosnα, P (n+ 1) cos(n+ 1)α, . . . , P (n+ d− 1) cos(n+ d− 1)α
)
mod 1,

n = 1, 2, . . . , (1)

is

u.d.

for any non-constant polynomial P (x).
(III) Open problem (Berend and Kolesik (2011)): Let P (x) = x, α = arccos 3/5,

i.e. eiα = (3 + 4i)/5. If xn = P (n) cosnα = n (3+4i)n−(3−4i)n

2.5n then (1) im-
plies that the sequence (xn, xn+1) mod 1 is u.d., but the authors showed that
(xn, xn+1, xn+2, xn+3, xn+4) mod 1 is not u.d. They ask whether the sequences
(xn, xn+1, xn+2) mod 1 and (xn, xn+1, xn+2, xn+3) mod 1) are u.d.

D.Berend – G.Kolesnik: Complete uniform distribution of some oscillating sequences, J. Ra-
manujan Math. Soc. 26 (2011), no. 2, 127–144 (MR2815328 (2012e:11134); Zbl. 1256.11041).

2.13.7. The sequence

xn = cos(n+ log n) mod 1, n = 1, 2, . . .
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is

not u.d.

Notes:
(I) L.Kuipers (1953).
(II) S. Steinerberger (2012) proved that the sequence xn has the same a.d.f g(x) as
the sequence cosn mod 1, as follows: The sequence

cos(n+ log n) = cos 2π
(
n
2π + 1

2π log n
)
= cos 2πzn, where zn = ( n2π + 1

2π log n) mod 1

is u.d., since both n
2π and n

2π + 1
2π log n are u.d. mod 1 simultaneously, see 2.3.6.

Put f(x) = cos 2πx mod 1. Then a.d.f. g(x) of xn is

g(x) = |f−1([0, x))| = 1

2
− 1

π
arccosx+ 1− 1

π
arccos(x− 1).

L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).
S. Steinerberger: Solution to the Problem 1.10(iii), in: Unsolved Problems of the journal Uniform
Distribution Theory as of June 10, 2012, (O. Strauch ed.), p. 22 (http://www.boku.ac.at/MATH/udt/
unsolvedproblems.pdf).

2.13.8. The sequence
(
√
n+ sinn) mod 1

is

u.d.
L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).

2.13.9. Open problem. Characterize the values B, r, x and α for which
the sequence

Brn cos(nx− α) mod 1

is

u.d.

Notes: (I) W.J. LeVeque (1953). He investigated more general form

fn(x) = unf(vnx− α),

where un and vn are sequences of real numbers and f is a periodic function of
period ω and 0 ≤ x ≤ ω. He proved only metric results (e.g. the complex sequence
zn mod 1 is u.d. for almost all complex z with |z| > 1).
(II) B.Reznick (1999) studied the sequence

xn =
∣∣rn sin(π(nθ − β))

∣∣
and proved:
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(i) The sequence xn increases and decreases infinitely often (indeed each event
occurs with a positive density) unless the following conditions are met: θ = k

m ,
gcd(k,m) = 1, mβ /∈ Z, and r is sufficiently large or sufficiently small. In this
case xn is monotone increasing or monotone decreasing.

(ii) The sequence

xn+1

xn
=
∣∣r( cos(πθ)− sin(πθ) cos(π(nθ − β))

)∣∣
has the a.d.f.

g(x) =
1

π
cot−1

(
r2 − x2

2r(sin(πθ))x

)
defined on (−∞,∞).

W.J. LeVeque: The distribution modulo 1 of trigonomertic sequences, Duke Math. J. 20 (1953),
367–374 (MR0057925 (15,293d); Zbl. 0051.28504).
B.Reznick: On the monotonicity of (|Im(zn)|), J. Number Theory 78 (1999), no. 1, 144–148
(MR1706901 (2001a:11134); Zbl. 0935.11027).

2.13.10. The sequence

xn =

∫ n

1

(∫ x

0

sin y

y
dy

)
dx√
x
mod 1

is

u.d.

Notes: L.Kuipers (1953) applied 2.6.12.

L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).

2.13.11. The sequence

xn =

(√
n+ sin

1

n

)
mod 1

is

u.d.

Notes: L.Kuipers (1953) applied 2.6.11, but the result follows from the fact that
sin 1

n → 0 and that
√
n mod 1 is u.d.
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L.Kuipers: Continuous and discrete distribution modulo 1, Indag. Math. 15 (1953), 340–348
(MR0058690 (15,410e); Zbl. 0051.28601).(=Nederl. Akad. Wetensch., Proc. 56 (1953), 340–348).

2.13.12. The square–root spiral is a piecewise linear planar path W
with vertices P0, P1, . . . , which polar coordinates (x, φ) are of the form Pn =
(xn, φn), where P0 = (0, 0), and

xn =
√
n, φn =

n−1∑
j=1

arctan(1/
√
j)

for n = 1, 2, . . . . Let
• f(n) = an2 + bn + cn be integer valued (i.e. f(n) ∈ N for n = 1, 2, . . . )

with cn bounded, a > 0, and
√
a not a rational multiple of π,

• S0, S1, . . . be the successive points of the intersection of W with a fixed
ray φ = α, 0 ≤ α < 2π, emanating from P0,

• Ph(n)Ph(n)+1 be the segment of W containing the point Sn, and
• |PQ| be the length of the segment PQ.

Then for the corresponding sequences we have
(i) φn is u.d. mod 2π with discrepancy DN = O(1/

√
N),

(ii) φ1+k − φ1, φ2+k − φ2, . . . is u.d. mod 2π with discrepancy DN =
O(

√
N + k/N),

(iii) φf(n), n = 1, 2, . . . , is u.d. mod 2π,
(iv) (φnp1 , . . . , φnps) for indices n = 1, 2, . . . , and distinct primes p1, . . . , ps

is u.d. mod 2π,
(v) |P0Sn| is u.d. mod 1,
(vi) |Ph(n)Sn| is u.d. mod 1,
(vii) h(n) = π2n2 + (α+ d)πn+ dn with dn bounded and u.d. mod 1, while

the constant d does not depend on α.

Notes: The u.d. mod 2π of φn was proved by W.Ness (1966) and the discrepancy
bound in (i) was found by E.Hlawka (1980). He also proved (ii) and (iv). The
results (iii), (v), (vi) and (vii) were proved by E.Teuffel (1981) who also proved
in Teuffel (1958) that the equation φn+k − φn = jπ cannot be solved in positive
integers n, k, j.

E.Hlawka: Gleichverteilung und Quadratwurzelschnecke, Monatsh. Math. 89 (1980), no. 1, 19–44
(MR0566292 (81h:10069); Zbl. 0474.68092).
W.Ness: Ein elementargeometrisches Beispiel für Gleichverteilung, Praxis Math. 8 (1966), 241–
243.(Zbl. 0289.50009)
E.Teuffel: Ein Eigenschaft der Quadratwurzelschnecke, Math. – Phys. Semesterber. 6 (1958),
148–152 (MR0096160 (20 #2655); Zbl. 0089.00803).
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E.Teuffel: Einige asymptotische Eigenschaften der Quadratwurzelschnecke, Math. Semesterber.
28 (1981), no. 1, 39–51 (MR0611459 (82j:10085); Zbl. 0464.10025).

2.14 Sequences involving polynomials

2.14.1. Let p(x) be a polynomial with real coefficients. Then the sequence

p(n) mod 1, n = 1, 2, . . . ,

is

u.d.

if and only if the polynomial p(x)−p(0) has at least one irrational coefficient.
Notes: (I) This fundamental result was proved by H.Weyl (1914), (1916), [KN,
p. 27, Th. 3.2]. The weaker case nkθ mod 1 was studied earlier by G.H.Hardy and
J.E. Littlewood (1914).
(IIA) A complicated bound of discrepancy was found by I.M.Vinogradov (1926)
of which a more shapely form can be found in [1947, Chapt. VIII]: Let p(x) =
αk+1x

k+1 + · · · + α1x be a polynomial with real coefficients αk+1, . . . , α1, k ≥ 11,
and let for some index s, 1 ≤ s ≤ k + 1, we have

αs =
a

q
+

θ

q2
; (a, q) = 1, |θ| < 1.

Then DN = O(N−ρ), where

ρ =
τ

3k2 log 12k(k+1)
τ

and τ is defined for given constants c1 and c2 (e.g. c1 = c2 = 1) by relations
q = c1N

τ , if 1 < q ≤ c1N ;

τ = 1, if c1N ≤ q ≤ c2N
s−1;

q = c2N
s−τ , if c2N

s−1 ≤ q < c2N
s,

and τ ≥ τ0 for some fixed sufficiently small positive τ0.
(IIB) Concerning the discrepancy J.G. van der Corput and Ch.Pisot (1939) proved:

Let p(x) = αx
k

k! + α1x
k−1 + · · · + αk be a polynomial of degree k ≥ 1 with real

coefficients αi and let
∣∣∣α− a

q

∣∣∣ ≤ τ
q2 , where τ ≤ 1 and a

q is an irreducible fraction

with q > 0. Then the extremal discrepancy DN of p(1), p(2), . . . , p(N) mod 1
(N ≥ 3) satisfies

DN ≤ c(logN)ω
((

τ +
q

N

)(1

q
+

1

Nk−1

)) 1−ε

2k−1
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for any ε > 0, where c is a constant and ω depends only on k and ε.
(IIC) Yu.V. Linnik (1943) proved: If p(x) = a0x

k + · · · + ak is a polynomial with
integral coefficients and α = a

q +
θ
q2 , (a, q) = 1, |θ| < 1, N ≤ q < Nk−1, then∣∣∣∣∣

N∑
n=1

e2παp(n)

∣∣∣∣∣ ≤ c.N
1− 1

22400k2 log k .

(IID) M.Weber noticed that the bounds (IIA), (IIB) and (IIC) does not give a good
discrepancy bound for the sequence n2α mod 1, n = 1, 2, . . . , N . However, using the
step by step method described in [KN, pp. 122–125] for computation of the extremal
discrepancy DN (nα) and a quantitative version of the van der Corput difference the-
orem [KN, p. 165, Th. 6.2] it is possible to prove (O. Strauch): If α is an algebraic
irrational then DN (n2α) = O(N−(1/6)+ε) for every ε > 0.
(III) Let θ be an irrational number and k > 1 a positive integer. The sequence
nkθ mod 1, n = 1, 2, . . . , N , induces a partition of [0, 1] into intervals I0, I1, . . . , Tj
and let Tk(N) denote that number of distinct lengths that these intervals can as-
sume. In contrast to the Steinhaus three–gaps theorem for nθ mod 1 (cf. 2.8.1)
V.Drobot (1987) showed that for k > 1, Tk(N) → ∞ as N → ∞, more precisely
that

Tk(N) ≥ Ne−(1+ε) log 2k log N
log log N

for N ≥ N(ε).
(IV) The well distribution of this sequence was proved by B. Lawton (1959, Th. 2)
and M.Mendès France (1967, p. 14).
(V) If p(x) = αkx

k + αk−1x
k−1 + · · ·+ α0 is a polynomial with real coefficients αi,

then the sequence p(n), n = 1, 2, . . . , is u.d. in R (for def. cf. p. 1 – 6 ) if and only
if the system αk, αk−1, . . . , α1 is of rank at least two over the rationals (cf. [KN,
p. 284]).

Related sequences: For the u.d. of p(pn) mod 1 where n is replaced by the nth
prime pn consult 2.19.4, 3.8.3.

V.Drobot: Gaps in the sequence n2θ (mod 1), Internat. J. Math. Sci. 10 (1987), no. 1, 131–134
(MR0875971 (88e:11068); Zbl. 0622.10026).
G.H.Hardy – J.E. Littlewood: Some problems of Diophantine approximation I: The fractional
part nkθ, Acta Math. 37 (1914), 155–191 (MR1555098; JFM 45.0305.03).
B.Lawton: A note on well distributed sequences, Proc. Amer. Math. Soc. 10 (1959), 891–893
(MR0109818 (22 #703); Zbl. 0089.26902).
Yu.V. Linnik: On Weyl’s sums, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943), 28–39 (MR0009776
(5,200a); Zbl. 0063.03578).
M.Mendès France: Nombres normaux. Applications aux fonctions pseudo–aléatoires, J. Analyse
Math. 20 (1967), 1–56 (MR0220683 (36 #3735); Zbl. 0161.05002).
J.G. van der Corput – C.Pisot: Sur la discrépance modulo un. (Deuxème communication),
Nederl. Akad. Wetensch., Proc. 42 (1939), 554–565 (MR0000395 (1,66b); JFM 65.0170.02; Zbl.
0022.11604). (=Indag. Math. 1 (1939), 184–195).
I.M.Vinogradov: On fractional parts of integer polynomials, (Russian), Izv. AN SSSR 20 (1926),
585–600 (JFM 52.0182.03).
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I.M.Vinogradov: The Method of Trigonometrical Sums in the Theory of Numbers, (Russian),
Trav. Inst. Math. Stekloff, Vol. 23, (1947) (MR0029417 (10,599a); Zbl. 0041.37002) Translated,
revised and annotated by K.F.Roth and A.Davenport, Interscience Publishers, London, New York,
1954 (MR0062183 (15,941b); Zbl. 0055.27504).
H.Weyl: Über ein Problem aus dem Gebiet der diophantischen Approximationen, Nachr. Ges.
Wiss. Göttingen, Math.–phys.Kl. (1914), 234–244 (JFM 45.0325.01).
H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).

2.14.2. Let p(z) = a0 + · · · + aNz
N be a polynomial of degree N with

complex coefficients which satisfies |p(z)| ≤MN on |z| = 1. If z1, . . . , zN are
its roots then the finite sequence

xn =
arg zn
2π

, n = 1, . . . , N,

has discrepancy

DN (xn) ≤
16√
N

√
log

MN√
|a0aN |

and more precisely

DN (xn) ≤ 13max

(
1, log

2N

logCN

)
logCN

N
,

with CN = max(MN , BN , N), where BN is such that max1≤j≤N |p′(zj)| ≥
1/BN , and MN , BN > 1.

Notes: (I) The first bound is due to P. Erdős and P.Turán (1948, 1950). They
pointed out that a similar result cannot hold in termsMN (θ) (whereMN (θ) denotes
the upper bound of |p(z)| on |z| = θ, where θ is fixed and such that 0 < θ < 1),
and that it does hold if it is further postulated that all the roots of p(z) are outside

|z| = 1. If MN (θ) =
√
a0aN e

N
g(N,θ) , and N ≥ g(N, θ) ≥ 2, then

DN (xn) ≤ c
log(4θ−1)

log g(N, θ)
,

where c is a numerical constant. Erdős and Turán (1950) showed that u.d. of xn
implies two known theorems: E. Schmidt’s Theorem on the maximum number of
real roots and Szegő’s one on the u.d. of the roots of partial sums of a power series
whose radius of convergence is 1.
(II) The Erdős – Turán result allows the following reformulation: Let p(z) be a monic
polynomial of degree N all of whose zeros zn lie in [−1, 1] and let maxz∈[−1,1] |p(z)| ≤
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AN/2
N . Then the extremal discrepancy DN (zn) of z1, . . . , zN with respect to the

d.f. (called the arcsine or equilibrium measure on [−1, 1])

g(x) =
1

π

∫ x

−1

dt√
1− t2

,

i.e.

DN (zn) = sup
[x,y)⊂[−1,1]

∣∣∣∣A([x, y);N ; zn)

N
−
(
g(y)− g(x)

)∣∣∣∣
satisfies

DN (zn) ≤
8

log 3

√
logAN
N

.

H.–P.Blatt (1992) improved this to

DN (zn) ≤ c logCN
logN

N

with c > 0 a constant, CN = max(AN , B
′
N , N) where |p′(zn)| ≥ 1/(2NB′

N ) for
n = 1, 2, . . . , N . Definite improvement was given by V.Totik (1993)

DN (zn) ≤ c
logCN
N

log

(
N

logCN

)
.

H.–P. Blatt and H.N.Mhaskar (1993) extended this to monic polynomials with zeros
on a smooth Jordan arc and V.V.Andrievskii, H.–P.Blatt and H.N.Mhaskar (2001)
studied distribution of zeros of a class of orthogonal polynomials, which includes the
so–called Pollaczek polynomials.
(III) The second estimate for DN (xn) if xn is the sequence given above was found
by F.Amoroso and M.Mignotte (1996). They also proved an upper estimate for
max|z|=1 |p(z)| in terms of DN (xn):

log

(
max
|z|=1

|p(z)|
)

≤ NDN (xn)

(
3 + log

1

DN (xn)

)
provided the polynomial p(z) with complex coefficients is such that p(0) = 1 and all
its zeros are on the unit circle.
(IV) Let a = b + c, where a, b, c are coprime positive integers. A.Borisov (1998)
defined the abc-polynomials by

fabc(x) =
bxa − axb + c

(x− 1)2
.

An application of the above mentioned Erdős – Turán theorem to fabc(x) yields that

DN (xn) ≤ 12

√
log(N + 1)

N
,
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where N = a− 2 = deg fabc(x).
(V) P.Borwein, T. Erdélyi and G.Kós (1999) proved: There is an absolute constant

c > 0 such that every polynomial p(z) =
∑N
j=0 ajz

j , with |aj | ≤ 1, |a0| = 1, and
aj ∈ C, has (i) at most cN |I| zeros on a subarc I of the length |I| of the unit circle

if |I| ≥ 1/
√
N , while (ii) it has at most c

√
N zeros if |I| ≤ 1/

√
N . Here the length

is normalized so that the unit circle has length 1. The bounds are essentially sharp.

F.Amoroso – M.Mignotte: On the distribution of the roots of polynomials, Ann. Inst. Fourier
(Grenoble) 46 (1996), no. 5, 1275–1291 (MR1427125 (98h:11101); Zbl. 0867.26009).
V.V.Andrievskii – H.–P.Blatt – H.N.Mhaskar: A local discrepancy theorem, Indag. Mathem.,
N.S. 12 (2001), no. 1, 23–39 (MR1908137 (2003g:11084); Zbl. 1013.42017).
H.–P.Blatt: On the distribution of simple zeros of polynomials, J. Approx. Theory 69 (1992),
no. 3, 250–268 (MR1164991 (93h:41009); Zbl. 0757.41011).
H.–P.Blatt – H.N.Mhaskar: A general discrepancy theorem, Ark. Mat. 31 (1993), no. 2, 219–
246 (MR1263553 (95h:31002); Zbl. 0797.30032).
A.Borisov: On some polynomials allegedly related to the abc conjecture, Acta Arith. 84 (1998),
no. 2, 109–128 (MR1614326 (99f:11140); Zbl 0903.11025).
P.Borwein – T.Erdélyi – G.Kós: Littlewood–type problems on [0, 1], Proc. London Math. Soc.,
III. Ser. 79 (1999), no. 1, 22–46 (MR1687555 (2000c:11111); Zbl. 1039.11046).
P.Erdős – P.Turán: On a problem in the theory of uniform distribution I, II , Nederl. Akad.
Wetensch., Proc. 51 (1948), 1146–1154, 1262–1269 (MR0027895 (10,372c); Zbl. 0031.25402;
MR0027896 (10,372d); Zbl. 0032.01601).(=Indag. Math. 10 (1948), 370–378, 406–413).
P.Erdős – P.Turán: On the distribution of roots of polynomials, Ann. of Math. (2) 51 (1950),
105–119 (MR0033372 (11,431b); Zbl. 0036.01501).
V.Totik: Distribution of simple zeros of polynomials, Acta Math. 170 (1993), no. 1, 1–28
(MR1208561 (95i:41011); Zbl. 0888.41003).

2.14.3. Let F (z) = a
∏n

k=1(z − rke
iϕk) (0 ≤ ϕk < 2π) be a separable

polynomial with integer coefficients of degree n. If | log a| ≤ δn, and |rk−1| ≤
ε, for k = 1, 2, . . . , n, then the finite sequence of the arguments of roots

ϕ1, ϕ2, . . . , ϕn

in the interval [0, 2π) has the discrepancy

Dn ≤ cσ,

where c > 0 is an absolute constant, and

σ = max

(
log(n+ 1)√

n
,

√
δ log

1

δ
,

√
ε log

1

ε

)

Ju.F. Belotserkovskij (Bilu): Uniform distribution of algebraic numbers near the unit circle,
Vestsi Akad. Navuk BSSR Ser. Fiz.–Mat. Navuk 1988 (1988), no. 1, 49–52, 124 (MR0937893
(89f:11110); Zbl. 0646.10040).
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2.14.4. Let

An = (xn,1, xn,2, . . . , xn,n), −1 < xn,i < 1,

be the sequence of the all roots of the nth Legendre polynomial Pn(x). Then
the sequence of single blocks An has the a.d.f.

g(x) = 1− 1
π arccosx

with respect to [−1, 1].
Notes: That is,

g(x) = lim
n→∞

1

n

n∑
i=1

c[−1,x)(xn,i) = 1− 1

π
arccosx

for x ∈ [−1, 1], cf. G. Pólya and G. Szegő (1964, Part II, Ex. 194).

G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).

2.14.5. Let θ ∈ (
√
2, 2) be such that θ2 is not a root of a polynomial with

coefficients from {−1, 0, 1}. Then the block sequence A(θ) = (An)
∞
n=1 with

the nth block

An =

(
n∑

i=0

aiθ
i ; ai ∈ {−1, 1}

)
is

dense in R.
Notes: Y.Peres and B. Solomyak (2000). They also proved that the set of all such
θ ∈ (

√
2, 2) for which A(θ) is dense is of the full measure and that it is a residual

subset of the interval (
√
2, 2). Note that the sequence cannot be dense if θ ̸∈ (

√
2, 2).

Y.Peres – B. Solomyak: Approximation by polynomials with coefficients ±1, J. Number Theory
84 (2000), no. 2, 185–198 (MR1795789 (2002g:11107); Zbl. 1081.11509).

2.14.6. Let k and l be positive integers such that k ≥ l, l ≥ 802, and p
be a given prime number and q(x) = a1x + · · · + alx

l be a polynomial with
integral coefficients a1, . . . , al and (al, p) = 1. Let N =

[
pαk
]
+ 1 for an α

which satisfies
√
log l/l ≤ α ≤ 1. Then the discrepancy of the finite sequence

q(n)

pk
mod 1, n = 1, . . . , N,
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can be estimated by

D∗
N = O

(
N1− 1

cl

)
,

where c is an absolute constant and the O–constant depends only on k and l.

A.A.Karacuba (A.A.Karatsuba): Distribution of fractional parts of polynomials of a special
type (Russian), Vestnik Moskov. Univ., Ser. I Mat., Mech. (1962), no. 3, 34–39 (MR0138613 (25
#2056); Zbl 0132.03304).

2.14.7. Let P (x) = γ1x
α1 + · · · + γqx

αq be a generalized polynomial with
γi, αi, i = 1, 2, . . . , q, real. Then the sequence

P (n) mod 1, n = 1, 2, . . . ,

is

u.d.

if and only if one of the α’s is not integral or if one of the γ’s is irrational.

Notes: D.P.Parent (1984, pp. 285–286, Solution 5.23).

Related sequences: 2.6.28, 2.14.8, 2.14.9.

D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).

2.14.8. Let P (x) = γ1x
α1 + · · · + γqx

αq be a generalized polynomial with
real γi > 0 and αi ∈ (0, 1) for i = 1, 2, . . . , q. If f is a continuous periodical
function with period T , then the sequence

f(P (n))

is

dense in the interval [m,M ],

where m = min f(x) and M = max f(x) both with x running over x ∈ R.
Notes: D.Andrica and S.Buzeteanu (1987, 2.6. Applications). They also mention
that the problem of density of sin(P (n)) in [−1, 1] for P (x) = γ1x

α1+· · ·+γqxαq +γ0
with γq ̸= 0, αi > 1 and at least one αi irrational, is open, see 2.14.9.

Related sequences: 2.6.28.

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).
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2.14.9. Let P (x) = γ1x
α1 + · · · + γqx

αq + γ0 be a generalized polynomial
with real coefficients γ1, . . . , γq, γ0, γq ̸= 0, and non–zero rational exponents
α1, . . . , αq such that at least one of the numbers γ1/π, . . . , γq/π is irrational.
Then the sequences

sin(P (n)) and cos(P (n))

are

dense in [−1, 1]

and
tan(P (n))

is

dense in R.
Notes: D.Andrica and S.Buzeteanu (1987, 3.12. Applications).

Related sequences: 2.14.8.

D.Andrica – S. Buzeteanu: Relatively dense universal sequences for the class of continuous
periodical functions of period T , Math. Rev. Anal. Numér. Théor. Approximation, Anal. Numér.
Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).

2.15 Power sequences

2.15.1. The sequence

αnσ mod 1, α ̸= 0, σ > 0, where σ is not an integer,

is

u.d.

If moreover α > 0 and 0 < σ < 1 then

DN = O(N τ−1), where τ = max(σ, 1− σ).

Notes: (I) The u.d. of αnσ mod 1 was first shown by P.Csillag (1930). This result
follows from Theorem 2.6.1 (cf. [KN, p. 31, Exer. 3.9]). The sequence nσ is u.d. in
R, cf. the def. on p. 1 – 6 .
(II) For the estimation of DN cf. [KN, p. 130, Exer. 3.1] and this result goes back to
H.Niederreiter (1971). J. Schoißengeier (1981) showed that a sharper (and explicit)
result can be proved for the discrepancy DN if α > 0 and 1/2 < σ < 1. Namely that
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DN = O(Nσ−1−ε) for some ε > 0. He also asks what is the best possible ε > 0.
(III) u.d. of αnσ mod 1 was also proved in G.Pólya and G. Szegő (1964, p. 72,
No. 175).
(IV) If xn is a real sequences then the autocorrelation function (compare with
3.11) has the form

ψ(k) = lim
N→∞

N∑
n=1

(
1

2
− {xn}

)(
1

2
− {xn+k}

)
.

D.L. Jagerman (1963) proved that if xn = nσ mod 1 and 0 < σ < 1, then ψ(k) =
1/12 for k = 1, 2, . . . . If xn = n2θ mod 1 with irrational θ then he also proved that
ψ(k) = 0 for all k = 1, 2, . . . . The autocorrelation function of xn = nθ mod 1 does
not vanish identically.

Related sequences: 2.15.3, 2.19.2.

P.Csillag: Über die gleichmässige Verteilung nichtganzer positiver Potenzen mod 1, Acta Litt.
Sci. Szeged 5 (1930), 13–18 (JFM 56.0898.04).
D.L. Jagerman: The autocorrelation function of a sequence uniformly distributed modulo 1, Ann.
Math. Statist. 34 (1963), 1243–1252 (MR0160309 (28 #3523); Zbl. 0119.34503).
H.Niederreiter: Almost–arithmetic progressions and uniform distribution, Trans. Amer. Math.
Soc. 161 (1971), 283–292 (MR0284406 (44 #1633); Zbl. 0219.10040).
G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).
J. Schoißengeier: On the discrepancy of sequences (αnσ), Acta Math. Acad. Sci. Hungar. 38
(1981), 29–43 (MR0634563 (83i:10067); Zbl. 0484.10032).

2.15.2. Let α and β be positive real numbers and 0 < σ < 1. Let the
double sequence (αm+ βn)σ, m = 1, 2, . . . , n = 1, 2, . . . , be reordered to an
ordinary sequence xn, n = 1, 2, . . . , in such a way that for every N the initial
segment xn, n = 1, 2, . . . , N2, coincide with (αm+ βn)σ, m,n = 1, 2, . . . , N .
Then the sequence

xn mod 1

is

u.d.

Notes: [KN, p. 25, Exer. 2.30]. This follows directly from 2.6.16.

Related sequences: 2.12.7

2.15.3. The sequence

αn+ βnσ mod 1, with β ̸= 0, 0 < σ < 1/2,
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is

u.d.

and for its discrepancy we have

DN ≪ N−σ/2.

Notes: (I) This was proved by Y.Ohkubo (1999) using his result 2.6.26.
(II) What concerns the lower bound for DN K.Goto and Y.Ohkubo (2004) proved
that if α is irrational with bounded partial quotients, β > 0, and 0 < σ < 1 then

DN ≥ cN (σ−3)/4

for all N with a positive constant c.
(III) For the logarithmic discrepancy of αn + βn1−δ mod 1, with 0 < δ < 1, see
2.12.31, Th.2.12.31.1.

K.Goto – Y.Ohkubo: Lower bounds for the discrepancy of some sequences, Math. Slovaca 54
(2004), no. 5, 487–502 (MR2114620 (2005k:11153); Zbl. 1108.11054).
Y.Ohkubo: Notes on Erdős – Turán inequality, J. Austral. Math. Soc. A 67 (1999), no. 1, 51–57
(MR1699155 (2000d:11100); Zbl. 0940.11029).

2.15.4. For the sequence

α
√
n mod 1

define

ND+
N (α) = sup

0≤x<1

(
N∑

n=1

c[0,x)({α
√
n})−Nx

)
,

ND−
N (α) = sup

0≤x<1

(
Nx−

N∑
n=1

c[0,x)({α
√
n})

)
.

(
Evidently, D∗

N (α) = max
(
D+

N (α), D−
N (α)

)
and DN (α) = D+

N (α)+D−
N (α)

)
.

If α2 /∈ Q, α > 0, then

lim sup
N→∞

√
ND+

N (α) = lim sup
N→∞

√
ND−

N (α) = lim sup
N→∞

√
ND∗

N (α)

= lim
N→∞

√
NDN (α) =

1

4α
,

lim inf
N→∞

√
ND+

N (α) = lim inf
N→∞

√
ND−

N (α) = 0
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and

lim inf
N→∞

√
ND∗

N (α) =
1

8α
.

Notes: This was proved by J. Schoißengeier (1981). The case α2 ∈ Q was inves-
tiagted by C.Baxa and J. Schoißengeier (1998). They described a method how to cal-
culate lim supN→∞

√
ND+

N (α) and lim supN→∞
√
ND−

N (α) and thus also

lim supN→∞
√
ND∗

N (α). An analogous result for lim supN→∞
√
NDN (α) can be

found in C.Baxa ([a]1998) and for lim infN→∞
√
ND+

N (α) in Baxa (1998). E.g. if

α =
√

q
p then he proved

lim inf
N→∞

√
ND+

N

(√
q

p

)
=



1√
p , if q = 1,(
1 + 1

8p

)
1√
2p
, if q = 2,(

3
2 + 1

8p

)
1√
3p
, if q = 3 and p ≡ 2 (mod 3),

1√
3p
, if q = 3 and p ≡ 1 (mod 3).

Related sequences: 2.15.1

C.Baxa: On the discrepancy of the sequence (α
√
n). II , Arch. Math. (Basel) 70 (1998), no. 5,

366–370 (MR1612590 (99f:11096); Zbl. 0905.11033).
[a] C.Baxa: Some remarks on the discrepancy of the sequence (α

√
n), Acta Math. Inf. Univ.

Ostraviensis 6 (1998), no. 1, 27–30 (MR1822511 (2002a:11088); Zbl. 1024.11053).
C.Baxa – J. Schoißengeier: On the discrepancy of the sequence (α

√
n), J. Lond. Math. Soc.

(2) 57 (1998), no. 3, 529–544 (MR1659825 (99k:11118); Zbl. 0938.11041).
J. Schoißengeier: On the discrepancy of sequences (αnσ), Acta Math. Acad. Sci. Hungar. 38
(1981), 29–43 (MR0634563 (83i:10067); Zbl. 0484.10032).

2.15.5. Let k ≥ 2 be an integer. Then the block sequence X
(k)
n with

X(k)
n =

(
k

√
n

1
, k
√
n

2
, . . . , k

√
n

n

)
mod 1, n = 1, 2, . . . ,

has the a.d.f.

gk(x) =
∞∑
n=1

1

nk
+

(−1)k−1

(k − 1)!

dk

dx
log Γ(x+ 1).

I.J. Schoenberg: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928),
171–199 (MR1544950; JFM 54.0212.02).

2.15.6. If c > 1 and 2 < p < q−1 then the discrepancy of the finite sequence

(cNp − np)1/q mod 1, n = 1, 2, . . . , N,
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satisfies
DN = O(N−1/q) and lim sup

N→∞
N1/qDN > 0.

Related sequences: 3.10.7

W.–G.Nowak: Die Diskrepanz der Doppelfolgen (cNp − np)1/q und einige Verallgemeinerun-
gen, Österreich. Akad. Wiss. Math.–Natur. Kl. Sitzungsber. II 187 (1978), no. 8–10, 383–409
(MR0548968 (80m:10029); Zbl. 0411.10025).

2.15.7. Given real numbers a > 0, b ≥ 0 and an α with 0 < α < 1, let

xn = (an+ b)α mod 1

and

yn =
{xn + nλ}+ {xn − nλ}

2
.

Then the a.d.f. of yn exists for every real λ. In particular:

1. If λ is irrational, then

g(x) =

{
2x2, if 0 ≤ x ≤ 1/2,
1− 2(1− x)2, if 1/2 ≤ x ≤ 1.

2. If λ is rational and 2λ is an integer, then yn is

u.d.

3. If λ is rational and 2λ is not integral, then yn is not u.d., but it is

dense in [0, 1].

Notes: A.M.Ostrowski (1980) proved this result for more general u.d. sequences
xn mod 1.

A.M.Ostrowski: On the distribution function of certain sequences (mod 1), Acta Arith. 37
(1980), 85–104 (MR0598867 (82d:10073); Zbl. 0372.10036).

2.16 Sequences involving the integer part function

2.16.1. Let θ and α be non–zero real numbers and let

xn = α[θn] mod 1.
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(i) If θ is rational then the sequence xn is
u.d.

for all irrational α.

(ii) If θ is irrational then the sequence xn is
u.d.

if and only if 1, θ, and αθ are linearly independent over the rationals.

Notes: (I) [KN, p. 310, Th. 1.8] and [KN, p. 318, Notes]. The results may be traced
to D.L.Carlson (1971) who also studied sequences α[P (n)] with a polynomial P (x).
For a proof of (ii) cf. D.P. Parent (1984, p. 254, Exer. 5.28).
(II) The integer sequence [αn+ β], n = 1, 2, . . . , is called the Beatty sequence.

S.Beatty: Problem 3173 , Amer. Math. Monthly 33 (1926), no. 3, 159 (solution: ibid. 34 (1927),
no. 3, 159). (MR1520888; JFM 53.0198.06).
D.L.Carlson: Good sequences of integers, Ph.D. Thesis, Univ. of Colorado, 1971 (MR2621141).
D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).

2.16.2. The sequence
[αn]γn mod 1

is

u.d.

if and only if either
(i) α2 /∈ Q and γ is irrational, or
(ii) α2 ∈ Q but γ is rationally independent of 1, α.

Notes: I.J. H̊aland (1993, Prop. 5.3).

I.J. Håland: Uniform distribution of generalized polynomial , J. Number Theory 45 (1993), 327–
366 (MR1247389 (94i:11053); Zbl. 0797.11064).

2.16.3. If α /∈ Q and 0 ̸= β ∈ R then the sequence

α[βn]2 mod 1

is

u.d.

Notes: [DT, p. 104, Coroll. 1.114]: Since αn2 has empty spectrum and [βn] is
almost periodic, we can apply 2.4.2 proved by M.Mendès France (1973).
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M.Mendès France: Les suites à spectre vide et la répartition modulo 1 , J. Number Theory 5
(1973), 1–15 (MR0319909 (47 #8450); Zbl. 0252.10033).

2.16.4. The sequence

[αn][βn]γ mod 1

is

u.d.

if and only if either
(i) α/β ̸=

√
c for all c ∈ Q+ and γ is irrational, or

(ii) α/β =
√
c for some c ∈ Q+ but γ is rationally independent of 1 and

√
c.

Notes: I.J. H̊aland (1993, Prop. 5.3). He proves the following examples:
(I) The sequence

[
√
2n]2

√
2 mod 1

is

u.d.

For an alternative proof he uses the u.d. of (2
√
2n2,

√
2n) mod 1 (cf. 3.9.2).

(II) The sequence

2[
√
2n]2

√
2n mod 1

is

not u.d.

and has the a.d.f.

g(x) =
√
1− x.

As basis for an alternative proof the author uses the observation made by I.Z.Ruzsa
that

2[
√
2n]

√
2n ≡ 1− {

√
2n}2 mod 1.

(III) The sequence

[
√
2n][

√
3n]

√
6 mod 1

is

not u.d.

I.J. Håland: Uniform distribution of generalized polynomial , J. Number Theory 45 (1993), 327–
366 (MR1247389 (94i:11053); Zbl. 0797.11064).

2.16.5. If α1, . . . , αk, k ≥ 3, are non–zero real numbers and γ is irrational
then the sequence

[α1n][α2n] . . . [αkn]γ mod 1
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is

u.d.
I.J. Håland: Uniform distribution of generalized polynomial of the product type, Acta Arith. 67
(1994), 13–27 (MR1292518 (95g:11075); Zbl. 0805.11054).

2.16.6. The sequence

xn = α1n[α2n . . . [αk−1n[αkn]] . . . ] mod 1

is

u.d.

In the case that α1 = α2 = · · · = αk = α then the sequence xn is u.d. if and
only if αk is irrational with k a prime.
I.J. Håland – D.E.Knuth: Polynomials involving the floor function, Math. Scand. 76 (1995),
no. 2, 194–200 (MR1354576 (96f:11098); Zbl. 0843.11005).

2.16.7.

Notes: Let pk
qk
, k ≥ 0, be the kth convergent of the irrational number θ. If λ is real

then the θ is called λ–admissible if there exists a constant c′ = c′(θ, λ) such that
qk+1 < c′q1+λk for k ≥ 0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If c > 0 is real then for any irrational θ the sequence

xn = [nc]θ mod 1

is

u.d.

and if moreover the following inequalities 1 < c < 3
2 , 0 ≤ λ ≤ vc − 3 with

v = 4
3−2c are fulfilled, and irrational number θ is λ–admissible, then we have

DN = O
(
logN

N
1
v

)
.

Notes: This was proved by G.J.Rieger (1997, Th. 1,2) which showed that the above
assumptions imply that DN → 0. He also writes that the referee pointed out that
using an argument similar to Carlsom’s one (see [KN, pp. 310–311]) it can be shown
that the sequence xn is u.d. for any real c > 0.

G.J.Rieger: On the integer part function and uniform distribution mod 1, J. Number Theory 65
(1997), no. 1, 74–86 (MR1458203 (98e:11089); Zbl. 0886.11047).
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2.16.8. If c, 1 < c < 7
6 , and α, 0 < α < 1 are real numbers then the

sequence

xn = [nc](log n)α mod 1

is

u.d.

with discrepancy

DN = O

(
1

(logN)
1−α
2

)
.

G.J.Rieger: On the integer part function and uniform distribution mod 1, J. Number Theory 65
(1997), no. 1, 74–86 (MR1458203 (98e:11089); Zbl. 0886.11047).

2.17 Exponential sequences

Notes: J.F.Koksma (1935) proved that the sequence λθn mod 1 with λ ̸= 0 fixed
is u.d. for almost all real θ > 1. If we take λ = 1 then we get that the sequence
θn mod 1 is u.d. for almost 6 all real numbers θ > 1. However, no explicit example
of a real number θ is known for which this sequence is u.d. If θ > 1 is fixed then
H.Weyl (1916) proved that the sequence λθn mod 1 is u.d. for almost all real λ.
A.D.Pollington (1983) proved that the Hausdorff dimension of the set of all λ ∈ R
for which the sequence λθn mod 1 is nowhere dense is ≥ 1

2 .

J.F.Koksma: Ein mengentheoretischer Satz ueber die Gleichverteilung modulo Eins, Compositio
Math. 2 (1935), 250–258 (MR1556918; Zbl. 0012.01401; JFM 61.0205.01).
A.D.Pollington: Sur les suites {kθn}, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23,
941–943 (MR0777581 (86i:11034); Zbl. 0528.10033).
E.W.Weisstein: Power fractional parts, MathWorld (http://mathworld.wolfram.com/PowerFrac
tionalParts.html).
H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).

2.17.1. Open problem. Characterize the distribution of the sequence(
3

2

)n

mod 1.

6The silver ratio θ = 1 +
√
2 and the golden ratio θ = (1 +

√
5)/2 are two exceptions, cf.

E.W.Weisstein. More precisely, all PV (cf. 2.17.8) and Salem numbers (cf. 3.21.5) are
also exceptions.
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Notes: The question seems to be difficult. Some of the most known related con-
jectures say that:
(i) (3/2)n mod 1 is u.d. in [0, 1].
(ii) (3/2)n mod 1 is dense in [0, 1].
(iii) lim supn→∞{(3/2)n} − lim infn→∞{(3/2)n} > 1/2

(
T.Vijayaraghavan (1940)

)
.

(iv) there exists no 0 ̸= ξ ∈ R such that 0 ≤ {ξ(3/2)n} < 1/2 for all n = 0, 1, 2, . . .
(K.Mahler (1968). (This Mahler conjecture is true, if the sequence [ξ(3/2)n], n =
1, 2, . . . , contains infinitely many odd numbers for each ξ > 0.)
(v) There is no 0 ̸= ξ ∈ R such that the closure of

{
{ξ(3/2)n} ; n = 0, 1, 2, . . .

}
is

nowhere dense in [0, 1].
Some partial affirmative answers:
(I) L. Flatto, J.C. Lagarias and A.D.Pollington (1995) showed that for every ξ > 0
we have lim supn→∞{ξ(3/2)n} − lim infn→∞{ξ(3/2)n} ≥ 1/3 .
(II) G.Choquet (1980) proved the existence of infinitely many ξ ∈ R for which
1/19 ≤ {ξ(3/2)n} ≤ 18/19 for n = 0, 1, 2, . . . . Him is ascribed the conjecture (v).
(1) A.Dubickas (2006) proved that the sequence of fractional parts {ξ(3/2)n}, n =
1, 2, . . . , has at least one limit point in the interval [0.238117 . . . , 0.761882 . . . ] of
length 0.523764 . . . for any ξ ̸= 0. This immediately follows from:
(2) A.Dubickas (2006): If ξ ̸= 0, then the sequence ∥ξ(3/2)n∥, n = 1, 2, . . . , has a
limit point ≥ (3− T (2/3))/12 = 0.238117 . . . and a limit point ≤ (1 + T (2/3))/4 =
0.285647 . . . , where T (x) =

∏∞
n=0

(
1− x2

n)
.

(3) A.Dubickas (2007) derived from 2.17.4(V) that {ξ(−3/2)n} has a limit point
≤ 0.533547 and a limit point ≥ 0.466452.
(4) S.Akiyama, C. Frougny and J. Sakarovitch (2005) proved that there is a ξ ̸= 0
such that ∥ξ(3/2)n∥ < 1/3 for n = 1, 2, . . . .
(5) A.Pollington (1981) proved that there is a ξ ̸= 0 such that ∥ξ(3/2)n∥ > 4/65 for
n = 1, 2, 3, . . . .
(III) R.Tijdeman (1972) showed that for every pair of integers k,m with k ≥ 2 and
m ≥ 1 there exists ξ ∈ [m,m + 1) such that 0 ≤ {ξ((2k + 1)/2)n} ≤ 1/(2k − 1) for
n = 0, 1, 2, . . . .
(IV) O. Strauch (1997) proved that every distribution function g(x) of ξ(3/2)n mod 1
satisfies the functional equation

g(x/2) + g((x+ 1)/2)− g(1/2) =

= g(x/3) + g((x+ 1)/3) + g((x+ 2)/3)− g(1/3)− g(2/3). (∗)

The following d.f.’s

g1(x) =


0, if x ∈ [0, 2/6],

x− 1/3, if x ∈ [2/6, 3/6],

2x− 5/6, if x ∈ [3/6, 5/6],

x, if x ∈ [5/6, 1],

and
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g2(x) =



0, if x ∈ [0, 1/6],

2x− 1/3, if x ∈ [1/6, 3/12],

4x− 5/6, if x ∈ [3/12, 5/18],

2x− 5/18, if x ∈ [5/18, 2/6],

7/18, if x ∈ [2/6, 8/18],

x− 1/18, if x ∈ [8/18, 3/6],

8/18, if x ∈ [3/6, 7/9],

2x− 20/18, if x ∈ [7/9, 5/6],

4x− 50/18, if x ∈ [5/6, 11/12],

2x− 17/18, if x ∈ [11/12, 17/18],

x, if x ∈ [17/18, 1]

are non–trivial solutions of (∗). On the other hand, the d.f.

g3(x) =

{
x, if x ∈ [0, 2/3],

x2 − (2/3)x+ 2/3, if x ∈ [2/3, 1]

is not a d.f. of ξ(3/2)n mod 1 for any ξ ∈ R (cf. O. Strauch (1999, p. 126)).

Strauch (1997) also introduced the notion of a set of uniqueness for g. Here an
X ⊂ [0, 1] is said to be a set of uniqueness if g1, g2 are two d.f.’s of ξ(3/2)n mod 1
with g1(x) = g2(x) for x ∈ X then g1(x) = g2(x) for every x ∈ [0, 1]. He gives e.g. the
following sets of uniqueness: X = [0, 2/3], X = [1/3, 1] or X = [2/9, 1/3] ∪ [1/2, 1].
(VI) The elements of the sequence (3/2)n appear in the Waring problem. Let

g(k) = min
{
s ; a = nk1 + · · ·+ nks for all a ∈ N and suitable ni ∈ N0

}
.

S. Pillai (1936) proved that if k ≥ 5 and if we write 3k = q2k+r with 0 < r < 2k, then

g(k) = 2k+
[(

3
2

)k]− 2, provided that r+ q < 2k, i.e. 3k− 2k
[(

3
2

)k]
< 2k−

[(
3
2

)k]
.

F.Beukers (1981) has shown that ∥
(
3
2

)k ∥ > 2(−0.9)k for all integers k > 5000, but
this result is not sufficient to derive the above formula for g(k).

S.Akiyama – C. Frougny – J. Sakarovitch: On the representation of numbers in a rational
base, in: Proceedings of Words 2005, Montréal, Canada, 2005, (S.Brlek & C.Reutenauer, eds. ed.),
Monographies du LaCIM 36, UQaM, 2005, pp. 47–64 (https://www.irif.fr/~cf//publications/
AFSwords05.pdf).
Quoted in: 2.17.1
F.Beukers: Fractional parts of power of rationals, Math. Proc. Camb. Phil. Soc. 90 (1981),
no. 1, 13–20 (MR0611281 (83g:10028); Zbl. 0466.10030).

G.Choquet: Construction effective de suites (k(3/2)n). Étude des measures (3/2)–stables, C.R.
Acad. Sci. Paris, Ser. A–B 291 no. 2, (1980), A69–A74 (MR0604984 (82h:10062d); Zbl. 0443.10035).
A.Dubickas: On the distance from a rational power to the nearest integer , J. Number Theory
117 (2006), 222–239 (MR2204744 (2006j:11096); Zbl. 1097.11035).
A.Dubickas: On a sequence related to that of Thue-Morse and its applications, Discrete Mathe-
matics 307 (2007), no. 1, 1082–1093 (MR2292537 (2008b:11086); Zbl. 1113.11008).
L. Flatto – J.C. Lagarias – A.D.Pollington: On the range of fractional parts {ζ(p/q)n}, Acta
Arith. 70 (1995), no. 2, 125–147 (MR1322557 (96a:11073); Zbl. 0821.11038).
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K.Mahler: An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), 313–321
(MR0227109 (37 #2694); Zbl. 0155.09501).
S.S. Pillai: On Waring’s problem, Journal of Indian Math. Soc. (2) 2 (1936), 16–44; Errata ibid.
p. 131 (Zbl. 0014.29404; JFM 62.1132.02).
A.D.Pollington: Progressions arithmétiques généralisées et le problème des (3/2)n, C. R. Acad.
Sci. Paris Sér. I Math. 292 (1981), no. 7, 383–384 (MR0609757 (82c:10060); Zbl. 0466.10038).
O. Strauch: On distribution functions of ζ(3/2)n mod 1, Acta Arith. 81 (1997), no. 1, 25–35
(MR1454153 (98c:11075); Zbl. 0882.11044).
O. Strauch: Distribution of Sequences (in Slovak), Mathematical Institute of the Slovak Academy
of Sciences, DSc Thesis, Bratislava, Slovakia, 1999.
R.Tijdeman: Note on Mahler’s 3/2–problem, Norske Vid. Selske. Skr. 16 (1972), 1–4 (Zbl.
0227.10025).
T.Vijayaraghavan: On the fractional parts of the powers of a number. I , J. London Math. Soc.
15 (1940), 159–160 (MR0002326 (2,33e); Zbl. 0027.16201).

2.17.2. Open problem. Characterize the distribution of the sequence

en mod 1, n = 1, 2, . . .

2.17.3. Open problem. Characterize the distribution of the sequence

πn mod 1, n = 1, 2, . . .

2.17.4. Open problem. If p > q > 1 are coprime integers then distribution
of the sequence

xn =

(
p

q

)n

mod 1, n = 1, 2, . . . ,

is a well–known and largely unsolved problem. Although it is conjectured
that xn is u.d., it is not even known if it is dense in [0, 1]. It is known that:

(I) xn has an infinite number of points of accumulation,

(II) if ξ is a positive real number then

lim sup
n→∞

{
ξ

(
p

q

)n}
− lim inf

n→∞

{
ξ

(
p

q

)n}
≥ 1

p
.

Notes: (I) This was firstly proved by Ch.Pisot (1938), then by T.Vijayaragha-
van (1940) and L.Rédei (1942). The density of xn in [0, 1] is a problem posed
by Pisot and Vijayaraghavan.
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(II) L. Flatto, J.C. Lagarias and A.D.Pollington (1995).
(III) The existence of an irrational limit point of xn is also an open question. For
its existence it is necessary that lim supn→∞ l(xn) = ∞, where l(p/q) denotes the
number of terms in the the continued fraction expansion for p/q = [a0; a1, . . . , al].
In this connection M.Mendès France (1971) conjectures that

lim
n→∞

l(xn) = ∞.

This was proved by Y.Pourchet (unpublished) and G.Choquet (1981). See also
M.Mendès France (1993).

(IV) A.Dubickas (2006): Let T (x) =
∏∞
n=0(1 − x2

n

), and E(x) = 1−(1−x)T (x)
2x . If

ξ ̸= 0 and p > q > 1 are coprime integers, then the sequence ∥ξ(p/q)n∥, n = 1, 2, . . . ,
has a limit point ≥ E(q/p)/p and a limit point ≤ 1/2−(1−e(q/p))T (q/p)/2q, where
e(q/p) = 1− (q/p) if p+ q is even, and e(q/p) = 1 if p+ q is odd.
(V) A.Dubickas (2007): If p > q > 1 are two coprime integers and ξ ̸= 0 a real
number, then the sequence of fractional parts {ξ(−p/q)n}, n = 0, 1, 2, . . . , has a
limit point ≤ 1− (1−F (q/p))/q, and a limit point ≥ (1−F (q/p))/q, where F (x) =∏∞
k=1(1− x(2

k+(−1)k−1)/3).
(VI) S.D.Adhikari, P.Rath and N. Saradha (2005) proved that every d.f. g(x) of
{ξ(p/q)n} satisfies the functional equation∑q−1
i=0 g

(
x+i
q

)
−
∑q−1
i=0 g

(
i
q

)
=
∑p−1
i=0 g

(
x+i
p

)
−
∑p−1
i=0 g

(
i
p

)
.

(VII) S.D.Adhikari, P.Rath and N. Saradha (2005) generalized 2.17.1 (V) proving
that every interval I ⊂ [0, 1] of length |I| = (p− 1)/q and every complement [0, 1] \
[(i − 1)/p, i/p], i = 1, 2, . . . , p, are sets of uniqueness of d.f.’s of {ξ(p/q)n}. In the
second case, if j/q ∈ [(i− 1)/p, i/p] for some 1 ≤ j < q they assume p ≥ q2 − q.

S.D.Adhikari – P.Rath – N. Saradha: On the set of uniqueness of a distribution function of
{ζ(p/q)n}, Acta Arith. 119 (2005), no. 4, 307–316 (MR2189064 (2006m:11112); Zbl. 1163.11333).
G.Choquet: θ–fermés et dimension de Hausdorff. Conjectures de travail. Arithmétique des θ-
cycles (oú θ = 3/2), C.R. Acad. Sci. Paris, Sér. I Math. 292 (1981), no. 6, 339–344 (MR0609074
(82c:10057); Zbl. 0465.10042).
A.Dubickas: On the distance from a rational power to the nearest integer , J. Number Theory
117 (2006), 222–239 (MR2204744 (2006j:11096); Zbl. 1097.11035).
A.Dubickas: On a sequence related to that of Thue-Morse and its applications, Discrete Mathe-
matics 307 (2007), no. 1, 1082–1093 (MR2292537 (2008b:11086); Zbl. 1113.11008).
L. Flatto – J.C. Lagarias – A.D.Pollington: On the range of fractional parts {ζ(p/q)n}, Acta
Arith. 70 (1995), no. 2, 125–147 (MR1322557 (96a:11073); Zbl. 0821.11038).
M.Mendès France: Quelques problèmes relatifs à la théorie des fractions continues limitées,
Séminaire de Théorie des Nombres, 1971–1972, Exp. No. 4, Univ. Bordeux I, Talence, 1972, 9 pp.
(MR0389775 (52 #10606); Zbl. 0278.10030).
M.Mendès France: Remarks and problems on finite and periodic continued fractions, Enseign.
Math. (2) 39 (1993), no. 3–4 249–257 (MR1252067 (94i:11045); Zbl. 0808.11007).
Ch.Pisot: La réparatition modulo 1 et les nombres algébraiques, (French), Diss., Paris 1938, 44 pp.
(Zbl. 0019.00703).
Ch.Pisot: La réparatition modulo 1 et les nombres algébraiques, Ann. Scuola norm. sup. Pisa,
Sci. fis. mat. (2) 7 (1938), 205–248 (Identical with the previous item (JFM 64.0994.01)).
L.Rédei: Zu einem Approximationssatz von Koksma, Math. Z. 48 (1942), 500–502 (MR0008232
(4,266c); JFM 68.0083.03).
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T.Vijayaraghavan: On the fractional parts of the powers of a number. I , J. London Math. Soc.
15 (1940), 159–160 (MR0002326 (2,33e); Zbl. 0027.16201).

2.17.5. Let θ = q
1
k be irrational, where k and q ≥ 2 are integers. Then the

set of limit points of the sequence

θn mod 1, n = 1, 2, . . .

is infinite.
T.Vijayaraghavan: On decimals of irrational numbers, Proc. Indian Acad. Sci., Sect. A 12
(1940), 20 (MR0002325 (2,33d); Zbl. 0025.30803).

2.17.6.

Notes: In this item, contrary to 1.8.1, we shall understand under the a.d.f. g(x)

of xn the point–wise limit limN→∞
A([0,x);N ;xn)

N = g(x) for every x ∈ [0, 1].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let θ > 1 be a real number.

(I) There exists uncountably many ξ such that the sequence

ξθn mod 1, n = 1, 2, . . . ,

does not have the a.d.f.

(II) On the other hand, for an arbitrary d.f. g(x) and for any sequence un
of real numbers which satisfies limn→∞(un+1 − un) = ∞, there exists a real
number θ such that the sequence

θun mod 1, n = 1, 2, . . . ,

has

g(x) as its a.d.f.

Notes: (I) H.Helson and J.–P.Kahane (1965).
(II) A. Zame (1967).
(III) F. Supnick, H.J. Cohen and J.F.Keston (1960)

(
and also H.Ehlich (1961) and

E.C.Posner (1962) by different methods
)
solved the following two problems posed

by Vijayaraghavan:
• If three different positive powers of θ are equal mod 1, e.g. θn1 = θn2 = θn3 mod 1,
then θn1 , θn2 , θn3 are integers.
• If two different powers of θ are equal mod 1 for infinitely many pairs of powers,
then a positive integral power of θ is a rational integer.
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H.Ehlich: Die positiven Lösungen der Gleichung ya − [ya] = yb − [yb] = yc − [yc], Math. Z. 76
(1961), 1–4 (MR0122789 (23 #A123); Zbl. 0099.02703).
H.Helson – J.–P.Kahane: A Fourier method in diophantine problems, J. Analyse Math. 15
(1965), 245–262 (MR0181628 (31 #5856); Zbl. 0135.10804).
E.C.Posner: Diophantine problems involving powers modulo one, Illinois J. Math. 6 (1962), 251–
263 (MR0137679 (25 #1129); Zbl. 0107.04301).
F. Supnick – H.J. Cohen – J.F.Keston: On the powers of a real number reduced modulo one,
Trans. Amer. Math. Soc. 94 (1960), 244–257 (MR0115980 (22 #6777); Zbl. 0093.26003).
A.Zame: The distribution of sequences modulo 1, Canad. J. Math. 19 (1967), 697–709 (MR0217020
(36 #115); Zbl. 0161.05001).

2.17.7. Let θ > 1 be an algebraic integer such that all the conjugates
of θ have modulus ≤ 1. If the modulus of some (and hence of all but one)
conjugate of θ is unity, then the sequence

θn mod 1, n = 1, 2, . . . ,

is

dense in [0, 1], but not u.d.

Notes:
(I) The real algebraic integer θ > 1 is called a Salem number if all its conjugates
lie inside or on the circumference of the unit circle and at least one of conjugates of
θ lies on the circumference of the unit circle, see 3.21.5.
(II) It is well known that if θ is a Salem number of degree d, then d is even, d ≥ 4
and 1/θ is the only conjugate of θ with the modulus less than 1, while all the other
conjugates are of modulus 1. Salem numbers are the only known concrete numbers
whose powers are dense mod 1 in [0, 1].
(III) Toufik Zaimi (2006): Let θ be a Salem number, λ be a nonzero element of the
field Q(θ) and denote ∆ = lim supn→∞{λθn} − lim infn→∞{λθn}. Then
(i) ∆ > 0.

(ii) If λ is an algebraic integer, then ∆ = 1. Furthermore, for any 0 < t < 1 there is
an algebraic integer λ and a subinterval I ⊂ [0, 1] of length t such that the sequence
{λθn}, n = 1, 2, . . . has no limit point in I.

(iii) If θ − 1 is a unit, then ∆ ≥ 1/L, where L is the sum of the absolute values of
the coefficients of the minimal polynomial of θ.

(iv) If θ − 1 is not a unit, then infλ∆ = 0.
(IV) A.Dubickas ([a]2006): If θ is either a P.V. or a Salem number and λ ̸= 0 and
λ /∈ Q(θ), then ∆ ≥ 1/L, where ∆ and λ are defined as in (III).
(V) A.Dubickas (2006, Coroll. 3 of Th. 2): Let d ≥ 2 be a positive integer. Suppose
that α > 1 is a root of the polynomial xd − x − 1. Let ξ be an arbitrary positive
number that lies outside the field Q(α) if d = 2 or d = 3. Then the sequence
[ξαn], n = 1, 2, . . . , contains infinitely many even numbers and infinitely many odd
numbers. Thus α satisfies Mahler’s conjecture (2.17.1 (iv)), i.e. 0 ≤ {ξαn} < 1/2
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does not holds for all n = 1, 2, . . . .
(VI) A. Dubickas’ examples ([a]2006):

• If θ > 1 is a root of x2 − 7x+ 2, then limn→∞
{

2+3θ
4 θn

}
= 1

4 .

• If θ > 1 is a root of x3 − x − 1, then the sequence {ζθn}, n = 1, 2, . . . , does not
have a limit for every ζ > 0.

• If θ > 1 is a root of x3 − x − 1, then the set of limit points of the sequence
{(2/3 + θ/3)θn}, n = 1, 2, . . . , is 0, 1/3, and 1.

[a] A.Dubickas: On the limit points of the fractional parts of power of Pisot numbers, Archivum
Mathematicum (Brno) 42 (2006), 151–158 (MR2240352 (2007b:11167); Zbl. 1164.11026).
A.Dubickas: Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc.
38 (2006), no. 1, 70–80 (MR2201605 (2006i:11080); Zbl. 1164.11025).
Ch.Pisot – R. Salem: Distribution modulo 1 of the powers of real numbers larger than 1, Com-
positio Math. 16 (1964), 164–168 (MR0174547 (30 #4748); Zbl. 0131.04804).
T. Zäımi: An arithmetical property of powers of Salem numbers, J. Number Theory 120 (2006),
179–191 (MR2256803 (2007g:11080); Zbl. 1147.11037).

2.17.7.1 If λ is a Salem number of degree 4, then the sequence

nλn mod 1, n = 1, 2, . . .

is

u.d.

Notes:
(I) D.Berend and G.Kolesnik (2011). They precisely proved: Let λ be a Salem
number of degree 4 and P (x) a nonconstant polynomial with integer coefficients.
Then the sequence

(P (n)λn, P (n+ 1)λn+1, P (n+ 2)λn+2, P (n+ 3)λn+3) mod 1, n = 1, 2, . . .

is

u.d.

D.Berend – G.Kolesnik: Complete uniform distribution of some oscillating sequences, J. Ra-
manujan Math. Soc. 26 (2011), no. 2, 127–144 (MR2815328 (2012e:11134); Zbl. 1256.11041).

2.17.8.
Notes: A real algebraic integer θ > 1 is called a P.V. number (Pisot – Vi-
jayaraghavan number) if all its conjugates ̸= θ lie strictly inside the unit circle.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let θ be a P.V. number. Then

θn mod 1 → 0 as n→ ∞.
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Notes: For the history of P.V. numbers consult D.W.Boyd (1983–84):
(I) A.Thue (1912) proved that θ is a P.V. number if and only if {θn} = O(cn) for
some 0 < c < 1.
(II) G.H.Hardy (1919) proved that if θ > 1 is any algebraic number and λ > 0
is a real number so that {λθn} = O(cn), (0 < c < 1), then θ is a P.V. number.
Hardy posed an interesting and still unanswered question of whether there is a
transcendental numbers θ > 1 for which a λ > 0 exists such that {λθn} → 0.
(III) T.Vijayaraghavan (1941) proved that if θ > 1 is an algebraic number and if
θn, n = 1, 3, . . . , has only a finite set of limit points, then θ is a P.V. number.
(IV) Ch. Pisot (1937, [a]1937) proved that if θ > 1 and λ > 0 are real numbers such
that

∑∞
n=1{λθn} < +∞, then θ is a P.V. number.

Pisot (1928) proved that if θ > 1 and there exits a λ, 1
θ ≤ λ ≤ 1, such that∑∞

n=1 sin
2(πλθn) < +∞, then θ is a P.V. number.

(V). In (1946) Pisot proved the following generalization of (III): Let θ > 1 and λ > 0
be real numbers. If θ is algebraic, then the set of limit points of {λθn} is finite if
and only if θ is a P.V. number and λ is an algebraic number from the field generated
by θ. In this connection define E(θ) = {θn mod 1 ; n ∈ N} and E′(θ) is the derived
set of E(x) i.e. the set of all accumulation points of E(x). Define E(k)(θ) recursively
as E(k)(θ) = (E(k−1)(θ))′. Pisot’s (1946) result also states that if θ > 1 is algebraic
and E′′(θ) = ∅, then θ is a P.V. number. M.Mendès France (1993) asked whether
E(k)(θ) = ∅ for some k ∈ N, also implies that the algebraic number θ > 1 is a P.V.
number.
(VI) L.Rédei (1942, [a]1942) proved the following characterization: If θ is a real
algebraic number with |θ| > 1, then a necessary and sufficient condition that the
sequence θn mod 1 converges is that θ is an algebraic integer and that the absolute
value of all its conjugates is less than 1. Moreover, if this conditions is satisfied, then
limn→∞ θn mod 1 = 0.
(VII) The set S of all P.V. numbers is closed (R. Salem (1944)). Two smallest
elements of S are 1.324717 . . . , and 1.380277 . . . , the real roots of x3 − x − 1, and
x4 − x3 − 1, respectively. Both are isolated points of S and S contains no other
point in the interval (1,

√
2] (C.L. Siegel (1944)). The next one is 1.443269 . . . , the

real root of x5 − x4 − x3 + x2 − 1 and 1.465571 . . . , the real root of x3 − x2 − 1. The

smallest limit point of S is the root (1+
√
5)

2 = 1.618033 . . . of x2 − x− 1, an isolated
point of the derived set S′ of S (J.Dufresnoy and Ch.Pisot (1952), (1953)). The
smallest number S′′ is 2.
(VIII) If θ ∈ S, and ε > 0 is arbitrary then there are numbers λ in the field Q(θ)
such that ∥λθn∥ ≤ ε for n = 0, 1, 2, . . . . On the other hand, if θ > 1, λ ≥ 1 are real
numbers such that

∥λθn∥ ≤
(
2eθ(θ + 1)(1 + log λ)

)−1
, n = 0, 1, 2, . . . ,

then θ ∈ S, deg(θ) ≤ [log λ] + 1, and λ ∈ Q(θ) (Ch. Pisot (1938)). This result is, in
a certain sense, the best possible: Given any constant c > 2e(1 + log 2) = 9.24 . . . ,
there exists a real number λ ≥ 1 and a transcendental θ as large as we wish such
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that ∥λθn∥ ≤ c(2eθ(θ + 1)(1 + log λ))−1.
(IX) A necessary and sufficient condition for a real number θ > 1 to be a rational
integer is that ∥θn∥ ≤ 1

(θ+1)(θ+2) for n = 1, 2, . . . (M.Mignotte (1977)).

(X) Some criteria for P.V. numbers can be found in 2.6.22.

(XI) Let β > 1. Define the transformations Tβ(x) = {βx}, T (2)
β (x) = Tβ(Tβ(x)),

etc., and denote

Per(β) =
{
x ∈ [0, 1); there exists k ≥ 1 such that T

(k)
β (x) = x

}
.

K. Schmidt (1980) proved that if Per(β) ⊃ Q ∩ [0, 1), then β is a P.V. or a Salem
number. Conversely, if β is a P.V. number, then Per(β) = Q(β) ∩ [0, 1).
(XII) A polynomial over Q of degree ≥ 2 is said to be reduced if it has one positive
root > 1 and all its other roots w satisfy |w| < 1 and −1 < ℜ(w) < 0.
Let γ be an algebraic number with continued fraction expansion γ = [a0; a1, a2, . . . ].
Then there exists an effectively computable positive integer m0 such that if m ≥
m0 and γ = [a0; a1, a2, . . . , am, γm+1], then γm+1 is a positive root of a reduced
polynomial (thus γm+1 is a P.V. number). This was proved by A.Vincent in 1836,
see the book by J.V.Uspensky (1948) and the paper by E.Bombieri and A.J. van
der Poorten (1995).
(XIII) Dubickas (2006): Let θ be a P.V. number whose minimal polynomial P (x)
satisfies P (1) ≤ −2. Then

lim
n→∞

{
θn

P ′(θ)(θ − 1)

}
=

1

|P (1)|
.

E.Bombieri – A.J. van der Poorten: Continued fractions of algebraic numbers, in: Compu-
tational algebra and number theory (Sydney, 1992), Math. Appl., 325, Kluwer Acad. Publ.,
Dordrecht, 1995, 137–152 (MR1344927 (96g:11079); Zbl. 0835.11025).
D.W.Boyd: Transcendental numbers with badly distributed powers, Proc. Amer. Math. Soc. 23
(1969), 424–427 (MR0248094 (40 #1348); Zbl. 0186.08704).
D.W.Boyd: The distribution of the Pisot numbers in the real line, in: Séminaire de théorie des
nombres, Paris 1983–84, Progr. Math., 59, Birkhäuser Boston, Boston, Mass., 1985, pp. 9–23
(MR0902823 (88i:11070); Zbl. 0567.12001).
A.Dubickas: On the limit points of the fractional parts of power of Pisot numbers, Archivum
Mathematicum (Brno) 42 (2006), 151–158 (MR2240352 (2007b:11167); Zbl. 1164.11026).
J.Dufresnoy – C.Pisot: Sur un problème de M. Siegel relatif à un ensemble fermé d’entiers
algébriques, C. R. Acad. Sci. Paris 235 (1952), 1592–1593 (MR0051866 (14,538c); Zbl. 0047.27502).
J.Dufresnoy – C.Pisot: Sur un point particulier de la solution d’un problème de M. Siegel , C.
R. Acad. Sci. Paris 236 (1953), 30–31 (MR0051866 (14,538c); Zbl. 0050.26405).
G.H.Hardy: A problem of diophantine approximation, Jour. Indian. Math. Soc. 11 (1919),
162–166.
M.Mendès France: Remarks and problems on finite and periodic continued fractions, Enseign.
Math. (2) 39 (1993), no. 3–4 249–257 (MR1252067 (94i:11045); Zbl. 0808.11007).
M.Mignotte: A characterization of integers, Amer. Math. Monthly 84 (1977), no. 4, 278–281
(MR0447136 (56 #5451); Zbl. 0353.10027).
Ch.Pisot: Sur la répartition modulo 1 des puissances successives d’un même nombre, C. R. Acad.
Sci. Paris 204 (1937), 312–314 (Zbl. 0016.05302).
[a] Ch.Pisot: Sur la répartition modulo 1, C. R. Acad. Sci. Paris 204 (1937), 1853–1855 (Zbl.
0016.39202).
Ch.Pisot: La réparatition modulo 1 et les nombres algébraiques, (French), Diss., Paris 1938, 44 pp.
(Zbl. 0019.00703).
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Ch.Pisot: La réparatition modulo 1 et les nombres algébraiques, Ann. Scuola norm. sup. Pisa,
Sci. fis. mat. (2) 7 (1938), 205–248 (Identical with the previous item (JFM 64.0994.01)).
Ch.Pisot: Répartition (mod 1) des puissances successives des nombers réeles, Comment. Math.
Helv. 19 (1946), 135–160 (MR0017744 (8,194c); Zbl. 0063.06259).
L.Rédei: Zu einem Approximationssatz von Koksma, Math. Z. 48 (1942), 500–502 (MR0008232
(4,266c); JFM 68.0083.03).
[a] L.Rédei: Über eine diophantische Approximation im bereich der algebraischen Zahlen, Math.
Naturwiss. Anz. Ungar. Akad. Wiss. (Hungarian), 61 (1942), 460–470 (MR0022869 (9,271f); JFM
68.0086.01).
R. Salem: A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke
Math. J. 11 (1944), 103–108 (MR0010149 (5,254a); Zbl. 0063.06657).
K. Schmidt: On periodic expansion of Pisot numbers and Salem numbers, Bull. London Math.
Soc. 12 (1980), no. 4, 269–278 (MR0576976 (82c:12003); Zbl. 0494.10040).
C.L. Siegel: Algebraic integers whose conjugates lie in the unit circle, Duke Math. J. 11 (1944),
597–611 (MR0010579 (6,39b); Zbl. 0063.07005).
A.Thue: Über eine Eigenschaft, die keine transcendente Größe haben kann, Norske Vid. Skrift.
20 (1912), 1–15 (JFM 44.0480.04).
J.V.Uspensky: Theory of Equations, McGraw–Hill, New York, 1948.
T.Vijayaraghavan: On the fractional parts of the powers of a number. I , J. London Math. Soc.
15 (1940), 159–160 (MR0002326 (2,33e); Zbl. 0027.16201).
T.Vijayaraghavan: On the fractional parts of the powers of a number (II), Proc. Cambridge
Philos. Soc. 37 (1941), 349–357 (MR0006217 (3,274c); Zbl. 0028.11301; JFM 67.0988.02).

2.17.9. Assume that
• f(x) is an arbitrary polynomial with integral coefficients, not identically

zero,
• λ > 1 is an integer or a P.V. number, i.e. λk = a1λ

k−1 + · · · + ak, with
a1, . . . , ak, ak ̸= 0, integers, λ > 1 and if λ2, . . . , λk are all conjugates of λ,
then θ = max2≤i≤k |λi| < 1,

• pn, n = 1, 2, . . . , is an arbitrary increasing sequence of primes with pn+1 =
O(pn), and |ak| < p1,

• ψn(i), n = 1, 2, . . . , satisfy the recurrence relations

ψn(i) = a1ψn(i− 1) + · · ·+ akψn(i− k)

for i = k + 1, k + 2, . . . ,
• τn, n = 1, 2, . . . , is an increasing sequence of positive integers such that

ψn(i+ τn) ≡ ψn(i) (mod pn) , τn ≡ 0 (mod pn) ,

log τn+1 = o(τn),

• the number of solutions of ψn(i) ≡ 0 (mod pn), for i = 1, 2, . . . , τn, does
not exceed τn/pn

• tn, n = 1, 2, . . . , is an arbitrary increasing sequence of positive integers
such that tn ≥ τn+1 and log tn = O(log τn+1),
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• define kn+1 = kn + τnpntn for n = 1, 2, . . . , with k1 = 0,
• ϕ(i), i = 1, 2, . . . , is an arbitrary arithmetical function such that ϕ(i) ̸= 0

for all sufficiently large i and ϕ(i) = o(pi).

The above assumptions imply that there exists a sequence γn such that
ψn(i) = γnλ

i +O(pnθ
i), where γn = O(pn). Let α be defined by the sum

α =
∞∑
i=1

ϕ(i)γi
pi(λτi − 1)

(
1

λki
− 1

λki+1

)
.

Then the sequence
xn = αλnf(n) mod 1

is

u.d.

Notes: Theorem 1 of N.M.Korobov (1953). He also proved the following multi–
dimensional generalizations:
Theorem 3: Assume additionally that
• f1(x), . . . , fs(x) have integral coefficients and are linearly independent over Z.
Then the sequence

xn = (αλnf1(n), . . . , αλ
nfs(n)) mod 1

is

u.d. in [0, 1]s.

Theorem 2: Assume additionally that
• ϕ1(i), . . . , ϕs(i) are arithmetical functions such that for any s–tuple of integers

(m1, . . . ,ms) ̸= (0, . . . , 0) the relation m1ϕ1(i) + · · ·+msϕs(i) = 0 holds only for
finitely many i.

Let

αj =

∞∑
i=1

ϕj(i)γi
pi(λτi − 1)

(
1

λki
− 1

λki+1

)
for j = 1, 2, . . . , s. Then the sequence

xn = (α1λ
nf(n), . . . , αsλ

nf(n)) mod 1

is

u.d. in [0, 1]s.

N.M.Korobov: Multidimensional problems of the distribution of fractional parts, (Russian), Izv.
Akad. Nauk SSSR, Ser. Mat. 17 (1953), 389–400 (MR0059321 (15,511a); Zbl. 0051.28603).
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2.17.10. Let a and b be positive real numbers such that logb a is an irrational
number. Then the double sequence

an

bm
, m, n = 1, 2, . . . ,

is

dense in [0,∞).

J. Bukor – M.Kmet’ová – J.T.Tóth: Note on ratio set of sets of natural numbers, Acta Mathe-
matica (Nitra) 2 (1995), 35–40.

2.17.10.1 If p, q > 1 are multiplicatively independent integers, i.e. they
are not both integer powers of some integer, then for every irrational θ the
double sequence

pnqmθ mod 1, m, n = 1, 2, . . . ,

is dense in [0, 1].

Notes:
(I) H. Furstenberg (1967).
(II) B.Kra (1999) extended this result as follows:

For positive integers 1 < pi < qi, i = 1, 2, . . . , k, assume that all pairs pi, qi are
multiplicatively independent and (pi, qi) ̸= (pj , qj) for i ̸= j. Then for distinct
θ1, . . . , θk with at least one irrational θi the sequence

K∑
i=1

pni q
m
i θi mod 1, m, n = 1, 2, . . . , (1)

is dense in [0, 1].

Also for irrational θ, multiplicatively independent integers p, q > 1 and any sequence
xn of real numbers, the sequence

pnqmθ + xn mod 1, m, n = 1, 2, . . . ,

is dense in [0, 1].

(III) Berend in MR1487320 (99j:11079) reformulated Kra’s result as follows:

Let pi, qi be integers and θi real, i = 1, 2, . . . , k. If p1 and q1 are multiplicatively
independent, θ1 is irrational, and (pi, qi) ̸= (p1, q1) for i ≥ 2, then the sequence (1)
is dense in [0, 1].
(IV) R.Urban (2007) conjectured:

Let k ∈ N be fixed, and let λi, µi, for 1 ≤ i ≤ k be real algebraic numbers with
absolute values greater than 1. Assume that the pairs λi, µi for 1 = 1, 2, . . . , k,
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are multiplicatively independent (i.e. there does not exist non-zero integers m,n
such that λmi = µni ), and (λi, µi) ̸= (λj , µj) for i ̸= j. Then for any real numbers
θ1, . . . , θk with at least one θi /∈ Q

(
∪ki=1 {λi, µi}

)
the double sequence

k∑
i=1

λmi µ
n
i θi mod 1, m, n = 1, 2, . . .

is dense in [0, 1].

Motivated by his conjecture he proved (Theorem 1.6):

Let λ1, µ1 and λ2, µ2 be two distinct pairs of multiplicatively independent real alge-
braic integers of degree 2 with absolute values greater than 1, such that the absolute
values of their conjugates λ̃1, µ̃1, λ̃2, µ̃2 are also greater than 1. Let µ1 = g1(λ1) for
some g1 ∈ Z[x] and µ2 = g2(λ2) for some g2 ∈ Z[x]. Assume also that at least one
element in each pair λi, µi has all its positive powers irrational. Further let there
exist k, l, k′, l′ ∈ N such that

(a) min(|λ2|k|µ2|l, |λ̃2|k|µ̃2|l) > max(|λ1|k|µ1|l, |λ̃1|k|µ̃1|l) and,
(b) min(|λ1|k

′ |µ1|l
′
, |λ̃1|k

′ |µ̃1|l
′
) > max(|λ2|k

′ |µ2|l
′
, |λ̃2|k

′ |µ̃2|l
′
).

Then for any real numbers θ1, θ2 with at least one θi ̸= 0 the sequence

λm1 µ
n
1 θ1 + λm2 µ

n
2 θ2 mod 1, m, n = 1, 2, . . .

is dense in [0, 1]. For illustration

(
√
23 + 1)m(

√
23 + 2)nθ1 + (

√
61 + 1)m(

√
61− 6)nθ2 mod 1, m, n = 1, 2, . . .

is dense in [0, 1], provided (θ1, θ2) ̸= (0, 0).

R.Urban noticed that (a) and (b) hold, when

|λ2| > |λ̃2| > |λ1| > |λ̃1| > 1 and |µ1| > |µ̃1| > |µ2| > |µ̃2| > 1.

He also noted that Theorem 1.6 can be extended to the case when not all of λi, µi
are of degree 2, but if λi, µi are rational, then θi must be irrational. For example,
for every θ2 ̸= 0, the sequence

(3 +
√
3)m2n + 5m7nθ2

√
2 mod 1, m, n = 1, 2, . . .

is dense in [0, 1]

Related sequences: 2.8.3

H.Furstenberg: Disjointness in ergodic theory, minimal sets and a problem in diophantine
approximation, Math. Systems Theory 1 (1967), no. 1, 1–49 (MR0213508 (35 #4369); Zbl.
0146.28502).
B.Kra: A generalization of Furstenberg’s diophantine theorem, Proc. Amer. Math. Soc. 127
(1999), no. 7 1951–1956 (MR1487320 (99j:11079); Zbl. 0921.11034)).
R.Urban: On density modulo 1 of some expressions containing algebraic integers, Acta Arith.
127 (2007), no. 3 217–229 (MR2310344 (2008c:11102); Zbl. 1118.11034).
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2.17.10.2 Let d, e ∈ N and α, β ∈ [1,∞). Then the sequence

αnnd

βmme
, n,m = 1, 2, . . . ,

is

dense in [0,∞)

if and only if one of the following three conditions holds:

(i) α and β are multiplicatively independent;

(ii) α, β > 1 and d ̸= e;

(iii) β = 1 and e ̸= 0, or α = 1 and d ̸= 0.

F.Durand – M.Rigo: Syndedicity and independent substitutions, Adv. in Appl. Math. 42 (2009),
1–22 (MR2475310 (2010c:68133); Zbl. 1160.68028).

2.17.11. If γ > 0 then the sequence of individual blocks

An = (neγ
1
n , neγ

2
n , . . . , neγ

n
n ) mod 1

is

u.d.

with discrepancy satisfying

Dn ≤ c(γ)n−
1
3 .

Notes: This can be proved using the Erdős – Turán’s inequality and van der Corput
lemma. L.P.Usol’tsev (1999) proved that, for the following special L2 discrepancy,
we have ∫ 1

0

(
A([λ, λ+ τ) mod 1;An)

n
− τ

)2

dλ = O
(
log n

n

)
,

where τ is a constant which satisfies 0 < τ ≤ γ2eγ < 1 and the constant in O
depends on γ.

L.P.Usol’tsev (Usol’cev): On the distribution of a sequence of fractional parts of a slowly increas-
ing exponential function, (Russian), Mat. Zametki 65 (1999), no. 1, 148–152 (English translation:
Math. Notes 65 (1999), no. 1–2, 124–127 (MR1708299 (2000i:11124); Zbl. 0988.11033)).
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2.18 Normal numbers

Notes: Recall that (cf. Th. 1.8.24.1) the number α is normal in the base q
if and only if αqn mod 1 is u.d. The number α is called absolutely normal if it
is normal in the base q for all integers q ≥ 2. The sequence αqn mod 1 is also a
Lehmer sequence because it satisfies the recurrence relation xn+1 = qxn mod 1 with
x0 = α ∈ (0, 1). It is u.d. for all integer q > 1 and almost all α ∈ (0, 1).

2.18.1. Open problem. It is not known whether the following constants
of general interest

e, π,
√
2, log 2, ζ(3), ζ(5), . . .

are normal in the base 10. All are conjecturally absolutely normal.

Notes: (I) Each of them resisted every attempts to prove this up to now, cf. [KN,
p. 75, Notes].
(II) For instance, the sequence 0123456789 does not appear in the decimal repre-
sentation of number π up to the 100 000th decimal place, cf. W. Sierpiński (1964,
p. 276). For

√
2 cf. E. Borel (1950).

(III) Let q ≥ 2 denote the scale basis. Let r(x) = p(x)/q(x) be a rational function
such that p(x) and q(x) are polynomials with integer coefficients, p(x) is not identi-
cally zero, q(n) does not vanish for all positive integer n, and deg p < deg q. Define
the sequence xn in [0, 1] by the recurrence relation

xn = qxn−1 + r(n) mod 1

with x0 = 0, and let α =
∑∞
n=1 r(n)/q

n. D.H.Bailey and R.E.Crandall (2001)
proved:
• the u.d. of xn implies the normality of α in the base q,
• xn has a finite attractor if and only if α is rational,
They conjecture that xn either has a finite attractor or else is u.d.
This results imply: any such α that is irrational is normal in the base q. Together
with the facts that
• log 2 =

∑∞
n=1 1/(n2

n),
• π =

∑∞
n=1 r(n)/(16)

n, where r(n) = (120n2−89n+16)/(512n4−1024n3+712n2−
206n+ 21),
• similar expressions are known for π2 and ζ(3)

this shows that log 2, π, π2, and ζ(3) are conditionally normal in the base 2.
(IV) By M.B. Levin(1999) found α with DN = O(N−1/2) as an answer to Korobov
(1955) question to find a normal α with minimal discrepancy DN (xn).
(V) J. Schiffer (1986) proved: Let p(x) be a non-constant polynomial with rational
coefficients, and let dn, n = 1, 2, . . . , be a bounded sequence of rational numbers
such that p(n) + dn is a positive integer for all n ≥ 1. Then DN = O(log−1)N
for α = 0.(p(1) + d1)(p(2) + d2) . . . . Moreover, if p(x) ≥ 1 is a linear polyno-
mial with rational coefficients, then the discrepancy of α = 0.[p(1)][p(2)] . . . satisfies
DN ≥ K/ logN for all N and a constant K > 0, i.e. such an α is a Champernowne
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normal number.
(VI) N.M. Korobov (1966) found a normal number α with DN = O(N−2/3 log4/3N)
if the base q is a prime number, and later M.B. Levin (1977) extended the construc-
tion to an arbitrary integral base q.
(VII) M.B. Levin (1999) constructed normal number α such thatDN = O(N−1 log2N).

D.H.Bailey – R.E.Crandall: On the random character of fundamental constant expansions,
Experiment. Math. 10 (2001), no. 2, 175–190 (MR1837669 (2002h:11067); Zbl. 1047.11073).
E.Borel: Sur les chiffres décimaux de

√
2 et divers problèmes de probabilités en chaine, C. R.

Acad. Sci. Paris 230 (1950), 591–593 (MR0034544 (11,605d); Zbl. 0035.08302).
N.M.Korobov: Numbers with bounded quotient and their applications to questions of Diophan-
tine approximation, (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 19 (1955), no. 5, 361–380
(MR0074464 (17,590a); Zbl. 0065.03202).
N.M.Korobov: Distribution of fractional parts of exponential function, (Russian), Vestn. Mosk.
Univ., Ser. I 21 (1966), no. 4, 42–46 (MR0197435 (33 #5600); Zbl. 0154.04801).
M.B. Levin: On the distribution of fractional parts of the exponential function, Soviet Math.
(Izv. VUZ) 21 (1977), no. 11, 41–47 (translated from Izv. Vyssh. Uchebn. Zaved., Mat. (1977),
no. 11(186), 50–57 (MR0506058 (58 #21963); Zbl 0389.10037)).
M.B. Levin: On the discrepancy estimate of normal numbers, Acta Arith. 88 (1999), no. 2, 99–111
(MR1700240 (2000j:11115); Zbl. 0947.11023).
J. Schiffer: Discrepancy of normal numbers, Acta Arith. 47 (1986), no. 2, 175–186 (MR0867496
(88d:11072); Zbl. 0556.10036).
W.Sierpiński: Elementary Theory of Numbers, Monografie Matematyczne. Tom 42, Panstwowe
Wydawnictwo Naukowe, Warszawa, 1964 (MR0175840 (31 #116); Zbl. 0122.04402).

2.18.2. If α is irrational, then for any integer q ≥ 2 the set of all limit points
of the sequence

αqn mod 1

is infinite.

Notes:
(I) T.Vijayaraghavan (1940).

(II) A.Dubickas (2006[a]): Set T (x) =
∏∞
n=0(1− x2

n

) and E(x) = 1−(1−x)T (x)
2x . If ξ

is an irrational number and p > 1 an integer, then the sequence ∥ξpn∥, n = 1, 2, . . . ,
has a limit point greater than or equal to ξp = E(1/p)/p, and a limit point smaller

than or equal to ξ̂p = e(1/p))T (1/p)/2, where e(1/p) = 1 − (1/p) if p is odd, and
e(1/p) = 1 if p is even. Furthermore, both bounds are the best possible: in particu-

lar, ξp, ξ̂p are irrational and ∥ξppn∥ < ξp, ∥ξ̂ppn∥ > ξ̂p for every n = 1, 2, . . .
(III) A.Dubickas (2007): For an integer b ≤ −2 and any irrational ξ we have
lim infn→∞{ξbn} ≤ F (−1/b))/q and lim supn→∞{ξbn} ≥ (1 − F (q/p))/q, where

F (x) =
∏∞
k=1(1− x(2

k+(−1)k−1)/3). He derived from this that:

(i) lim infn→∞{ξ(−2)n} < 0.211811 and lim supn→∞{ξ(−2)n} > 0.788189;

(ii) The sequence of integer part [ξ(−2)n], n = 0, 1, 2, . . . , contains infinitely many
numbers divisible by 3 and infinitely many numbers divisible by 4.
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A.Dubickas: On the distance from a rational power to the nearest integer , J. Number Theory
117 (2006), 222–239 (MR2204744 (2006j:11096); Zbl. 1097.11035).
A.Dubickas: On a sequence related to that of Thue-Morse and its applications, Discrete Mathe-
matics 307 (2007), no. 1, 1082–1093 (MR2292537 (2008b:11086); Zbl. 1113.11008).
T.Vijayaraghavan: On decimals of irrational numbers, Proc. Indian Acad. Sci., Sect. A 12
(1940), 20 (MR0002325 (2,33d); Zbl. 0025.30803).

2.18.3. Let an be an unbounded sequence of positive integers written in q–
adic digit expansion, q ≥ 2. Assume that α = 0.a1a2 . . . be a normal number
in the base q. Then the number

α∗ = 0.(c1a1)(c2a2) . . . ,

where cn is a bounded sequence of positive integers, and each cnan is written
in q–adic digit expansion, is

normal in the base q.

Notes: J.–M.Dumont and A.Thomas (1986/87). P. Szüsz and B.Volkmann deter-
mined (subject to certain hypotheses) the set of all d.f.’s G(α∗qn mod 1) from the
knowledge of G(αqn mod 1).

J.–M.Dumont – A.Thomas: Une modification multiplicative des nombres g normaux , Ann. Fac.
Sci. Toulouse Math., (5) 8 (1986/87), 367–373 (MR0948760 (89h:11047); Zbl. 0642.10049).
P. Szüsz – B.Volkmann: On numbers with given digit distributions, Arch. Math. (Basel) 52
(1989), no. 3, 237–244 (MR0989878 (90h:11068); Zbl. 0648.10031).

2.18.4. Let an be an increasing sequence of positive integers written in q–
adic digit expansion with q ≥ 2 an integer such that #{n ∈ N; an ≤ N} ≥ N θ

for every θ < 1 and all sufficiently large N . Then

α = 0.a1a2 . . .

is

normal in the base q.

A.H.Copeland – P. Erdős: Note of normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857–860
(MR0017743 (8,194b); Zbl. 0063.00962).

2.18.5. Let bn be an unbounded sequence of positive integers written q–
adic digit expansion with q ≥ 2 an integer. Let b∗n be another sequence again
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expressed in the base q such that b∗n = bn + in, where the positive integers in
satisfy log in = o(log bn). If α = 0.b1b2 . . . is normal in the base q, then

α∗ = 0.b∗1b
∗
2 . . .

is also

normal in the base of q.

B.Volkmann: On modifying constructed normal numbers, Ann. Fac. Sci. Toulouse Math. (5) 1
(1979), no. 3, 269–285 (MR0568150 (82a:10062); Zbl. 0429.10034).

2.18.6. Let p be an odd prime number and q ≥ 2 an integer not divisible
by p. Assume that an and bn, n = 1, 2, . . . , are two strictly increasing
sequences of real numbers, which satisfy
(i) bn−1 = o (an/n),
(ii) an = o(log bn).

Let O be the ring generated by the set of all numbers x of the form

x =
∞∏
n=1

(
1 +

εn
Pn

)
,

where εn ∈ {1, 1} is arbitrary and Pn = panqbn . Then
(iii) O is uncountable,
(iv) all non–zero numbers x ∈ O are normal in the base q,
(v) all x ∈ O are non–normal in the base pq.

Notes: (I) G.Wagner (1995). He mentions as an example that
∑∞
i=1 2

−i5−4i is
normal in the base 5 but not in the base 10.
(II) The existence of real numbers which are normal in a given integer base q ≥ 2 but
non–normal in another integer base h ̸= q, was first proved by J.W.Cassels (1959)
for q ̸= 3m, h = 3 and independently by W.M. Schmidt (1960) who proved this for
any pair (q, h) of bases, where q, h ≥ 2 are multiplicatively independent integers (i.e.
qm ̸= hn, m,n = 1, 2, . . . ).
(III) B.Volkmann (1984, 1985) proved: Let q, h ≥ 2 be integers with qm ̸= hn,
m,n = 1, 2, . . . , and let V ⊂ Rh be a closed connected set such that 0 ≤ ti ≤ 1
and

∑h−1
i=0 ti = 1 for each (t0, . . . , th−1) ∈ V . Then there exist (uncountably many)

numbers α which are normal in the base q but whose digit frequency vectors7 λN
in base h have V as its set of limit points.

7If α = a0.a1a2 . . . is the h–adic expansion of α, then λN =
(
A(0;N)
N

, . . . , A(h−1;N)
N

)
,

where A(j;N) is the number of those n, n ≤ N , for which an = j.
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J.W.S.Cassels: On a problem of Steinhaus about normal numbers, Colloq. Math. 7 (1959),
95–101 (MR0113863 (22 #4694); Zbl. 0090.26004).
W.M. Schmidt: On normal numbers, Pacific J. Math. 10 (1960), 661–672 (MR0117212 (22
#7994); Zbl. 0093.05401).
B.Volkmann: On the Cassels – Schmidt theorem. I , Bull. Sci. Math. (2) 108 (1984), no. 3,
321–336 (MR0771916 (86g:11044); Zbl. 0541.10045).
B.Volkmann: On the Cassels – Schmidt theorem. II , Bull. Sci. Math. (2) 109 (1985), no. 2,
209–223 (MR0802533 (87c:11070); Zbl. 0563.10040).
G.Wagner: On rings of numbers which are normal to one base but non–normal to another , J.
Number Theory 54 (1995), no. 2, 211–231 (MR1354048 (96g:11093); Zbl. 0834.11032).

2.18.7. Let f(x) = α0x
β0 +α1x

β1 + · · ·+αkx
βk be a generalized polynomial

where α’s and β’s are real numbers such that β0 > β1 > · · · > βk ≥ 0.
Assume that f(x) ≥ 1 for x ≥ 1 and that q ≥ 2 is a fixed integer. Put

α = 0.[f(1)][f(2)] . . . ,

where the integer part [f(n)] is represented in the q–adic digit expansion.
Then α is

normal in the base q

and

DN (αqn) = O
(

1

logN

)
.

If f(x) is a linear polynomial with rational coefficients and f(n) ≥ 1 for
n = 1, 2, . . . , then there exists a positive constant c such that

DN (αqn) ≥ c

logN

for infinitely many N .

Notes: (I) If f(x) is a non–constant polynomial with rational coefficients all of
whose values at x = 1, 2, . . . , are positive integers then the normality of α in base 10
was proved by H.Davenport and P.Erdős (1952). However, they did not give explicit
estimates for the discrepancy.
(II) J. Schoißengeier (1978) showed that DN = O((log logN)4+ε/ logN). J. Schiffer
(1986) gave the best possible result DN = O(1/ logN) (cf. [DT, p. 105, Th. 1.118–
9]).
(III) If f(x) is a generalized polynomial then the normality of α in the base q was
studied by Y.–N.Nakai and I. Shiokawa who in the series of papers (1990, [a]1990,
1992) found the best possible discrepancy. They give the following examples α =

0.1247912151822 . . . with f(x) = x
√
2, and α = 0.151222355069 . . . with f(x) =√

2x2.
(IV) The first classical example α0 = 0.123456789101112 . . . of a simple normal
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number given by Champernowne (1933) is a special case of the above construction
with f(x) = x and q = 10. G.Pólya and G. Szegő (1964, p. 71, No. 166, 170) proved
the u.d. of α010

n mod 1 without mentioning that α0 is normal in the base 10. The
normality of α0 was also proved by S.S. Pillai (1940) and an elegant proof based on
a weaker form of Th. 1.8.24 was given by A.G.Postnikov (1960).
(V) K.Mahler (1937) proved that α defined by an integer polynomial f(x) is a
transcendental number of the non–Liouville type.
(VI) Let an, n = 1, 2, . . . , be a strictly increasing sequence of positive integers
represented in the decimal expansion and put α = 0.a1a2a3 . . . . P.Martinez (2001)
proved that if α is rational, then there exit a positive constant c and a real number
t > 1 such that an ≥ ctn for all n. E.g. α = 0.23571113 . . . is irrational, cf. 2.18.8.

D.G.Champernowne: The construction of decimals normal in the scale ten, J. London Math.
Soc., 8 (1933), 254–260 (JFM 59.0214.01; Zbl. 0007.33701).
H.Davenport – P. Erdős: Note on normal decimals, Canad. J. Math. 4 (1952), 58–63 (MR0047084
(13,825g); Zbl. 0046.04902).
K.Mahler: Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Nederl. Akad. Weten-
sch. Proc. Ser. A 40 (1937), 421–428 (Zbl. 0017.05602; JFM 63.0156.01).
P.Martinez: Some new irrational decimal fractions, Amer. Math. Monthly 108 (2001), no. 3,
250–253 (MR1834705 (2002b:11096); Zbl. 1067.11506).
Y.–N.Nakai – I. Shiokawa: A class of normal numbers, Japan. J. Math. (N.S.) 16 (1990), no. 1,
17–29 (MR1064444 (91g:11081); Zbl. 0708.11037).
[a] Y.–N.Nakai – I. Shiokawa: A class of normal numbers. II , in: Number Theory and Cryptog-
raphy (Sydney, 1989), (J.H. Loxton ed.), Cambridge University Press, Cambridge, London Math.
Soc. Lecture Note Ser., Vol. 154, 1990, pp. 204–210 (MR1055410 (91h:11074); Zbl. 0722.11040).
Y.–N.Nakai – I. Shiokawa: Discrepancy estimates for a class of normal numbers, Acta Arith. 62
(1992), no. 3, 271–284 (MR1197421 (94a:11113); Zbl. 0773.11050).
S.S. Pillai: On normal numbers, Proc. Indian Acad Sci., sec. A 12 (1940), 179–184 (MR0002324
(2,33c); Zbl. 0025.30802).
G.Pólya – G. Szegő: Aufgaben und Lehrsätze aus der Analysis, Vol. 1 & 2, 3rd corr. ed.,
Grundlehren d. math. Wiss., Band 19, Springer Verlag, Berlin, Göttingen, Heidelberg, New
York, 1964 (MR0170985 (30 #1219a); MR0170986 (30 #1219b); Zbl. 0122.29704).
A.G.Postnikov: Arithmetic modeling of random processes, Trudy Math. Inst. Steklov. (Russian),
57 (1960), 1–84 (MR0148639 (26 #6146); Zbl. 0106.12101).
J. Schiffer: Discrepancy of normal numbers, Acta Arith. 47 (1986), no. 2, 175–186 (MR0867496
(88d:11072); Zbl. 0556.10036).
J. Schoißengeier: Über die Diskrepanz von Folgen (abn), Österreich. Akad. Wiss. Math.–Natur.
Kl. Abt. Sitzungsber. II 187 (1978), no. 4–7, 225–235 (MR0547935 (81a:10064); Zbl. 0417.10031).

2.18.8. Let f(x) be a non–constant polynomial which takes positive integral
values at all positive integers. The number

α = 0.f(2)f(3)f(5)f(7)f(11) . . . ,

where f(p) is represented in the q–adic digit expansion and p runs through
the primes, is

normal in the integral base q.
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Notes: Y.–N.Nakai and I. Shiokawa (1997). The normality of α = 0.235711 . . .
with respect to base q = 10 was conjectured by D.G.Champernowne (1933) and
proved by A.H.Copeland and P.Erdős (1946), cf. 2.18.4.

D.G.Champernowne: The construction of decimals normal in the scale ten, J. London Math.
Soc., 8 (1933), 254–260 (JFM 59.0214.01; Zbl. 0007.33701).
A.H.Copeland – P. Erdős: Note of normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857–860
(MR0017743 (8,194b); Zbl. 0063.00962).
Y.–N.Nakai – I. Shiokawa: Normality of numbers generated by the values of polynomials at
primes, Acta Arith. 81 (1997), no. 4, 345–356 (MR1472814 (98h:11098); Zbl. 0881.11062).

2.18.9. The function f(x) is said to have the growth exponent β if
log f(x)
log x → β as x → ∞. If both f(x) and f ′(x) possess the growth expo-

nents and the growth exponent of f(x) is positive, then the number

α = 0.
[
|f(a1)|

][
|f(a2)|

][
|f(a3)|

]
. . .

where
[
|f(an)|

] (
and

[
|g(n)|

]
below

)
are understood as the integer parts

represented in the q–adic digit expansion with q ≥ 2 an integer, is

normal in the base q

for every increasing sequence an of positive integers for which #{n ∈ N ; an ≤
N} ≥ N1−ε for all N ≥ N0(ε) and all ε > 0. For example, if pn denotes the
nth prime and g(n) = p2pn , then

β = 0.
[
|g(1)|

][
|g(2)|

][
|g(3)|

]
. . .

is

normal in the base q.

P. Szüsz – B.Volkmann: A combinatorial method for constructing normal numbers, Forum Math.
6 (1994), no. 4, 399–414 (MR1277704 (95f:11053); Zbl. 0806.11034).

2.18.10. Let δ ∈ (0, 1] and f : [1,∞) → R be a twice differentiable function
such that for some constants c1, c2, c3, c4, c5 and for all sufficiently large x we
have
(i) c1x

δ < f(x) < c2x
δ,

(ii) f ′(x) is monotone and c3x
δ−1 < f ′(x) < c4x

δ−1,
(iii) f ′′(x) is continuous and |f ′′(x)| < c5x

δ−2.

Further, let dn be a bounded sequence of real numbers such that f(n) + dn
is a positive integer for all n = 1, 2, . . . . Then the number

α = 0.(f(1) + d1)(f(2) + d2) . . .
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with every (f(n) + dn) expressed in the base q = 10 is

normal in this base

and for its discrepancy we have

DN (α10n mod 1) = O
(

1

logN

)
.

Notes: J. Schiffer (1986), who demonstrated the result on α = 0.[a][a2σ][a3σ] . . .
for a > 0 and 0 < σ ≤ 1.

J. Schiffer: Discrepancy of normal numbers, Acta Arith. 47 (1986), no. 2, 175–186 (MR0867496
(88d:11072); Zbl. 0556.10036).

2.18.11. Let P (x) be a polynomial with real coefficients, q ≥ 2 an integer
and α ̸= 0 a real number. If αqn mod 1 is u.d. then also

αqn + P (n) mod 1, n = 1, 2, . . . ,

is

u.d.

Notes: D.P.Parent (1984, p. 291, Solution 5.31).

D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).

2.18.12. Let α be a normal number in the integral base q ≥ 2. Then for
every nonzero rational a

b the product

a

b
α

is also

normal in the base q.

Notes: M.Mendès France (1967). In D.P. Parent (1984, p. 254, Solution 5.30) a
weaker result is proved, namely that α

q−1 is normal in the base q.

M.Mendès France: Nombres normaux. Applications aux fonctions pseudo–aléatoires, J. Analyse
Math. 20 (1967), 1–56 (MR0220683 (36 #3735); Zbl. 0161.05002).
D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).
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2.18.13. Let p be an odd prime and q one of its primitive roots mod p2.
Then the number

α =
∞∑
n=1

p−nq−pn

is

a transcendental non–Liouville number, and

normal in the base qk for each integer k > 0.

Notes: R.G. Stoneham (1973, [a]1973). He also gave more general constructions of
normal numbers.

R.G. Stoneham: On the uniform ε–distribution of residues within the periods of rational fractions
with applications to normal numbers, Acta Arith. 22 (1973), 371–389 (MR0318091 (47 #6640);
Zbl. 0276.10029).
[a] R.G. Stoneham: On absolute (j, ε)–normality in the rational fractions with applications to
normal numbers, Acta Arith. 22 (1972/73), 277–286 (MR0318072 (47 #6621); Zbl. 0276.10028).

2.18.14. Let λn and µn, n = 0, 1, 2, . . . , be two increasing sequences of pos-
itive integers and p, q, are coprime such that µn ≥ pλn for all n = 0, 1, 2, . . . .
Then the number

α =
∞∑
n=0

p−λnq−µn

is

normal in the base q.

Notes: A.N.Korobov (1990). As an example he gives the normal number α =∑∞
n=0 p

−2nq−p
2n

.

A.N.Korobov: Continued fraction expansions of some normal numbers, (Russian), Mat. Zametki
47 (1990), no. 2, 28–33, 158 (Zbl. 0689.10059). (English translation: Math. Notes 47 (1990), no. 1–
2, 128–132 (MR1048540 (91c:11044); Zbl. 0704.11019)).

2.18.15. Let q ≥ 2 be an integer and xn mod 1 a completely u.d. sequence.
Then the number

α =

∞∑
n=1

[
q{xn}

]
qn

is
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normal in the base q.

Notes: N.M.Korobov (1948). M.Mendès France (1967) proved that the set E of

real numbers α which can be written in the form α =
∑∞
n=1

[q{f(n)}]
qn , where f(n)

runs through all real polynomials, has Hausdorff dimension 0 and that it contains
no normal numbers.

Related sequences: For a multi–dimensional variant see 3.2.4.

N.M.Korobov: On functions with uniformly distributed fractional parts, (Russian), Dokl. Akad.
Nauk SSSR 62 (1948), 21–22 (MR0027012 (10,235e); Zbl. 0031.11501).
M.Mendès France: Nombres normaux. Applications aux fonctions pseudo–aléatoires, J. Analyse
Math. 20 (1967), 1–56 (MR0220683 (36 #3735); Zbl. 0161.05002).

2.18.16. If α is a non–zero real number and q ≥ 2 an integer then the
sequence

αqn mod 1

has a.d.f. g(x) if and only if∫ 1

0
f(x) dg(x) =

∫ 1

0
f(qx) dg(x)

for every continuous f(x) which is defined on [0, 1], cf. 2.17.1(IV).

I.I. Pjateckĭı–Šapiro (I.I. Šapiro – Pjateckĭı): On the laws of distribution of the fractional parts
of an exponential function (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., Ser. Mat. 15 (1951),
47–52 (MR0043145 (13,213d); Zbl. 0042.04902).

2.18.16.1 Every distribution function g(x) of αqn mod 1 with integer
q > 1 satisfies the functional equation

g(x) =
n−1∑
i=0

(g((x+ i)/q)− g(i/q)).

I.I. Pjateckĭı–Šapiro (I.I. Šapiro – Pjateckĭı): On the laws of distribution of the fractional parts
of an exponential function (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., Ser. Mat. 15 (1951),
47–52 (MR0043145 (13,213d); Zbl. 0042.04902).

2.18.17. Let α be a non–zero real and q ≥ 2 be an integer. If the sequence

xn = αqn mod 1
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has absolutely continuous a.d.f. g(x), then g(x) = x and thus the sequence xn
is

u.d.
I.I. Pjateckĭı–Šapiro (I.I. Šapiro – Pjateckĭı): On the laws of distribution of the fractional parts
of an exponential function (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., Ser. Mat. 15 (1951),
47–52 (MR0043145 (13,213d); Zbl. 0042.04902).

2.18.18. Let α be a non–zero real number and q ≥ 2 be an integer. If the
sequence

xn = αqn mod 1

is u.d., then, for every integer k ≥ 1, the subsequence

xkn = αqkn, n = 1, 2, . . . ,

is also

u.d.

In other words, α is normal in the base q if and only if α is normal in the
base qk.

Notes: I.I. Šapiro – Pjateckĭı (1951), another proof can be found in [KN, p. 72,
Th. 8.2].

I.I. Pjateckĭı–Šapiro (I.I. Šapiro – Pjateckĭı): On the laws of distribution of the fractional parts
of an exponential function (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., Ser. Mat. 15 (1951),
47–52 (MR0043145 (13,213d); Zbl. 0042.04902).

2.18.19. Let α be a real number, q ≥ 2 an integer and

xn = αqn mod 1.

If there exist two positive constants c and σ such that, for every subinterval
I ⊂ [0, 1] with |I| > 0, we have

lim sup
N→∞

AN (I;N ;xn)

N
< c|I|

(
1 + log

1

|I|

)σ

,

then the sequence xn is

u.d.

Notes: A.G.Postnikov (1952) who extended in this way an earlier result of I.I. Šapiro
– Pjateckĭı (1951) in which the right–hand side has the form c|I| and which can be
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used to prove the normality of the Champernowne sequence, cf. 2.18.7. The Šapiro
– Pjateckĭı’s result is reproduced in [KN, p. 71, Lemma 8.1] in the form: If for any
non–negative continuous function f on [0, 1] we have

lim sup
N→∞

1

N

N∑
n=1

f({αqn}) ≤ c

∫ 1

0

f(x) dx,

then α is normal in the base q.

Related sequences: 2.8.7, 3.11.5.

A.G.Postnikov: On distribution of the fractional parts of the exponential function, Dokl. Akad.
Nauk. SSSR (N.S.) (Russian), 86 (1952), 473–476 (MR0050637 (14,359d); Zbl. 0047.05202).
I.I. Pjateckĭı–Šapiro (I.I. Šapiro – Pjateckĭı): On the laws of distribution of the fractional parts
of an exponential function (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., Ser. Mat. 15 (1951),
47–52 (MR0043145 (13,213d); Zbl. 0042.04902).

2.18.20. Let α be normal in the integer base q ≥ 2 and

xn = αqn mod 1.

If f : [0, 1] → R is non–constant and Riemann integrable, then the sequence

yn = f(x1) + f(x2) + · · ·+ f(xn) mod 1

is

u.d.

Notes: P. Liardet (1981). He illustrated this results taking

yn =

n−1∑
i=0

sin(παqi) mod 1

which is u.d. for any α normal in the base q.

P. Liardet: Propriétés génériques de processus croisés, Israel J. Math. 39 (1981), no. 4, 303–325
(MR0636899 (84k:22009); Zbl. 0472.28013).

2.18.21. Let f ≥ 1 be an integer and θ =
f+

√
f2+4
2 . The generalized

Fibonacci sequence is defined by

Fk+1 = fFk + Fk−1, F0 = 1, F1 = f, k = 1, 2, . . . .
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Every positive integer n can be uniquely expressed in the form (generalized
Zeckendorf expansion)

n =

L(n)∑
k=0

ak(n)Fk,

where FL(n) ≤ n < FL(n)+1, 0 ≤ ak(n) ≤ f , a0(n) ≤ f − 1, and ak(n) = f
implies ak−1(n) = 0.

Let aL(n) . . . a0(n) be the string of digits of n in this expansion. Let b1b2 . . .
be the concatenation of these strings for all positive integers n when n are
written successively in the natural (i.e. increasing) order. The real number

β =

∞∑
k=1

bkθ
−k

is called Champernowne number in the base θ and the sequence

βθn mod 1

is

u.d.

i.e. β is normal in the base θ (cf. the def. 1.8.24 Note (IV)).
P.J.Grabner: On digits expansions with respect to second order linear recurring sequences, in:
Number–theoretic analysis (Vienna, 1988–89), Lecture Notes in Math., 1452, Springer, Berlin,
1990, 58–64 (MR1084638 (92d:11078); Zbl. 0721.11027).

2.18.22. Let rn, n = 1, 2, . . . , be the sequence of all non–reduced fractions
a
b ∈ (0, 1) ordered with respect to their increasing denominator, i.e. the first
group (containing only one term) is formed by fractions with denominator
2, then follows the group of rational numbers with denominator 3, then with
denominator 4, etc. The terms within each group are ordered according to
their increasing numerators, i.e.

1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
2

6
, . . . .

Now let rn = [0; an,1, an,2, . . . , an,l(n)] be the continued fraction expansion of
rn with an,l(n) ̸= 1, and let

α = [0; a1,1, a2,1, a3,1, a3,2, a4,1, . . . , an,1, an,2, . . . , an,l(n), . . . ](= [0; a1, a2, . . . ])
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i.e. the partial quotients ai of α are obtained by concatenation of the partial
quotients of r1, r2, r3, . . . successively in the given order (a Champernowne’s
type expansion). Then the sequence

αn = [0; an+1, an+2], n = 1, 2, . . . ,

has the Gaussian a.d.f.

g(x) =
log(1 + x)

log 2
,

i.e. α is continued fraction normal (for the def. cf. p. 1 – 37 ).
R.Adler – M.Keane – M. Smorodinsky: A construction of normal number for the continued
fraction transformation, J. Number Theory 13 (1981), no. 1, 95–105 (MR0602450 (82k:10070); Zbl.
0448.10050).

2.19 Sequences involving primes

See also: 2.14.6, 2.18.8, 2.18.9

2.19.1. The sequence

pnθ mod 1, where pn is the nth prime and θ is irrational

is

u.d.

Notes: I.M.Vinogradov (1937, 1948), cf. [KN, p. 22]. For u.d. of polynomial
sequences q(pn) mod 1 see 2.19.4.

I.M.Vinogradov: The representation of odd numbers as a sum of three primes, (Russian), Dokl.
Akad. Nauk SSSR 15 (1937), 291–294 (Zbl 0016.29101).
I.M.Vinogradov: On an estimate of trigonometric sums with prime numbers (Russian), Izv.
Akad. Nauk SSSR, Ser. Mat. 12 (1948), 225–248 (MR0029418 (10,599b); Zbl. 0033.16401).

2.19.2. If α is non–integral then the sequence

pαn mod 1,

is

u.d.

and if α > 1 then
π(N)D∗

π(N) < N1−δ,
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for N > C(α), where δ = (15000α2)−1 and as usual

π(N)D∗
π(N) = sup

x∈[0,1]

∣∣∣∣∣∣∣∣
∑
pn≤N
{pαn}<x

1− π(N)x

∣∣∣∣∣∣∣∣ .
Notes: (I) The u.d. of θpαn mod 1 for 0 < α < 1 and θ > 0 was first proved by
I.M.Vinogradov (1940). He proved π(N)D∗

π(N) = O(N1+ε∆), where ∆ = (θNα−1+

θ−1N−α +N−2α/3)1/5.
(II) The u.d. of pαn mod 1 with α > 1 and α non–integral was proved by I.M.Vinog-
radov in (1948) with π(N)D∗

π(N) = O(N1−δ). In (1959) he found δ = (34.106)−1 for

α ≥ 6 satisfying ∥α∥ ≥ 1/3α.
(III) I.E. Stux (1974) proved for the extremal discrepancy the estimate π(N)Dπ(N) =

O
(
N log logN

log2N

)
for 0 < α < 1. A result by I.I. Pjateckĭı – Šapiro (1953) implies

π(N)D∗
π(N) = O(N1−δ) for 2

3 ≤ α < 1. D.Wolke (1975) reproved the u.d. of pαn for
0 < α < 1.
(IV) D. Leitmann (1976) recovered π(N)D∗

π(N) = O(N1−δ) for α > 1, and α non–

integral, by a modification of the method used by I.I. Pjateckĭı – Šapiro (1953).

(V) A.Balog (1983) proved that π(N)D∗
π(N) = O(N

1+α
2 +ε) for 1

2 ≤ α < 1, more

precisely that O(N
1+α
2 ω2 log8N + γNω−1 log−1N), where 0 ≤ γ ≤ 1 and 1 ≤ ω ≤

N
1
25 . For α = 1

2 this gives π(N)D∗
π(N) = O(N

4
5+ε) for every ε > 0. The same

result was reproved by G.Harman (1983) using sieve methods. A very interesting

consequence says, if ε > 0 then
{√

p
}
< p−

1
4+ε holds for infinitely many primes p.

(The well–known conjecture H, which claims that there are infinitely many primes
of the form n2 + 1, is equivalent to

{√
p
}
< p−1/2 for infinitely many primes p.)

(VI) R.C.Baker and G.Kolesnik (1985) found the sharpest δ = (15000α2)−1 for

large α at present. For α = 3
2 they proved π(N)D∗

π(N) = O(N
157
168+ε).

(VII) Recently, X.Cao and W.Zhai (1999) showed that the estimate π(N)D∗
π(N) =

O(N1−δ+ε) holds for 5
3 ≤ α < 3, α ̸= 2, where

δ = δ(α) =



1/26, if 5/3 ≤ α ≤ 45/26,

(5− 2α)/40, if 45/26 < α ≤ 2.1, α ̸= 2,

1/50, if 2.1 < α ≤ 317/150,

(9− 3α)/133, if 317/150 < α ≤ 347/160,

(5− α)/151, if 347/160 < α ≤ 129/56,

(3− α)/39, if 129/56 < α < 3.

(VIII) S.A.Gritsenko (1986) proved that if 1 < c ≤ 2 and ε > 0 then there exists an

N0(ε) such that the asymptotic formula A([0, 1/2);π(N);xn) =
π(N)

2 +O(R) holds
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for the sequence xn = 1
2p

1/c
n mod 1 and for N ≥ N0(ε), where R = N1/2+1/2c+ε if

1 < c ≤ 4/3, and R = N1−1/2c+(
√

3/c−1)2+ε if 4/3 < c ≤ 2.
(IX) A new method how to prove the u.d. of θpαn mod 1 (θ ̸= 0, α ∈ (0, 1)) can be
found in J. Schoißengeier (1979).

Related sequences: 2.15.1

R.C.Baker – G.Kolesnik: On distribution of pα modulo one, J. Reine Angew. Math. 356 (1985),
174–193 (MR0779381 (86m:11053); Zbl. 0546.10027).
A.Balog: On the fractional part of pθ, Arch. Math. 40 (1983), 434–440 (MR0707732 (85e:11063);
Zbl. 0517.10038).
X.Cao – W.Zhai: On the distribution of pα modulo one, J. Théor. Nombres Bordeaux 11 (1999),
no. 2, 407–423 (MR1745887 (2001a:11121); Zbl. 0988.11027).
S.A.Gritsenko: A problem of I. M. Vinogradov , Mat. Zametki 39 (1986), no. 5, 625–640
(MR0850799 (87g:11082); Zbl. 0612.10029).
G.Harman: On the distribution of

√
p modulo one, Mathematika 30 (1983), 104–116 (MR0720954

(85e:11051); Zbl. 0504.10019).
D.Leitmann: On the uniform distribution of some sequences, J. London Math. Soc. 14 (1976),
430–432 (MR0432566 (55 #5554); Zbl. 0343.10025).
I.I. Pjateckĭı–Šapiro: On the distribution of prime numbers in sequences of the form [f(n)] (Rus-
sian), Mat. Sb. (N.S.) 33(75) (1953), 559–566 (MR0059302 (15,507e); Zbl. 0053.02702).
J. Schoißengeier: The connection between the zeros of the ζ-function and sequences (g(p)), p pri-
me mod 1, Monatsh. Math. 87 (1979), no. 1, 21–52 (MR0528875 (80g:10054); Zbl. 0401.10046).
I.E. Stux: On the uniform distribution of prime powers, Comm. Pure Appl. Math. 27 (1974),
729–740 (MR0366844 (51 #3090); Zbl. 0301.10039).
I.M.Vinogradov: A general property of prime numbers distribution, (Russian), Mat. Sbornik
(N.S.) 7(49) (1940), 365–372 (MR0002361 (2,40a); Zbl. 0024.01503).
I.M.Vinogradov: On an estimate of trigonometric sums with prime numbers (Russian), Izv.
Akad. Nauk SSSR, Ser. Mat. 12 (1948), 225–248 (MR0029418 (10,599b); Zbl. 0033.16401).
I.M.Vinogradov: Estimate of a prime–number trigonometric sum (Russian), Izv. Akad. Nauk
SSSR, Ser. Mat. 23 (1959), 157–164 (MR0106881 (21 #5611); Zbl. 0088.03902).
D.Wolke: Zur Gleichverteilung einiger Zahlenfolgen, Math. Z. 142 (1975), 181–184 (MR0371839
(51 #8056); Zbl. 0286.10018).

2.19.3. If θ > 0 then the sequence

θp3/2n mod 1

is

u.d.

and

π(N)Dπ(N) = O(N1+ε−(1/56)),

where ε > 0 is arbitrarily small.

Notes: The proof in E.P.Golubeva and O.M.Fomenko (1979) uses the method
developed by I.M.Vinogradov (1940).
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E.P.Golubeva – O.M.Fomenko: On the distribution of the sequence bp3/2 modulo 1, in: Analytic
number theory and the theory of functions, 2, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov. (LOMI) 99 (1979), 31–39 (MR0566506 (81f:10061); Zbl. 0437.10017).
I.M.Vinogradov: A general property of prime numbers distribution, (Russian), Mat. Sbornik
(N.S.) 7(49) (1940), 365–372 (MR0002361 (2,40a); Zbl. 0024.01503).

2.19.4. Let q(x) be a polynomial with real coefficients and let pn, n =
1, 2, . . . , be the increasing sequence of all primes. Then the sequence

q(pn) mod 1

is

u.d.

if and only if the polynomial q(x)−q(0) has at least one irrational coefficient.
Notes: (I) This was implicitly proved by I.M.Vinogradov (1946, 1947, 1948) (see
MR 48#2087 by H.Niederreiter), and in full generally by G.Rhin (1973). Vino-
gradov (1946, 1948) proved that

π(N)Dπ(N) = O(N1−ρ),

when in the polynomial q(x) = akx
k + ak−1x

k−1 + · · ·+ a0 there exits a coefficient
ai, 1 ≤ i ≤ k, having the Diophantine approximation |ai − (A/Q)| ≤ 1/(QN i/2)
with 0 < Q ≤ N i/2, where ρ = 0.04/(k2(log k + 2)) if Q > N0.25 and ρ =
0.36 logQ/(k2(log(k2/ logQ) + 4)) if Q ≤ N0.25.
(II) The sequence q(pn) mod 1 is u.d. also when pn runs over primes in an arithmeti-
cal progression. I. Allakov (2003) studied the discrepancy DM of the finite sequence
αpkn mod 1 with integer k ≥ 2, pn ≡ b mod B, n = 1, 2, . . . ,M , and M = π(N ;B, b)
denoting the number of primes ≤ N in the arithmetical progression nB + b with
gcd(b,B) = 1. If |αq − a| < 1/q and gcd(a, q) = 1 then he proved that

MDM ≪ N

B

∆log q +

(
qN

δ

)ε(
dk

q
+
B

N

)1/2k−1
 ,

where B2 ≤ N , d = gcd(q,B) and

∆ =

(
N

δB

)ε(
d2k−1

q
+

B√
N

+ qδ

(
B

Nd

)k)1/22k−2

.

Here ε > 0 is arbitrary.

Related sequences: 2.14.1, 2.19.5

I. Allakov: On the distribution of fractional parts of a sequence {αpk} with prime arguments in
an arithmetic progression, (Russian), in: Proceeding of the V International Conference ”Algebra
and Number Theory: Modern Problems and Applications”, (Tula 2003), Chebyshevskĭı Sb., 4,
(2003), no. 2(6), 30–37 (MR2038590 (2004m:11119); Zbl. 1116.11059).
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G.Rhin: Sur la répartition modulo 1 des suites f(p), Acta Arith. 23 (1973), 217–248 (MR0323731
(48 #2087); Zbl. 0264.10026).
I.M.Vinogradov: A general distribution law for the fractional parts of values of a polynomial
with the variable running over the primes, (Russian), Dokl. Akad. Nauk SSSR 51 (1946), no. 7,
491–492 (MR0016371 (8,6b); Zbl. 0061.08803).
I.M.Vinogradov: The Method of Trigonometrical Sums in the Theory of Numbers, (Russian),
Trav. Inst. Math. Stekloff, Vol. 23, (1947) (MR0029417 (10,599a); Zbl. 0041.37002) Translated,
revised and annotated by K.F.Roth and A.Davenport, Interscience Publishers, London, New York,
1954 (MR0062183 (15,941b); Zbl. 0055.27504).
I.M.Vinogradov: On an estimate of trigonometric sums with prime numbers (Russian), Izv.
Akad. Nauk SSSR, Ser. Mat. 12 (1948), 225–248 (MR0029418 (10,599b); Zbl. 0033.16401).

2.19.5. Let pn, n = 1, 2, . . . , be the increasing sequence of all primes. Let
q(x) be a polynomial of degree h ≥ 1 with real coefficients and with positive
leading coefficient, and let c be a positive real number.

(I) If hc is not an integer, then the sequence

qc(pn) mod 1

is

u.d.

(II) If hc is an integer, there exists a polynomial r(x) of degree hc with
real coefficients and a function ψ analytic in a neighbourhood of 0 such that
ψ(0) = 0 and qc(x) = r(x) + ψ(1/x). Then the sequence

qc(pn) mod 1

is

u.d.

if and only if r(x)− r(0) has at least one irrational coefficient.

Notes: This is an extension of 2.19.4.

Related sequences: 2.14.1, 2.19.4

P.Toffin: Condition suffisantes d’équirépartition modulo 1 de suites (f(n))n∈N et (f(pn))n∈N ,
Acta Arith. 32 (1977), no. 4, 365–385 (MR0447137 (56 #5452); Zbl. 0351.10023).

2.19.6. Let r(x) = f(x)
g(x) , where f(x), g(x) ∈ Z[x] are coprime, and denote

by Pr,q the set of all primes p ≤ q such that g(p) ̸≡ 0 (mod q). If r(x) is not
a linear polynomial, then the sequence of blocks

Aq =

(
r(p) (mod q)

q

)
p∈Pr,q
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is
u.d.

C.Cobeli – M.Vâjâitu – A. Zaharescu: Equidistribution of rational functions of primes mod q,
J. Ramanujan Math. Soc. 16 (2001), no. 1, 63–73 (MR1824884 (2002b:11102); Zbl. 1007.11049).

2.19.7. The sequence

(log pn)
σ mod 1, n = 1, 2, . . . ,

is for σ > 1

u.d.,

but for σ = 1 it is

not u.d. (a consequence of 2.2.8).

Notes: Y.–H.Too (1992). This is a special case of 2.19.11 with f(x) = (log x)σ.

Related sequences: 2.3.6, 2.12.1, 2.19.8.

Y.–H.Too: On the uniform distribution modulo one of some log–like sequences, Proc. Japan
Acad. Ser. A, Math. Sci. 68 (1992), no. 9, 269–272 (MR1202630 (94a:11114); Zbl. 0777.11027).

2.19.7.1 Let pn, n = 1, 2, . . . , be the increasing sequence of all primes.
The sequence

log pn mod 1, n = 1, 2, . . . ,

has the same d.f.s as log n mod 1, i.e.

G(log pn mod 1) = G(log n mod 1).

Also, for every i = 1, 2, . . . ,

G(log(pn log
(i) pn) mod 1) = G(log n mod 1).

Notes: Y. Ohkubo (2011). It follows from his theorem 2.19.14.1.

Y.Ohkubo: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238
(MR2904049; Zbl. 1313.11090)
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2.19.7.2 Let b be a numeration base, logb x be the logarithm in base b, pn
be the nth prime number and Pn be the product of the first n prime numbers
(the so called primorial number).

Then the sequence

xn = logb Pn mod 1, n = 1, 2, . . .

is u.d.

with the discrepancy

DN (xn) ≤ Cb
(log logN)1/2

(logN)1/9
,

where the constant Cb is depends on b.
(I) The authors use the interpretation that the u.d. of xn means that the
sequence Pn satisfies the strong Benford’s law, cf. 2.12.1.1.

B.Massé – D. Schneider: The mantissa distribution of the primorial numbers, Acta Arith. 163
(2014), no. 1, 45–58 (MR3194056; Zbl. 1298.11074).

2.19.8. Let pn be the nth prime, and ci, i = 0, 1, 2, . . . , k−1, be real numbers
with

∑k−1
i=0 ci ̸= 0. The sequence

k−1∑
i=0

ci log pn+i mod 1, n = 1, 2, . . . ,

has the same distribution functions as the sequence( k−1∑
i=0

ci

)
log pn mod 1, n = 1, 2, . . . ,

and they are

G (c log pn mod 1) =

{
ex/c − 1

e1/c − 1
e−u/c + (emin(x/c,u/c) − 1)e−u/c : u ∈ [0, 1]

}
,

(1)
where c =

∑k−1
i=0 ci.

Notes: (I) A.Wintner (1935) has shown that xn = log pn mod 1 is not u.d. A proof
can be found in D.P. Parent (1984, pp. 282–283, Solut. 5.19). S.Akiyama (1996,
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1998) proved that xn is not almost u.d., i.e. x ̸∈ G(xn).
(II) R.E.Whitney (1972) generalized the result from 2.12.1(V) and proved that
log pn mod 1 is u.d. with respect to the logarithmic weighted means, i.e.

lim
N→∞

(
N∑
n=1

1

n

)−1 N∑
n=1

c[0,x)({log pn})
n

= x

for all x ∈ [0, 1], i.e. pn is a weak Benford sequence (see 2.12.26).
(III) D.I.A.Cohen and T.M.Katz (1984) have shown the u.d. of log pn mod 1 with
respect to the zeta distribution, i.e. (see 1.8.7)

lim
α→1+

1

ζ(α)

∞∑
n=1

c[0,x)({log pn})
nα

= x

for all x ∈ [0, 1].
(IV) The complete solution (1) is given by Y. Ohkubo (2011). It follows from an
estimate of S. Akiyama (1998) that

lim
n→∞

(
k−1∑
i=0

ci log pn+i −

(
k−1∑
i=0

ci

)
log pn

)
= 0,

which implies G
(∑k−1

i=0 ci log pn+i mod 1
)
= G

((∑k−1
i=0 ci

)
log pn mod 1

)
and then

Ohkubo used his theorem in 2.19.14.1.
(V) Since xn = log pn mod 1 is not u.d., the sequence of primes pn, n = 1, 2, . . . , is
not a strong Benford sequence (see 2.12.26), but we can solve the first digit problem
as follows: Express all primes pn in the base q. Let K = k1.q

r−1 + k2.q
r−2 + · · · +

kr−1.q + kr = k1k2 . . . kr, k1 ̸= 0, 0 ≤ ki ≤ q − 1, i = 1, 2, . . . , r, be considered as an
r-consecutive block of digits in base q. Similarly as the result of A.I. Pavlov (1981)
in 2.12.1.(X), the result of Y. Ohkubo (2011) in 2.19.7.1. implies

lim inf
N→∞

#{n ≤ N ; first r-digits of pn = K}
N

=
1

(q − 1)K
,

lim sup
N→∞

#{n ≤ N ; first r-digits of pn = K}
N

=
q

(q − 1)(K + 1)
.

Related sequences: 2.3.6, 2.12.1, 2.19.7.

S.Akiyama: A remark on almost uniform distribution modulo 1 , in: Analytic number theory
(Japanese) (Kyoto, 1994), Sūrikaisekikenkyūsho Kökyūroku No. 958, 1996, pp. 49–55 (MR1467998
(99b:11081); Zbl. 0958.11507).
S.Akiyama: Almost uniform distribution modulo 1 and the distribution of primes, Acta Math.
Hungar. 78 (1998), no. 1–2, 39–44 (MR1604062 (99b:1108); Zbl. 0902.110273).
Quoted in: 2.19.8
D.I.A.Cohen – T.M.Katz: Prime numbers and the first digit phenomenon, J. Number Theory
18 (1984), 261–268 (MR0746863 (85j:11014); Zbl. 0549.10040).
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D.P.Parent: Exercises in Number Theory, Problem Books in Mathematics, Springer Verlag, New
York, 1984 (MR0759342 (86f:11002); Zbl. 0536.10001). (French original: Exercices de théorie des
nombres, Gauthier – Villars, Paris, 1978 (MR0485646 (58 #5471); Zbl. 0387.10001)).
Y.Ohkubo: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238
(MR2904049; Zbl. 1313.11090)
A.I. Pavlov: On the distribution of fractional parts and F.Benford’s law , Izv. Aka. Nauk SSSR
Ser. Mat. (Russian), 45 (1981), no. 4, 760–774 (MR0631437 (83m:10093); Zbl. 0481.10049).
R.E.Whitney: Initial digits for the sequence of primes, Amer. Math. Monthly 79 (1972), no. 2,
150–152 (MR0304337 (46 #3472); Zbl. 0227.10047).
A.Wintner: On the cyclical distribution of the logarithms of the prime numbers, Quart. J. Math.
Oxford (1) 6 (1935), 65–68 (Zbl. 0011.14904).

2.19.9. If α, β, β ̸= 0, are real numbers then the sequence

αpn + β log pn mod 1

is

u.d.

with respect to the logarithmically weighted means and has logarithmic dis-
crepancy

LN ≤ c(β)(logN)−1

Notes: R.C.Baker and G.Harman (1990) applied 1.10.7.2 to prove this.

Related sequences: 2.12.31

R.C.Baker – G.Harman: Sequences with bounded logarithmic discrepancy, Math. Proc. Cam-
bridge Philos. Soc. 107 (1990), no. 2, 213–225 (MR1027775 (91d:11091); Zbl. 0705.11040).

2.19.9.1 For every irrational θ the sequence

pnθ + log pn, n = 1, 2, . . . ,

is

u.d. mod 1.

Notes: Y. Ohkubo (2011). The result follows from the fact that every u.d. sequence
xn mod 1 is statistically independent with log pn mod 1, where pn, n = 1, 2, . . . , is
the increasing sequence of all primes (see 2.3.6.2).

Y.Ohkubo: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238
(MR2904049; Zbl. 1313.11090)
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2.19.10. If sq(pn) denotes (cf. 2.9.1) the sum of the q–adic digits of the nth
prime pn in its q–adic digit expansion, then

sq(pn)θ mod 1

is

u.d. for every irrational θ.

Notes: Ch.Mauduit and J.Rivat (2005) filled the gap in the proof in M.Olivier
(1971).

Ch.Mauduit – J.Rivat: Propriétés q-multiplicatives de la suite ⌊nc⌋, c > 1, Acta Arith. 118
(2005), no. 2 187–203 (MR2141049 (2006e:11151); Zbl. 1082.11058)).
M.Olivier: Sur le développement en base g des nombres premiers, C.R. Acad. Sci. Paris Sér. A–B
272 (1971), A937–A939 (MR0277492 (43 #3225); Zbl. 0215.35801).

2.19.11. Let f : [a,∞) → (0,∞) with a > 0. Then the fulfilment of any of
the following blocks of assumptions, denoted as (I), (II), and (III), implies
that the sequence

αf(pn) mod 1, n = n0, n0 + 1, n0 + 2, . . . ,

is

u.d. for every non–zero real number α.

The corresponding discrepancies are different as given below.

(I) (i1) f be a differentiable function,
(i2) f ′(x) log x be monotone for a sufficiently large x,
(i3) lim

x→∞
xf ′(x) = ∞,

(i4) f(x) = o((log x)ε) for some ε > 0.

Then

DN ≪

√
f(pN )

(log pN )ε
+max

(
1

N
,

1

pNf ′(pN )

)
.

(II) (ii1) f be a twice differentiable function with f ′ > 0,
(ii2) lim

x→∞
x2f ′′(x) = ∞,

(ii3) (log x)2f ′′(x) be non–increasing in x for a sufficiently large x,
(ii4) f(x) = o((log x)ε) for some ε > 0.

Then

DN ≪

√
f(pN )

(log pN )ε
+

√
1

p2Nf
′′(pN )

.
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(III) (iii1) f be a twice differentiable function with f ′ > 0,
(iii2) lim

x→∞
x2f ′′(x) = −∞,

(iii3) (log x)2f ′′(x) and x(log x)2f ′′(x) both be non–increasing for a suffi-
ciently large x,

(iii4) f(x) = o((log x)ε) for some ε > 0.

Then

DN ≪

√
f(pN )

(log pN )ε
+

√
−1

p2Nf
′′(pN )

+
−1

p2N (log pN )f ′′(pN )
.

Notes: (I) Y.–H.Too (1992, Th. 1) proved this result motivated by the results
previously proved by K.Goto and T.Kano (1985). In (1992) they proved a related
result subject to the following changes of the assumptions
(i1) f is a continuously differentiable function, and
(i3) lim

x→∞
x|f ′(x)| = ∞.

Moreover, the condition (i4) is formulated with ε > 1, but a closer check of the proof
shows that the weaker hypothesis ε > 0 is actually used.
(II) This result was proved by Y.–H.Too (1992, Th. 2). However, in K.Goto and
T.Kano (1992) (and in Goto and Kano (1985)) again a similar result is stated under
the condition that
(ii1) f is continuously differentiable and f ′(x) > 0 and f ′′(x) > 0,
but without the condition (ii3) (and again under the assumption ε > 1 in (ii4) (cf.
notes in 2.19.11)).
(III) This is Theorem 3 from Y.–H.Too (1992). In K.Goto and T.Kano (1985, 1992)
a similar result is claimed under the following changes of the assumptions
(iii1) f is twice differentiable with f → ∞, f ′ > 0 and f ′′ > 0,
(iii3) (log x)2f ′′(x) is increasing
Cf. also comments concerning ε in (I) and (II). In Goto and Kano (1992) the
following result is proved:
Proposition . Let f(x) be a twice differentiable function with f ′ > 0 and f ′′ < 0. If
x2f ′′(x) → −∞, then xf ′x → ∞. If x(log x)2f ′′(x) is increasing, then (log x)f ′(x)
is monotone. Moreover, f ′(x) log x is decreasing or increasing according to if f ′(x)
tends to zero or to a positive constant.

K.Goto – T.Kano: Uniform distribution of some special sequences, Proc. Japan Acad. Ser. A
Math. Sci. 61 (1985), no. 3, 83–86 (MR0796473 (87a:11069); Zbl. 0573.10023).
K.Gotô – T.Kano: Remarks to our former paper “Uniform distribution of some special se-
quences”, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 10, 348–350 (MR1202648 (94a:11111);
Zbl. 0777.11026).
Y.–H.Too: On the uniform distribution modulo one of some log–like sequences, Proc. Japan
Acad. Ser. A, Math. Sci. 68 (1992), no. 9, 269–272 (MR1202630 (94a:11114); Zbl. 0777.11027).
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2.19.12. Let f be an entire function assuming real values on the real axis.
Suppose that |f(z)| ≤ exp(log |z|)α for (|z| → +∞), where 1 ≤ α < 4/3, and
suppose that f − f(0) is not a polynomial with rational coefficients. Then
the sequence

f(pn) mod 1

is

u.d.

Notes: R.C.Baker (1984) improving a result of G.Rhin (1975) with 1 ≤ α < 7/6.
Previously, Rhin (1973) worked with the growth condition log logM(r)/ log log r <
5/4, where M(r) = sup|z|=r |f(z)|. M.A.Wodzak (1994) extended Baker’s result to
the primes in a fixed arithmetic progression.

Related sequences: 2.6.21

R.C.Baker: Entire functions and uniform distribution modulo one, Proc. London Math. Soc. (3)
49 (1984), no. 1, 87–110 (MR0743372 (86h:11055); Zbl. 0508.10023).
G.Rhin: Répartition modulo 1 de f(pn) quand f est une série entière, Séminaire Delange-
Pisot-Poitou (14e année: 1972/73), Théorie des nombres, Fasc. 2, Exp. No. 20, Secrétariat
Mathématique, Paris, 2 pp. (MR0404160 (53 #7963); Zbl. 0327.10052).
G.Rhin: Répartition modulo 1 de f(pn) quand f est une série entière, in: Actes Colloq. Mar-
seille – Luminy 1974, Lecture Notes in Math., Vol. 475, Springer Verlag, Berlin, 1975, pp. 176–244
(MR0392857 (52 #13670); Zbl. 0305.10046).
M.A.Wodzak: Primes in arithmetic progression and uniform distribution, Proc. Amer. Math.
Soc. 122 (1994), no. 1, 313–315 (MR1233985 (94k:11084); Zbl. 0816.11042).

2.19.13. Let
• P (x) be a polynomial of degree ≥ 1,
• m be a positive integer,
• h(x) be a periodic function with period 1, k times continuously differen-

tiable with k sufficiently large,
• h(i)(x) has only finitely many zeros in [0, 1], for every i ≤ k,
• |h(i)(x)|+ |h(i+1)(x)|+ · · ·+ |h(i+m)(x)| ≥ c > 0 for some absolute constant
c > 0, every i ≤ k −m and all x.

Then the sequence
P (pn)h(pnα) mod 1

is

u.d.

for every non–Liouville number α (with pn running over the set of primes).
Notes: D.Berend, M.D.Boshernitzan and G.Kolesnik (2002, Th. 2.3). The authors
noted that the required size of k depends on the degree of P (x), on m and on α
(precisely, on u, 0 < u < 1, for which lim infq→∞ q1/u∥αq∥ > 0).
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D.Berend – M.D.Boshernitzan – G.Kolesnik: Distribution modulo 1 of some oscillating se-
quences. III , Acta Math. Hungar. 95 (2002), no. 1–2, 1–20 (MR1906205 (2003h:11085); Zbl.
0997.11058).

2.19.14. Let f(t) be a periodic real function with period 1 such that
• f(t) is continuous except for a finite number of points in the interval [0, 1],
• f(t) satisfies the Lipschiz condition in each of its intervals of continuity,
•
∫ 1
0 f(t) dt = 0.

Let g ≥ 2 be a fixed integer and h(p) be an integral valued function at prime
arguments p such that
• h(p) → ∞ for p→ ∞,
• h(p) ≤ log p

2 log g .

Under these assumption the block sequence Ap with

Ap =

 1√
h(p)

h(p)−1∑
k=0

f

(
igk

p

)
; i = 0, 1, . . . , p− 1

 ,

where p runs over the primes with gcd(g, p) = 1 has the a.d.f. g(x) in the
interval (−∞,∞). In addition to that the limit

σ2 = lim
p→∞

1

p

p−1∑
i=0

1

h(p)

h(p)−1∑
k=1

f

(
igk

p

)2

exists, and
• if σ ̸= 0 then g(x) is the so–called normal d.f., i.e.

g(x) =
1

σ
√
2π

∫ x

−∞
e−

u2

2σ2 du,

• if σ = 0, then g(x) is the step d.f. g(x) = c0(x).

Notes: L.P.Usol’cev (1961) proved in this way a discrete analogue to a theorem of
M.Kac (1946).

M.Kac: On the distribution of values of sums of the type
∑

f(2kt), Ann. of Math. (2) 47 (1946),
33–49 (MR0015548 (7,436f); Zbl. 0063.03091).
L.P.Usol’tsev (Usol’cev): An analogue of the Fortet – Kac theorem, (Russian), Dokl. Akad.
Nauk SSSR 137 (1961), 1315–1318 (MR0147466 (26 #4982); Zbl. 0211.49104).
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2.19.14.1 Let pn, n = 1, 2, . . . , be the increasing sequence of all primes.
Let the real-valued function f(x) be strictly increasing for x ≥ 1 and let
f−1(x) be its inverse function. Assume that

(i) limk→∞ f−1(k + 1)− f−1(k) = ∞,

(ii) limk→∞
f−1(k+uk)

f−1(k)
= ψ(u) for every sequence uk ∈ [0, 1] for which

limk→∞ uk = u, where this limit defines the function ψ : [0, 1] → [1, ψ(1)],

(iii) ψ(1) > 1.

Then

G(f(pn) mod 1) ={
gu(x) =

min(ψ(x), ψ(u))− 1

ψ(u)
+

1

ψ(u)

ψ(x)− 1

ψ(1)− 1
;u ∈ [0, 1]

}
.

The lower d.f. g(x) and the upper d.g. g(x) of f(pn) mod 1 are

g(x) =
ψ(x)− 1

ψ(1)− 1
, g(x) = 1− 1

ψ(x)
(1− g(x).)

Here

g(x) = g0(x) = g1(x) ∈ G(f(pn) mod 1)

and

g(x) = gx(x) /∈ G(f(pn) mod 1).

If

FN (x) =
#{n ≤ N ; f(pn) mod 1 ∈ [0, x)}

N

denotes the step d.f. and if f(pNi) mod 1 is a subsequence of the sequence
f(pn) mod 1 such that f(pNi) mod 1 → u then FNi(x) → gu(x) for every
x ∈ [0, 1].

Notes:
(I)Y.Ohkubo (2011).
(II) Compare with Theorem 2.6.18.1.

Y.Ohkubo: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238
(MR2904049; Zbl. 1313.11090)
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2.19.15. Let pn be the increasing sequence of the all primes. Then the
double sequence

pm
pn
, m, n = 1, 2, . . . ,

is

dense in [0,∞).

Notes: (I) According to W. Sierpiński (1964, p. 155) this result was proved by
A. Schinzel.
(II) Independently, J. Smı́tal (1971) proved that pm

pn+1 is everywhere dense in [0,∞).

(III) A well–known conjecture (cf. P.Ribenboim (1988, p. 297)) says that he double
sequence

pm + 1

pn + 1
, m, n = 1, 2, . . . ,

contains all positive rationals.

(IV) If the number of prime-twins p
(2)
n , p

(2)
n +2 ≤ x asymptotically equals cx/ log2 x(

cf. Hardy and Wright (1954, p. 412)
)
, then T. Šalát (1969) proved that the double

sequence

p
(2)
m

p
(2)
n

, m, n = 1, 2, . . . ,

is dense in [0,∞), cf. 2.22.2.

G.H.Hardy – E.M.Wright: An Introduction to the Theory of Numbers, 3nd edition ed., Claren-
don Press, Oxford, 1954 (MR0067125 (16,673c); Zbl. 0058.03301).
P.Ribenboim: The Book of Prime Number Records, Springer Verlag, New York, 1988 (MR0931080
(89e:11052); Zbl. 0642.10001).
T. Šalát: On ratio sets of sets of natural numbers, Acta Arith. 15 (1968/69), 273–278 (MR0242756
(39 #4083); Zbl. 0177.07001).J. Sḿıtal: Remarks on ratio sets of sets of natural numbers, Acta
Fac. Rerum Nat. Univ. Comenian. Math. 25 (1971), 93–99 (MR0374079 (51 #10279); Zbl.
0228.10036).
W.Sierpiński: Elementary Theory of Numbers, Monografie Matematyczne. Tom 42, Panstwowe
Wydawnictwo Naukowe, Warszawa, 1964 (MR0175840 (31 #116); Zbl. 0122.04402).

2.19.16. Let pn be the nth prime. Then the sequence of blocks

Xn =

(
2

pn
,
3

pn
, . . . ,

pn−1

pn
,
pn
pn

)
is

u.d.

and thus also the block sequence ω = (Xn)
∞
n=1 is u.d. (cf. 2.3.14).
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Notes: This example by O. Strauch and J.T.Tóth (2001) generalizes 2.19.15. The
u.d. implies the following interesting limit

lim
n→∞

1

n2pn

n∑
i,j=1

|pi − pj | =
1

3
.

O. Strauch – J.T.Tóth: Distribution functions of ratio sequences, Publ. Math. (Debrecen) 58
(2001), 751–778 (MR1828725 (2002h:11068); Zbl. 0980.11031).

2.19.17. Let pn be the increasing sequence of all primes and q be a given
integer. Then the sequence

xn =
pn
q

mod 1, n = 1, 2, . . . , π(N),

has discrepancy

Dπ(N) = O
(
N ε logN

(√
1

q
+

q

N
+

1

N
1
6

))
.

Consequently, if q and N
q are large enough the distribution of xn, n =

1, 2, . . . , π(N), is (cf. 1.8.23)

asymptotically u.d.
I.M.Vinogradov: An elementary proof of a theorem from the theory of prime numbers (Russian),
Izv. Akad. Nauk SSSR, Ser. Mat. 17 (1953), 3–12 (MR0061622 (15,855f); Zbl. 0053.02703).

2.19.18. Let pn be the increasing sequence of the all primes and α, β given
positive real numbers. Then the double sequences

pαm

pβn
,

pαm
ppnn

, n,m = 1, 2, . . . ,

are

dense in [0,∞),

but
ppmm
ppnn

, n,m = 1, 2, . . . ,

is

not dense.

Notes: J.T.Tóth and L. Zsilinszky (1995). In the joint paper J. Bukor, P. Erdős,
T. Šalát and J.T.Tóth (1997, Th. 2.1) the following generalization is given:
Let αn, n = 1, 2, . . . , be the sequence of positive real numbers such that
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(i) αn = O(n3/8),
(ii) αn+1 − αn = O(n−ε) for some ε > 0.

Then the double sequence

pαm
m

pαn
n
, n,m = 1, 2, . . . ,

is

dense in [0,∞).

Related sequences: 2.19.15, 2.19.16, 2.22.4.

J. Bukor – P.Erdős – T. Šalát – J.T.Tóth: Remarks on the (R)–density of sets of numbers, II ,
Math. Slovaca 47 (1997), no. 5, 517–526 (MR1635220 (99e:11013); Zbl. 939.11005).
J.T.Tóth – L. Zsilinsky: On density of ratio sets of powers of primes, Nieuw Arch. Wisk. (4)
13 (1995), no. 2, 205–208 (MR1345571 (96e:11013); Zbl. 0837.11009).

2.19.19. If pn is the increasing sequence of all primes then the sequence

xn =
pn
n

mod 1.

has the same set of d.f.’s as log(n log n) mod 1, which in turn has the same
set of d.f.’s as log n mod 1 (see 2.12.16).

Notes: O. Strauch and O.Blažeková (2003). They used an old result of M.Cipolla
(1902) (cf. P.Ribenboim (1995, p. 249)) that

pn = n log n+ n log log n− n+ o

(
n log log n

log n

)
and then they applied 2.3.3.
Note that xn is a subsequence of n

π(n) mod 1 from 2.20.12. These two sequences

were introduced at the Number Theory Seminar of Prof. T. Šalát (Bratislava).

M.Cipolla: La determinazione assintotica dell’ nimo numero primo, Napoli Rend. 3 8 (1902),
132–166 (JFM 33.0214.04).
P.Ribenboim: The New Book of Prime Numbers Records, Springer–Verlag, New York, 1996
(MR1377060 (96k:11112); Zbl. 0856.11001).
O. Strauch – O.Blažeková: Distribution of the sequence pn/n mod 1, Math. Institute, Slovak
Acad. Sci., Bratislava, Slovak Republic, 2003, 15 pp.

2.19.19.1 For every irrational θ the sequence

pnθ +
pn
n
, n = 1, 2, . . . ,
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is

u.d. mod 1.

Notes: Y. Ohkubo (2011). This follows from his result 2.3.6.3 and from u.d. of
pnθ mod 1.

Y.Ohkubo: On sequences involving primes, Unif. Distrib. Theory 6 (2011), no. 2, 221–238
(MR2904049; Zbl. 1313.11090)

2.19.19.2

Let P (n) denote the largest prime factor of n.

Let f(u) = g(log u) where g : [1,∞) → R is a differentiable function.

Let R(x) := π(x)−li(x) be the error function in the Primer Number Theorem.

Further assume that

(i) vg′(v) is increasing and tends to infinity;

(ii) limy→∞
∫ y1+d

y
|R(u)|

u |f ′(u)|du = 0 for any given real number d > 0.

Then the sequence

f(P (n)) mod 1, n = 1, 2, . . .

is u.d.

J.-M.De Konick – I.Kátai: The uniform distribution mod 1 of sequences involving the largest
prime factor function, Šiauliai Math. Semin. 8(16) (2013), 117–129 (MR3145622; Zbl 1303.11087).

2.20 Sequences involving number–theoretical functions

See also: 2.3.23, 2.12.27

Notes: An arithmetical function is a function with is defined on the positive
integers, i.e. it is a sequence.
An additive function is an arithmetical function f(n) which satisfies

f(mn) = f(m) + f(n)

whenever m and n are coprime integers.
A strongly additive function is an additive function which also satisfies

f(pm) = f(p)
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for every prime power pm, m ≥ 1.
A completely additive function satisfies

f(mn) = f(m) + f(n)

for every pair of integers m and n.
A multiplicative function is an arithmetical function g(n) which satisfies

g(mn) = g(m)g(n)

whenever m and n are coprime integers.

A strongly multiplicative function is a multiplicative function which also satisfies

g(pm) = g(p)

for every prime power pm, m ≥ 1.
A completely multiplicative function is an arithmetical function g(n) which
satisfies

g(mn) = g(m)g(n)

for every pair of positive integers.
See P.D.T.A.Elliott (1980, p. xv – xvi).

P.D.T.A. Elliott: Probabilistic Number Theory II. Central Limit Theorems, Grundlehren der
mathematischen Wissenschaften, Vol. 240, Springer Verlag, New York, Heidelberg, Berlin, 1980
(MR0551361 (82h:10002a); Zbl. 0431.10030).

2.20.1. In order that for a given real valued additive function f the sequence

f(n) mod 1

is

u.d.,

it is both necessary and sufficient that on of the following conditions holds:

(I) for each positive integer k the series

∑
p

∥kf(p)− τ log p∥2

p

diverges for every real number τ ,

(II) its spectrum (cf. 2.4.1 for the def.) is empty, i.e.

sp(f(n)) = ∅.



2.20 Sequences involving number–theoretical functions 2 – 227

Notes: (I) Cf. the monograph by P.D.T.A.Elliott (1979, p. 284, Th. 8.1).
(II) H.Daboussi and M.Mendès France (1974/1975). They proved that if f is a
real additive function then either sp(f(n)) = ∅ or sp(f(n)) = Q mod 1, and that
f(n) mod 1 is u.d. if and only if sp(f(n)) contains no rational number. Consequently,
(cf. 2.4.2) if f(n) mod 1 is u.d. then f(kn) mod 1 is u.d. for any almost periodic
sequence kn.

H.Daboussi – M.Mendès France: Spectrum, almost periodicity and equidistribution modulo 1 ,
Studia Sci. Math. Hungar. 9 (1974/1975), 173–180 (MR0374066 (51 #10266); Zbl. 0321.10043).
P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).

2.20.2. In order that for an additive function f the sequence

f(n) mod 1

possesses the limiting distribution (i.e. is has the a.d.f.)

g(x) ̸= x,

it is both necessary and sufficient that for some positive integer k the series

∑
p

∥kf(p)∥2

p
,

∑
p

∥kf(p)∥sign
(
(1/2)− {kf(p)}

)
p

converge. When this condition is satisfied the limit law is continuous if and
only if the series ∑

∥mf(p)∥≠0

1

p

diverges for every positive integer m.

Notes: Cf. the monograph by P.D.T.A.Elliott (1979, p. 284, Th. 8.2).

P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).

2.20.3. Erdős – Wintner theorem (1939). Let f be an additive arith-
metical function. In order that the sequence

f(n), n = 1, 2, . . . ,
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possesses the a.d.f.

g(x) = limN→∞
1
N#{n ≤ N ; f(n) < x} a.e.

defined on (−∞,∞), it is both necessary and sufficient that the series

∑
|f(p)|>α

1

p
,

∑
|f(p)|≤α

f(p)

p
,

∑
|f(p)|≤α

f2(p)

p

converge for some α > 0. When this condition is satisfied, the characteristic
function ĝ(t) =

∫∞
−∞ eitx dg(x) of g(x) may be represented in the form

ĝ(t) =
∏
p

(
1− 1

p

)(
1 +

∞∑
m=1

eitf(p
m)

pm

)
,

where the product is taken over all prime numbers. The limiting distribution
of the sequence will be continuous if and only if the series

∑
f(p) ̸=0

1

p

diverges.

Notes: Cf. the monographs by P.D.T.A.Elliott (1979, p. 187, Th. 5.1) and by
G.Tenenbaum (1990, p. 358, Th. 1). Elliott (1973, cf. 1979, p. 269, Th. 7.7) also
proved: The additive function f(n) possesses the a.d.f. g(x) over (−∞,∞) with a
finite mean and variance if and only if

lim
N→∞

1

N

N∑
n=1

f(n) exists, and lim sup
N→∞

1

N

N∑
n=1

(f(n))2 <∞.

P.D.T.A. Elliott: On additive functions whose limiting distributions possess a finite mean and
variance, Pacif. J. Math. 48 (1973), 47–55 (MR0357359 (50 #9827); Zbl. 0271.10047).
P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).
G.Tenenbaum: Introduction à la théorie analytique et probabiliste des nombres, Institut Elie
Cartan, Vol. 13, Université de Nancy, Nancy, 1990. (second edition: Société de France, Paris,
1995 (MR1366197 (97e:11005a); Zbl. 0880.11001)). (English translation: Studies in Advanced
Mathematics, Vol. 46, Cambridge Univ. Press, Cambridge, 1995 (MR1342300 (97e:11005b); Zbl.
0880.11001)).
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2.20.4. Let f be an additive arithmetical function. In order that the se-
quence of differences

f(n+ 1)− f(n), n = 1, 2, . . . ,

possesses the a.d.f.

g(x) = limN→∞
1
N#{n ≤ N ; f(n+ 1)− f(n) < x} a.e.

defined on (−∞,∞), it is both necessary and sufficient that there exists a
real number λ such that for the function h(n) = f(n)− λ log n we have

∑
|h(p)|≤1

|h(p)|2

p
<∞,

∑
|h(p)|>1

1

p
<∞.

When these conditions are satisfied then the characteristic function ĝ(t) =∫∞
−∞ eitx dg(x) of g(x) is given by

ĝ(t) =
∏
p

(
1− 2

p
+ 2

(
1− 1

p

)
ℜ

( ∞∑
m=1

eith(p
m)

pm

))
,

where the product is taken over all prime numbers.

Notes: This analogue of Erdős – Wintner theorem (cf. 2.20.3) was proved by
A.Hildebrand (1988). As an application he proves the following conjecture of Erdős
from 1946: If f(n + 1) − f(n) → 0 as n → ∞ over a set of density one, then
f(n) = λ log n for some λ.

A.Hildebrand: An Erdős – Wintner theorem for differences of additive functions, Trans. Amer.
Math. Soc. 310 (1988), no. 1, 257–276 (MR0965752 (90a:11099); Zbl. 0707.11057).

2.20.5. In order that for a real valued multiplicative arithmetical function
f(n) the sequence

f(n), n = 1, 2, . . . ,

possesses the a.d.f.

g(x) defined on (−∞,∞)

it is both necessary and sufficient that the three series

∑
f(p)=0

1

p
,

∑
f(p)̸=0

ψ(log |f(p)|)
p

,
∑

f(p)̸=0

(ψ(log |f(p)|))2

p
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converge (here p denotes primes and ψ(y) = y if |y| ≤ 1 and ψ(y) = 1 if
|y| > 1).

When these conditions are satisfies, the a.d.f. g(x) is symmetric if and only
if f(2k) = −1 for every integer k, or the series∑

f(p)<0

1

p

diverges
(
here for g(x) to be symmetric means that if both ±x are continuity

points of g(x), then 1− g(x) = g(−x)
)
.

The a.d.f. g(x) will be continuous if and only if f(n) is never zero and the
series ∑

|f(p)|̸=1

1

p

diverges.

Notes: The Bakštis, Galambos, Levin, Timofeev and Tuljaganov theorem, cf.
P.D.T.A.Elliott (1979, p. 280, Th. 7.11) and as application cf. 2.20.11 Note (IX).

A.Bakštis: Limit laws of a distribution of multiplicative arithmetic function. I , (Russian), Litevsk.
Mat. Sb. 8 (1968), no. 1, 5–20 (MR0251000 (40 #4231)).
P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).
J.Galambos: On the distribution of strongly multiplicative functions, Bull. London Math. Soc. 3
(1971), 307–312 (MR0291106 (45 #200); Zbl. 0228.10032).
B.V. Levin – N.M.Timofeev – S.T.Tuliagonov: Distribution of values of multiplicative func-
tions, (Russian), Litevsk. Mat. Sb. 13 (1973), no. 1, 87–100, 232 (MR0314790 (47 #3340); Zbl.
0257.10024).

2.20.6. Let f be an arithmetical function. Suppose that for every ε > 0
there exits a sequence aε(n), n = 1, 2, . . . , of positive integers such that
(i) limε→0 lim supT→∞ d({n ∈ N ; aε(n) > T}) = 0,
(ii) limε→0 d({n ∈ N ; |f(n)− f(aε(n))| > ε}) = 0,
(iii) the asymptotic density d({n ∈ N ; aε(n) = k}) exists for every k ≥ 1.

Then the sequence
f(n), n = 1, 2, . . . ,

has the a.d.f.
g(x), x ∈ (−∞,∞).

Notes: Cf. the monograph G.Tenenbaum (1990, p. 317, Th. 2).
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G.Tenenbaum: Introduction à la théorie analytique et probabiliste des nombres, Institut Elie
Cartan, Vol. 13, Université de Nancy, Nancy, 1990. (second edition: Société de France, Paris,
1995 (MR1366197 (97e:11005a); Zbl. 0880.11001)). (English translation: Studies in Advanced
Mathematics, Vol. 46, Cambridge Univ. Press, Cambridge, 1995 (MR1342300 (97e:11005b); Zbl.
0880.11001)).

2.20.7. Kubilius – Shapiro theorem. Let f : N → R be an additive real
valued function, not identically vanishing. Put

A(f,N) =
∑
pn≤N

f(pn)

pn
,

B(f,N) =

 ∑
pn≤N

(f(pn))2

pn

 1
2

,

where p runs over all prime numbers. Define the sequence AN , N = 1, 2, . . . ,
of blocks by

AN =

(
f(1)−A(f,N)

B(f,N)
,
f(2)−A(f,N)

B(f,N)
, . . . ,

f(N)−A(f,N)

B(f,N)

)
.

Then, the sequence AN has on (−∞,∞) the Gaussian a.d.f.

g(x) = 1
2π

∫ x
−∞ e−

t2

2 dt,

i.e.

lim
N→∞

1

N
#

{
n ≤ N ;

f(n)−A(f,N)

B(f,N)
< x

}
= g(x)

for all x ∈ (−∞,∞).
Notes: (I) This is a generalization of the Erdős – Kac theorem: For every
x ∈ (−∞,∞)

lim
N→∞

1

N
#

{
n ≤ N ;

ω(n)− log logN√
log logN

≤ x

}
= g(x),

where ω(n) is the number of distinct prime divisors of n, cf. A.Hildebrand (1987).
(II) The same holds for the function Ω(n), the number of prime divisors of n, cf.
P.D.T.A.Elliott (1980, p. 26). A further example (p. 30):

lim
N→∞

1

π(N)
#

{
p ≤ N ;

ω(p+ 1)− log logN√
log logN

≤ x

}
= g(x).

(III) For the history of the Erdős – Kac theorem, see Elliott (1980, Chapt. 12).
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P.D.T.A. Elliott: Probabilistic Number Theory II. Central Limit Theorems, Grundlehren der
mathematischen Wissenschaften, Vol. 240, Springer Verlag, New York, Heidelberg, Berlin, 1980
(MR0551361 (82h:10002a); Zbl. 0431.10030).
A.Hildebrand: Recent progress in probabilistic number theory, Astérique no. 147–148 (1987),
95–106, 343 (MR0891422 (88g:11051); Zbl. 0624.10045).

2.20.8. Let f(n) be an arithmetical function which satisfies
(i) f(n) =

∑
d|nΦ(d),

(ii)
∑∞

d=1
|Φ(d)|

d <∞
for some arithmetical function Φ. Then the sequence

f(n), n = 1, 2, . . . ,

has the a.d.f.

g(x)

defined on (−∞,∞).

Notes: A.G.Postnikov (1971, p. 219, Th. 6b). This is a consequence of a more
general theorem proved by Ju.V. Prochorov (cf. Postnikov (1971, p. 216, Th. 6a)):
Let B1 be the class of all arithmetical functions such that for every ε > 0 there
exists an arithmetical periodic function ft(n) with period t such that

lim sup
N→∞

1

N

N∑
n=1

|f(n)− ft(n)| ≤ ε.

For every f ∈ B1, the sequence f(n) has the a.d.f. on (−∞,∞). Note that ev-
ery arithmetical function f(n) which satisfies (i) and (ii) belongs to class B1 (cf.
Postnikov (1971, p. 202, Lemma)).

A.G.Postnikov: Introduction to Analytic Number Theory, (Russian), Izd. Nauka, Moscow,
1971 (MR0434932 (55 #7895); Zbl. 0231.10001). (for the English translation see (MR0932727
(89a:11001); Zbl. 0641.10001)).

2.20.9. Denote by σ(n) the sum of the positive divisors of n. Then the
sequence

σ(n)

n

has continuous a.d.f.

g(x) defined on [1,∞)
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and for its discrepancy we have

D∗
N = O

(
log logN

logN log log logN

)
.

Notes: (I) This is a result of P. Erdős (1974), cf. P.D.T.A.Elliott (1979, p. 203,
Lemma 5.8).
(II) Erdős (1974) claims that combining his result with the method of H.G.Dia-
mond (1973) one can prove that DN = O(1/ logN). This strong result does not
seem to be immediately available in such a manner, so that this assertion remains
an open conjecture, see P.D.T.A.Elliott (1979, p. 219).
(III) F. Luca ([a]2003) proved that, ifMn = 2n−1 is the nth Mersenne number then
the subsequence σ(Mn)/Mn is dense in [1,∞) and it has the a.d.f. (preprint [b]).

H.G.Diamond: The distribution of values of Euler’s phi function, in: Analytic Number Theory
(Proceedings of a conference at the St. Louis Univ., St. Louis, Mo., 1972), Proc. Sympos.
Pure Math., 24, Amer. Math. Soc., Providence, 1973, pp. 63–75 (MR0337835 (49 #2604); Zbl.
0273.10036).
P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).
P.Erdős: On the distribution of numbers of the form σ(n)/n and on some related questions,
Pacific J. Math. 52 (1974), 59–65 (MR0354601 (50 #7079); Zbl. 0291.10040).
[a] F. Luca: On the sum divisors of the Mersenne numbers, Math. Slovaca 53 (2003), no. 5,
457–466 (MR2038513 (2005a:11151); Zbl. 1053.11529).
[b] F. Luca: Some mean values related to average multiplicative orders of elements in finite fields,
Ramanujan J. 9 (2005), no. 1–2, 33–44 (MR2166376 (2006i:11111); Zbl. 1155.11344).

2.20.10. If λ(n) denotes the universal exponent of n then the sequence

n

λ(n)
mod 1

is

dense in [0, 1].

Notes: J. Bukor and B. László (2000). The universal exponent mod n (or the
Carmichael function) is the least number λ(n) such that n|aλ(n)−1 for every integer
a with gcd(a, n) = 1. If n = 2α0pα1

1 . . . pαk

k is the factorization of the positive integer
n into different prime factors, then

λ(n) = lcm[λ(2α0), φ(pα1
1 ), . . . , φ(pαk

k )],

where λ(2) = 1, λ(22) = 2 and λ(2α) = 2α−2 for α = 3, 4, . . . , cf. W. Sierpiński (1964,
p. 246).
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J. Bukor – B. László: On the density of the set {n/λ(n) ; n ∈ N}, (Slovak), Acta Mathematica
(Nitra) 4 (2000), 73–78.
W.Sierpiński: Elementary Theory of Numbers, Monografie Matematyczne. Tom 42, Panstwowe
Wydawnictwo Naukowe, Warszawa, 1964 (MR0175840 (31 #116); Zbl. 0122.04402).

2.20.11. If φ is the Euler totient function then the sequence

φ(n)

n
, n = 1, 2, 3, . . . ,

has in [0, 1] singular a.d.f.

g0(x).

Notes: (I) I.J. Schoenberg (1928, 1936) proved that this sequence has continuous
and strictly increasing a.d.f.
(II) P. Erdős (1939) showed that this a.d.f. is singular. Here a function is singular,
if it is continuous, strictly monotone and has vanishing derivative almost everywhere
on the interval of its definition.
(III) H.Davenport (1933) proved

g0(x) =

∞∑
n=1

Sn, where Sn =
1

an
−
∑
i<n

1

[ai, an]
+
∑
i<j<n

1

[ai, aj , an]
− . . . ,

where [a, b] is the least common multiple of a and b, and a1, . . . , an, . . . is the sequence
of the all positive integers ai with φ(ai)/ai < x and there is no d|ai such that
φ(d)/d < x.
(IV) A.S. (1967) proved that

A([0, x);N ;φ(n)/n)

N
= g0(x) +O

(
1

log logN

)
.

Proofs and other results by M.M.Tjan and I. Iljasov can be found in the mono-
graph A.G.Postnikov (1971, Chap. 4, Par. 4.8). Tjan (1963) noted that DN =
O (1/ log log logN) and that if f is defined on [0, 1] and has the Lipschitz jth deriva-
tive here (i.e. |f (j)(x) − f (j)(y)| < c|x − y| for x, y ∈ [0, 1] and a suitable constant
c > 0), then

1

N

N∑
n=1

f

(
φ(n)

n

)
=

∫ 1

0

f(x) dg0(x) +O

(
c(log logN)j+1(

log cN
M

)j+1

)
,

where M = maxx∈[0,1] |f(x)|.
(V) O. Strauch (1996) proved that∫ 1

0

g20(x) dx = 1− 6

π2
− 1

2
lim
N→∞

1

N2

N∑
m,n=1

∣∣∣∣φ(m)

m
− φ(n)

n

∣∣∣∣
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and also the estimates

2

π4
≤ lim
N→∞

1

N2

N∑
m,n=1

∣∣∣∣φ(m)

m
− φ(n)

n

∣∣∣∣ ≤ 2
6

π2

(
1− 6

π2

)
.

(VI) F. Luca ([a]2003) proved that, ifMn = 2n−1 is the nth Mersenne number then
the subsequence

φ(Mn)

Mn
, n = 1, 2, . . .

is dense in [0, 1] and has the a.d.f. (preprint [b]).
(VI’) F. Luca and I.E. Shparlinski (2007) proved the existence of the moments

1

N

N−1∑
n=0

(
φ(Fn)

Fn

)k
= Γk +Ok

(
(logN)k

N

)
for all k = 1, 2, . . . with some positive constant Γk. Thus the sequence

φ(Fn)

Fn
, n = 0, 1, 2, . . .

has an a.d.f. Luca in ([a]2003) also proved that φ(Fn)/Fn is dense in [0, 1], cf. also
F. Luca, V.J.Mej́ıa Huguet and F.Nicolae (2009).
(VII) A formula for the a.d.f. of n/φ(n) mod 1 can be found using 2.3.4.
(VIII) P.D.T.A.Elliott (1979, p. 219) wrote: ”From a value–distribution point of
view, the behaviour of the sequences n/σ(n) and φ(n)/n is similar.”
(IX) If µ(n) denotes the Mőbius’ function, then the sequence

µ(n)φ(n)

n
, n = 1, 2, . . . ,

has continuous symmetric a.d.f.

g(x) defined in [−1, 1].

In this case g(x) is symmetric means that 1 − g(x) = g(−x) for x ∈ [−1, 1]. Cf.
P.D.T.A.Elliott (1979, p. 282).
(X) W. Schwarz (1962) (cf. A.G.Postnikov (1971, p. 267)) proved: Let f(x) be a
polynomial with integer coefficients having non-zero discriminant. Assume that the
g.c.d. of the coefficients of f(x) is 1 and f(n) > 0 for n = 1, 2, . . . . Let L(d) denote
the number of solutions of f(n) ≡ 0 (mod d). Then

1

N

N∑
n=1

φ(f(n))

f(n)
=

∞∏
p=2

p−prime

(
1− L(p)

p2

)
+O(logcN),

where c > 0 is a constant.
(XI) For xn = φ(n)/n define the step d.f.

Fk,k+N (x) =
#{n ∈ (k, k +N ];xn ∈ [0, x)}

N
.
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(i) P. Erdős (1946) proved: If log log log k
N → 0 as N → ∞, then Fk,k+N (x) → g0(x)

for x ∈ [0, 1].

(ii) For the proof of (i) he used that
(

1
N

∑
k<n≤k+N

(
φ(n(t))
n(t)

)s
− 1

N

∑N
n=1

(
φ(n)
n

)s)
→

0, where n(t) =
∏
p|n,p≤t p, p runs over primes and t = N .

(XII) V.Baláž, P. Liardet and O. Strauch (2010) proved:
(i) Necessary and sufficient condition: For any two sequences of N ’s and k’s of
positive sequences, N → ∞, we have F(k,k+N ](x) → g0(x), for every x ∈ [0, 1], if

and only if, for every s = 1, 2, . . . we have 1
N

∑
k<n≤k+N

∑
N<d|nΦ(d) → 0, with

Φ(d) =
∏
p|d

((
1− 1

p

)s
− 1
)

for a squarefree d and Φ(d) = 0 otherwise, where p

runs over primes (cf. A.G.Postnikov (1971, p. 360)). In quantitative form:

1

N

∑
k<n≤k+N

∑
N<d|n

Φ(d) =
1

N

∑
k<n≤k+N

(
φ(n)

n

)s
− 1

N

N∑
n=1

(
φ(n)

n

)s
+O

(
3s(1 + logN)s

N

)
.

(ii) A quantitative form of Erdős’ (XI)(ii): For all positive integers k,N and t = N
we have

1

N

∑
k<n≤k+N

(
φ(n(t))

n(t)

)s
=

1

N

N∑
n=1

(
φ(n)

n

)s
+O

(
3s(1 + logN)s

N

)
for s = 1, 2, . . . .
(iii) This implies that every d.f. g(x) for which F(k,k+N ] → g(x) on (0, 1) satisfies∫ 1

0

xs dg(x) ≤
∫ 1

0

xs dg0(x),

for every s = 1, 2, . . . .
(iv) Using the Chinese remainder theorem we can find a sequence of intervals (k, k+
N ] such that F(k,k+N ](x) → c0(x), where d.f. c0(x) has a step 1 at x = 0.
(v) If F(k,k+N ](x) → g(x) for all x ∈ (0, 1), then g0(x) ≤ g(x).
(XI) A. Schinzel and Y.Wang (1958) proved that for any given (α1, α2, . . . , αN−1) ∈
[0,∞)N−1 we can find a sequence of k such that(

φ(k + 2)

φ(k + 1)
,
φ(k + 3)

φ(k + 2)
, . . . ,

φ(k +N)

φ(k +N − 1)

)
→ (α1, α2, . . . , αN−1).

If a subsequence of k’s is such that φ(k+1)
k+1 → α then(

φ(k + 1)

k + 1
,
φ(k + 2)

k + 2
, . . . ,

φ(k +N)

k +N

)
→ (α, αα1, αα1α2, . . . , αα1α2 . . . αN−1).
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Given an arbitrary d.f. g̃(x), there exists a sequence αn ∈ (0,∞), n = 1, 2, . . . ,
such that α1α2 . . . αn ∈ (0, 1) for every n = 1, 2, . . . , and moreover the sequence
α1α2 . . . αn, n = 1, 2, . . . , has a.d.f. g̃(x). Then there exists α ∈ (0, 1] and a
sequence of intervals (k, k +N ] such that F(k,k+N ](x) → g(x) and

g(x) =

{
g̃
(
x
α

)
if x ∈ [0, α),

1 if x ∈ [α, 1]

for x ∈ (0, 1).

Open problem. Describe the distribution of the sequence(
φ(n)

n
,
φ(n+ 1)

n+ 1

)
, n = 1, 2, . . .

V.Baláž –P. Liardet – O. Strauch: Distribution functions of the sequence φ(M)/M,M ∈
(K,K+N ] as K,N go to infinity, INTEGERS 10 (2010), 705–732 (MR2799188; Zbl. 1216.11090).
H.Davenport: Über numeri abundantes, Sitzungsber. Preuss. Acad., Phys.–Math. Kl. 27 (1933),
830–837 (Zbl. 0008.19701).
P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).
P.Erdős: On the smoothness of the asymptotic distribution of additive arithmetical functions,
Amer. Journ. Math. 61 (1939), 722–725 (MR0000248 (1,41a); Zbl. 0022.01001, JFM 65.0165.02).
P.Erdős: Some remarks about additive and multiplicative functions, Bull. Amer. Math. Soc. 52
(1946), 527–537 (MR0016078 (7,507g); Zbl. 0061.07901).
A.S. Făınlĕıb: Distribution of values of Euler’s function (Russian), Mat. Zametki 1 (1967),
645–652 (English translation: Math. Notes 1 (1976), 428–432). (MR0215801 (35 #6636); Zbl.
0199.08701).
[a] F. Luca: On the sum divisors of the Mersenne numbers, Math. Slovaca 53 (2003), no. 5,
457–466 (MR2038513 (2005a:11151); Zbl. 1053.11529).
[b] F. Luca: Some mean values related to average multiplicative orders of elements in finite fields,
Ramanujan J. 9 (2005), no. 1–2, 33–44 (MR2166376 (2006i:11111); Zbl. 1155.11344).
F. Luca – I.E. Shparlinski: Arithmetic functions with linear recurrences, J. Number Theory 125
(2007), 459–472 (MR2332599 (2008g:11157); Zbl. 1222.11117).
F. Luca – V.J.Mej́ıa Huguet – F.Nicolae: On the Euler function of Fibonacci numbers, J.
Integer Sequences 9 (2009), A09.6.6 (MR2544925 (2010h:11005); Zbl. 1201.11006).
A.G.Postnikov: Introduction to Analytic Number Theory, (Russian), Izd. Nauka, Moscow,
1971 (MR0434932 (55 #7895); Zbl. 0231.10001). (for the English translation see (MR0932727
(89a:11001); Zbl. 0641.10001)).
A. Schinzel – Y.Wang: A note on some properties of the functions ϕ(n), σ(n) and θ(n), Bull.
Acad. Polon. Sci. Cl. III 4 (1956), 207–209 (MR0079024 (18,17c); Zbl. 0070.04201).
I.J. Schoenberg: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928),
171–199 (MR1544950; JFM 54.0212.02).
I.J. Schoenberg: On asymptotic distribution of arithmetical functions, Trans. Amer. Math. Soc.
39 (1936), 315–330 (MR1501849; Zbl. 0013.39302).
W.Schwarz: Über die Summe

∑
n≤x φ(f(n)) und verwandte Probleme, Monatsh. Math. 66

(1962), 43–54 (MR0138609 (25 #2052); Zbl. 0101.03701).
O. Strauch: Integral of the square of the asymptotic distribution function of ϕ(n)/n, Math. In-
stitute, Slovak Acad. Sci., Bratislava, Slovak Republic, 1996, 7 pp.
M.M.Tjan: Remainder terms in the problem of the distribution of values of two arithmetic func-
tions, (Russian), Dokl. Akad. Nauk SSSR 150 (1963), 998–1000 (MR0154845 (27 #4789)).
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2.20.12. Open problem. Riemann hypothesis implies that the sequence

n

π(n)
mod 1, n = 1, 2, . . . ,

is not u.d. Find all its d.f.’s.

Notes: (I) Under the Riemann hypothesis π(x) = li(x)+O(
√
x log x) which implies

limn→∞(n/π(n))− (n/li(n)) = 0 the sequences n/π(n) (mod 1) and n/li(n) (mod 1)
have the same d.f.’s if we prove the continuity of all d.f.’s of n/li(n) mod 1 at 0 and
1, cf. 2.3.3. Niederreiter’s theorem 2.2.8 implies that the sequence n/π(n) mod 1 is
not u.d. (probably without the Riemann hypothesis).
(II) Solution: F. Luca (2006) (personal communication) noticed that not assuming
the Riemann hypothesis it can be proved that the sequences n/π(n) and log n have
the same d.f.’s mod 1. This immediately follows from identities∣∣∣ n
π(n) −

n
li(n)

∣∣∣ = O((log n)2 exp(−c
√
log n)) = o(1),∣∣∣ n

li(n) −
n

f(n)

∣∣∣ = O((log n)−1) = o(1), where f(n) = n
logn + n

(logn)2 ,

n
f(n) = log(n)− 1 + o(1).

2.20.13. The sequence

t(n) =
∑
d|n

1

2d
, n = 1, 2, . . . ,

has continuous a.d.f.

g(x) defined on [1/2, 1].

Notes: The function t(n) was introduced by E.V.Novoselov (1960) in connection
with his theory of polyadic numbers. M.M.Tjan (1963) claimed the existence of
the a.d.f. of t(n) (note that this fact also follows from the result 2.20.8 which
was proved later). The continuity of g(x) was proved by E.V.Novoselov (1964).
B.M. Širokov (1973) studied the sequence 1 − t(n) (which actually is the polyadic
norm of n) on [0, 1/2] and he found an explicit form of its a.d.f. (in the proof
and the formulation the functions of polyadic numbers were instrumental) and its

discrepancy DN = O
(

1
log logN

)
.

E.V.Novoselov: Topological theory of divisibility of integers, (Russian), Učen. Zap. Elabuž. Gos.
Ped. Inst. 8 (1960), 3–23.(RŽ Mat. 1961#10A157).
E.V.Novoselov: A new method in probabilistic number theory, (Russian), Izv. Akad. Nauk SSSR
Ser. Mat. 28 (1964), 307–364 (MR0168544 (29 #5805); Zbl. 0213.33502).
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B.M. Shirokov: The distribution of the values of a polyadic norm, Sov. Math., Dokl. 14 (1973),
148–150 (translated from Doklad. Akad. Nauk SSSR 208 (1973), no. 3, 553–554). (MR0323745
(48 #2101); Zbl. 0284.10021).
M.M.Tjan: Remainder terms in the problem of the distribution of values of two arithmetic func-
tions, (Russian), Dokl. Akad. Nauk SSSR 150 (1963), 998–1000 (MR0154845 (27 #4789)).

2.20.14. Define the strongly additive arithmetical function f(n) by its val-
ues at primes p by

f(p) =


(−1)

p−1
2

(log log p)3/4
, if p > ee,

0, otherwise.

Then the sequence

f(n), n = 1, 2, . . . ,

has absolutely continuous a.d.f.

g(x) defined on (−∞,∞).

Notes: P.Erdős (1939), cf. P.D.T.A.Elliott (1979, pp. 219–220).

P.D.T.A. Elliott: Probabilistic Number Theory I. Mean–value Theorems, Grundlehren der math-
ematischen Wissenschaften, Vol. 239, Springer Verlag, New York, Heidelberg, Berlin, 1979
(MR0551361 (82h:10002a); Zbl. 0431.10029).
P.Erdős: On the smoothness of the asymptotic distribution of additive arithmetical functions,
Amer. Journ. Math. 61 (1939), 722–725 (MR0000248 (1,41a); Zbl. 0022.01001, JFM 65.0165.02).

2.20.15. Given a sequence qn of pairwise coprime positive integers, let an
denote the increasing sequence of all integers which can be written as a
product of distinct elements of qn. Let f(n) be a positive multiplicative
function such that one of the following four groups of conditions holds:
(I) only one of the following series is divergent

∑∞
k=1(f(qk) − 1),∑∞

k=1(f(qk)− 1)2,
(II) f(qk) > 1 for every k, (resp. f(qk) < 1 for every k), lim

k→∞
f(qk) = 1, the

series
∑∞

k=1 (f(qk)− 1) diverges,
(III) the series

∑∞
k=1(f(ak)− 1) is convergent but not absolutely,

(IV) f(q1) ≥ f(q2) ≥ f(q3) ≥ · · · > 1, the series
∑∞

k=1 (f(qk)− 1) converges,
f(qn) ≤

∏∞
k=1 f(qn+k) for every n = 1, 2 . . . .

Then the sequence f(an) is dense in the interval (A,B), where
in (I) (A,B) = (inf f(an), sup f(an)),
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in (II) (A,B) = (1,∞) (resp. (A,B) = (0, 1)),
in (III) (A,B) = (0,∞), and
in (IV) (A,B) = (1,

∏∞
k=1 f(qn+k)).

Notes: Š. Porubský (1979) where he extended the results of J.Mináč (1978) on
density of sequences 2.20.9 and 2.20.11. Porubský (1979) illustrated the result (II)
by

φα(an)

aαn
,

aαn
σα(an)

,
φα(an)

σα(an)
,

aαd(an)

2σα(an)
,

where

φα(a) = aα
∏
p|a

(
1− 1

pα

)
, σα(a) =

∑
d|a

dα, d(a) =
∑
d|a

1

with α ∈ (0, 1]. The result of (III) he applied to functions∏
p|n

(
1− χ(p)

p

)
,

∏
p|n

(
1 +

χ(p)

p

)
,

where χ is a real non–principal character modulo k. The result of (IV) is applied in
Porubský and J.T.Tóth (1999) to the sequence

σ(an)ϕ(an)

a2n

which is

dense in [6/π2, 1].

Related sequences: 2.20.16, 2.20.17.

J.Mináč: On the density of values of some arithmetical functions, (Slovak), Matematické obzory
12 (1978), 41–45.
Š. Porubský: Über die Dichtigkeit der Werte Multiplikativer Funktionen, Math. Slovaca 29
(1979), 69–72 (MR0561779 (81a:10066); Zbl. 0403.10002).
Š. Porubský – J.T.Tóth: Topological density of values of arithmetical functions, Preprint, 1999,
8 pp.

2.20.16. Let an be the increasing sequence of all squarefree positive integers
and let f : N → [0,∞) be a strictly increasing unbounded function with∑∞

i=1 1/f(pi) = ∞, where pi is the ith prime. If c > 0 and

σf (n) =
∑
d|n

f(d), ϕcf (n) = f(n)
∏
p|n

(
1− c

f(p)

)
then all of the following sequences

σf (an)

f(an)
,

f(an)

ϕcf (an)
,

σf (an)

ϕcf (an)
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are

dense in the interval [1,∞).

J. Fulier – J.T.Tóth: On certain dense sets, Acta Mathematica (Nitra) 2 (1995), 23–28.

2.20.16.1 Let ν(n) be a completely multiplicative arithmetic function
which satisfies the conditions

(i) |ν(p)| ≤ ν for some positive number ν and every prime p,

(ii)
∑

d≤x µ(d)ν(d) ≪ x (log x)−A for every positive A, where the implied
constant depends only on ν and A.

Define arithmetic function ϕ by ϕ(m) = m
∏
p|m

(
1− ν(p)

p

)
.

Then, if the number α = 1
2

∏
p

(
1− ν(p)

p2

)
is irrational, the sequence

1

n

∑
m≤n

ϕ(m) mod 1, n = 1, 2, . . .

is

u.d.

Notes: J.-M.Deshouillers – H. Iwaniec (2008). By their comment, α = 3
π2 for the

classical Euler totient function φ(n) and therefore the sequence

φ(1) + · · ·+ φ(n)

n
mod 1, n = 1, 2, . . .

is

u.d.

This answers in affirmative an open problem posed by F. Luca (2007), see Unsolved
Problems (2009).

J.-M.Deshouillers – H. Iwaniec: On the distribution modulo one of the mean values of some
arithmetical functions, Unif. Distrib. Theory 3 (2008), no. 1, 111–124 (MR2471293 (2009k:11158);
Zbl. 1174.11077).
F. Luca: Section 1.11, Open problem 6 , in: Unsolved Problems Section on the home-page of the
journal Uniform Distribution Theory, (O. Strauch ed.), http://udt.mat.savba.sk/udt unsolv.htm,
2006, 1–84 pp. (Last update: June 29, 2011).

2.20.16.2 Let ν(n) be a completely multiplicative function such that

(i) −ν ≤ ν(p) < min{p, ν} for some positive ν and every prime p,
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(ii) there exist real numbers β and λ such that∏
p≤n

(
1− ν(p)

p

)
= β(log n)−λ

(
1 +O

(
1

log n

))
,

where the implied constant depends only on ν.

Define a strongly multiplicative function ϕ by ϕ(m) = m
∏
p|m

(
1− ν(p)

p

)
, and

we let α = 1
e

∏
p

(
1− ν(p)

p

) 1
p
. Then if α is irrational, the sequence

( ∏
m≤n

ϕ(m)

) 1
n

mod 1, n = 1, 2, . . . , (1)

is

u.d.

(iii) If α is rational and ν takes only algebraic values, then the sequence (1)
is not u.d.
Notes: J.-M.Deshouillers – H. Iwaniec (2008).
(I) As noticed by authors, the arithmetic character of the corresponding

α =
1

e

∏
p

(
1− 1

p

) 1
p

for the classical Euler totient function φ(n) is an open problem.
(II) This constant is very likely to be irrational: Richard Bumby showed that if α is
rational, then its denominator has at least 20 decimal digits.
(III) A special case of (iii) shows that if the constant α is rational, then the sequence( ∏

m≤n

φ(m)

) 1
n

mod 1, n = 1, 2, . . . ,

is not u.d. This gives a conditional answer to an open problem posed by F. Luca
(2007).

J.-M.Deshouillers – H. Iwaniec: On the distribution modulo one of the mean values of some
arithmetical functions, Unif. Distrib. Theory 3 (2008), no. 1, 111–124 (MR2471293 (2009k:11158);
Zbl. 1174.11077).
F. Luca: Section 1.11, Open problem 6 , in: Unsolved Problems Section on the home-page of the
journal Uniform Distribution Theory, (O. Strauch ed.), http://udt.mat.savba.sk/udt unsolv.htm,
2006, 1–84 pp. (Last update: June 29, 2011).
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2.20.16.3 Let pa(n) be the arithmetic mean of the distinct prime factors
of n and pA(n) the arithmetic mean of all its prime factors, i.e. then the
sequences

pa(n) =
1

ω(n)

∑
p|n

p, pA(n) =
1

Ω(n)

∑
pa|n
pa>1

p.

Then the sequences pa(n) mod 1 and pA(n) mod 1, n = 1, 2, . . . , are u.d.

Notes:

W.D.Banks – M.Z.Garaev – F. Luca – I.E. Shparlinski: Uniform distribution of the frac-
tional part of the average prime factor , Forum Math. 17 (2005), no. 6, 885–903 (MR2195712
(2007g:11093); Zbl. 1088.11062).

2.20.16.4 Define the geometric means of prime factors of n by

pg(n) =
(∏
p|n

p
)1/ω(n)

, pG(n) = n1/Ω(n).

Then the sequences pg(n) mod 1 and pG(n) mod 1, n = 1, 2, . . . , are u.d.

F. Luca – I.E. Shparlinski: On the distribution modulo 1 of the geometric mean prime divisor ,
Bol. Soc. Mat. Mex. 12 (2006), no. 2, 155–163.(MR2292980; Zbl. 1145.11061).

2.20.16.5 If

ph(n) =
ω(n)∑
p|n

1
p

, pH(n) =
Ω(n)∑
pa|n
pa>1

1
p

,

then the sequences ph(n) mod 1 and pH(n) mod 1, n = 1, 2, . . . , are u.d.

Notes: I. Kátai and F. Luca (2009) proved in Theorem 1 the following more general
result: Let g(n) be an additive function such that g(p) < c1/p and 0 < g(pa) < c2
for all primes p and all positive integers a with some positive constants c1 and c2.
Let

ν(n) =
ω(n)

g(n)
and ρ(n) =

ω(n+ 1)

g(n)
.

Then

(i) ν(n) is uniformly distributed modulo 1;

(ii) ρ(n) is uniformly distributed modulo 1.
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The same holds when the function ω(n) is replaced by Ω(n).

The authors noted that their Theorem 1 can be applied to functions g(n) =
∑
p|n 1/p,

g(n) =
∑
pa|n
p>1

1/p, g(n) = log(n/ϕ(n)) and g(n) = log(σ(n)/n). From there they

deduces, in particular, that the sequence of harmonic means of the prime factors
of n is u.d. modulo 1.

I. Kátai – F. Luca: Uniform distribution modulo 1 of the harmonic prime factor of an integer ,
Unif. Distrib. Theory 4 (2009), no. 2, 115–132 (MR2591845 (2011c:11130); Zbl. 1249.11086).

2.20.16.6 Let, as usual, ω(n) and d(n) denote the number of prime divi-
sors and the total number of divisors of n, and a is a fixed integer. Then the
sequences of the fractional parts of the ratios

n

ω(n)
,

n

aω(n)
,

n

d(n)
,

n

ad(n)

are

u.d.

in the unit interval [0, 1].

F. Luca – I.E. Shparlinski: Uniform distribution of some ratios involving the number of prime
and integer divisors, Unif. Distrib. Theory 1 (2006), no. 1, 15–26 (MR2314264 (2008c:11133); Zbl.
1147.11057).
F. Luca – I.E. Shparlinski: Errata to “Uniform distribution of some ratios involving the number
of prime and integer divisors”, UDT 1 (2006), 15–26 , Unif. Distrib. Theory 6 (2011), no. 2, p. 83
(MR2904040; Zbl. 1313.11106).

2.20.17. Let qn be an increasing sequence of pairwise coprime positive in-
tegers and an is the increasing sequence of the all m ∈ N for which qi|m and
q2i - m. Let f(n) be a positive arithmetical function such that

(i)
∏k

j=1 f(qnj ) ≤ f
(∏k

j=1 qnj

)
≤ f(qnk+1)

∏k
j=1 f(qnj ) holds for every

{qn1 , . . . , qnk},
(ii) limn→∞ f(qn) = 1 and f(qn) > 1 for every n.

Then

f(an), n = 1, 2, . . . ,

is

dense in
[
1,
∏∞

j=1 f(qnj )
]
.
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Š. Porubský – J.T.Tóth: On density of values of some multiplicative functions, Preprint, 1997,
4 pp.

2.20.18. Let ordp(n) = α for pα∥n. If p stands for a prime then the sequence

log p
ordp(n)

log n
, n = 2, 3, . . . ,

is dense in [0, 1] and has the a.d.f.

c0(x),

and for its discrepancy we have

D
(2)
N = O


√√√√ 1

N

N+1∑
n=2

1

log2 n

 .

Notes: Cf. T. Šalát (1994). Another proof and the discrepancy were given by
O. Strauch (1991).

T. Šalát: On the function ap, pap(n)∥n(n > 1), Math. Slovaca 44 (1994), no. 2, 143–151 (MR1282531
(95c:11008); Zbl. 0798.11003).
O. Strauch: On statistical convergence of bounded sequences, Math. Institute, Slovak Acad. Sci.,
Bratislava, Slovak Republic, 1991, 10 pp.

2.20.19. Let H(n) = max(α1, . . . , αk) and h(n) = min(α1, . . . , αk) for n =
pα1
1 . . . pαkk . Then the sequence

log 2
H(n)

log n
, n = 2, 3, . . . ,

is dense in [0, 1] and has the a.d.f.

c0(x).

The same is also true for the sequence

log 2
h(n)

log n
, n = 2, 3, . . . .

A. Schinzel – T. Šalát: Remarks on maximum and minimum exponents in factoring, Math.
Slovaca 44 (1994), no. 5, 505–514 (MR1338424 (96f:11017a); Zbl. 0821.11004).
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2.20.20. Let p1 < p2 < p3 < . . . be an infinite sequence of pairwise coprime
numbers. Then the infinite sequence

xn =

∞∑
k=1

r(k, n)

p1p2 . . . pk
, n = 1, 2, . . . ,

where n ≡ r(k, n) mod pk with 0 ≤ r(k, n) < pk, is

u.d. in [0, 1].

Notes: (I) T.A.Bick and J.Coffey (1991) also proved that this sequence has the
property D defined by D.Maharam (1965). Here, a one–to–one sequence xn ∈ [0, 1]
is called a D–sequence if:
(i) To each ε > 0 there exists a δ > 0 such that if X ⊂ N and d(X) > 1 − δ then

|{xn ; n ∈ X}| > 1− ε. Here d is the lower asymptotic density (cf. p. 1 – 3 ), A
is the closure of the set A and |A| is its Lebesgue measure.

(ii) There exists a sequence of sets Xn ⊂ N such that X1 ⊂ X2 ⊂ X3 ⊂ . . . ,
d(Xn) → 1, and whenever m1 < m2 < m3 < . . . with mk ∈ Xn, then both of
the following statements hold:
• The subsequence xmk

converges if and only if the subsequence xmk+1 con-
verges.

• For each n ∈ N0, limk→∞ xmk
= xn if and only if limk→∞ xmk+1 = xn+1.

(II) Note that the series
∑∞
k=1

r(k,n)
p1p2...pk

is the Cantor series of xn.

T.A.Bick – J.Coffey: A class of example of D–sequences, Ergodic Theory Dyn. Syst. 11 (1991),
no. 1, 1–6 (MR1101080 (92d:11080); Zbl. 0717.28010).
D.Maharam: On orbits under ergodic measure–preserving transformations, Trans. Amer. Math.
Soc. 119 (1965), 51–66 (MR0180653 (31 #4884); Zbl. 0146.28601).

2.20.21. The sequence

ω(n)θ mod 1,

where ω(n) denotes the number of distinct prime divisors of n and θ is irra-
tional is

u.d.

Notes: P.Erdős (1946), H.Delange (1958), cf. [KN, p. 22].

H.Delange: On some arithmetical functions, Illinois J. Math. 2 (1958), 81–87 (MR0095809 (20
#2310); Zbl. 0079.27302).
P.Erdős: On the distribution function of additive functions, Ann. of Math. (2) 47 (1946), 1–20
(MR0015424 (7,416c); Zbl. 0061.07902).
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2.20.22. The sequence
Ω(n)θ mod 1,

where Ω(n) stands for the number of prime factors of n counted with multi-
plicities and θ is irrational, is

u.d.

Notes: H.Delange (1958), cf. [DT, p. 100].

H.Delange: On some arithmetical functions, Illinois J. Math. 2 (1958), 81–87 (MR0095809 (20
#2310); Zbl. 0079.27302).

2.20.23. Let ωE(n) denote the number of distinct prime divisors of the
positive integer n which belong to a set E of prime numbers, and let ΩE(n)
be the total number of prime divisors which belong to E. Assume that there
is a number α ≥ 0 such that the number of integers in E which do not

exceed x is equal to α x
log x + o

(
x

log x

)
as x → ∞ if α > 0, and if α = 0 then∑

p∈E
1
p = +∞. If θ is an irrational number then the sequences

ωE(n)θ mod 1 and ΩE(n)θ mod 1

are

u.d.

Notes: H.Delange ([b]1958) generalized in this way his previous result in ([a]1958),
cf. also ([c]1958).

Related sequences: 2.20.21,2.20.22.

[a] H.Delange: On some arithmetical functions, Illinois J. Math. 2 (1958), 81–87 (MR0095809
(20 #2310); Zbl. 0079.27302).
[b] H.Delange: Sur certain functions arithmétiques, C. R. Acad. Sci. Paris 246 (1958), 514–517
(MR0095810 (20 #2311); Zbl. 0079.06703).
[c] H.Delange: Sur la distribution de certains entieres , C. R. Acad. Sci. Paris 246 (1958),
2205–2207 (MR0095811 (20 #2312); Zbl. 0081.04201).

2.20.24. Let f be a real valued function and let for sufficiently large x the
following conditions are fulfilled
(i) xf ′(x) is monotonic,
(ii) log−β x≪ |xf ′(x)| ≪ logγ x, where max(β, γ) < log 4

3 .

Then the block sequence An defined by

An = (f(d) mod 1)d|n,d>0,
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(i.e. d runs through the positive divisor of n) is (cf. p. 1 – 32 )

generalized u.d.

Notes: (I) This means the u.d. over a subsequence of n’s possessing the asymptotic
density 1 (for the def. cf. p. 1 – 32 ), or equivalently, the sequence f(n) mod 1 for
n = 1, 2, . . . , is u.d. on the divisors (cf. 1.8.26).
(II) R.R.Hall (1976). He conjectures that An is generalized u.d. if
• f(d) = (log d)α with α > 0 (i.e. that the correct condition in (ii) is simply β < 1),
• f(d) = (log log d)α with α > 1 (this would be best possible since for log log d the

result does not hold)

(III) The case
• f(d) = log d

was studied in Hall (1974/75, 1975, 1975/76) and P.Erdős and R.R.Hall (1974), An
is generalized u.d. In Hall (1974/75) it is proved that for every λ < 1

2 there exists a
subsequence of n’s of asymptotic density 1 with extremal discrepancy satisfying

D(An) <
1

d(n)λ
.

(IV) In the case
• f(d) is an additive function

I.Kátai (1976) proved that D(An) → 0 over a subsequence of asymptotic density 1
if and only if ∑

p−prime

∥2mf(p)∥2

p
= ∞

for m = 1, 2, . . . . Here ∥x∥ = min({x}, 1− {x}).
(V) Hall (1981) replaced condition (ii) by a weaker one with β and γ running over
a specified convex subset of the rectangle 0 < β < 1, 0 ≤ γ < log 2 and he proved
that An is generalized u.d. for
• f(d) = (log d)α, where 0 < α < 1 + log 2.

(VI) Hall (1975/76) also studied

d(An) = inf{∥ log d1 − log d2∥ ; d1, d2|n, d1 ̸= d2}

and he proved that for every ε > 0 there exist a subsequence of n’s of asymptotic
density 1 such that

3−(1+ε) log logn < d(An) < 3−(1−ε) log logn.

P.Erdős – R.R.Hall: Some distribution problems concerning the divisors of integers, Acta Arith.
26 (1974/75), 175–188 (MR0354592 (50 #7070); Zbl. 0272.10021).
R.R.Hall: The divisors of integers. I , Acta Arith. 26 (1974/75), 41–46 (MR0347765 (50 #266);
Zbl. 0272.10019).
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R.R.Hall: Sums of imaginary powers of the divisors, J. London Math. Society, II. Ser., 9 (1975),
571–580 (MR0364131 (51 #386); Zbl. 0308.10037).
R.R.Hall: The divisors of integers.II , Acta Arith. 28 (1975/76), no. 2, 129–135 (MR0384719 (52
#5592); Zbl. 0272.10020).
R.R.Hall: The distribution of f(d) (mod 1), Acta Arith. 31 (1976), no. 1, 91–97 (MR0432565 (55
#5553); Zbl. 0343.10036).
R.R.Hall: The divisor density of integer sequences, J. London Math. Soc. 24 (2) (1981), no. 1,
41–53 (MR0623669 (82h:10068); Zbl. 0469.10035).
I. Kátai: Distribution mod 1 on additive functions on the set of divisor , Acta Arith. 30 (1976),
no. 2, 209–212 (MR0417083 (54 #5144); Zbl. 0295.10043).

2.20.24.1 Define

FN (x) =
1

d(n)

∑
d|n

d≤nx

1,

where d(n) is the total numbers of divisors of n. Then

lim
N→∞

1

N

N∑
n=1

Fn(x) =
2

π
arcsin

√
x+O

(
1√

logN

)
uniformly for N and x ∈ [0, 1].

Notes: G. Tenenbaum (1995, Th. 7, p. 207).

G.Tenenbaum: Introduction à la théorie analytique et probabiliste des nombres, Institut Elie
Cartan, Vol. 13, Université de Nancy, Nancy, 1990. (second edition: Société de France, Paris,
1995 (MR1366197 (97e:11005a); Zbl. 0880.11001)). (English translation: Studies in Advanced
Mathematics, Vol. 46, Cambridge Univ. Press, Cambridge, 1995 (MR1342300 (97e:11005b); Zbl.
0880.11001)).

2.20.25. Let ρ(n) = β(n) + iγ(n) be the sequence of the non–trivial zeros
of the Riemann zeta function ζ in the upper half of the critical strip, ordered
by 0 < γ(1) ≤ γ(2) ≤ . . . . If α is a non–zero real number then the sequence

αγ(n) mod 1

is

u.d.

If α = log z
2π with an integer z ≥ 2 then

DN = O
(

log z

log log γ(N)

)
.
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If the Riemann hypothesis is assumed, then

DN = O
(

log z

log γ(N)

)
.

Notes: (I) u.d. of αγ(n) mod 1 under the assumption that the Riemann hypothesis
is true was noted by H.A.Rademacher, cf. (1974, p.455). P.D.T.A.Elliot (1972)
noticed that this result can be established unconditionally. For a proof cf. E.Hlawka
(1984, pp. 122–123) and the discrepancy estimate is proved in E.Hlawka (1975).
(II) Let N(T ) denote the number of these zeros for which 0 < γ(n) ≤ T . A. Fujii

(1976) proved that if ε > 0, T > T0(ε) and (log T )−1 ≤ t ≤ T
1
3 then the star

discrepancy of the sequence

γ(n)

t
mod 1, n = 1, 2, . . . , N(T ),

satisfies

D∗
N(T ) = O

(
1

(t log T )1−ε

)
.

(III) Fujii (1978) proved that the sequence γ(n) is u.d. mod ∆ (for the def. see 1.5)
for the subdivision ∆ = (zn)

∞
n=1, where z1 = z2 = 0 and zn = bn(log n)a−1 and

a > 0 and b > 0.

Related sequences: For the multi–dimensional case cf. 3.7.10, and for general-
ization to Dirichlet series cf. 2.20.27.

P.D.T.A. Elliott: The Riemann zeta function and coin tossing, J. Reine Angew. Math. 254
(1972), 100–109 (MR0313206 (47 #1761); Zbl. 0241.10025).
A.Fujii: On the zeros of Dirichlet L–functions, III , Trans. Amer. Math. Soc. 219 (1976), 347–349
(MR0418410 (81g:10056a); Zbl. 0336.10034).
A.Fujii: On the uniformity of the distribution of the zeros of the Riemann zeta function, J. Reine
Angew. Math. 302 (1978), 167–185 (MR0511699 (80g:10053); Zbl. 0376.10029).
E.Hlawka: Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafunk-
tionen zusammenhäangen, Österreich. Akad. Wiss. Math.–Natur. Kl. Sitzungsber. II 184 (1975),
no. 8–10, 459–471 (MR0453661 (56 #11921); Zbl. 0354.10031).
E.Hlawka: The Theory of Uniform Distribution, A B Academic Publishers, Berkhamsted, 1984
(translation of the original German edition Hlawka (1979)) (MR0750652 (85f:11056); Zbl. 0563.10001).
H.A.Rademacher: Collected Papers of Hans Rademacher, Vol. II, Mathematicians of our times
4, The MIT Press, Cambridge (Mass.), London (England), 1974 (MR0505096 (58 #21343b); Zbl.
0311.01023).

2.20.26. Montgomery – Odlyzko law (GUE conjecture). Let ρ(n) =
β(n) + iγ(n) be the sequence of the non–trivial zeros of the Riemann zeta
function ζ ordered by 0 < γ(1) ≤ γ(2) ≤ . . . . Assume the truth of the
Riemann hypothesis, i.e. β(n) = 1

2 for n = 1, 2, . . . . Renormalize γ(n) by

γ̂(n) =
γ(n) log γ(n)

2π
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and for x ∈ [0,∞) put

F̃N (x) =
1

N
#{(n, k) ; 1 ≤ n ≤ N, k > 0, γ̂(n+ k)− γ̂(n) ∈ [0, x)},

r2(x) = 1−
(
sinπx

πx

)2

The Montgomery – Odlyzko law conjectures that

lim
N→∞

F̃N (x) =

∫ x

0
r2(t) dt for all x ∈ [0,∞).

Notes: (I) This conjecture appeared in H.L.Montgomery (1973) and has been
extensively tested numerically by A.M.Odlyzko (1987, 1992). The density func-
tion r2(x) is called a pair correlation function.
(II) The conjecture claims that the consecutive spacing of the zeros of the zeta
function is statistical identical with the consecutive spacing of the eigenvalues of
the Gaussian unitary ensemble (GUE) matrices. Here GUE consists of N ×N
random complex Hermitian matrices of the form A = (aj,k), where

aj,k =


√
2σj,j , for j = k,

σj,k + iηj,k, for j < k,

aj,k = σj,k − iηj,k, otherwise,

with σj,k and ηj,k being independent standard normal variables. The eigenvalues
of these matrices are real λ(1) ≤ λ(2) ≤ · · · ≤ λ(N) and are renormalized to

λ̂(1) ≤ λ̂(2) ≤ · · · ≤ λ̂(N) in such a way that λ̂(n + 1) − λ̂(n) = (λ(n + 1) −
λ(n))

√
4N − λ(n)2/2π and

lim
N→∞

E
(
#{(n, k) ; 1 ≤ n ≤ N, k > 0, λ̂(n+ k)− λ̂(n) ∈ [0, x)}

)
=

∫ x

0

r2(t) dt,

where E stands for the expected value.
(III) Since N(T ) := #{n ∈ N ; γ(n) ≤ T} ∼ (T log T )/2π, then γ(n) ∼ 2πn/(log n),
and consequently the mean value of γ̂(n+1)− γ̂(n) is 1, what is the background for

the renormalization. Similarly for λ̂(n).
(IV) Another formulation of the GUE conjecture states that if f is continuous then

lim
N→∞

1

N

∑
1≤m̸=n≤N

f(γ̂(m)− γ̂(n)) =

∫ ∞

−∞
f(x)r2(x) dx,

cf. N.M.Katz and P. Sarnak (1999).
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(V) A further version says that

2π

T log T

∑
T≤γ(m),γ(n)≤2T

m̸=n

f((log T/2π)(γ(m)− γ(n)))w(γ(m)− γ(n)) →

→
∫ ∞

−∞
f(x)r2(x) dx, as T → ∞

where w(x) = 4/(4 + x2). Montgomery (1973) proved this for continuous L1 func-

tions f which support of their Fourier transform f̂(t) =
∫∞
−∞ f(x)e−2πixt dx is con-

tained in (−1, 1), cf. D.A.Hejhal (1994).
(VI) Hejhal (1994) reformulated the GUE3 conjecture as the limit

2π

T log T

∑
T≤γ(ni)≤2T

n1,n2,n3 are distinct

f
(
(log T/2π)

(
γ(n1)− γ(n2)

)
, (log T/2π)

(
γ(n1)−

− γ(n3)
))
w
(
γ(n1), γ(n2), γ(n3)

)
→
∫ ∞

−∞

∫ ∞

−∞
f(x, y)w(x, y) dxdy,

where f is a suitable explicitly given positive function, and w is an explicitly given
determinant of a 3× 3 matrix depending on (sinπx)/πx. He proved this for contin-
uous L1 functions f having the support in the hexagon |x|+ |y|+ |x+ y| < 2.
(VII) If s ≥ 2 the GUEs conjecture can be restated as the limit (cf. D.W.Farmer
(1995))

2π

T log T

∑′

0<γ(n1),...,γ(ns)<T

f((log T/2π)γ(n1), . . . , (log T/2π)γ(ns)) →

→
∫
Rs

f(x)Ws(x)δ(x) dx, as T → ∞

for a general class of test functions f possessing some reasonable properties. Here
Ws(x) = det(K(xi−xj)), K(t) = sin(πt)/πt, x = (x1, . . . , xs), x = (x1+ · · ·+xs)/s
and δ is the Dirac δ–function, and the prime in the sum indicates that the summa-
tion runs over distinct ni.
(VIII) F.Dyson also rediscovered the functions r2(x) as eigenvalues of certain ma-
trices when studying the energy levels of an atomic nucleus predicates.

D.W.Farmer: Mean values of ζ′/ζ and the Gaussian unitary ensemble hypothesis, Internat. Math.
Res. Notices (1995), no. 2, 71–82 (electronic). (MR1317644 (96g:11109); Zbl. 0829.11043).
A.D.Hejhal: On the triple correlation of zeros of the zeta function, Internat. Math. Res. Notices
(1994), no. 7, 10 pp. (electronic).(MR1283025 (96d:11093); Zbl. 0813.11048).
N.M.Katz – P. Sarnak: Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. 36
(1999), no. 1, 1–26 (MR1640151 (2000f:11114); Zbl. 0921.11047).
H.L.Montgomery: The pair correlation of zeros of the zeta function, in: Analytic number theory
(Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math.
Soc., Providence, R.I., 1973, pp. 181–193 (MR0337821 (49 #2590); Zbl. 0268.10023).
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A.M.Odlyzko: On the distribution of spacings between zeros of the zeta function, Math. Comp.
48 (1987), no. 177, 273–308 (MR0866115 (88d:11082); Zbl. 0615.10049).
A.M.Odlyzko: The 1020–th zero of the Riemann zeta function and 175 million of its neighbours,
A.T.T., 1992, 120 pp. (Preprint).

2.20.27. Let χ be a primitive Dirichlet character modulo q. Let 0 < γ1 ≤
γ2 ≤ . . . denote the sequence of positive imaginary parts of the zeros of the
Dirichlet L-function L(s, χ) counted with multiplicity. If α ̸= 0 then the
sequence

αγn mod 1

is

u.d.
A.Fujii: On the zeros of Dirichlet L–functions, IV , J. Reine Angew. Math. 286(287) (1976),
139–143 (MR0436639 (81g:10056b); Zbl. 0332.10027).
J.Kaczorowski: The k–function in multiplicative number theory, II. Uniform distribution of zeta
zeros, Acta Arith. 56 (1990), no. 3, 213–225 (MR1083000 (91m:11068a); Zbl. 0716.11040).

2.20.28. Let ρ(n) = β(n) + iγ(n) be the sequence of the non–trivial zeros
of the Riemann zeta function ζ ordered by 0 < γ(1) ≤ γ(2) ≤ . . . . If the
Riemann hypothesis holds, i.e. if β(n) = 1/2 for n = 1, 2, . . . , then for
0 < b < 6/5 and any positive α the sequence

bγ(n)

2π
log

bγ(n)

2πeα
mod 1

is

u.d.

Notes: This was proved by A. Fujii (1996, p. 54). He conjectured that the same
conclusion is true for any positive b.

A.Fujii: An additive theory of the zeros of the Riemann zeta function, Commen. Math. Univ.
St. Paul. 45 (1996), no. 1, 49–116 (MR1388606 (97k:11125); Zbl. 0863.11050).

2.20.29. Let ρ(n) = β(n)+ iγ(n) be the sequence of the non–trivial zeros of
the Riemann zeta function ζ ordered by 0 < γ(1) ≤ γ(2) ≤ . . . . Let x(n) be
the double sequence γ(i) + γ(j), i, j = 1, 2, . . . , arranged according to their
magnitude. Then the sequence

x(n) mod 1
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is

u.d.

Notes: This was proved by A. Fujii (1996, Cor. 3). He writes: We understand that
the ”multiplicity” of γ(i) + γ(j) is at least 2 for i ̸= j. So the above arrangement is
with the ”multiplicities”. We expect that the ”multiplicity” of γ(i) + γ(j) for i ̸= j
is exactly 2 as we have already stated above.

A.Fujii: An additive theory of the zeros of the Riemann zeta function, Commen. Math. Univ.
St. Paul. 45 (1996), no. 1, 49–116 (MR1388606 (97k:11125); Zbl. 0863.11050).

2.20.30. Let v(n) be the Farey sequence of the reduced rational numbers
in [0, 1) ordered by increasing denominators (cf. 2.23.4). Let

s(d, c) =
c−1∑
ν=0

((
ν

c

))((
νd

c

))
,

where c, d are integers, c > 0, and

((x)) =

{
0, if x is an integer,

x− [x]− 1
2 , otherwise

is the Dedekind sum. Since s(ad, ac) = s(d, c), we can write s(d/c) for
s(d, c). Then for any non–zero real number α, the sequence

αs(v(n)) mod 1

is

u.d.
I. Vardi: A relation between Dedekind sums and Kloosterman sums, Duke Math. J. 55 (1987),
189–197 (MR0883669 (89d:11066); Zbl. 0623.10025).

2.20.31. The Kloosterman sum K(q, a) is defined by

K(q, a) =
∑
b∈Fq
b̸=0

χ(b+ ab−1),

where χ is a fixed non–trivial additive character of the finite field Fq of order q.
Then the sequence of blocks

Aq =

(
K(q, 1)

2
√
q
,
K(q, 2)

2
√
q
, . . . ,

K(q, q − 1)

2
√
q

)



2.20 Sequences involving number–theoretical functions 2 – 255

lies in the interval [−1, 1] and has in this interval the a.d.f.

g(x) =
2

π

∫ x

−1

√
1− t2 dt

and for its discrepancies we have

D∗
q−1 < 10q−1/4 and Dq−1 < 20q−1/4.

Notes: It is known that K(q, a) is always real and a classical bound of A.Weil
(1948) says |K(q, a)| ≤ 2

√
q. The form of g(x) was found by V.M.Katz (1988)

and discrepancy bounds were given by H.Niederreiter (1991) (cf. D.S.Mitrinović,
J. Sándor and J.Crstici (1996, p. 415)).

N.M.Katz: Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud.,
Vol. 116, Princeton Univ. Press, Princeton, NJ, 1988 (MR0955052 (91a:11028); Zbl. 0675.14004).
D.S.Mitrinović – J. Sándor – J.Crstici: Handbook of Number Theory, Mathematics and its
Applications, Vol. 351, Kluwer Academic Publishers Group, Dordrecht, Boston, London, 1996
(MR1374329 (97f:11001); Zbl. 0862.11001).
H.Niederreiter: The distribution of values of Kloosterman sums, Arch. Math.(Basel) 56 (1991),
no. 3, 270–277 (MR1091880 (92b:11057); Zbl. 0752.11055).
A.Weil: On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207
(MR0027006 (10,234e); Zbl. 0032.26102).

2.20.32. The classical Kloosterman sums S(a, b; c) are trigonometric sums
of the form

S(a, b; c) =
∑

1≤x,y≤c
xy≡1 (mod c)

e2πic
−1(ax+by),

where a, b, c are integers with c > 0. If c = p, a prime, then the optimal
estimate |S(a, b; p)| ≤ 2

√
p was proved by A.Weil in 1941. This implies

that for an integer a prime to p there is a unique θp,a ∈ [0, π] such that
S(a, 1; p) = 2

√
p cos θp,a. The sequence of blocks

Ap = (θp,1, θp,a2 , . . . , θp,ap−1),

where 1 < a2 < · · · < ap−1, (p, ai) = 1, has in [0, π] the a.d.f. with density

h(x) =
2 sin2 x

π

as p→ ∞. The same holds for prime powers qn = pαnn , Aqn , qn → ∞.

Notes:
(I) N.M.Katz (1988).
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(II) A considerably easier proof gives A.Adolphson (1989).
(III) h(x) is the density of the so-called Sato-Tate measure on [0, π].
(IV) It seems that nothing is known about the distribution of the sequence θp,a
for fixed a and p → ∞. S.A. Stepanov (1971) conjectured (the so-called sin2 θ
conjecture) that the limit distribution is again h(x), cf. T.A. Springer (2000), and
for a numerical test cf. N.M. Glazunov (1983).

Related sequences: 2.20.39.2.

A.Adolphson: On the distribution of angles of Kloosterman sums, J. Reine Angew. Math. 395
(1989), 214–222 (MR0983069 (90k:11109); Zbl. 0682.40002).
N.M.Glazunov: Equidistribution of values of Kloosterman sums, (Russian), Dokl. Akad. Nauk.
Ukrain. SSR Ser. A (1983), no. 2, 9–12 (MR0694613 (84h:10052); Zbl. 0515.10034; (L05–506)).
N.M.Katz: Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud.,
Vol. 116, Princeton Univ. Press, Princeton, NJ, 1988 (MR0955052 (91a:11028); Zbl. 0675.14004).
T.A. Springer: H.D.Kloosterman and his work , Notices Amer. Math. Soc. 47 (2000), no. 8,
862–867 (MR1776104 (2001d:01036); Zbl. 1040.01007).

2.20.33. Let g(x) be an increasing function such that g(x) ≥ log log x for
x ≥ x0 > 0 and

lim
x→∞

g(x)

log x
= 0.

Put
N(T ) = #{n ≤ T ; ∀p|n log p ≤ g(n), p a prime}

for T > 0. Let s be a fixed integer and f(x) = arx
r + · · ·+ amxm+ · · ·+ atxt

be a polynomial with 1 ≤ r < · · · < m < · · · < t ≤ s and

am =
a

q
+

θ

q2
, (a, q) = 1, |θ| ≤ 1,

where q satisfies
T εm ≤ qT (1−ε)m

for some 0 < ε < 1/2. Then for the discrepancy of the finite sequence

f(n) for n = 1, 2, . . . , [T ] such that ∀p|n log p ≤ g(n),

we have
DN = O

(
N1− γ

k

)
,

where
N = N(T ) ∼ Te−

1
2

√
log T log log T ,

with k = r + · · ·+m+ · · ·+ t, and γ = γ(ε) > 0.
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Notes: This was proved by A.A.Karacuba (1975). As an example he also shows
that for the polynomial f(x) = axr +

√
2xs with 1 ≤ r < s we have DN =

O
(
N1− γ1

s

)
.

A.A.Karacuba (A.A.Karatsuba): Some arithmetical problems with numbers having small prime
divisors, (Russian), Acta Arith. 27 (1975), 489–492 (MR0366830 (51 #3076); Zbl. 0303.10037).

2.20.34. Letm, a, b be fixed integers such thatm ≥ m1 > 0 and gcd(a,m) =
1. Let n be an integer with gcd(n,m) = 1, and n∗ denote the positive integer
1 ≤ n∗ < m which satisfies nn∗ ≡ 1 (modm).

(I) Let ε be a fixed sufficiently small positive real number with ε < 0.001.
If N is such that mε ≤ N ≤ m then the finite sequence

xn =
an∗ + bn

m
mod 1 with 1 ≤ n ≤ N, and gcd(n,m) = 1,

has the following property: If M =
∑

1≤n≤N,(n,m)=1 1 is the number of all
terms of xn with n ≤ N and A([α, β);M ;xn) is the counting function defined
in 1.2 then for any subinterval [α, β) ⊂ [0, 1] we have

A([α, β);M ;xn) = (β − α)
φ(m)

m
X(1 +O((logm)−c1))

for some c1 = c1(ε) > 0.

(II) If N satisfies 1 ≤ N ≤ m4/7 and [α, β) ⊂ [0, 1] then we have

A([α, β);M ;xn) ≥
cN

(logN)3.5

(
(β − α)− e

− log3 N

320 log2m

)
,

where c > 0 is an absolute constant.

(III) Given a1 ≥ 7 and N satisfying ea1 log
2/3 m ≤ N ≤ m4/7, and an integer k

such that m
1

2k−1
+ 1

4k−1 ≤ N < m
1

2k−3
+ 1

4k−3 , let

4X = m
1

2k−1 , 4Y = m
1

4k−1 , X1 = 2X, Y1 = 2Y, N1 = Nm− 1
2k−1

− 1
4k−1 .

If A is the set of indices n ≤ N of the form n = rpq where p, q are primes,
r is 1 or a prime such that X < p ≤ X1, Y < q ≤ Y1, 1 ≤ r ≤ N1, and
A([α, β);A;xn) = #{n ∈ A ; xn ∈ [α, β)}, then we have

A([α, β);A;xn) = (β − α)|A|+O(R)
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with R = (4k)180kN1− 1
320k2 .

Notes:
(I) A.A.Karacuba (1996). With n replaced by the nth prime pn in the finite sequence

xn =
ap∗n + bpn

m
mod 1, 1 ≤ pn ≤ X, (pn,m) = 1,

he gives

A([α, β);M ;xn) = (β − α)π(X)
(
1 +O((logm)−c2)

)
for some c2 = c2(ε).
(II,III) A.A.Karacuba (1997).

A.A.Karacuba (A.A.Karatsuba): Sums of fractional parts of functions of a special type, (Rus-
sian), Dokl. Akad. Nauk 349 (1996), no. 3, 302 (MR1440998 (98f:11072); Zbl. 0918.11038).
(English translation Dokl. Math. 54 (1996), no. 1, 541).
A.A.Karacuba (A.A.Karatsuba): Analogues of incomplete Kloosterman sums and their ap-
plications, (Russian), Tatra Mt. Math. Publ. 11 (1997), 89–120 (MR1475508 (98j:11062); Zbl.
0978.11037).

2.20.35. Let a1 = 1 < a2 < · · · < aφ(n), 0 < ai < n, be the sequence of
all integers coprime to n and define a∗i by the congruence aia

∗
i ≡ 1 (mod n).

Then the sequence of blocks

An =

(∣∣∣∣a1n − a∗1
n

∣∣∣∣ , ∣∣∣∣a2n − a∗2
n

∣∣∣∣ , . . . ,
∣∣∣∣∣aφ(n)n

−
a∗φ(n)

n

∣∣∣∣∣ ,
)
, n = 1, 2, . . . ,

has the a.d.f.

g(x) = 2x− x2,

and for its star discrepancy we have

D∗
φ(n) ≤ 4

(
3

2

)2

17
d2(n)

√
n

φ(n)
(logφ(n))2

for every n ≥ 8.

Notes: The problem of finding the a.d.f. of An was formulated as an open problem
in W.Zhang (1995). However the solution directly follows from the fact that the
block sequence 3.7.2

An =

((
a1
n
,
a∗1
n

)
,

(
a2
n
,
a∗2
n

)
, . . . ,

(
aφ(n)

n
,
a∗φ(n)

n

))
, n = 1, 2, . . . ,
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is u.d. and that
∫∫

|u−v|<x
(u,v)∈[0,1]2

1.dudv = 2x− x2. Zhang also found the estimates for

the even moments

1

φ(n)

φ(n)∑
i=1

∣∣∣∣ain − a∗i
n

∣∣∣∣2k =
1

(2k + 1)(k + 1)
+O

(
4k
√
nd2(n)

φ(n)
(log n)2

)
,

where φ(n) is the Euler function, d(n) is the divisor function and the O–constant
is absolute. Note that for the odd moment 2k + 1 the leading term is again∫ 1

0
x2k+1 d(2x − x2) = 1

(2k+3)(k+1) . Zhang found this for any real k ≥ 0 in (1997)

but without the factor 4k in the O-term. Using the theory of u.d., especially the
Koksma – Hlawka inequality, O. Strauch, M.Paštéka and G.Grekos (2003) proved
the error term∣∣∣∣∣∣ 1

φ(n)

φ(n)∑
i=1

∣∣∣∣ain − a∗i
n

∣∣∣∣K −
∫ 1

0

∫ 1

0

|x− y|K dxdy

∣∣∣∣∣∣ ≤ V (|x− y|K)D∗
φ(n),

which is independent on K for K = 1, 2, . . . . Here for the Hardy – Krause variation
we have V (|x− y|K) = 4 and for the star discrepancy (cf. 3.7.2)

D∗
φ(n)

((
ai
n
,
a∗i
n

))
= O

(
d(n)

√
n

φ(n)
(logφ(n))2

)
.

In 1996 Zhang also found the a.d.f. g(x) = 2x − x2 and for the star discrepancy
of An with respect to g(x) he proved

D∗
φ(n) = O

(
d2(n)

√
n

φ(n)
(log n)3

)
.

In (1997) he improved this estimate with (log n)3 replaced by (log n)2. On the other
hand, the estimate containing (logφ(n))2 follows from 2.3.20.

Related sequences: 2.20.36

O. Strauch – M.Paštéka – G.Grekos: Kloosterman’s uniformly distributed sequence, J. Number
Theory 103 (2003), no. 1, 1–15 (MR2008062 (2004j:11081); Zbl. 1049.11083).
W.Zhang: On the difference between an integer and its inverse modulo n, J. Number Theory 52
(1995), no. 1, 1–6 (MR1331760 (96f:11123); Zbl. 0826.11002).
W.Zhang: On the distribution of inverse modulo n, J. Number Theory 61 (1996), no. 2, 301–310
(MR1423056 (98g:11109); Zbl. 0874.11006).
W.Zhang: Some estimates of trigonometric sums and their applications, Acta Math. Hungarica
76 (1997), no. 1–2, 17–30 (MR1459767 (99b:11093); Zbl. 0906.11043).
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2.20.36. Let p be an odd prime and k a positive integer. Let a1 = 1 <
a2 < · · · < ap−1, 0 < ai < p, be the sequence of all integers coprime to p and
define a∗i by the congruence aia

∗
i ≡ 1 (mod p). Then the sequence of blocks

Ap =

(∣∣∣∣{(a1)
k

p

}
−
{
(a∗1)

k

p

}∣∣∣∣ , ∣∣∣∣{(a2)
k

p

}
−
{
(a∗2)

k

p

}∣∣∣∣ , . . . ,∣∣∣∣∣
{
(ap−1)

k

p

}
−

{
(a∗p−1)

k

p

}∣∣∣∣∣
)

with n = 1, 2, . . . , has for p→ ∞ the a.d.f.

g(x) = 2x− x2

and for its star discrepancy there holds

D∗
p−1 = O

(
(log p)2
√
p

)
,

where the O–constant depends only on k.
Related sequences: 2.20.35

W.Zhang: On the distribution of inverse modulo p, Acta Arith. 100 (2001), no. 2, 189–194
(MR1864154 (2002j:11115); Zbl. 0997.11077).

2.20.37. Let α1, β1, α2, and β2 be real numbers such that 0 < α1 < β1 <
α2 < β2 < 1. If N is a positive integer then let SN be the set of pairs (p, q) of
coprime positive integers which satisfy α1N < p < β1N < α2N < q < β2N .
If (p, q) is a couple of integers let p1/q1, . . . , pr/qr = p/q be the sequence
of the successive convergents of the continued fraction expansion of p/q. In
particular, (x, y) = (qr−1, pr−1) is a solution of the equation px − qy = ±1.
Then the sequence of individual block

AN =

{
qr−1

q
; (p, q) ∈ SN

}
, N = 1, 2, . . . ,

is

u.d. which respect to the interval [0, 1].

Notes: The u.d. of AN was proved in E.I. Dinaburg and Ya.G. Sinăı (1990) where
they noticed that quantitative estimates can be proved using Kloosterman’s sum.
A quantitative estimate was given by A. Fujii (1992) and G.J.Rieger (1993). The
two–dimensional generalization was given by D.I. Dolgopyat (1994), cf. 3.7.5.

Related sequences: 2.20.38
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E.I. Dinaburg – Ya.G. Sinăı: The statistics of the solutions of the integer equation ax− by = ±1,
(Russian), Funkts. Anal. Prilozh. 24 (1990), no. 3, 1–8,96 (English translation: Funct. Anal.
Appl. 24 (1990), no. 3, 165–171). (MR1082025 (91m:11056); Zbl. 0712.11018).
D.I.Dolgopyat: On the distribution of the minimal solution of a linear diophantine equation with
random coefficients, (Russian), Funkts. Anal. Prilozh. 28 (1994), no. 3, 22–34, 95 (English trans-
lation: Funct. Anal. Appl. 28 (1994), no. 3, 168–177 (MR1308389 (96b:11111); Zbl. 0824.11046)).
A.Fujii: On a problem of Dinaburg and Sinăı, Proc. Japan. Acad. Ser. A Math. Sci. 68 (1992),
no. 7, 198–203 (MR1193181 (93i:11092); Zbl. 0779.11032).
G.J.Rieger: Über die Gleichung ad − bc = 1 und Gleichverteilung, Math. Nachr. 162 (1993),
139–143 (MR1239581 (94m:11092); Zbl. 0820.11013).

2.20.38. Let c and d be positive integers. For x > 0 define the block

Ax =

{
d−1 (mod c)

c
; 0 < c ≤ x, 0 < d ≤ x, gcd(c, d) = 1

}
.

Then the sequence of blocks Ax with x→ ∞ is

u.d.

and for the discrepancy of the individual block Ax we have

Dx = O(xε−1/2)

where ε is an arbitrarily small positive number.

Notes: u.d. was proved by E.I. Dinaburg and Ya.G. Sinăı (1990). G.J. Rieger (1993)
proved the estimateDx = O(x−1/4 log3 x) using estimates for Kloosterman sums and
noticed that the result can be improved using their better estimates. This was done
independently by A. Fujii (1992), cf. also MR 94m:11092.

Related sequences: 2.20.37

E.I. Dinaburg – Ya.G. Sinăı: The statistics of the solutions of the integer equation ax− by = ±1,
(Russian), Funkts. Anal. Prilozh. 24 (1990), no. 3, 1–8,96 (English translation: Funct. Anal.
Appl. 24 (1990), no. 3, 165–171). (MR1082025 (91m:11056); Zbl. 0712.11018).
A.Fujii: On a problem of Dinaburg and Sinăı, Proc. Japan. Acad. Ser. A Math. Sci. 68 (1992),
no. 7, 198–203 (MR1193181 (93i:11092); Zbl. 0779.11032).
G.J.Rieger: Über die Gleichung ad − bc = 1 und Gleichverteilung, Math. Nachr. 162 (1993),
139–143 (MR1239581 (94m:11092); Zbl. 0820.11013).

2.20.39. Let h(−n) denote the class number of the quadratic number field
Q(

√
−n). Then the sequence

πh(−n)
2
√
n

, n = 1, 2, . . . ,

has, in [0,∞), the a.d.f.
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g(x)

which characteristic function (for the def. see 1.6) is

f(t) =

∞∑
k=0

r(k)

k!
(it)k,

where

r(k) =

∞∑
n=1,2-n

φ(n)τk(n
2)

n3

S.Chowla – P.Erdős: A theorem of distribution of values of L–functions, J. Indian Math. Soc.
(N.S.) 15 (1951), 11–18 (MR0044566 (13,439a); Zbl. 0043.04602).

2.20.39.1 Open problem: Characterize the distribution of the sequence

B2n mod 1 n = 1, 2, . . . .

where Bn denotes the n-th Bernoulli number.

Notes: (I) By von Staudt-Clausen formula

B2n = A2n −
∑

(p−1)|2n

1

p
,

where p runs over primes and A2n are suitable integers.
(II) The distribution of the fractional parts of B2n was studied by P.Erdős and
S.S.Wagstaff Jr. (1980). They proved that

∑
(p−1)|2n

1
p is everywhere dense in

[5/6,∞) (F. Luca’s comment on the problem).

P.Erdős – S.S.Wagstaff, Jr.: The fractional parts of the Bernoulli numbers, Illinois J. Math.
24 (1980), no. 1, 104–112 (MR0550654 (81c:10064); Zbl. 0405.10011).

2.20.39.2 The Ramanujan tau function τ(n) is defined by

∆(z) = e2πiz
∞∏
n=1

(
1− e2πiz

)24
=

∞∑
n=1

τ(n)e2πinz,

where ℑz > 0.

When p is a prime, write

τ(p) = 2p11/2 cos θp.
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A conjecture of Ramanujan claims that θp is real. Assuming the truth of this
conjecture, Sato and Tate conjectured that the sequence

θpn , n = 1, 2, . . . ,

has the a.d.f. in [0, π] with the density

h(x) =
2

π
(sinx)2.

Here pn is the increasing sequence of all primes.

Notes: D.H. Lehmer (1970) reports on a test of this conjecture for the primes < 104.

Related sequences: 2.20.32

D.H. Lehmer: Note on the distribution of Ramanujan’s tau function, Math. Comp. 24 (1970),
741–743 (MR0274401 (43 #166); Zbl. 0214.30601).

2.21 Sequences involving special functions

2.21.1. Let αn, n = 1, 2, . . . , denote the sequence of positive zeros of the
Bessel function J0(x) ordered in the increasing order and set

AN =

(
α1

αN
,
α2

αN
, . . . ,

αN

αN

)
.

Then for the finite sequence AN we have

DN = O
(

1

N

)
and thus the block sequence (An)

∞
n=1 is

u.d.

Notes: R.F.Tichy (1998) answers in this way a question posed by F.J. Schnitzer.

R.F.Tichy: Three examples of triangular arrays with optimal discrepancy and linear recurrences,
in: Applications of Fibonacci Numbers (The Seventh International Research Conference, Graz,
1996), Vol. 7, (G.E.Bergum, A.N.Philippou and A.F.Horadam eds.), 1998, Kluwer Acad. Publ.,
Dordrecht, Boston, London, pp. 415–423 (MR1638468; Zbl. 0942.11036).
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2.21.1.1 Let x ∈ [0, 1) \ Q and pn
qn

be the nth regular continued frac-
tion convergent of x, n ≥ 0. The approximation coefficient Θn = Θn(x) is
defined by

Θn = q2n

∣∣∣∣x− pn
qn

∣∣∣∣ for n ≥ 0.

Then for almost all x and all z ∈ [0, 1], the limit

lim
N→∞

1

N
#{1 ≤ n ≤ N |Θn(x) ≤ z}

exists and equals the d.f. g(z) defined by

g(z) =


z

log 2
if 0 ≤ z ≤ 1

2 ,

1− z + log 2z

log 2
if 1

2 ≤ z ≤ 1.

Notes: See C.Kraaikamp and I. Smeets (2010, p. 18): In the early 1980s it is
was conjectured by H.W. Lenstra. A version of this conjecture had been formulated
by W.Doeblin (1940) before. In 1983 W. Bosma et al. (1983) proved the Doeblin-
Lenstra-conjecture for regular continued fractions and Nakada’s α-expansions for
α ∈

[
1
2 , 1
]
.

C.Kraaikamp – I. Smeets: Approximation results for α-Rosen fractions, Unif. Distrib. Theory
5 (2010), no. 2, 15–53 (MR2608015 (2011d:11189); Zbl. 1249.11083)
W.Bosma – H. Jager – F.Wiedijk: Some metrical observations on the approximation by con-
tinued fractions, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 3, 281–299 (MR0718069
(85f:11059); Zbl. 0519.10043).
W.Doeblin: Remarques sur la théorie métrique des fractions continues, Compositio Math. 7
(1940), 353–371 (MR0002732 (2,107e); Zbl. 0022.37001).

2.22 Sequences of rational numbers

2.22.1. Let an be a given strictly increasing sequence of positive integers
and define

An =

(
1

an
,
2

an
, . . . ,

an
an

)
and let ω = (An)

∞
n=1 to be the block sequence formed from these blocks. The

sequence An of individual blocks is

u.d.

for any such an and the compound sequence ω is
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u.d.

if and only if

lim
n→∞

an+1

a1 + · · ·+ an
= 0. (∗)

Let N = k +
∑n

i=1 ai, where 0 ≤ k ≤ an+1. Then

N2D
(2)
N =

1

4
n2 +

1

12

n∑
i,j=1

(ai, aj)
2

aiaj
+

k2

a2n+1

(
1

3
k2 +

1

2
k +

1

6

)
+

+
k

an+1

(
−2

3
k2 − 1

2
k +

1

6

)
+

1

3
k2 +

1

2
kn+

1

6
k

n∑
i=1

1

ai
+

+ 2

∫ k/an+1

0
{xan+1}

(
n∑

i=1

{xai}

)
dx−

− 2an+1

∫ k/an+1

0
x

(
n∑

i=1

{xai}

)
dx− 2k

∫ 1

k/an+1

(
n∑

i=1

{xai}

)
dx.

For k = 0 we have

N2D
(2)
N =

1

4
n2 +

1

12

n∑
i,j=1

(ai, aj)
2

aiaj
=

1

4
n2 +

1

2π2

∞∑
h=1

1

h2

(
n∑

i=1
ai|h

ai

)2

.

Notes: (I) The block sequence of this type was investigated by S.Knapowski (1957)
who proved the sufficiency of (∗) for the u.d. The necessity of (∗) with a complete
theory of u.d. is given in Š. Porubský, T. Šalát and O. Strauch (1990). They also
proved, if an is strictly increasing then:
(i) limn→∞ an−1/an = 1 implies (∗), and in the opposite direction (∗) implies

lim supn→∞ an−1/an = 1,
(ii) an = o(n2) implies (∗),
(iii) positive upper asymptotic density of an implies (∗),
(iv) (∗) implies limn→∞ n−1 log(a1 + · · ·+ an) = 0,
(v) if a subsequence akn satisfies (∗), then also an does,
(vi) if two strictly increasing sequences an and bn satisfy (∗), then also an+bn and

the convolution a1bn + a2bn−1 + · · ·+ a1bn satisfy (∗),
(vii) if an = O(n3/2) and bn = o(n3/2) then anbn satisfies (∗),
(viii) Let p(x) be a polynomial with integer coefficients with a positive leading

coefficient. Then an and p(n)an satisfy simultaneously condition (∗).
(ix) Let an be a linear recurring sequence with the characteristic polynomial Q(x).

Then an satisfies (∗) if and only if a) all roots of Q(x) are roots of 1, b)
Q(1) = 0 and the multiplicity of 1 is ≥ 2 and it is strongly greater than a
multiplicity of any other root of Q(x).



2 – 266 2 One–dimensional sequences

(x) Consequently an increasing linear recurring sequence an satisfies (∗) if and
only if limn→∞ an−1/an = 1.

(II) The result for L2 discrepancy in the case k = 0 can be found in O. Strauch (1989)
and for general k in Š. Porubský, T. Šalát and O. Strauch (1990). Note that the
integrals can be computed using the following formulas∫ k/b

0

{xb}{xa} dx =
1

b

(
ak

3b
− k

2ba
(a− 1)

(
2a

3
+

1

6

)
+

+

a−1∑
s=0

k−1∑
i=0

2s+ 1

2a2

{
s+ ia

b

})
, 0 ≤ k ≤ b,∫ t

0

x{ax} dx =
t2

4
+

t

12a
− {ta}3

2a2
+
t{ta}2

2a
− t{ta}

2a
+

{ta}2

4a2
− {ta}

12a2
,∫ t

0

{xa} dx =
t

2
+

{ta}2

2a
+

{ta}
2a

.

(III) B. Jessen (1934) proved that if an is a strictly increasing sequence of positive
integers such that an|an+1 for n = 1, 2, . . . , and f is a Lebesgue integrable function
on [0, 1], then the limit

lim
n→∞

1

an

an∑
j=1

f

({
x+

j

an

})
=

∫ 1

0

f(t) dt

holds almost everywhere with respect to the Lebesgue measure. In the opposite
direction, R.C.Baker (1976) proved that if an increasing sequence of positive inte-
gers an satisfies the following two conditions
(i) lim infn→∞

log an
n = 0, and

(ii) lim infN→∞
1
N

∑N
n=1

An

an
> 0, where An is the number of fractions j/an with

0 < j < an that are not equal to i/am for some integer i and m < n,

then there exists a Lebesgue integrable function f on [0, 1] such that

lim sup
n→∞

1

an

an∑
j=1

f

({
x+

j

an

})
= ∞

for almost all x. Baker (1976) noted that (ii) is probable superfluous and he proved

that if an = O(e
√
n(logn)−7/2−ε

) for some ε > 0 then the lim sup above equals ∞.

(IV) Let F
(1)
N1

(x) and F
(2)
N2

(x) be step d.f.’s of sequences x1, . . . , xN1
and y1, . . . , yN2

,
respectively. The integral formula 4.2(I) gives∫ 1

0

(F
(1)
N1

(x)− x)(F
(2)
N2

(x)− x) dx =

∫ 1

0

∫ 1

0

−|x− y|
2

d(F
(1)
N1

(x)− x) d(F
(2)
N2

(y)− y).
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Applying this to block sequences(
0

a
,
1

a
, . . . ,

a− 1

a

)
,

(
0

b
,
1

b
, . . . ,

b− 1

b

)
,

where a and b are positive integers (with N1 = a and N2 = b) and using the Franel–
Kluyver’s integral∫ 1

0

(
{ax} − 1

2

)(
{bx} − 1

2

)
dx =

1

12

(gcd(a, b))2

ab

O. Strauch (1989) proved: For every positive integers a, b and X we have

1

12

(gcd(a, b))2

ab
=

∞∑
k=2

(2k)!

2(2k − 1)(2k.k!)2
×

×

(
k∑

r,s=1
2≤r+s≤k

1

X2(r+s)−2

(
2(r + s)

2r

)
B2r

a2r−1
· B2s

b2s−1
· (−2)

2(r + s)(2(r + s)− 1)
·

·

(
(−1)r+s−1

(
k

r + s− 1

)
− (−1)k22k−2(r+s)+2

(
k

2k − 2(r + s) + 2

)))
,

where Br is the rth Bernoulli number and for the binomial coefficients we take(
m
n

)
= 0 if n < 0 or n > m. The remainder

∑∞
k=K+1 of the infinite series on the

right hand side does not exceed

∞∑
k=K+1

≤ 9
X√
K

min{a, b}.

R.C.Baker: Riemann sums and Lebesgue integrals, Quart. J. Math. Oxford Ser. (2) 27 (1976),
no. 106, 191–198 (MR0409395 53 #13150; Zbl. 0333.10033).
J. Franel: Les suites de Farey et le probleme des nombres premiers, Nachr. Ges. Wiss. Göttingen
Math.-Phys. Kl. (1924), 198–201 (JFM 50.0119.01).
B. Jessen: On the approximation of Lebesgue integrals by Riemann sums, Ann of Math. (2) 35
(1934), 248–251 (MR1503159; Zbl. 0009.30603).
J.C.Kluyver: An analytical expression for the greatest common divisor of two integers, Proc.
Royal Acad. Amsterdam V, II (1903), 658–662 ( = Eene analytische uitdrukking voor den groot-
sten gemeenen deeler van twee geheele getallen, (Dutch), Amst. Versl. 11 (1903), 782–786 JFM
34.0214.04).
S.Knapowski: Über ein Problem der Gleichverteilungstheorie, Colloq. Math. 5 (1957), 8–10
(MR0092823 (19,1164c); Zbl. 0083.04401).
Š. Porubský – T. Šalát – O. Strauch: On a class of uniform distributed sequences, Math. Slo-
vaca 40 (1990), 143–170 (MR1094770 (92d:11076); Zbl. 0735.11034).
O. Strauch: Some applications of Franel – Kluyver’s integral, II , Math. Slovaca 39 (1989),
127–140 (MR1018254 (90j:11079); Zbl. 0671.10002).
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2.22.2. Ratio sequences. For an increasing sequence of positive integers
xn let d(xn), and d(xn) denote the lower and upper asymptotic density of
xn, resp., and d(xn)(= d(xn) = d(xn)) its asymptotic density if it exists, cf.
p. 1 – 3 . The double sequence, called the ratio sequence of xn,

xm
xn

, m, n = 1, 2, . . . ,

is

everywhere dense in [0,∞)

assuming that one of the following conditions holds:
(i) d(xn) > 0,
(ii) d(xn) = 1,
(iii) d(xn) + d(xn) ≥ 1,
(iv) d(xn) ≥ 1/2,
(v) A([0, x);xn) ∼ cx

logα x , where c > 0, α > 0 are constant, A([0, x);xn) =
#{n ∈ N ; xn ∈ [0, x)}, and ∼ denotes the asymptotically equivalence
(i.e. the ratio of the left and the right–hand side tends to 1 as x→ ∞).

Notes: (I) (i), (ii) and (v) were proved by T. Šalát (1969), for (iii) see O. Strauch
and J.T.Tóth (1998) and (iv) follows from (iii).
(II) Strauch and Tóth (1998, Th. 2) proved that if the interval (α, β) ⊂ [0, 1] has an
empty intersection with xm

xn
for m,n = 1, 2, . . . , then

d(xn) ≤
α

β
min(1− d(xn), d(xn)), d(xn) ≤ 1− (β − α).

S.Konyagin (personal communication) improved the inequality to

d(xn) ≤
1− β

1− αβ
.

(III) In O. Strauch and J.T.Tóth (2001) the ratio sequence xm

xn
, m,n = 1, 2, . . . , is

ordered to a block sequence Xn, n = 1, 2, . . . , with blocks

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
,

Related sequences: 2.22.6, 2.22.7, 2.22.8, 2.22.5.1.

(IV) J.T.Tóth, L.Mǐśık and F. Filip (2004) introduced the dispersion d̃(Xn)
of a block Xn defining

d̃(Xn) = max

(
x1
xn
,
x2 − x1
xn

,
x3 − x2
xn

, . . . ,
xn − xn−1

xn

)
.
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Given a sequence xn of positive integers, define its dispersion by

d̃ = lim inf
n→∞

d̃(Xn),

whereXn−
(

x1
xn
, x2
xn
, . . . , xnxn

)
. Contrary to the classical dispersion (cf. 1.10.11),

d̃ = 0 does not characterize the everywhere density of the ratio sequence
xm/xn, m,n = 1, 2, . . . . They proved that for every α ∈ [0, 1/2] there ex-
ists an increasing sequence of positive integers xn, n = 1, 2, . . . , such that
d̃ = α and the double sequence xm/xn, m,n = 1, 2, . . . , is everywhere dense
in [0,∞). For a better estimate of d̃ consult F. Filip and J.T.Tóth (2005).

F.Filip – J.T.Tóth: On estimation of dispersions of certain dense block sequences, Tatra Mt.
Math. Publ. 31 (2005), 65–74 (MR2208788 (2006k:11014); Zbl. 1150.11338)
T. Šalát: On ratio sets of sets of natural numbers, Acta Arith. 15 (1968/69), 273–278 (MR0242756
(39 #4083); Zbl. 0177.07001).
O. Strauch – J.T.Tóth: Asymptotic density of A ⊂ N and density of the ratio set R(A),
Acta Arith. 87 (1998), no. 1, 67–78 (correction ibid. 103 (2002), no. 2, 191–200). (MR1659159
(99k:11020); Zbl. 0923.11027).
O. Strauch – J.T.Tóth: Distribution functions of ratio sequences, Publ. Math. (Debrecen) 58
(2001), 751–778 (MR1828725 (2002h:11068); Zbl. 0980.11031).
J.T.Tóth – L.Mǐśık – F. Filip: On some properties of dispersion of block sequences of positive
integers, Math. Slovaca 54 (2004), no. 5.453–464 (MR2114616 (2005k:11014); Zbl. 1108.11017)

2.22.3. If xn and yn are two increasing sequences of positive integers then
the double sequence (again called ratio sequence of xn and yn)

xm
yn
, m, n = 1, 2, . . . ,

is

everywhere dense in [0,∞)

(which is clearly equivalent to the everywhere density of ym
xn

, m,n = 1, 2, . . . ,
in [0,∞)) assuming that one of the following conditions holds:
(i) d(xn) > 0,
(ii) xn+1/xn → 1,
(iii) d(xn) > 0 and d(xn) + d(yn) ≥ 1.

Notes: (i) was proved by T. Šalát (1971) and (ii) and (iii) were proved by J. Bukor
and J.T.Tóth (2003). They also proved a converse to (iii): For any two positive
real numbers γ and δ with γ + δ < 1 there exist two sequences xn and yn such
that d(xn) = γ, d(yn) = δ and which ratio sequence xm/yn, m,n = 1, 2, . . . , is not
everywhere dense in [0,∞).
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J. Bukor – J.T.Tóth: On some criteria for the density of the ratio sets of positive integers,
JP J. Algebra Number Theory Appl. 3 (2003), no. 2, 277–287 (MR1999166 (2004e:11009); Zbl.
1043.11009).
T. Šalát: Quotientbasen und (R)–dichte Mengen, Acta Arith. 19 (1971), 63–78 (MR0292788 (45
#1870); Zbl. 0218.10071).

2.22.4. If p and q be two coprime positive integers and

xn = pn, yn = qn, for n = 1, 2, . . . ,

then the double sequence

xm
yn
, m, n = 1, 2, . . . ,

is

dense in [0,∞).

J. Sḿıtal: Remarks on ratio sets of sets of natural numbers, Acta Fac. Rerum Nat. Univ. Come-
nian. Math. 25 (1971), 93–99 (MR0374079 (51 #10279); Zbl. 0228.10036).

2.22.5. Let L andM be two non–zero coprime integers with L−4M ̸= 0 and
moreover let α and β be the roots of the quadratic equation x2−

√
Lx+M = 0

such that α/β is not a root of 1. The nth Lehmer number ln corresponding
to the pair (L,M) is defined by

ln =


αn − βn

α− β
, if n ≡ 1 (mod 2) ,

αn − βn

α2 − β2
, otherwise.

Then the double sequence

lm
ln
, m, n = 1, 2, . . . ,

is

dense in [0,∞).

F. Luca – Š. Porubský: The multiplicative group generated by the Lehmer numbers, Fibonacci
Quart. 41 (2003), no. 2, 122–132 (MR1990520 (2004c:11016); Zbl. 1044.11008).
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2.22.5.1 Let xn, n = 1, 2, . . . be an increasing sequence of positive in-
tegers, d(xn) be the lower and d(xn) the upper asymptotic density of xn,

n = 1, 2, . . . , and Xn =
(

x1
xn
, x2
xn
, . . . , xnxn

)
. As in 1.8.23, let G(Xn) be the

set of all d.f.’s of the block sequence Xn, n = 1, 2, . . . , i.e. the set of the all
possible weak limits g(x), where

#{i ≤ nk;xi/xnk < x}
nk

→ g(x), as k → ∞.

G(Xn) has the following properties:
(i) If g(x) ∈ G(Xn) is increasing and continuous at x = β and g(β) > 0,

then there exists 1 ≤ α <∞ such that αg(xβ) ∈ G(Xn). If every d.f. of
G(Xn) is continuous at 1, then α = 1/g(β).

(ii) Let the all d.f.’s in G(Xn) be continuous at 0 and c1(x) /∈ G(Xn). Then
for every g̃(x) ∈ G(Xn) and every 1 ≤ α <∞ there exists g(x) ∈ G(Xn)
and 0 < β ≤ 1 such that g̃(x) = αg(xβ) a.e.

(iii) Let the all d.f.’s in G(Xn) be continuous at 1. Then all d.f.’s in G(Xn)
are continuous on (0, 1], i.e. the only possible discontinuity is at 0.

(iv) If d(xn) > 0, then for every g(x) ∈ G(Xn) we have

(d(xn)/d(xn)).x ≤ g(x) ≤ (d(xn)/d(xn)).x

for every x ∈ [0, 1]. Consequently, if d(xn) = d(xn) > 0 then the block
sequence Xn, n = 1, 2, . . . , is u.d.

(v) If d(xn) > 0, then every g(x) ∈ G(Xn) is continuous on [0, 1].
(vi) If d(xn) > 0, then there exists g(x) ∈ G(Xn) such that g(x) ≥ x for

every x ∈ [0, 1].
(vii) If d(xn) > 0, then there exists g(x) ∈ G(Xn) such that g(x) ≤ x for

every x ∈ [0, 1].
(viii) Let G(Xn) be a singleton, i.e. G(Xn) = {g(x)}. Then either g(x) =

c0(x) for x ∈ [0, 1], or g(x) = xλ for some 0 < λ ≤ 1 and x ∈ [0, 1].
Moreover, if d(xn) > 0, then g(x) = x.

(ix) maxg∈G(Xn)

∫ 1
0 g(x) dx ≥ 1

2 .
(x) Let every d.f. g(x) ∈ G(Xn) be a constant over a fixed interval (u, v) ⊂

[0, 1] (the values of the functions may be distinct). If d(xn) > 0 then
every d.f. in G(Xn) is constant over infinitely many subintervals of [0, 1].

(xi) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that G(Xn) = {hα(x);α ∈ [0, 1]}, where hα(x) = α, x ∈ (0, 1) is a
constant d.f.
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(xii) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that

c1(x) ∈ G(Xn) but c0(x) /∈ G(Xn)

where c0(x) and c1(x) are one–jump d.f.’s with the jump of height 1 at
x = 0 and x = 1, respectively.

(xiii) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that G(Xn) is non-connected.

(xiv) G(Xn) = {xλ} if and only if limn→∞(xk.n/xn) = k1/λ for every k =
1, 2, . . . . Here as in (viii) we have 0 < λ ≤ 1.

(xv) For every increasing integer sequence xn, n = 1, 2, . . . , there exists
g(x) ∈ G(Xn) such that g(x) ≥ x for all x ∈ [0, 1]. This extend (vi).

(xvi) If d(xn) > 0, then all d.f.s g(x) ∈ G(Xn) bounded by h1(x) ≤ g(x) ≤
h2(x), where

h1(x) =

x
d

d
if x ∈

[
0, 1−d

1−d

]
,

d
1
x
−(1−d)

otherwise,

h2(x) = min

(
x
d

d
, 1

)
,

where h1(x), h2(x) are best possible.
(xvii) If d(xn) > 0, then for every g(x) ∈ G(Xn) we have

0 ≤ g(y)− g(x)

y − x
≤ 1

dg

for x < y, x, y ∈ [0, 1]. Here dg = limk→∞
nk
xnk

if limk→∞ F (Xnk , x) =

g(x).
(xviii) For every increasing sequence x1 < x2 < . . . of positive integers with

0 < d ≤ d we have
10 1

2
d

d
≤ lim infn→∞

1
n

∑n
i=1

xi
xn
,

20 lim supn→∞
1
n

∑n
i=1

xi
xn

≤ 1
2 + 1

2

(1−min(
√

d,d)

1−d

)(
1− d

min(
√

d,d)

)
.

(xix) Let H be a nonempty set of d.f.s defined on [0, 1]. Then there exists
an integer sequence 1 ≤ x1 < x2 < . . . such that H ⊂ G(Xn).

(xx) If d(xn) > 0, then the lower d.f. g(x) and the upper d.f. g(x) satisfy

g(x).g(y) ≤ g(x.y) ≤ g(x.y) ≤ g(x).g(y)

for every x, y ∈ (0, 1).
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Notes: The properties (i)–(x) can be found in O. Strauch and J.T.Tóth (2001,
2002) (xi), (xiii) in G.Grekos and O. Strauch (2004), (xii) was found by L.Mǐśık (2004,
personal communication) and (xiv) is in F. Filip and J.T.Tóth (2006). The proper-
ties (xv)–(xx) are from V.Baláž, L.Mǐśık, O. Strauch and J.T.Tóth ([a] 2013). For
concrete examples, see 2.22.6, 2.22.7, 2.22.8.

[a]V.Baláž – L.Mǐśık – O. Strauch – J.T.Tóth: Distribution functions of ratio sequences, III ,
Publ. Math. Debrecen 82 (2013), no. 3–4.511–529 (MR3066427; Zbl. 1274.11118).
[b]V.Baláž – L.Mǐśık – O. Strauch – J.T.Tóth: Distribution functions of ratio sequences, IV ,
Periodica Math. Hungarica 66 (2013), no. 1.1–22 (MR3018198; Zbl. 1274.11119).
G.Grekos – O. Strauch: Distribution functions of ratio sequences, II , Unif. Distrib. Theory 2
(2007), no. 1, 53–77 (MR2318532 (2008g:11125); Zbl. 1183.11042).
F.Filip – J.T.Tóth: Distribution functions of ratio sequences, 2006 (preprint).
O. Strauch – J.T.Tóth: Distribution functions of ratio sequences, Publ. Math. (Debrecen) 58
(2001), 751–778 (MR1828725 (2002h:11068); Zbl. 0980.11031).
O. Strauch – J.T.Tóth: Corrigendum to Theorem 5 of the paper ”Asymptotic density of A ⊂ N
and density of the ratio set R(A)” (Acta Arith. 87 (1998), 67–78), Acta Arith. 103.2 (2002),
191–200 (MR1904872 (2003f:11015); Zbl. 0923.11027).

2.22.6. Let γ, δ, and a be given real numbers such that 1 ≤ γ < δ ≤ a.
If xn is the increasing sequence of all integers lying in the intervals

(γ, δ), (γa, δa), . . . , (γak, δak), . . . ,

then define the sequence of blocks

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
.

The set G(Xn) of all d.f.’s of the sequence of individual blocks Xn can be
parameterized in the form

G(Xn) = {gt(x) ; t ∈ [0, 1]},
where gt(x) is the function which is constant over the intervals (δ,aγ)

ai+1(tδ+(1−t)γ)
,

i = 0, 1, 2, . . . ,
(
here we use the shorthand notation for intervals where we

write (xz, yz) = (x, y)z and
(
x
z ,

y
z

)
= (x,y)

z

)
attaining the values

gt(x) =
1

ai(1 + t(a− 1))
if x ∈ (δ, aγ)

ai+1(tδ + (1− t)γ)
, and i = 0, 1, 2, . . . ,

while over the complementary intervals its derivative is constant

g′t(x) =
tδ + (1− t)γ

(δ − γ)( 1
a−1 + t)

if x ∈ (γ, δ)

ai+1(tδ + (1− t)γ)
, and i = 0, 1, 2, . . . ,

and x ∈
(

γ

tδ + (1− t)γ
, 1

)
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Notes: This example can be found in O. Strauch and J.T.Tóth (2001). Note the
following interesting properties of the above functions gt(x):
(i) as already mentioned, every g ∈ G(Xn) is constant over infinitely many inter-

vals, i.e. g′(x) = 0 here, while over the infinitely many complementary intervals
its derivative is also constant g′(x) = d. Moreover, this constant d satisfies the
inequalities

1

d
≤ d ≤ 1

d

where the lower d and upper d asymptotic density of xn can also be given
explicitly

d(xn) =
(δ − γ)

γ(a− 1)
, d(xn) =

(δ − γ)a

δ(a− 1)
.

(ii) The graph of every g ∈ G(Xn) lies in the union of squares[
1

a
, 1

]
×
[
1

a
, 1

]∪[
1

a2
,
1

a

]
×
[
1

a2
,
1

a

]∪
. . .

Moreover, the graph of g in the square
[

1
ak
, 1
ak−1

]
×
[

1
ak
, 1
ak−1

]
is similar to

the graph of g in
[

1
ak+1 ,

1
ak

]
×
[

1
ak+1 ,

1
ak

]
with the coefficient of similarity 1

a .
Therefore if we use the above parameterized form of gt(x) we can write

gt(x) =
gt(a

ix)

ai
for all x ∈

(
1

ai+1
,
1

ai

)
and i = 0, 1, 2, . . . ,

and consequently, the graphs of g ∈ G(Xn) are completely determined by their
branches in

[
1
a , 1
]
×
[
1
a , 1
]
.

(iii) There follows from the graphs of g ∈ G(Xn) that G(Xn) is connected and the
upper distribution function g(x) belongs to G(Xn) since g(x) = g0(x) ∈ G(Xn),
while for the lower distribution function we have g(x) /∈ G(Xn). The graph of

g(x) on
[
1
a , 1
]
×
[
1
a , 1
]
is given by

g(x) =


1

a
, if x ∈

[
1

a
,
γ

δ

]
,(

1 +
1

d

(
1

x
− 1

))−1

, if
[
γ
δ , 1
]
.

(iv) We also have

G(Xn) =

{
g0(xβ)

g0(β)
; β ∈

[
1

a
,
δ

aγ

]}
.
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0 11
a

δ
aγ

γ
δ

1
a2

G(Xn) with a = 5, γ = 1, δ = 2

g(x) = g0(x)

g1/5(x)

g2/5(x)

g3/5(x)
g4/5(x)

g1(x)

g(x)

Related sequences: 2.22.7

O. Strauch – J.T.Tóth: Distribution functions of ratio sequences, Publ. Math. (Debrecen) 58
(2001), 751–778 (MR1828725 (2002h:11068); Zbl. 0980.11031).

2.22.7. Let k0 < k1 < k2 < . . . be an increasing sequence of positive
integers, n0 and m0 be two positive integers and γ, δ and a be real numbers
which satisfy
(i) (ks − ks−1) → ∞ as s→ ∞,
(ii) 0 < γ < δ, a > 1, n0 ≤ m0 and 1

an0 ≤ γ
δ .

(In what follows, the interval of the form (γλ, δλ) will be written in the
abbreviated form (γ, δ)λ). Let xn be the increasing sequence of all integers
lying in the intervals

(γ, δ)aksm0n0+jn0 , for 0 ≤ j < (ks+1 − ks)m0, and s = 0, 2, 4, . . . ,

(γ, δ)aksm0n0+jm0 , for 0 ≤ j < (ks+1 − ks)n0, and s = 1, 3, 5, . . . .

Note that the terms of both interval sequences mutually interchange in blocks
and the turning points are the intervals of the form (γ, δ)(an0m0)ks .

For this xn define the sequence of blocks

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
,
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and put

I(n0, t) =

(
δ

an0
, γ

)
1

tγ + (1− t)δ
,

I(m0, t) =

(
δ

am0
, γ

)
1

tγ + (1− t)δ
,

I(t) = (γ, δ)
1

tγ + (1− t)δ
.

The set G(Xn) of all d.f.’s of Xn has the structure

G(Xn) ={gn0,j,t(x) ; j = 0, 1, . . . , t ∈ [0, 1]}∪
{gm0,j,t(x) ; j = 0, 1, . . . , t ∈ [0, 1]}.

Here the d.f. gn0,j,t(x) is constant in intervals

I(n0, t),
I(n0, t)

an0
, . . . ,

I(n0, t)

(an0)j−1
,
I(m0, t)

(an0)j
,

I(m0, t)

(an0)j(am0)
,

I(m0, t)

(an0)j(am0)2
, . . .

and in the complementary intervals in [0, 1](
γ

tγ + (1− t)δ
, 1

)
,
I(t)

an0
,
I(t)

(an0)2
, . . . ,

I(t)

(an0)j
,

I(t)

(an0)j(am0)
,

I(t)

(an0)j(am0)
2
, . . .

its derivative is constant

g′n0,j,t(x) =
1

dt
,

with dt satisfying
d(xn) ≤ dt ≤ d(xn),

where

d(xn) =
(δ − γ)

γ
· 1

am0 − 1
, d(xn) =

(δ − γ)

δ
· an0

an0 − 1
,

and

dt =
δ − γ

tγ + (1− t)δ

(
1− t+

1

an0 − 1
− 1

(an0)j

(
1

an0 − 1
− 1

am0 − 1

))
.

These properties completely characterize the d.f. gn0,j,t(x). The d.f. gm0,j,t(x)
can be defined in a similar way replacing n0 by m0 in the above intervals and
in the derivative.
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Notes: (I) O. Strauch and J.T.Tóth (2002). They also proved: Let X be the
complement of the set of all limit points of xm/xn in [0, 1], then

X =

 ∞∩
j=0

B(n0, j)

∩ ∞∩
j=0

B(m0, j)

 ,

where

I(n0) =

(
δ

γan0
,
γ

δ

)
, I(m0) =

(
δ

γam0
,
γ

δ

)

B(n0, j) =I(n0) ∪ I(n0)
1

an0
∪ · · · ∪ I(n0)

1

(an0)j−1
∪

∪
(
I(m0) ∪ I(m0)

1

am0
∪ I(m0)

1

(am0)2
∪ I(m0)

1

(am0)3
∪ . . .

)
1

(an0)j
,

B(m0, j) =I(m0) ∪ I(m0)
1

am0
∪ · · · ∪ I(m0)

1

(am0)j−1
∪

∪
(
I(n0) ∪ I(n0)

1

an0
∪ I(n0)

1

(an0)2
∪ I(n0)

1

(an0)3
∪ . . .

)
1

(am0)j
.

Thus, in all cases we have X ⊃ I(n0). If we assume additionally that

(iii) 1 < n0 < m0, gcd(n0,m0) = 1,

(iv)
1

an0
<
(γ
δ

)2
,

(v)
(γ
δ

)2
≤ an0

am0
,
(γ
δ

)2
≤ am0

a2n0
,

(vi)
(γ
δ

)2
≤ (an0)

[
m0k
n0

]
+1

(am0)k+1
,
(γ
δ

)2
≤ (am0)k

(an0)

[
m0k
n0

]
+1

, for k = 1, 2, . . . , n0 − 2,

then we have
X = I(n0) ̸= ∅.

The assumptions (i) – (vi) are satisfied e.g. if ks = s2, γ = 1, δ = 2,a = 2, n0 = 3,
and m0 = 4, in which case X =

(
1
22 ,

1
2

)
.

(II) Strauch and Tóth (2002) also proved that for every increasing sequence xn of
positive integers we have:
Theorem 2.22.7.1. Suppose that d(xn) > 0. If there exists an interval (u, v) ⊂
[0, 1] such that every g ∈ G(Xn) is constant over (u, v) (different d.f.’s may attain
distinct values over (u, v)), then every g ∈ G(Xn) is constant over infinitely many
intervals and the sequence of values of g at their endpoints increases.

Related sequences: 2.22.6, 2.22.8

O. Strauch – J.T.Tóth: Corrigendum to Theorem 5 of the paper ”Asymptotic density of A ⊂ N
and density of the ratio set R(A)” (Acta Arith. 87 (1998), 67–78), Acta Arith. 103.2 (2002),
191–200 (MR1904872 (2003f:11015); Zbl. 0923.11027).
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2.22.8. Put ks = s, for s = 0, 1, 2, . . . , in 2.22.7, i.e. xn is the sequence of
all integers belonging to the intervals

(γ, δ)(an0)0, (γ, δ)(an0)1, . . . , (γ, δ)(an0)m0−1,

(γ, δ)(am0)n0 , (γ, δ)(am0)n0+1, . . . , (γ, δ)(am0)2n0−1,

(γ, δ)(an0)2m0 , (γ, δ)(an0)2m0+1, . . . , (γ, δ)(an0)3m0−1,

(γ, δ)(am0)3n0 , (γ, δ)(am0)3n0+1, . . . .

Let

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
and

I(n0, t) =

(
δ

an0
, γ

)
1

tγ + (1− t)δ
,

I(m0, t) =

(
δ

am0
, γ

)
1

tγ + (1− t)δ
,

I(t) = (γ, δ)
1

tγ + (1− t)δ
.

The set G(Xn) of all d.f.’s of Xn has the structure

G(Xn) ={gn0,j,t(x) ; j = 0, 1, . . . ,m0 − 1, t ∈ [0, 1]}
∪{gm0,j,t(x) ; j = 0, 1, . . . , n0 − 1, t ∈ [0, 1]},

where the d.f. gn0,j,t(x) is constant in the following intervals

I(n0, t), I(n0, t)
1

an0
, . . . , I(n0, t)

1

(an0)j−1
,

I(m0, t)
1

(an0)j
, I(m0, t)

1

(an0)jam0
, . . . , I(m0, t)

1

(an0)j(am0)n0−1
,

I(n0, t)
1

(an0)j(am0n0)
, I(n0, t)

1

(an0)j(am0n0)an0
, . . . ,

I(n0, t)
1

(an0)j(am0n0)(an0)m0−1
,

I(m0, t)
1

(an0)j(a2m0n0)
, . . .
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and in the complementary intervals in [0, 1](
γ

tγ + (1− t)δ
, 1

)
,

I(t)
1

(an0)
, I(t)

1

(an0)2
, . . . ,

I(t)
1

(an0)j
, I(t)

1

(an0)j(am0)
, I(t)

1

(an0)j(am0)2
, . . . ,

I(t)
1

(an0)jam0n0
, I(t)

1

(an0)jam0n0(an0)
, I(t)

1

(an0)jam0n0(an0)2
, . . . ,

I(t)
1

(an0)ja2m0n0
, . . .

it has constant derivative

g′n0,j,t(x) =
1

dt
,

with d(xn) ≤ dt ≤ d(xn), where

dt =
δ − γ

tγ + (1− t)δ

(
(1− t) +

1

an0 − 1
−

− 1

(an0)j
· am0n0

am0n0 + 1

(
1

an0 − 1
− 1

am0 − 1

))
.

and

d(xn) =
(δ − γ)

γ

(
1

an0 − 1
− am0n0

am0n0 + 1

(
1

an0 − 1
− 1

am0 − 1

))
,

d(xn) =
(δ − γ)

δ

(
1 +

1

am0 − 1
+

am0n0

am0n0 + 1

(
1

an0 − 1
− 1

am0 − 1

))
.

These properties completely characterize the d.f. gn0,j,t(x). The d.f. gm0,j,t(x)
can be determined in a similar way replacing n0 by m0 in the above intervals
and in the derivative.

Notes: O. Strauch and J.T.Tóth (2002). They also proved that if X is the com-
plement of the set of all limit points of xm/xn in [0, 1], then

X =

m0−1∩
j=0

B(n0, j)

∩n0−1∩
j=0

B(m0, j)

 ,
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where

B(n0, j) =I(n0) ∪ I(n0)
1

an0
∪ · · · ∪ I(n0)

1

(an0)j−1
∪

∪
(
A(m0) ∪A(n0)

1

am0n0
∪A(m0)

1

a2m0n0
∪A(n0)

1

a3m0n0
∪ . . .

)
1

(an0)j
,

B(m0, j) =I(m0) ∪ I(m0)
1

am0
∪ · · · ∪ I(m0)

1

(am0)j−1
∪

∪
(
A(n0) ∪A(m0)

1

am0n0
∪A(n0)

1

a2m0n0
∪A(m0)

1

a3m0n0
∪ . . .

)
1

(am0)j
.

Thus if m0 = n0 we have X =
∪∞
i=0

I(n0)

(an0)i
. The case n0 = m0 = 1 reduces to 2.22.6.

If (i) – (vi) from 2.22.7 are satisfied we get

X =I(n0) ∪ I(n0)
1

a2m0n0
∪ I(n0)

1

a4m0n0
∪ I(n0)

1

a6m0n0
∪ . . .

∪
(
I(n0)

1

a2m0n0
∪ I(n0)

1

a4m0n0
∪ I(n0)

1

a6m0n0
∪ . . .

)
an0

Related sequences: 2.22.6, 2.22.7

O. Strauch – J.T.Tóth: Corrigendum to Theorem 5 of the paper ”Asymptotic density of A ⊂ N
and density of the ratio set R(A)” (Acta Arith. 87 (1998), 67–78), Acta Arith. 103.2 (2002),
191–200 (MR1904872 (2003f:11015); Zbl. 0923.11027).

2.22.9. Let xn, n = 1, 2, . . . , be an increasing sequence of positive integers
for which there exists a sequence nk, k = 1, 2, . . . , of positive integers such
that (as k → ∞)

(i)
nk−1

nk
→ 0,

(ii)
nk
xnk

→ 0,

(iii)
xnk−1

xnk
→ 0, and

(iv) xnk−i = xnk − i for i = 0, 1, . . . , nk − nk−1 − 1.

Then the sequence of blocks

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
has
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G(Xn) = {hα(x) ; α ∈ [0, 1]},
where hα(x) = α, x ∈ (0, 1) is the constant d.f.

Notes: Examples of such sequences are nk = 2k
2

and xnk
= 2(k+1)2 .

G.Grekos – O. Strauch: Distribution functions of ratio sequences, II , Unif. Distrib. Theory 2
(2007), no. 1, 53–77 (MR2318532 (2008g:11125); Zbl. 1183.11042).

2.22.10. Let xn, n = 1, 2, . . . , be an increasing sequence of positive integers
which satisfies the following conditions

(i) if nk = (k + 1)(k − 1)!2
k(k−1)

2 for k = 1, 2, . . . , then xnk = (k + 1)nk,

(ii) if n′k = k(k − 2)!2
k(k−1)

2 then xn′
k
= k2n′k,

(iii) if n = 2ink−1 + j, 0 ≤ j < 2ink−1 and 0 ≤ i < k − 1 for k = 1, 2, . . . ,
then xn = xnk−1

(i+ 1)2i + (i+ 3)kj (i.e. n ∈ [nk−1, n
′
k]),

(iv) if n ∈ [n′k, nk] for k = 1, 2, . . . , then xn = xn′
k
+ n− n′k.

Then for the sequence of blocks

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
we have

c1(x) ∈ G(Xn) but c0(x) /∈ G(Xn)

where c0(x) and c1(x) are one–jump d.f.’s with the jump of height 1 at x = 0
and x = 1, respectively.

Notes: L.Mǐśık (2004, personal communication). A detailed description of G(Xn)
is open.

2.22.11. Let xn and yn, n = 1, 2, . . . , be two strictly increasing sequences
of positive integers such that for the corresponding block sequences

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
, Yn =

(
y1
yn
,
y2
yn
, . . . ,

yn
yn

)
,

we have G(Xn) = {g1(x)} and G(Yn) = {g2(x)}. Furthermore, let nk,
k = 1, 2, . . . , be an increasing sequence of positive integers such that Nk =∑k

i=1 ni satisfies

Nk−1

Nk
→ 0 as k → ∞

(
which is equivalent to

nk
Nk

→ 1

)
.
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Let zn be the increasing sequence of positive integers composed from blocks(
where we use the shorthand notation a(b, c, d, . . . ) = (ab, ac,
ad, . . . )

)
(x1, . . . , xn1), xn1(y1, . . . , yn2), xn1yn2(x1, . . . , xn3), . . . .

Then the set of d.f.’s of sequence of blocks

Zn =

(
z1
zn
,
z2
zn
, . . . ,

zn
zn

)
is

G(Zn) =
{
g1(x), g2(x), c0(x)

}
∪

∪
{
g1(xyn) ; n = 1, 2, . . .

}
∪

∪
{
g2(xxn) ; n = 1, 2, . . .

}
∪

∪
{

1

1 + α
c0(x) +

α

1 + α
g1(x) ; α ∈ (0,∞)

}
∪

∪
{

1

1 + α
c0(x) +

α

1 + α
g2(x) ; α ∈ (0,∞)

}
.

Notes: Consequently G(Zn) is not a connected set.

G.Grekos – O. Strauch: Distribution functions of ratio sequences, II , Unif. Distrib. Theory 2
(2007), no. 1, 53–77 (MR2318532 (2008g:11125); Zbl. 1183.11042).

2.22.12. Let J(n) be a positive integer and Xn the following block

Xn =

(
n

1
,
n

2
, . . . ,

n

J(n)

)
mod 1.

If J(n) satisfies

(i) J(n)
n → 0 as n→ ∞,

(ii) J(n)
nα → ∞ as n→ ∞ for some α > 0,

then the sequence Xn of individual blocks is

u.d.

Notes: J. Isbell and S. Schanuel (1976). They also noted that the special case α = 1
2

was proved by Dirichlet (cf. L.E.Dickson (1934, Vol. I, p. 327)) and further that (i)
is a necessary condition. The proof uses a special form of the following result proved
by A.Walfisz (1932, Hilfssatz 6).
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Theorem 2.22.12.1. Let r, N be positive integers and R = 2r−1, R1 = R(r + 1).
Let t ≥ (2N)r+3 and 0 < w ≤ 1 be real numbers and M and M ′ integers such that

t
1

r+2 ≤M ≤M ′ ≤ 2M ≤ 2Nt
2

r+3 . Then

M ′∑
j=M

ei
t

j+w = O(M1− 1
R− 1

R1 t
1

R1 log t).

L.E.Dickson: History of the Theory of Numbers, Vol. I, Carnegie Institution of Washington,
Publication No. 256, 1919 (JFM 47.0100.04).
J. Isbell – S. Schanuel: On the fractional parts of n/j, j = o(n), Proc. Amer. Math. Soc. 60
(1976), 65–67 (MR0429796 (55 #2806); Zbl. 0341.10032).
A.Walfisz: Über Gitterpunkte in mehrdimensionalen Ellipsoiden. IV , Math. Z. 25 (1932), 212–
229 (MR1545298; Zbl. 0004.10302).

2.22.13. The block sequence Xn, n = 1, 2, . . . , where

Xn =
(n
1
,
n

2
, . . . ,

n

n

)
mod 1

has the a.d.f.

g(x) =
1∫
0

1−tx

1−t dt =
∞∑
n=1

x
n(n+x) = γ0 +

Γ′(1+x)
Γ(1+x) .

where γ0 is Euler’s constant.

Notes: This was proved by G.Pólya (cf. I.J. Schoenberg (1928)). The second
expression for g(x) follows from 2.3.4 and the third one from Ryshik and Grad-
stein (1957, p. 304, 6.352).

I.M.Ryshik – I.S.Gradstein: Tables of Series, Products, and Integrals, (German and English
dual language edition), VEB Deutscher Verlag der Wissenschaften, Berlin, 1957 (translation from
the Russian original Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951 (MR0112266
(22 #3120))).
I.J. Schoenberg: Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928),
171–199 (MR1544950; JFM 54.0212.02).

2.22.14. Let pn/qn be a sequence of rational numbers which is u.d. in R.
Then the sequence

pn + 1

qn
mod 1

is

u.d.
H.Niederreiter – J. Schoißengeier: Almost periodic functions and uniform distribution mod 1,
J. Reine Angew. Math. 291 (1977), 189–203 (MR0437482 (55 #10412); Zbl. 0338.10053).
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2.22.15. If N ∈ N then for the finite sequence(
1

2N
,

3

2N
, . . . ,

2N − 1

2N

)
we have

D∗
N =

1

2N
, D

(2)
N =

1

12N2
.

For the related finite sequence(
1

N
,
2

N
, . . . ,

N

N

)
we have

DN =
1

N
.

Notes: These two finite sequences have minimal possible discrepancies.

2.22.16. Let m ≥ 2 and y0, y1, . . . , yN−1 be integers. Then the discrep-
ancy DN of the finite sequence of fractional parts{y0

m

}
,
{y1
m

}
, . . . ,

{yN−1

m

}
satisfies

DN ≤ 1

m
+

∑
−m/2<h≤m/2

h̸=0

1

m sin(π|h|/m)

∣∣∣∣∣ 1N
N−1∑
n=0

e2πihyn/m

∣∣∣∣∣ .
The right hand hand can be simplified to

DN ≤ 1

m
+

[m/2]∑
h=1

1

h

∣∣∣∣∣ 1N
N−1∑
n=0

e2πihyn/m

∣∣∣∣∣ .
Notes: For the proof consult H.Niederreiter (1978, pp. 974–976).

H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).
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2.22.17. If m is a positive integer then the sequence of blocks

Xn =

(
1

m

{mn
1

}
,
1

m

{mn
2

}
,
1

m

{mn
3

}
, . . . ,

1

m

{mn
n

})
.

has the a.d.f. g(x) for n→ ∞ possessing the density

g′(x) =

{
m2ψ′′(mx+m), if x ∈ [0, 1/m),

0, if x ∈ (1/m, 1],

where ψ(x) is the classical psi–function

ψ(x) =
d

dx
log Γ(x).

M.R.Currie – E.H.Goins: The fractional parts of N
K
, in: Council for African American Re-

searchers in the Mathematical Sciences, Vol. III (Baltimore, MD, 1997/Ann Arbor, MI, 1999),
(A.F.Noël ed.), Contemp. Math., 275, Amer. Math. Soc., Providence, RI, 2001, pp. 13–31
(MR1827332 (2002b:11099); Zbl. 1010.11041).

2.22.18. A positive rational number a
b is called a P–rational if the pair of

integers a and b has given property P . If P is one of the following properties
(i) a2 + b2 is a square,
(ii) a2 + b2 is a cube,
(iii) a3 + b3 is a square,

then the set of all P -rationals is

dense in [0,∞).

Notes: (i) is given in L.H. Lange and D.E.Thoro (1964); (ii) and (iii) can be
found in P. Schaefer (1965). He generalized the result of Lange and Thoro in the
following simple way: Let N(x, y) and D(x, y) be polynomials in x and y with
integral coefficients and which are homogeneous of the same degree. Suppose that
N(x,y)
D(x,y) is a P -rational for all positive integers x and y with x

y ∈ I, I an interval.

Then the continuity of f(t) = N(t,1)
D(t,1) for t ∈ I implies the density of such P–rationals

in f(I). The above cases we get for
(i) N(x, y) = x2 − y2 and D(x, y) = 2xy,
(ii) N(x, y) = x3 − 3xy2 and D(x, y) = 3x2y − y3,
(iii) N(x, y) = x(x3 + y3) and D(x, y) = y(x3 + y3).
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L.H. Lange – D.E.Thore: The density of Pythagorean rationals, Amer. Math. Monthly 71
(1964), no. 6, 664–665 (MR1532769).
P. Schaefer: The density of certain classes rationals, Amer. Math. Monthly 72 (1965), no. 8,
894–895 (MR0183688 (32 #1168); Zbl. 0151.02604).

2.23 Sequences of reduced rational numbers

2.23.1. Given an infinite sequence qn of positive integers, consider the se-
quence of blocks of reduced rational numbers with denominators qn each
block of which has the form

An =

(
1

qn
,
a2
qn
, . . . ,

aφ(qn)

qn

)
where (ai, qn) = 1 and φ stands for the Euler totient function. Let σ =
(An)

∞
n=1 denote the block sequence formed from these blocks. If lim

n→∞
qn = ∞,

then the sequence of individual blocks An is

u.d.

and the compound sequence σ = (An)
∞
n=1 formed from these blocks is

u.d.

if and only if

lim
n→∞

φ(qn)∑n
i=1 φ(qi)

= 0.

If N is of the type N =
∑n

i=1 φ(qi), then for the discrepancy of σ we have

N2D
(2)
N =

1

12

n∑
i,j=1

2ω(dij)

qij

∏
p|qiqj
p-dij

(1− p)
∏
p|dij
p-qij

(
1− 1

p

) ∏
p|dij
p|qij

(
1− p

2

(
1 +

1

p2

))

=
1

2π2

∞∑
h=1

1

h2

∣∣∣∣∣∣
n∑

i=1

φ(qi)

φ
(

qi
(h,qi)

)µ( qi
(h, qi)

)∣∣∣∣∣∣
2

.

where

1. dij = (qi, qj) is the greatest common divisor of numbers qi and qj ,

2. qij =
qiqj
d2ij

,

3. p runs over the prime divisors,

4. ω(n) = #{p ; p|n},
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5. µ is the Mőbius function.

For the extremal discrepancy we have

DN ≤
∑n

i=1 2
ω(qi)∑n

i=1 φ(qi)
≤ 2

√
2

√
n

N
.

Notes: In the case n = 1 (i.e. for one segment A1) D
(2)
φ(q1)

was implicitly given by

E. Spence (1962) (he also proved formulas for sums
∑φ(n)
i=1 iai,

∑φ(n)
i=1 i2ai,

∑φ(n)
i=1 ia2i

and
∑φ(n)
i,j=1(ai+1 − ai)

2) and explicitly by H.Delange (1968). For the above general
formula see O. Strauch (1987). The estimate for extremal discrepancy can be proved
by elementary sieve type arguments (cf. O. Strauch (1997)).

H.Delange: Sur la distribution des fractions irréducible de dénominateur n ou de dénominateur
au plus égal à x, in: Hommage an Professeure Lucion Godeaux, Centre Blege de Recherches
Mathématiques, Librairie Universitaire, Louvain, 1968, pp. 75–89 (MR0238780 (39 #144); Zbl.
0174.08401).
O. Strauch: Some applications of Franel’s integral, I , Acta Math. Univ. Comenian. 50–51
(1987), 237–245 (MR0989416 (90d:11028); Zbl. 0667.10023).
O. Strauch: A numerical integration method employing the Fibonacci numbers, Grazer Math.
Ber. 333 (1997), 19–33 (MR1640470 (99h:65038); Zbl. 0899.11037).
E. Spence: Formulae for sums involving a reduced set of residues modulo n, Proc. Edinburgh
Math. Soc. (2) 13 (1962/63), 347–349 (MR0160755 (28 #3966); Zbl. 0116.26802).

2.23.2. For a finite sequence(
1

q
,
a2
q
, . . . ,

aφ(q)

q

)
,

where (ai, q) = 1 we have

2ω(q)/2√
12qφ(q)

≤ D∗
φ(q) ≤

2ω(q)

φ(q)
.

Related sequences: 2.23.1

H.G.Meijer – H.Niederreiter: Équirépartition et théorie des nombres premiers, in: Répartition
modulo 1 (Actes Colloq., Marseille – Luminy, 1974), Lecture Notes in Math., 475, Springer Verlag,
Berlin, 1975, pp. 104–112 (MR0389819 (52 #10649); Zbl. 0306.10032).

2.23.3. Let 1 = a1 < a2 < · · · < aφ(n) = n− 1 be the integers coprime to n
and An be the block

An =

(
a2 − a1
n/φ(n)

,
a3 − a2
n/φ(n)

, . . . ,
aφ(n) − aφ(n)−1

n/φ(n)

)
.
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If the index n runs over such a set that n/φ(n) → ∞ then the sequence An

of individual blocks has in [0,∞) d.f. g(x) of the form

g(x) = 1− e−x.

Related sequences: For a multi–dimensional version cf. 3.7.3.

Ch.Hooley: On the difference between consecutive numbers prime to n. II , Publ. Math. Debrecen
12 (1965), 39–49 (MR0186641 (32 #4099); Zbl. 0142.29201).

2.23.4. Let σ = (An)
∞
n=1 be the block sequence described in 2.23.1 for

qn = n. It is also called the Farey sequence v(n), n = 1, 2, . . . . Its initial
segment v(1), . . . , v(N) for N of the form N =

∑n
i=1 φ(i) consists of the

fractions

Fn =

{
p

q
; 1 ≤ q ≤ n, 1 ≤ p ≤ q, gcd(p, q) = 1

}
ordered firstly by increasing q, and then for constant q by increasing p. If N
is of the above form then

c1N
−1/2 ≤ D∗

N ≤ c2N
−1/2

with positive absolute constants c1 and c2. More precisely

D∗
N =

1

n

for any n which implies

D∗
N ∼

√
3

π
√
N
.

The Riemann hypothesis is equivalent to

ND
(2)
N = O(N1/2+ε)

for every ε > 0. Given any α ∈ [1/2, 1), let RH(α) denote the following
statement: α = sup{β ; ρ = β + iγ, ζ(ρ) = 0}. Let f : [0, 1] → R be
absolutely continuous and let f ′ ∈ Lp[0, 1] for some p ∈ (1, 2]. If RH(α)
holds then for every ε > 0

1

N

n∑
q=1

∑
1≤a<q
(a,q)=1

f

(
a

q

)
−
∫ 1

0
f(x) dx = Oε

(
nmax(α,1/p)+ε

N

)
.
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Notes: (I) With discrepancy estimates H.Niederreiterr (1973) improved a weaker

estimate given by E.H.Neville (1949), who proved DN = O
(

logn
n

)
.

(II) The exact result D∗
N = 1/n was given by F.Dress (1999).

(III) The equivalence between the Riemann hypothesis and the order of discrepancy
was proved by J. Franel (1924).
(IV) The dependence of the error term on RH(α) in the numerical integration
for a rather wide class of functions given above was proved by P.Codeca and
A.Perelli (1988).
(V) Previously, M.Mikolás (1949) proved that the Riemann hypothesis RH( 12 ) is

equivalent to the error term Oε

(
n

1
2
+ε

N

)
for every one of the following classes of

functions:
• sinλx,
• cosλx,

in both cases if λ satisfies the conditions 0 < |λ| < 2
√

5
ζ(3)+5π−2 , |λ| ̸= π,

• quadratic polynomials,
• cubic polynomials a0x

3 + a1x
2 + a2x+ a3 with a1 ̸= 3a0/2.

(VI) A similar result to (V) was proved by J.Kopřiva (1955) for some subsequences
of Farey fractions.

Related sequences: 2.20.38, 2.23.2, 2.23.1

P.Codeca – A.Perelli: On the uniform distribution mod 1 of the Farey fractions and lp space,
Math. Ann. 279 (1988), 413–422 (MR0922425 (89b:11065); Zbl. 0606.10041).
F.Dress: Discrépance des suites de Farey, J. Théor. Nombres Bordeaux 11 (1999), no. 2, 345–367
(MR1745884 (2001c:11083); Zbl. 0981.11026).
J. Franel: Les suites de Farey et le probleme des nombres premiers, Nachr. Ges. Wiss. Göttingen
Math.-Phys. Kl. (1924), 198–201 (JFM 50.0119.01).
J.Kopřiva: Remark on the significance of the Farey series in number theory, Publ. Fac. Sci.
Univ. Masaryk (1955), 267–279 (MR0081315 (18,382a); Zbl. 0068.26701).
M.Mikolás: Farey series and their connection with the prime number problem. I , Acta Univ.
Szeged. Sect. Sci. Math. 13 (1949), 93–117 (MR0034802 (11,645a); Zbl. 0035.31402).
E.H.Neville: The structure of Farey series, Proc. London Math. Soc. 51 (2) (1949), 132–144
(MR0029924 (10,681f); Zbl. 0034.17401).
H.Niederreiter: The distribution of Farey points, Math. Ann. 201 (1973), 341–345 (MR0332666
(48 #10992); Zbl. 0248.10013).

2.23.5. For the following blocks of quadratic non–residues

An =

(
i

n

)
0<i<n, i2≡−1 (mod n)

the block sequence (An)
∞
n=1 is

u.d.
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Notes: This was proved by Hooley. A new proof of a weaker version was given by
D.Hensley (1988).

D.Hensley: A truncated Gauss – Kuz’min law , Trans. Amer. Math. Soc. 360 (1988), 307–327
(MR0927693 (89g:11066); Zbl. 0645.10043).

2.23.6. Let qn, n = 1, 2, . . . , be a one–to–one sequence of positive integers
and let (An)

∞
n=1 be the sequence composed from blocks

An =

(
1

qn
,
a2
qn
, . . . ,

aφ(qn)

qn

)
,

where 1 = a1 < a2 < a3 < · · · < aφ(qn) = qn − 1 are coprime to qn. Then the
block sequence

(An)
∞
n=1

is

almost u.q.

(with respect to indices of the form N =
∑n

i=1 φ(qi), for the def. cf. 1.8.28)
provided qn is any of the following sequences:

(i) φ(qn)
qn

≥ c > 0 for every n,

(ii) φ(qn)
φ(qn+1)

≤ c < 1 for all sufficiently large n,

(iii)
∑∞

i ̸=j=1
4ω(qij)

φ(qij)
<∞ where qij =

qiqj
gcd(qi,qj)2

,

(iv)
∑∞

n=1
φ(qn)
qn

<∞,

(v) (qm, qn) = 1 for every m ̸= n,

(vi)
∑∞

i,j=1
(log qij)

2

qij

φ(qi)
qi

φ(qj)
qj

<∞,

(vii)
∑∞

n=1
(log qn)2

q2εn
<∞ and dij ≤ (qiqj)

1
2
−ε for some ε > 0 and every i ̸= j

where dij = gcd(qi, qj),

(viii) The sequence dij = gcd(qi, qj), i, j = 1, 2, . . . , has only finitely many

different terms,

(ix) qn
qn+1

≤ c < 1 for every n,

(x) φ(qn)
qn

< Kn−δ for some K, δ > 0 and n = 1, 2, . . . ,

(xi) qn = nk, for k ≥ 2.
(xii) qn = qn, qn = n!, qn = 22

n
, qn = Fn, qn = qn − 1, qn = qn + 1 (for

every positive integer q ≥ 2).

Notes: (i) and (ii) can be found in Duffin and Schaeffer (1941).
(iii) and (iv) were proved by O. Strauch (1982, Th. 14 and 15).
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(v) and (vi) are from Strauch (1983, Th. 7 and 2).
(vii) is from Strauch (1984, Th. 6).
(viii) is from Strauch (1986, Th. 8).
(ix), (x), (xi) are from G.Harman (1990, Th. 1).
(xii) is from Strauch (1986).
All of them satisfy the Duffin – Schaeffer conjecture, cf. 1.8.28, Note (VI).

R.J.Duffin – A.C. Schaeffer: Khintchine’s problem in metric diophantine approximation, Duke
Math. J. 8 (1941), 243–255 (MR0004859 (3,71c); Zbl. 0025.11002).
G.Harman: Some cases of the Duffin and Schaeffer conjecture, Quart. J. Math. Oxford Ser.(2)
41 (1990), no. 2, 395–404 (MR1081102 (92c:11073); Zbl. 0688.10046).
O. Strauch: Duffin – Schaeffer conjecture and some new types of real sequences, Acta Math.
Univ. Comenian. 40–41 (1982), 233–265 (MR0686981 (84f:10065); Zbl. 0505.10026).
O. Strauch: Some new criterions for sequences which satisfy Duffin – Schaeffer conjecture, I ,
Acta Math. Univ. Comenian. 42–43 (1983), 87–95 (MR0740736 (86a:11031); Zbl. 0534.10045).
O. Strauch: Some new criterions for sequences which satisfy Duffin – Schaeffer conjecture, II ,
Acta Math. Univ. Comenian. 44–45 (1984), 55–65 (MR0775006 (86d:11059); Zbl. 0557.10038).
[a] O. Strauch: Two properties of the sequence nα (mod 1), Acta Math. Univ. Comenian. 44–45
(1984), 67–73 (MR0775007 (86d:11057); Zbl. 0557.10027).
O. Strauch: Some new criterions for sequences which satisfy Duffin – Schaeffer conjecture, III ,
Acta Math. Univ. Comenian. 48–49 (1986), 37–50 (MR0885318 (88h:11053); Zbl. 0626.10046).
O. Strauch: A numerical integration method employing the Fibonacci numbers, Grazer Math.
Ber. 333 (1997), 19–33 (MR1640470 (99h:65038); Zbl. 0899.11037).

2.23.7. Let an/bn the sequence of the all reduced rationals for which 1 ≤
an < bn and which all elements in the simple continued fraction expansion of
an/bn are ≤ k. If we order this sequence lexicographically first according to
the magnitude of bn and then according to the magnitude of an, then it has

singular a.d.f.
D.Hensley: The distribution of badly approximable rationals and continuants with bounded dig-
its, II , J. Number Theory 34 (1990), 293–334 (MR1049508 (91i:11094); Zbl. 0712.11036).

2.23.7.1 Let p be an odd prime, a an integer with (a, p) = 1. Then for
the extremal discrepancy DN = D(a,H,K, k) of the sequence

a

p

k∏
i=1

ni! mod 1, H + 1 ≤ n1, . . . , nk ≤ H +K,

where H and K are integers with 0 ≤ H < H +K < p we have

max
1≤a≤p−1

D(a,H,K, k) ≪ K−k/4+r/2−1+2−rp(k−2r+4)/8(log p)(k−2r+4)/4

for any fixed integers k, r such that k ≥ 2r ≥ 1.



2 – 292 2 One–dimensional sequences

Notes: (I) M.Z.Garaev, F. Luca and I.E. Shparlinski (2004; Th. 10).
(II) For r = 1 this implies that max1≤a≤p−1D(a, 0, p−1, 3) = O(p−1/8(log p)5/4) and
also that for any ε > 0 we have max1≤a≤p−1D(a, 0, p− 1, 3) = 0(1) for N ≥ p5/6+ε.
As a consequence we get that for any fixed ε > 0 the products of three factorials
n1!n2!n3! with max{n1, n2, n3} = O(p5/6+ε) are u.d. modulo p.
(III) M.Z.Garaev, F. Luca and I.E. Shparlinski (2005; Th. 4): Let K,L,M and N
be integers with 0 ≤ K < K +M and 0 ≤ L < L +M < p. Then for any integers
t, s ≥ 1 we have

max
(a,p)=1

∣∣∣∣∣
K+M∑
m=K+1

L+N∑
n=L+1

e2πiam!n!/p

∣∣∣∣∣≪M1−1/2k(t+1)N1−1/2t(k+1)p1/st.

They noticed that using the Erdős – Turán inequality (Th. 1.9.0.8) we get form this
result the essentially the same bound (up to an extra log p factor) for the discrepancy
of the sequence

m!n!

p
mod 1, K + 1 ≤ m ≤ K +M, L+ 1 ≤ n ≤ L+N.

Consequently, the products of two factorials m!n! with max{m,n} = O(p1/2+ε) are
u.d. modulo p.
(IV) The following phenomenon was found empirically (cf. R.K.Guy (1994; F11)):
The sequence 1!, 2!, . . . , p! misses about p/e residue classes modulo p for large prime
numbers p. C. Cobeli, M.Vâjâitu and A. Zaharescu (2000) showed that this is a
general behavior of a randomly chosen sequence of p elements modulo p. They
proved and that the map n 7→ n! (mod p) with sufficiently large p is far from being
a permutation of at least one of the sets {1, 2, . . . , p − 1} or {2, 4, . . . , ⌊(p − 1)/4⌋}
for it misses a positive proportion of residues in at least one of the these sets.
(V) M. Shub and S. Smale (1995) proved that the complexity of computing factorials
is related to an algebraic version of the NP ̸= P problem. Q.Cheng (2003) found
a subexponential upper bound (exp(c

√
log n log log n)) for the ultimate complexity

of n! assuming a widely believed number–theoretic conjecture concerning smooth
numbers in short interval. The best known current algorithm to compute n! over Z or
modulo n needs about

√
n arithmetic operations (cf. Q.Cheng (2003) or P.Bürgisser,

M.Clausen and M.A. Shokrollahi (1997)).

P.Bürgisser – M.Clausen – M.A. Shokrollahi: Algebraic complexity theory. With the col-
laboration of Thomas Lickteig, Grundlehren der Mathematischen Wissenschaften 315, Springer,
Berlin, 1997 (MR1440179 (99c:68002); Zbl. 1087.68568).
Q.Cheng: On the ultimate complexity of factorials, in: STACS 2003. 20th annual symposium
of theoretical aspects on computer science, (A.Helmut et al. eds.), Lect. Notes Comput. Sci.,
Vol. 2607, Springer, Berlin, 2003, 157–166 (MR2066589 (2005c:68065); Zbl. 1035.68056).
C.Cobeli – M.Vâjâitu – A. Zaharescu: The sequence n! (mod p), J. Ramanujan Math. Soc.
15 (2000), no. 2, 135–154 (MR1754715 (2001g:11153); Zbl. 0962.11005).
M.Z.Garaev – F. Luca – I.E. Shparlinski: Character sums and congruences with n!, Trans.
Amer. Math. Soc. 356 (2004), no. 12, 5089–5102 (MR2084412 (2005f:11175); Zbl. 1060.11046).
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M.Z.Garaev – F. Luca – I.E. Shparlinski: Exponential sums and congruences with factorials,
J. Reine Angew. Math. 584 (2005), 29–44 (MR2155084 (2006c:11095); Zbl. 1071.11051).
R.K.Guy: Unsolved Problems in Number Theory, Problem Books in Mathematics. Unsolved
Problems in Intuitive Mathematics, I., Second ed., Springer Verlag, New York, 1994; 3rd ed. 2004
(MR1299330 (96e:11002); Zbl. 0805.11001).
M.Shub – S. Smale: On the intractability of Hilbert’s Nullstellensatz and an algebraic version of
“NP ̸= P?”, Duke Math. J. 81 (1995), no. 1, 47–54 (MR1381969 (97h:03067); Zbl. 0882.03040).

2.23.7.2 The centered version of the Euclidean algorithm which uses the
least absolute remainder in each step of division a = bq + r, − b

2 < r 6 b
2

leads to the so-called centered continued fraction expansion of a real number
x of the form (see Perron (1954) p. 137 or Hensley (2006) p. 40)

x =

[
a0;

ε1
a1
, · · · , εl

al
, · · ·

]
= a0 +

ε1

a1 +
ε2

a2 + · · ·+
εl

al + · · ·

.

Here a0 ∈ Z, εi = ±1 and aj > 2, aj + εj+1 > 2 for j > 1. For a rational
x, if as = 2 is the last partial quotient, then we choose εs = 1 to ensure the
uniqueness of the representation. Given a rational x, denote

S(x) = a0 + a1 + · · ·+ as,

Zn = {x ∈ Q ∩ [0, 1] : S(x) 6 n+ 1} .

g(x) = limn→∞
# {ξ ∈ Zn : ξ < x}

#Zn
, x ∈ [0, 1].

Then

(i) g(x) = a0 − cλ

(
E1

λA1
+

E2

λA2
+ · · ·+ Ej

λAj
+ · · ·

)
, where

Ej =
∏

16i6j(−εi), Aj =
∑

06i6j
ai, c = 1/(λ − 1), and λ is the unique real

root of the equation λ3 − λ2 − λ− 1 = 0.

(ii) If the derivative (finite or infinite) of g′(x) at x ∈ [0, 1] exists then either
g′(x) = 0 or g′(x) = ∞.

(iii) We have g(1− x) = 1− g(x)

λ
for x ∈ [0, 1/2].

Notes: E. Zhabitskaya (2010).

O.Perron: Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche. 3. erweiterte und
verbesserte Aufl., (German), B. G. Teubner Verlagsgesellschaft, Stuttgart 1954 (MR0064172; Zbl
0056.05901).
D.Hensley: Continued fractions, World Scientific, Hackensack, NJ, 2006 (MR2351741 (2009a:
11019); Zbl 1161.11028).
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E. Zhabitskaya: Continued fractions with minimal remainders, Unif. Distrib. Theory 5 (2010),
no. 2, 55–78.(MR2651862 (2011e:11125); Zbl 1313.11081).

2.24 Recurring sequences

2.24.1.

Notes: Let f(x) = xs−
∑s−1
j=0 ajx

j be a polynomial with coefficients a0, a1, . . . , as−1,
with roots λ1, . . . , λs and discriminantD. A linear recurring sequence of order s
is given by a relation of the form

rn+s = as−1rn+s−1 + · · ·+ a1rn+1 + a0rn, n = 1, 2, . . . ,

where the initial (real) values of r1, . . . , rs are not all zero.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If the coefficients a0, a1, . . . , as−1 are non–negative rational numbers, a0 ̸= 0,
and all roots λ1, . . . , λs are real with distinct absolute values not equal to
one, then for every positive starting points r1, . . . , rs, the sequence

rn mod 1, n = 1, 2, . . . ,

is

u.d.

Under the assumption that
• a0, a1, . . . , as−1 are integers,
• f(x) is irreducible over Z and with discriminant D,
• q1 > 1 is an integer, p ≥ 3 is a prime such that p|f(q1), p - a0D and the

integers
• qk, k = 1, 2, . . . , satisfy f(qk) ≡ 0

(
mod pk

)
, qk ≡ qk−1

(
mod pk−1

)
and

qτkk ≡ 1
(
mod pk

)
(i.e. τk is the exponent modulo pk), and

• n1 = 0, nk+1 = nk + [pk/2k2]τk, k = 1, 2, . . . ,
• |λi| ̸= 1, for i = 1, . . . , s, and |λi| > 1 for i = 1, . . . ,m, and |λi| < 1 for
i = m+ 1, . . . , s, and the initial values r1, . . . , rs satisfy

• ri = θ1λ
i
1 + · · ·+ θmλ

i
m, i = 1, . . . , s, where

• θi =
∑∞

j=1 λ
−nj
i p−j

∑s
k=1 ak,jλ

k−1
i , i = 1, . . . ,m, and the integers

• ak,j ∈ [0, pj), k = 1, . . . , s, j = 1, 2, . . . , are such that the numbers

• Ai,J =
∑J

j=1 λ
nJ−nj
i pJ−j

∑s
k=1 ak,jλ

k−1
i satisfy the congruences

• A1,jλ
i
1 + · · ·+As,jλ

i
s ≡ qij

(
mod pj

)
for i = 1, . . . , s, and j = 1, 2, . . . ,
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then for the discrepancy of rn we have

D∗
N = O

(
(logN)4/3

N2/3

)
.

Notes: u.d. has proved by L.Kuipers and J.–S. Shiue (1973). The discrepancy
bound is given by M.B. Levin and I.E. Šparlinskĭı (1979). They noted that if m =
1 then the root λ1 is a P.V. number and the recurring sequence has the form
θ1λ

n
1 mod 1.

L.Kuipers – J.–S. Shiue: Remark on a paper by Duncan and Brown on the sequence of loga-
rithms of certain recursive sequences, Fibonacci Quart. 11 (1973), no. 3, 292–294 (MR0332699 (48
#11025); Zbl. 0269.10019).
M.B. Levin – I.E. Šparlinskĭı: Uniform distribution of fractional parts of recurrent sequences,
(Russian), Uspehi Mat. Nauk 34 (1979), no. 3(207), 203–204 (MR0542250 (80k:10046); Zbl.
0437.10016).

2.24.2. Open problem. Consider a linear recurring sequence

rn+s = as−1rn+s−1 + · · ·+ a1rn+1 + a0rn

with integral coefficients a0, a1, . . . , as−1 and initial values r1, . . . , rs not all
zero. Characterize the real numbers θ for which the sequence

rnθ mod 1, n = 1, 2, . . . ,

is

u.d.

Notes: P.Kiss and S.Molnár (1982) proved a necessary and sufficient conditions
for numbers θ for which the sequence rnθ mod 1 has finitely many points of accu-
mulation. If the characteristic polynomial f(x) = xs −

∑s−1
j=0 ajx

j is the minimal
polynomial of a P.V. number, then they gave a construction for uncountably many
numbers θ such that the sequence rnθ mod 1 has infinitely many limit points but
the sequence itself is not u.d.

P.Kiss – S.Molnár: On distribution of linear recurrences modulo 1, Studia Sci. Math. Hungar.
17 (1982), no. 1-4, 113–127 (MR0761529 (85k:11033); Zbl. 0548.10006).

2.24.3. Let rn be a linear recurring sequence of order s which characteristic
polynomial xs −

∑s−1
j=0 ajx

j has two complex conjugate roots of maximum
modulus. Then the sequence

xn = log10 |rn| mod 1
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is

u.d.

Notes: S.Kanemitsu, K.Nagasaka, G.Rauzy and J.–S. Shiue (1988). P. Schatte
(1988) independently found conditions under which log10 |rn| mod 1 is u.d. in the
case when the sequence rn satisfies the relation rn+2 = arn+1 + brn, n = 0, 1, 2, . . . ,
where a and b are real numbers and x2 = ax+ b has two (conjugate) complex root.

S.Kanemitsu – K.Nagasaka – G.Rauzy – J.–S. Shiue: On Benford’s law: the first digit problem,
in: Probability theory and mathematical statistics (Kyoto, 1986), Lecture Notes in Math., 1299,
Springer Verlag, Berlin, New York, 1988, pp. 158–169 (MR0935987 (89d:11059); Zbl. 0642.10007).
P. Schatte: On the uniform distribution of certain sequences and Benford’s law , Math. Nachr.
136 (1988), 271–273 (MR0952478 (89j:11075); Zbl. 0649.10044).

2.24.4. Let rn be a sequence of real numbers which satisfy a second order
linear recurrence relation

rn+2 = an+2rn+1 + bn+2rn, n = 0, 1, 2, . . . ,

where an and bn are given real sequences with a common period p (i.e. an+p =
an and bn+p = bn). Let

Ap =

∣∣∣∣∣∣∣∣∣∣∣

a2 −1 0 · · · 0
b3 a3 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · br ar−1 −1
0 0 · · · br ar

∣∣∣∣∣∣∣∣∣∣∣
, Bp =

∣∣∣∣∣∣∣∣∣∣∣

b2 0 0 · · · 0
b3 a3 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · br ar−1 −1
0 0 · · · br ar

∣∣∣∣∣∣∣∣∣∣∣
and Ep = (−1)p−1b1 . . . bp, Dp = a1Ap + b1Ap−1 +Bp. Let

• D2
p − 4Ep ≥ 0 and λ1, λ2 be real roots of λ2 = Dpλ+ Ep with |λ1| ≥ |λ2|.

If log10 |λ1| is irrational and un ̸= 0 for n ≥ n0, then the sequence

xn = log10 |rn| mod 1

is

u.d.

• D2
p − 4Ep < 0, β =

√
Ep and cos 2πγ = Dp/2β. If 1, log10 β, and γ are

linearly independent over the rationals and un ̸= 0 for n ≥ n0, then the
sequence

xn = log10 |rn| mod 1

is
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u.d.

Notes: Thus xn obeys the Benford’s law, cf. 2.12.26. This result covers the case
when rn = pn or rn = qn, where pn/qn is the nth convergent of a quadratic irrational,
cf. 2.12.27.

P. Schatte – K.Nagasaka: A note on Benford’s law for second order linear recurrences with
periodical coefficients, Z. Anal. Anwend. 10 (1991), no. 2, 251–254 (MR1155374 (93b:11101); Zbl.
0754.11021).

2.24.5.
Notes: If rn+s = as−1rn+s−1+· · ·+a1rn+1+a0rn with ai’s real is a linear recurring
sequence then

rn = Aσ−1n
σ−1βn + · · ·+A0β

n +O(ρn),

where β is the dominating characteristic root (i.e. the root of the characteristic
equation with the maximal absolute value) of multiplicity σ of the characteristic

polynomial xs −
∑s−1
j=0 ajx

j and 0 < |ρ| < β.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let b > 1 be an integer and let rn, rn > 0, be a linear recurring sequence of
order s with positive dominating characteristic root β. Then the sequence

xn = logb rn mod 1

is

u.d.

in the following cases:

(i) If β > 0 has multiplicity 1 and logb β is the irrational with bounded
partial quotients in the continued fraction expansion. In this case

DN (xn) = O
(
logN

N

)
.

(ii) If β > 0 has multiplicity 1 and logb β is irrational. Moreover we have

DN (xn) = O
(

1

N1/η

)
,

where η ≥ 1 is some constant depending on the recurrence.
(iii) If β has multiplicity > 1 and logb β is irrational. In this case

DN (xn) = O
(

logN

N1/(1+η)

)
,

where η ≥ 1 is a constant depending on the recurrence (namely the
approximation type of logb β).
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Notes: This was proved by R.F.Tichy (1998). If rn+2 = rn+1 + rn, with r1 and
r2 both positive, then the u.d. of log rn mod 1 was proved by J.L. Brown, Jr. and
R.L.Duncan (1972).

Related sequences: 2.12.21, 2.12.22.

J.L. Brown, Jr. – R.L.Ducan: Modulo one uniform distribution of certain Fibonacci–related se-
quences, Fibonacci Quart. 10 (1972), no. 3, 277–280, 294 (MR0304291 (46#3426); Zbl. 0237.10033).
R.F.Tichy: Three examples of triangular arrays with optimal discrepancy and linear recurrences,
in: Applications of Fibonacci Numbers (The Seventh International Research Conference, Graz,
1996), Vol. 7, (G.E.Bergum, A.N.Philippou and A.F.Horadam eds.), 1998, Kluwer Acad. Publ.,
Dordrecht, Boston, London, pp. 415–423 (MR1638468; Zbl. 0942.11036).

2.24.6. Let rn be a linear recurring sequence with positive elements and
with positive dominating characteristic root β ̸= 1. Suppose that logb β is the
irrational number with bounded partial quotients in the continued fraction
expansion, where b ̸= 1 is an arbitrary positive real number. Then for the
discrepancy of the finite sequence

logb r1
logb rN

,
logb r2
logb rN

, . . . ,
logb rN
logb rN

we have

DN = O
(
logN

N

)
.

Notes: R.F.Tichy (1998). He noticed that if the multiplicity of β is 1 then the
estimate for DN can be improved to the optimal one DN = O(1/N).

R.F.Tichy: Three examples of triangular arrays with optimal discrepancy and linear recurrences,
in: Applications of Fibonacci Numbers (The Seventh International Research Conference, Graz,
1996), Vol. 7, (G.E.Bergum, A.N.Philippou and A.F.Horadam eds.), 1998, Kluwer Acad. Publ.,
Dordrecht, Boston, London, pp. 415–423 (MR1638468; Zbl. 0942.11036).

2.24.7. Let un, n = 0, 1, 2, . . . , be a linear recurring sequence defined by
un = Aun−1 +Bun−2 with non–zero real coefficients A,B, real initial values
u0, u1 and negative discriminant D = A2 + 4B. If the number

θ =
1

π
arctan

√
−D
A

is irrational, then the sequence

xn =
un+1

un
mod 1
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has the a.d.f.
g(x) = g1(x− {A/2})− g1(−{A/2})

where

g1(x) = x+
1

π
arctan

sin(2πx)

eπ
√
−D − cos(2πx)

and the star discrepancy D∗
N of xn with respect to g(x) satisfies

D∗
N (xn, g) ≤ 2

√
2(−D)1/4

√
DN (nθ) + 6DN (nθ),

where DN (nθ) denotes the classical extremal discrepancy of the sequence
nθ mod 1.
Notes: (I) P.Kiss and R.F.Tichy (1989). In the proof they transformed xn to the
form

un+1

un
= c+ d tan(π(nθ + ω)),

where c, d, ω are real numbers which do not depend on n, cf. [DT, proof of Th. 1.143,
p. 144].
(II) A. Pethő (1982) proved that θ is a rational number if and only if A2 = −kB for
some k = 1, 2, 3, 4.
(III) S.H.Molnár (2003) generalized this result under the same assumptions on the
linear recurring sequence un as follows: For every k = ±1,±2, . . . the sequence

x(k)n =
un+k
un

mod 1

has the a.d.f.
g(k)(x) = g

(k)
1

(
x− {c}

)
− g

(k)
1

(
− {c}

)
where

g
(k)
1 (x) = x+

1

π
arctan

sin(2πx)

e2π|d| − cos(2πx)

with

c = rk cos(kπθ), d = −rk sin(kπθ), and r =

∣∣∣∣A+ i
√
−D

2

∣∣∣∣ .
He also used the expression un+k/un = c+ d tan(π(nθ+ω)), and for discrepancy he
proved the estimate

D∗
N

(
x(k)n , g(k)

)
≤ 4
√
|rk sin(kπθ)|

√
DN (nθ) + 6DN (nθ).

Molnár (2003) also noted that xn and x
(−1)
n has the same a.d.f. if and only if B = −1

(in this case he called un+1/un reciprocal invariant). If discriminant D is positive
and the initial values u0, u1 are integers then the above statement is true if and only
if B = 1.
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P.Kiss – R.F.Tichy: A discrepancy problem with applications to linear recurrences. I , Proc.
Japan Acad. Ser. A Math. Sci. 65 (1989), no. 5, 135–138 (MR1011853 (90j:11060a); Zbl.
0692.10041).
S.H.Molnár: Reciprocal invariant distributed sequences constructed by second order linear re-
currences, Acta Acad. Paedagog. Agriensis Sect. Mat. (N.S.) 30 (2003), 101–108 (MR2054719
(2005a:11112); Zbl. 1050.11013).
A.Pethő: Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), no. 1,
5–13 (MR0666345 (84f:10024); Zbl. 0488.10009).

2.24.8. α–refinement. Let 0 < α < 1 be a real number. Consider the
sequence An = (xn,1, . . . , xn,Nn), n = 1, 2, . . . , of blocks in the unit inter-
val [0, 1] defined inductively as follows (note that we can consider An as a
partition of [0, 1]):
• A1 = (x1,1, x1,2), where x1,1 = 0 and x1,2 = 1,
• An+1 is an α–refinement of An, i.e. between any two consecutive elements
xn,i, xn,i+1 ∈ An we insert

x = xn,i + α(xn,i+1 − xn,i), i = 1, 2, . . . , Nn − 1.

(In other words, each interval [xn,i, xn,i+1] with consecutive xn,i, xn,i+1 ∈
An is decomposed into two subintervals [xn,i, x] and [x, xn,i+1] using points x
given above).

Then the sequence of blocks An has the a.d.f

gα(x)

such that
(i) gα(x) and gα′(x) are singular to each other if 0 < α < α′ < 1,
(ii) gα(x) = x if α = 1

2 .

Notes: S.Kakutani (1976) classifies this as well–known.

For the definition when two given measures are mutually singular consult
P.Billingsley (1986, p. 442).

Related sequences: 2.24.9

P.Billingsley: Probability and Measure, Wiley Series in Probability and Mathematical Statistics,
Second ed., J.Wiley & Sons, Inc., New York, 1986 (MR0830424 (87f:60001); Zbl. 0649.60001).
S.Kakutani: A problem of equidistribution on the unit interval [0, 1], in: Measure Theory Ober-
wolfach 1975 (Proceedings of the Conference Held at Oberwolfach 15–20 June, 1975, (A.Doldan
and B.Eckmann eds.), Lecture Notes in Mathematics, 541, Springer Verlag, Berlin, Heidelberg,
New York, 1976, pp. 369–375 (MR0457678 (56 #15882); Zbl. 0363.60023).

2.24.9. α-maximal refinement. Let 0 < α < 1 be a real number. Define
the sequence Bn of blocks in the unit interval [0, 1] by induction:
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• B1 = (x1,1, x1,2), where x1,1 = 0 and x1,2 = 1,
• Bn+1 is an α–maximal refinement of Bn, what means that we add to Bn =

(xn,1, . . . , xn,Nn) all the points (in ascending order)

x = xn,i + α(xn,i+1 − xn,i),

for all those i which satisfy

xn,i+1 − xn,i = max
1≤j≤Nn−1

xn,j+1 − xn,j ,

i.e. every maximal interval [xn,i, xn,i+1] is decomposed into two subinter-
vals [xn,i, x] and [x, xn,i+1].

Then for every 0 < α < 1 the sequence of blocks Bn is

u.d.

Related sequences: 2.24.8

S.Kakutani: A problem of equidistribution on the unit interval [0, 1], in: Measure Theory Ober-
wolfach 1975 (Proceedings of the Conference Held at Oberwolfach 15–20 June, 1975, (A.Doldan
and B.Eckmann eds.), Lecture Notes in Mathematics, 541, Springer Verlag, Berlin, Heidelberg,
New York, 1976, pp. 369–375 (MR0457678 (56 #15882); Zbl. 0363.60023).

2.24.10. Open problem. Characterize the distribution properties of the
so–called strange recurring sequences of the form
(i) xn = xn−[xn−1] + xn−[xn−2],
(ii) xn = xn−[xn−1] + x[xn−1],
(iii) xn = x[xn−2] + xn−[xn−2],

with real initial values x1, x2.
Notes: If x1 = x2 = 1 the sequence (i) was defined by D.R.Hofstadter (1979), (ii)
was defined by J.H.Conway (1988) during one of his lectures and C.L.Mallows (1991)
established the regular structure of (ii) and introduced the monotone sequence (iii).

D.R.Hofstadter: Gödel, Escher, Bach: an External Golden Braid, Basic Books, Inc., Publishers,
New York, 1979 (MR0530196 (80j:03009); Zbl 0457.03001 reprint 1981).
C.L.Mallows: Conway’s challenge sequence, Amer. Math. Monthly 98 (1991), no. 1, 5–20
(MR1083608 (92e:39007); Zbl. 0738.11014).

2.25 Pseudorandom Numbers Congruential Generators

Notes: There is no formal fully satisfactory definition of the pseudorandomness of
a sequence xn, and thus we have only a scale of tests which such a candidate se-
quence xn should satisfy, cf. 1.8.22, [DT, pp. 424–430, 3.4.] and J.C. Lagarias (1990,



2 – 302 2 One–dimensional sequences

1992). Various statistical tests can be found in literature, see e.g. P. L’Ecuyer and
P.Hellekalek (1998), G.Marsaglia (1996), H.Niederreiter (1978, 1992), A.Rukhin,
J. Soto, J. Nechvatal, et al. (2001). As an illustration let us mention some empir-
ical statistical tests: χ2 test, uniformity test, gap test, run test, permutation
test, correlation test, negative entropy, collision, empty boxes, cf. 2.26. Progress
in the recent development in the pseudorandom number generation is described in
H.Niederreiter and I.E. Shparlinski (2002).

D.E.Knuth: Seminumerical Algorithms, The Art of Computer Programming, Vol. 2, 2nd ed.,
Addison Wesley, Reading, MA, 1981 (First ed.: Reading, MA, 1969) (MR0286318 (44 #3531);
Zbl. 0477.65002).
J.C. Lagarias: Pseudorandom number generators in cryptography and number theory, in: Cryptol-
ogy and Computational Number Theory (Boulder, CO, 1989), (C. Pomerance ed.), Proc. Sympos.
Appl. Math., 42, Amer. Math. Soc., Providence, RI, 1990, pp. 115–143 (MR1095554 (92f:11109);
Zbl. 0747.94011).
J.C. Lagarias: Pseudorandom numbers, in: Probability and Algorithms, Nat. Acad. Press,
Washington, D.C., 1992, pp. 65–85 (MR1194441; Zbl. 0766.65003).
P. L’Ecuyer – P.Hellekalek: Random number generators: Selection criteria and testing, in:
Random and Quasi–Random Point Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statist.,
138, Springer Verlag, New York, Berlin, 1998, pp. 223–265 (MR1662843 (99m:65014); Zbl. 0915.65004).
G.Marsaglia: DIEHARD: a Battery of Test of Randomness, (electronic version: http://stat.

fsu.edu/~geo/diehard.html).
H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).H.Niederreiter
– I.E. Shparlinski: Recent advances in the theory of nonlinear pseudorandom number gener-
ators, in: Monte Carlo and Quasi–Monte Carlo Methods 2000 (Proceedings of a Conference
held at Hong Kong Baptist University, Hong Kong SAR, China, Nov. 27–Dec. 1, 2000, (Kai–
Tai Fang, F.J.Hickernell, H.Niederreiter eds.), Springer Verlag, Berlin, Heidelberg 2002, pp. 86–102
(MR1958848 (2003k:65005); Zbl. 1076.65008).
A.Rukhin – J. Soto – J.Nechvatal – M. Smid – E.Barker – S. Leigh – M.Levenson – M.Van-
gel – D.Banks – A.Heckert – J.Dray – S.Vo: A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication 800-
22, (2000 with revision dated May 15, 2001). (http://csrc.nist.gov/rng/SP800-22b.pdf).

2.25.1. Linear congruential generator (LCG). The linear multiplica-
tive congruential generator produces the sequence

xn =
yn
M
, n = 0, 1, . . . ,

where M is a large modulus and

yn ≡ ayn−1 + c (modM) with 0 ≤ yn ≤M − 1, n = 1, . . . ,

and 0 < y0 ≤M − 1 is an initial seed.
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(A) The sequence xn, n = 0, 1, 2, . . . , has the maximal period M if and only
if gcd(c,M) = 1, and a ≡ 1 (mod p) for every prime divisor p of M , and if 4
divides M then also a ≡ 1 (mod 4).

(B) If M is a prime number, a is a primitive root modulo M , c = 0, and
y0 ̸= 0, then the sequence xn has the period M − 1 and the s–dimensional
sequence (s–dimensional serial test)

xn = (xn, xn+1, . . . , xn+s−1), n = 0, 1, . . . ,M − 2,

has discrepancy satisfying

DM−1 ≤
s+ 1

M − 1
+

M

M − 1
R(g,M).

Here g = (1, a, a2, . . . , as−1) and

R(g,M) =
∑

h=(h1,...,hs )̸=0,−M/2<hi≤M/2
h·g≡0 (modM)

1

r(h,M)
,

with r(h,M) =
∏s

i=1 r(hi,M), where

r(hi,M) =

{
M sin π|hi|

M , if hi ̸= 0,

r(0,M) = 1, otherwise.

Notes: (I) This generator was introduced by D.H. Lehmer (1951), cf. D.E.Knuth
(1981, Chapt. 3) or H.Niederreiter (1992). Typical values for the modulus are M =
232, or the Mersenne prime M = 231 − 1. The number M = 248 was also used.
(II) For a proof of (A) cf. Knuth (1981, § 3.2.1).
(III) Discrepancy bound (B) is from Niederreiter (1976, 1977).
(IV) In P. L’Ecuyer and P.Hellekalek (1998) a list of some LCG’s with prime moduli
M , c = 0 and a a primitive root modulo M can be found together with their
classification as ”good” and ”bad” LCG’s with respect to the spectral test, e.g. if
M = 236 − 5, then the number a = 49865143810 yields a good and a = 102254510 a
bad LCG.

P. L’Ecuyer – P.Hellekalek: Random number generators: Selection criteria and testing, in:
Random and Quasi–Random Point Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statist.,
138, Springer Verlag, New York, Berlin, 1998, pp. 223–265 (MR1662843 (99m:65014); Zbl. 0915.65004).
D.H. Lehmer: Mathematical methods in large–scale computing units, in: Proc. 2nd Sympos.
on Large–Scale Digital Calculating Machinery (Cambridge, Ma; 1949), Harvard University Press,
Cambridge, Ma, 1951, pp. 141–146 (MR0044899 (13,495f); Zbl. 0045.40001).
D.E.Knuth: Seminumerical Algorithms, The Art of Computer Programming, Vol. 2, 2nd ed.,
Addison Wesley, Reading, MA, 1981 (First ed.: Reading, MA, 1969) (MR0286318 (44 #3531);
Zbl. 0477.65002).
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H.Niederreiter: Statistical independence of linear congruential pseudo–random numbers, Bull.
Amer. Math. Soc. 82 (1976), no. 6, 927–929 (MR0419395 (54 #7416); Zbl. 0348.65005).
H.Niederreiter: Pseudo–random numbers and optimal coefficients, Advances in Math. 26 (1977),
no. 2, 99–181 (MR0476679 (57 #16238); Zbl. 0366.65004).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).

2.25.2. Linear feedback shift register generator. The shift register
generator produces the sequence

xn =
m∑
j=1

ymn+j

pj
, where yn+k ≡

k−1∑
j=0

ajyn+j (mod p) , n = 0, 1, 2, . . . .

Let p be a prime and 2 ≤ m ≤ k. Then
• the sequence yn, n = 0, 1, 2, . . . , is called the k–th order shift register

sequence,
• the polynomial f(x) = xk − ak−1x

k−1 − · · · − a0 is called the character-
istic polynomial of the shift register sequence yn which is completely
determined by the initial seeds y0, y1, . . . , yk−1,

• yn is purely periodic if its characteristic polynomial f(x) satisfies f(0) ̸= 0,
• if f(x) is irreducible such that f(0) ̸= 0 and y0, y1, . . . , yk−1 are not all

vanishing, then the length M of the minimal period of yn is equal to the
order of any root α of f(x) in the multiplicative group F∗

q of non–zero

elements of Fq, where q = pk,
• the maximal value of period M = pk − 1 is achieved if and only if f(x) is

a primitive polynomial over Fp (i.e. a monic polynomial of degree k which
root generates F∗

q),
• the terms of the sequence xn, n = 0, 1, 2, . . . , are called digital k–step

pseudorandom numbers,
• xn is purely periodic and its minimal period is M

gcd(m,M) thus gcd(m,M) = 1
is usually assumed.

• The preferred choice of p is 2.
Notes: The author of the method is R.C.Tausworthe (1965). If p = 2 then he
proved that the the mean value, variance and autocorrelation of the sequence xn,
n = 1, . . . , 2k − 1, equal within the error of 2−k to those of a sequence of uniform
independent random variables in [0, 1]. Properties and proofs can be found in R. Lidl
and H.Niederreiter (1986, Chapt. 7), H.Niederreiter (1984).

R.Lidl – H.Niederreiter: Introduction to Finite Fields and their Applications, Cambridge Univ.
Press, Cambridge, 1986 (MR0860948 (88c:11073); Zbl. 0629.12016).
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H.Niederreiter: The performance of k–step pseudorandom number generators under the unifor-
mity test , SIAM J. Sci. Statist. Comput. 5 (1984), no. 4, 798–810 (MR0765207 (86f:65029); Zbl.
0557.65005).
R.C.Tausworthe: Random numbers generator by linear recurrence modulo two, Math. Comput.
19 (1965), 201–209 (MR0184406 (32 #1878); Zbl. 0137.34804).

2.25.3. GFSR generator. Let p be a prime and yn, n = 0, 1, 2, . . . the
kth order shift register sequence (cf. 2.25.2). Given an integer m ≥ 2 and
non–negative integers k1, . . . , km the terms of the sequence

xn =
m∑
j=1

yn+kj

pj
, n = 0, 1, 2, . . . ,

are called GFSR pseudorandom numbers.
• xn is purely periodic with the least period length M as given in 2.25.2.

Notes: GFSR (generalized feedbackshift register) sequences were introduced by
T.G. Lewis and W.H.Payne (1973).

Related sequences: 2.25.2

H.Niederreiter: Pseudorandom numbers generated from shift register sequence, in: Number–
Theoretic Analysis (Seminar, Vienna 1988-89), (H.Hlawka – R.F.Tichy eds.), Lecture Notes in
Math., 1452, Springer Verlag, Berlin, Heidelberg, 1990, pp. 165–177 (MR1084645 (92g:11082); Zbl.
0718.11034).
T.G. Lewis – W.H.Payne: Generalized feedback shift register pseudorandom number algorithm,
J. Assoc. Comput. Mach. 20 (1973), 456–468 (Zbl. 0266.65009).

2.25.4. Recursive matrix method. Assume that
• Fp is the finite field of the prime order p and identify the elements of Fp

with digits {0, 1, . . . , p− 1},
• s is a positive integer and A is a non–singular s× s matrix over Fp,
• y0 is the initial row vector, y0 ̸= 0,
• yn = (yn,1, . . . , yn,s), n = 0, 1, 2, . . . , is the sequence of row vectors in Fs

p

defined by the recursion yn+1 = yn ·A.

Then the sequence

xn =
s∑

j=1

yn,j
pj

, n = 0, 1, 2, . . . ,

has the maximal period ps − 1 if and only if the polynomial det(xI −A) of
degree s (i.e. characteristic polynomial of A) is primitive over Fp.
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Notes: This method was introduced by H.Niederreiter (1993). For the star discrep-
ancy of the j–dimensional sequence zn = (xn, . . . , xn+j−1) see H.Niederreiter (1995,
1996) and G. Larcher (1998).

Related sequences: 3.20.1

H.Niederreiter: Factorization of polynomials and some linear–algebra problems over finite fields,
in: Computational linear algebra in algebraic and related problems (Essen, 1992), Linear Algebra
Appl. 192 (1993), 301–328 (MR1236747 (95b:11114); Zbl. 0845.11042).
H.Niederreiter: The multiple recursive matrix method for pseudorandom number generation,
Finite Fields Appl. 1 (1995), no. 1, 3–30 (MR1334623 (96k:11103); Zbl. 0823.11041).
H.Niederreiter: Improved bounds in the multiple–recursive matrix method for pseudorandom
number and vector generation, Finite Fields Appl. 2 (1996), no. 3, 225–240 (MR1398075 (97d:11120);
Zbl. 0893.11031).
G.Larcher: A bound for the discrepancy of digital nets and its application to the analysis
of certain pseudo–random number generators, Acta Arith. 83 (1998), no. 1, 1–15 (MR1489563
(99j:11086); Zbl. 0885.11050).

2.25.5. Quadratic congruential generator. Let M ≥ 2 be a large inte-
ger, called the modulus, and let a, b, c ∈ ZM be three parameters and y0 be
the initial seed. The quadratic generator produces the sequence

xn =
yn
M
, where yn+1 ≡ ay2n + byn + c (modM) and 0 ≤ yn ≤M − 1

of quadratic congruential pseudorandom numbers. They have the
following properties:

(A) IfM is odd, then xn is purely periodic with the maximum possible period
length M if and only if a ≡ 0 (mod p), b ≡ 1 (mod p), and c ̸≡ 0 (mod p) for
all primes p which divide the modulus M , and moreover a ̸≡ 3c (mod 9) if
9|M .

(B) If M = 2ω then the sequence xn is purely periodic with the maximum
possible period length M if and only if a ≡ 0 (mod 2), b ≡ a + 1 (mod 4),
and c ≡ 1 (mod 2). In this case the full period of xn shows the best possible
distribution in [0, 1].

(C) If a ≡ 2 (mod 4), b ≡ 3 (mod 4), c ≡ 1 (mod 2), and M = 2ω then
for the extremal discrepancy DM of the sequence of pairs (xn, xn+1), n =
0, . . . ,M − 1, we get

DM <
2
√
2 + 8

7π2
(logM)2√

M
− 0.0791

logM√
M

+
0.3173√
M

+
4

M
,

DM ≥ 1

3(π + 2)
√
M
.
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(D) If M = pα1
1 . . . pαr

r with distinct primes pi ≥ 3 and integers αi ≥ 2 for i = 1, . . . , r,
then for the extremal discrepancy DM of (xn, xn+1), n = 0, 1, . . . ,M − 1, we get

DM <
1√
M

r∏
i=1

(
1 +

5

4p
3
2
i

)
×

(
4

π2
√
P

(
logM +

4
√
3π

9
logP

)
(logM + 0.778) +

16

27

√
P

)
+

2

M
,

DM ≥
√
P

2(π + 2)

1√
M

where P = p1 . . . pr. This implies that the order of magnitude of DM lies between
√

P
M

and
(√

P + (logM)2√
P

)
1√
M
.

(E) If a ≡ 2 (mod 4), b ≡ 3 (mod 4), c ≡ 1 (mod 2), and M = 2ω then the extremal
discrepancy DM

2
of the sequence of points (x2n, x2n+1) with n = 0, . . . , M

2
satisfies

DM
2
<
2
√
2 + 8

7π2

(logM)2√
M

− 0.0791
logM√
M

+
0.3173√
M

+
4

M
,

DM
2

≥ 2

B(π + 2)
√
M
, where B =

{
1, if y0 ≡ (b+ 1)/4 (mod 2) ,

3, if y0 ≡ (b+ 5)/4 (mod 2) .

(F) If a ≡ 2 (mod 4), b ≡ 3 (mod 4), M = 2ω, and if in order to emphasize the dependence
of the quadratic generator on the parameter c we denote by DM (c) the extreme discrepancy
of the sequence of (xn, xn+2), n = 0, 1, . . . ,M − 1, then

2

M

∑
c∈Z∗

M

DM (c) <
4
√
2 + 2

7π2

(logM)2√
M

+ 0.0977
logM√
M

− 0.1753√
M

+
2

M
.

If, in addition, the parameters a ≡ 2 (mod 4), b ≡ 3 (mod 4), and c ≡ 1 (mod 2) also satisfy
the relation 4ac ≡ (b − 1)2 − 28 + 22ν+4

(
mod 2ω−ν+1

)
, where ν ≥ 1 and µ ∈ {0, 1, 2} are

integers with ω = 3ν + µ+ 2, then

DM (c) ≥ 2(µ−1)/3

27(π + 2)M1/3
.

(G) If a ≡ 2 (mod 4), b ≡ 3 (mod 4), M = 2ω, and DM (c) is the extreme discrepancy of
the sequence of triples (xn, xn+1, xn+2), n = 0, . . . ,M − 1, then

2

M

∑
c∈Z∗

M

DM (c) <
24

√
2 + 68

31π3

(logM)3√
M

+ 0.8427
(logM)2√

M

+ 2.0927
logM√
M

+
1.6495√
M

+
3

M
.

If moreover c ≡ 1 (mod 2) then

DM (c) ≥ 1

3(π + 2)
√
M
.
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If the parameters a ≡ 2 (mod 4), b ≡ 3 (mod 4) and c ≡ 1 (mod 2) satisfy 4ac ≡ (b− 1)2 −
4±8+22ν+4

(
mod 2ω−ν+1

)
, where ν ≥ 1 and µ ∈ {0, 1, 2} are integers with ω = 3ν+µ+2,

then

DM (c) ≥ 2(µ−1)/3

4(π2 + 3π + 3)M1/3
.

As in the case (F) for (xn, xn+2), also in this case the congruence 4ac ≡ (b − 1)2 − 28 +
22ν+4

(
mod 2ω−ν+1

)
implies that

DM (c) ≥ 2(µ−1)/3

27(π + 2)M1/3
.

Notes: (I) The quadratic congruential method was coined by D.E.Knuth in 1969
in the first edition of his famous book (1981), cf. also Knuth (1981, p. 25).
(II) For the conditions for the maximum possible period consult Knuth (1981,
pp. 34, 526).
(III) The discrepancies estimates for sequences of (xn, xn+1), (x2n, x2n+1), (xn, xn+2),
(xn, xn+1, xn+2) of full length modulo M = 2ω were proved by J. Eichenauer–
Herrmann and H.Niederreiter (1991, 1995) and by Eichenauer–Herrmann (1995a,
1995b, 1997). They are also summarized in J. Eichenauer–Herrmann, E.Herrmann
and S. Wegenkittl (1998).
(IV) The estimates for DM with respect to the composite modulus M = pα1

1 . . . pαr
r

were given by S. Strandt (1998). The author also gives a comparison of two sequences

xn and zn = x
(1)
n + · · ·+x(r), where xn corresponds to the modulus M = pα1

1 . . . pαr
r ,

αi ≥ 2, i = 1, . . . , r, with parameters a, b, c (modM) and the initial seed y0; and

x
(i)
n corresponds to the modulus qi = pαi

i and the initial seed y
(i)
0 and parameters

ai, bi, ci (mod qi). Strandt (1998) proved that xn and zn are equal if and only if
(i) a ≡ niai + τi

qi
2 (mod qi),

(ii) b ≡ bi + τi
qi
2 (mod qi),

(iii) c ≡ mici (mod qi),

(iv) y0 ≡ miy
(i)
0 (mod qi),

with mi =
m
qi
, ni ≡ m−1

i (mod qi), τi = 0 if qi is odd, and τi ∈ {0, 1} if qi is even,
for i = 1, . . . , r.

J. Eichenauer–Herrmann: Discrepancy bounds for nonoverlapping pairs of quadratic congruen-
tial pseudorandom numbers, Arch. Math.(Basel) 65 (1995), no. 4, 362–368 (MR1349192 (96k:11102);
Zbl. 0832.11028).
J. Eichenauer–Herrmann: Quadratic congruential pseudorandom numbers: distribution of triples,
J. Comput. Appl. Math. 62 (1995), no. 2, 239–253 (MR1363674 (96h:65011); Zbl. 0858.65004).
J. Eichenauer–Herrmann – E.Herrmann – S.Wegenkittl: A survey of quadratic and inverse
congruential pseudorandom numbers, in: Monte Carlo and Quasi–Monte Carlo Methods 1996 (Pro-
ceedings of a conference at the University of Salzburg, Austria, July 9–12, 1996), (H.Niederreiter,
P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in Statistics, 127, Springer Verlag, New
York, Berlin, 1998, pp. 66–97 (MR1644512 (99d:11085)).
J. Eichenauer–Herrmann – H.Niederreiter: On the discrepancy of quadratic congruential pseu-
dorandom numbers, J. Comput. Appl. Math. 34 (1991), no. 2, 243–249 (MR1107870 (92c:65010);
Zbl. 0731.11046).



2.25 Pseudorandom Numbers Congruential Generators 2 – 309

J. Eichenauer–Herrmann – H.Niederreiter: An improved upper bound for the discrepancy of
quadratic congruential pseudorandom numbers, Acta Arith. 69 (1995), no. 2, 193–198 (MR1316706
(95k:11099); Zbl. 0817.11038).
D.E.Knuth: Seminumerical Algorithms, The Art of Computer Programming, Vol. 2, 2nd ed.,
Addison Wesley, Reading, MA, 1981 (First ed.: Reading, MA, 1969) (MR0286318 (44 #3531);
Zbl. 0477.65002).
S. Strandt: Quadratic congruential generators with odd composite modulus, in: Monte Carlo and
Quasi–Monte Carlo Methods 1996 (Proceedings of a conference at the University of Salzburg, Aus-
tria, July 9–12, 1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes
in Statistics, 127, Springer Verlag, New York, Berlin, 1998, pp. 415–426 (MR1644536 (99d:65024);
Zbl. 0885.65006).
S. Strandt: Discrepancy bounds for pseudorandom number sequences generated by the quadratic
congruential metod for the whole period and for parts of the period, TU Darmstadt, Dissertation,
Darmstadt, 2000.Logos Verlag Berlin, Berlin, 2000 (MR1869413 (2002g:11114); Zbl. 0960.65008).

2.25.6. The discrete exponential generator produces the sequence

xn =
yn
M
, where yn+1 ≡ gyn (modM) and 0 ≤ yn ≤M − 1.

HereM is an odd prime, g a primitive root modM and y0 is the initial seed.

Notes: LetM = p and q be primes with q|(p−1) and let g ∈ F∗
p be of multiplicative

order q. If j ≥ 2 is an integer then for each j–dimensional vector a = (a1, . . . , aj) ∈
(Fq)j define

ya(n) = ga
i1
1 ...a

ij
j ∈ Fp,

where n = i1 . . . ij is the 2–adic (or bit) representation of the integer n, 0 ≤ n ≤
2j − 1, with amended extra leading zeros if necessary. The Naor – Reingold
generator produces the sequence

xn =
ya(n)

M
, n = 0, 1, . . . , 2j − 1,

see also H.Niederreiter and I.E. Shparlinski (2002).

M.Naor – O.Reingold: Number–theoretic construction of efficient pseudorandom functions, in:
Proc. 38th IEEE Symp. on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, Calif., 1997, pp. 458–467 (Full version at http://www.wisdom.weizmann.ac.il/%7Enaor

/PAPERS/gdh abs.html).
M.Naor – O.Reingold: Number–theoretic construction of efficient pseudorandom functions, J.
ACM 51 (2004), no. 2, 231–262 (MR2145654 (2007c:94156); Zbl. 1248.94086).
H.Niederreiter – I.E. Shparlinski: Recent advances in the theory of nonlinear pseudorandom
number generators, in: Monte Carlo and Quasi–Monte Carlo Methods 2000 (Proceedings of a Con-
ference held at Hong Kong Baptist University, Hong Kong SAR, China, Nov. 27–Dec. 1, 2000, (Kai–
Tai Fang, F.J.Hickernell, H.Niederreiter eds.), Springer Verlag, Berlin, Heidelberg 2002, pp. 86–102
(MR1958848 (2003k:65005); Zbl. 1076.65008).
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2.25.7. The power generator produces the sequence

xn =
yn
M
, where yn+1 ≡ (yn)

e (modM) and 0 ≤ yn ≤M−1, n = 0, 1, . . . ,

whereM ≥ 2 is a given modulus, y0 is the initial seed such that gcd(y0,M) =
1 and e is a given exponent.
Notes: If M = p1p2, where p1 and p2 are distinct primes, and gcd(e, φ(M)) = 1,
then it is called the RSA generator and in the special case e = 2 it is called
Blum – Blum – Shub generator, see J.C. Lagarias (1990) and H.Niederreiter
and I.E. Shparlinski (2002). These generators are u.d. (i.e. yn is u.d. in ZM ) when
the period > M3/4+δ with a fixed δ > 0, see J.B. Friedlander and I.E. Shparlinski
(2001).

L.Blum – M.Blum – M. Shub: A simple unpredicable pseudo–random number generator , SIAM
J. Computing 15 (1986), no. 2, 364–383 (MR0837589 (87k:65007); Zbl. 0602.65002).
J.B. Friedlander – I.E. Shparlinski: On the distribution of the power generator , Math. Comput.
70 (2001), 1575–1589 (MR1836920 (2002f:11107); Zbl. 1029.11042)).
J.C. Lagarias: Pseudorandom number generators in cryptography and number theory, in: Cryptol-
ogy and Computational Number Theory (Boulder, CO, 1989), (C. Pomerance ed.), Proc. Sympos.
Appl. Math., 42, Amer. Math. Soc., Providence, RI, 1990, pp. 115–143 (MR1095554 (92f:11109);
Zbl. 0747.94011).
H.Niederreiter – I.E. Shparlinski: Recent advances in the theory of nonlinear pseudorandom
number generators, in: Monte Carlo and Quasi–Monte Carlo Methods 2000 (Proceedings of a Con-
ference held at Hong Kong Baptist University, Hong Kong SAR, China, Nov. 27–Dec. 1, 2000, (Kai–
Tai Fang, F.J.Hickernell, H.Niederreiter eds.), Springer Verlag, Berlin, Heidelberg 2002, pp. 86–102
(MR1958848 (2003k:65005); Zbl. 1076.65008).

2.25.8. The inverse congruential generator produces the sequence

xn =
yn
M
, where yn+1 ≡ ay−1

n + b (modM) and 0 ≤ yn ≤M − 1,

whereM is a given modulus, a, b are parameters, y0 is the initial seed and y−1

is defined by y.y−1 ≡ 1 (modM).

(I) Let M = 2ω for some integer ω ≥ 6 and a+ b ≡ 1 (mod 2). Inverse con-
gruential sequences yn are purely periodic with the maximum possible period
length M/2 if and only if a ≡ 1 (mod 4) and b ≡ 2 (mod 4). Then the terms
of the sequence of pseudorandom numbers x0, x1, . . . , x(M/2)−1 run over all

rationals in [0, 1) of the form 2i+1
M and hence shows a perfect equidistribution

in [0, 1).

If a ≡ 1 (mod 4) and b ≡ 2 (mod 4) then for the sequence of the overlapping
pairs (xn, xn+1), n = 0, 1, . . . , (M/2)− 1, we have

DM/2 <
8
√
2 + 4

7π2
· (logM)2√

M
− 0.4191

logM√
M

+ 0.6328
1√
M

+ 8
1

M
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The same upper estimate is also true for discrepancyDM/4 of non–overlapping
pairs (x2n, x2n+1) with n = 0, 1, . . . , (M/4)− 1.

(II) If M = p with p an odd prime, then the recurring sequence yn can also
be given by the formula

yn+1 ≡ ayp−2
n + b (mod p) .

The corresponding output sequence

xn =
yn
p

mod 1, n = 0, 1, . . . , N,

has the discrepancy

DN ≤

√√8

3
+ 2 · p

1
4

√
N

+

√
3

8
·
√
p

N

( 4

π2
log p+

2

5

)
+

1

p

for N which is less than the period of the sequence xn. If the order of
magnitude of N is at least

√
p (log p)2 then

DN = O

(
p1/4 log p√

N

)
.

Notes: The inverse congruential method was introduced by J. Eichenauer–Herrmann,
J. Lehn, and A.Topuzoǧlu (1988) based on the suggestion of D.E.Knuth. The
discrepancy bounds of pairs of elements was given by J. Eichenauer–Herrmann,
cf. Eichenauer–Herrmann, E.Herrmann and S.Wegenkittl (1998). This is an im-
provement to the previous result of Eichenauer–Herrmann and Niederreiter (1993).
In the case M = p the discrepancy estimate was proved by H.Niederreiter and
I.E. Shparlinski (2001) thereby improving the general estimate given in their pre-
vious paper (1999). Some results for the case yn+1 ≡ yen (modM), M = pl,
where p, l are different primes can be found in J.B. Friedlander, C. Pomerance and
I.E. Shparlinski (2001).

J. Eichenauer – J. Lehn – A.Topuzoǧlu: A nonlinear congruential pseudorandom number gener-
ator with power of two modulus, Math. Comp. 51 (1988), no. 184, 757–759 (MR0958641 (89i:65007);
Zbl. 0701.65008).
J. Eichenauer–Herrmann – E.Herrmann – S.Wegenkittl: A survey of quadratic and inverse
congruential pseudorandom numbers, in: Monte Carlo and Quasi–Monte Carlo Methods 1996 (Pro-
ceedings of a conference at the University of Salzburg, Austria, July 9–12, 1996), (H.Niederreiter,
P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in Statistics, 127, Springer Verlag, New
York, Berlin, 1998, pp. 66–97 (MR1644512 (99d:11085)).
J. Eichenauer–Herrmann – H.Niederreiter: Kloosterman–type sums and the discrepancy of
nonoverlaping pairs of inverse congruential pseudorandom numbers, Acta Arith. 65 (1993), no. 2,
185–194 (MR1240124 (94f:11071); Zbl. 0785.11043).
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J.B. Friedlander – C.Pomerance – I.E. Shparlinski: Period of the power generator and small
values of Carmichael’s function, Math. Comp. 70 (2001), no. 236, 1591–1605 (MR1836921
(2002g:11112); Zbl. 1029.11043).
H.Niederreiter – I.E. Shparlinski: On the distribution and lattice structure of nonlinear congru-
ential pseudorandom numbers, Finite Fields Appl. 5 (1999), no. 3, 246–253 (MR1702905
(2000i:11126); Zbl. 0942.11037).
H.Niederreiter – I.E. Shparlinski: On the distribution of inverse congruential pseudorandom
numbers in parts of the period , Math. Comp. 70 (2001), no. 236, 1569–1574 (MR1836919
(2002e:11104); Zbl. 0983.11048).

2.25.9. Compound inverse congruential generator. Assume that
• p1, . . . , pk are distinct primes,
• ai, bi ∈ Fpi , ai ̸= 0, i = 1, 2, . . . , k,
• ψi(y) = aiy

−1 + bi, ψ(0) = 0,
• y0,1, . . . , y0,k are initial seeds,
• yn,i, i = 1, 2, . . . , k, n = 0, 1, 2, . . . , are sequences defined by recurrence

relations yn+1,i = ψi(yn,i).

The output sequence is

xn =
k∑

i=1

yn,i
pi

mod 1, n = 0, 1, 2, . . . .

If ti denotes the period of the sequence yn,i, n = 0, 1, 2, . . . , and t1, . . . , tk
are pairwise coprime, then the sequence xn, n = 0, 1, 2, . . . , has the period
T = t1 . . . tk. When the maximum possible period T = P = p1 . . . pk is
achieved then the discrepancy of the sequence

xn = (xsn, xsn+1, . . . , xsn+s−1), n = 0, 1, 2, . . . ,

satisfies

DN = O
(
(logP )s√

N

)
for every 1 ≤ N ≤ P and 1 ≤ s < min(p1 . . . pk), where the O–constant
depends on k. If the period satisfies T ≤ P and 1 ≤ N ≤ T then we have

DN = O

(√
TP 1/4(logP )s+1

N

)
,

with the O–constant depending on k.

Notes: This generator was introduced by J. Eichenauer–Herrmann (1994). The first
discrepancy bound was given by J. Eichenauer–Herrmann and F.Emmerich (1996).
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The second one was proved by H.Niederreiter (2001) thereby generalizing the pre-
vious result of H.Niederreiter and A.Winterhof (2001).

J. Eichenauer–Herrmann: On generalized inverse congruential pseudorandom numbers, Math.
Comp. 63 (1994), no. 207, 293–299 (MR1242056 (94k:11088); Zbl. 0868.11035).
J. Eichenauer–Herrmann – F. Emmerich: Compound inverse congruential pseudorandom num-
bers: an average-case analysis, Math. Comp. 65 (1996), 215–225 (MR1322889 (96i:65005); Zbl.
0852.11041).
H.Niederreiter: Design and analysis of nonlinear pseudorandom numbers generators, in: Monte
Carlo Simulation, (G.I. Schuëller and P.D. Spans eds.), A.A.Balkema Publishers, Rotterdam, 2001,
pp. 3–9.
H.Niederreiter – A.Winterhof: On the distribution of compound inverse congruential pseu-
dorandom numbers, Monatsh. Math. 132 (2001), no. 1, 35–48 (MR1825718 (2002g:11113); Zbl.
0983.11047).

2.25.10. The explicit inverse congruential generator is based on the
formula

xn =
yn
M
, where yn ≡ (an)−1 modM and 0 ≤ yn ≤M − 1,

with M an odd prime and the multiplier a coprime to M . The period length
of xn is M , and the inverse of an can be computed using the relation yn =
(an)M−2.

Notes: This procedure was proposed J. Eichenauer–Herrmann (1992).

J. Eichenauer–Herrmann: Inverse congruential pseudorandom numbers: A tutorial , Int. Stat.
Rev. 60 (1992), no. 3, 167–176 (Zbl. 0766.65002).

2.25.10.1 Digital explicit inversive sequences.

• Let q = pk with a prime number p and an integer k ≥ 1;

• Let Fq denote the finite field of order q;

• Let {β1, . . . , βk} be an ordered basis of Fq as a vector space over its prime
subfield Fp;

• Zp = {0, 1, . . . , p− 1} is the least nonnegative residue system modulo p;

• Define the sequence ξn ∈ Fq, n = 0, 1, . . ., by ξn :=
∑k

l=1 nl βl if n ≡∑k
l=1 nl p

l−1 (mod q) with nl ∈ Zp for 1 ≤ l ≤ k.

• For ϱ ∈ Fq, put ϱ := ϱ−1 ∈ Fq if ϱ ̸= 0 and ϱ := 0 ∈ Fq if ϱ = 0.

Given α ∈ F∗
q and δ ∈ Fq,

• define γn := αξn + δ ∈ Fq for n = 0, 1, . . ., (Note that the

γ0, γ1, . . . is periodic with least period q.)
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• identify Fp with Zp and write

• γn =
∑k

l=1 cn,l βl for n = 0, 1, . . ., with all cn,l ∈ Fp = Zp.

Then a digital explicit inversive sequence is defined by

zn =
k∑

l=1

cn,lp
−l ∈ [0, 1) for n = 0, 1, . . . .

Note that the sequence z0, z1, . . . is periodic with least period q.
Notes:

(I) The notion of the digital explicit inversive sequences was introduced by
H.Niederreiter and A.Winterhof (2000).
(II) In the special case k = 1 we obtain an explicit inversive congruential
sequence as introduced in J. Eichenauer-Herrmann (1993) and further studied
in Niederreiter (1994).

J. Eichenauer-Herrmann: Statistical independence of a new class of inversive congruential pseu-
dorandom numbers, Math. Comp. 60 (1993), 375–384 (MR1159168 (93d:65011); Zbl. 0795.65002).
H.Niederreiter: On a new class of pseudorandom numbers for simulation methods, (In: Stochas-
tic programming: stability, numerical methods and applications (Gosen, 1992)), J. Comput. Appl.
Math. 56 (1994), 159–167 (MR1338642 (96e:11101); Zbl. 0823.65010).
H.Niederreiter: A discrepancy bound for hybrid sequences involving digital explicit inversive
pseudorandom numbers, Unif. Distrib. Theory 5 (2010), no. 1, 53–63 (MR2804662 (2012f:11143);
Zbl. 1249.11074).
H. Niederreiter – A. Winterhof: Incomplete exponential sums over finite fields and their ap-
plications to new inverse pseudorandom number generators, Acta Arith. XCIII (2000), no. 4,
387–399 (MR1759483 (2001d:11120); Zbl. 0969.11040).

2.25.11. Compound cubic congruential generator. Let M1 and M2

be two distinct primes, a1 and a2 two positive integers less than M1 and M2,
resp., and y0,1, y0,2 are integral initial seeds. If

yn,1 = a1y
3
n−1,1 + 1 (modM1) ,

yn,2 = a2y
3
n−1,2 + 1 (modM2) ,

then the numbers are generated by

xn =
yn,1
M1

+
yn,2
M2

mod 1.

The maximal period length of xn is M1M2 for a suitable choice of values in
(M1, a1,M2, a2).
Notes: This method was proposed by J. Eichenauer–Herrmann and E.Herrmann
(1997). They also give pairs (M1, a1) with maximal possible period M1 of yn,1.
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P. L’Ecuyer and P.Hellekalek (1998) computed a table of values (M1, a1,M2, a2)
for which xn has the maximal period M1M2, e.g. M1 = 131063, a1 = 110230,
M2 = 130859, and a2 = 48249.

J. Eichenauer–Herrmann – E.Herrmann: Compound cubic congruential pseudorandom num-
bers, Computing 59 (1997), 85–90 (MR1465312 (98g:11089); Zbl. 0880.65001).
P. L’Ecuyer – P.Hellekalek: Random number generators: Selection criteria and testing, in:
Random and Quasi–Random Point Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statist.,
138, Springer Verlag, New York, Berlin, 1998, pp. 223–265 (MR1662843 (99m:65014); Zbl. 0915.65004).

2.26 Binary sequences

Under binary sequences we understand sequences attaining only two values,
usually xn = 0 ∨ 1, or xn = −1 ∨ 1.

Notes: Let xn, n = 1, 2, . . . , N , be a sequence such that xn = −1 or xn = 1.

(I) Ch.Mauduit and A. Sárközy (1997) introduced the following measures of pseu-
dorandomness:
• The well–distribution measure of xn, n = 1, 2, . . . , N ,

WN (xn) = max
a,b,m

∣∣∣∣∣∣
m∑
j=1

xa+jb

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b,m such that a ∈ Z, b,m ∈ N and
1 ≤ a+ b ≤ a+mb ≤ N .

• The correlation measure of order k

C
(k)
N (xn) = max

M,d1,...,dk

∣∣∣∣∣
M∑
n=1

xn+d1 . . . xn+dk

∣∣∣∣∣ ,
where the maximum is taken over all 0 ≤ d1 < · · · < dk and M such that
M + dk ≤ N .

• The combined pseudorandom measure of order k

Q
(k)
N (xn) = max

a,b,m
d1,...,dk

∣∣∣∣∣∣
m∑
j=0

xa+jb+d1 . . . xa+jb+dk

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b,m and 0 ≤ d1 < · · · < dk such that all
the indices a+ jb+ di belong to {1, 2, . . . , N}.

• The normality measure of order k

N
(k)
N (xn) = max

x∈{−1,1}k
max

0<M≤N+1−k

∣∣∣∣#{0 ≤ n < M ; (xn+1, . . . , xn+k) = x} − M

2k

∣∣∣∣ .
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• The normality measure

NN (xn) = max
k≤(logN)/ log 2

N
(k)
N (xn).

(II) National Institute of Standards and Technology (U.S.A.) recommends in the
book by A.Rukhin, J. Soto, J.Nechvatal, et al. (2000, revised 2001) the following 16
statistical random number generation tests:
1. The frequency (monobit) test.
2. Frequency test within a block.
3. The runs test.
4. Test for the longest–run–of–ones in a block.
5. The binary matrix rank test.
6. The discrete Fourier transform (spectral) test.
7. The non–overlapping template matching test.
8. The overlapping template matching test.
9. Maurer’s ”Universal statistical” test.
10. The Lempel – Ziv compression test.
11. The linear complexity test.
12. The serial test.
13. The approximate entropy test.
14. The cumulative sums (cusums) test.
15. The random excursions test.
16. The random excursion variant test.

Compare the discrepancies WN , C
(k)
N , Q

(k)
N and N

(k)
N with some of the above statis-

tical tests, e.g. with:

Frequency (monobit) test (2000, pp. 14–16, Par. 2.1): Let xn, n = 1, 2, . . . , N ,
be a binary sequence such that xn = −1 ∨ 1 (if xn = 0 ∨ 1 we convert it using the

rule xn 7→ 2xn−1). If erfc(x) = 2√
π

∫∞
x
e−t

2

dt denotes the complementary error

function and if

erfc

(
|
∑N
n=1 xn|√
N

)
< 0.01

then we conclude that the sequence xn, n = 1, 2, . . . , N , is non–random.

Frequency test within a block (2000, pp. 16–18, Par. 2.2): Let xn, n = 1, 2, . . . , N ,
be a binary sequence, where xn = 0∨1. Partition xn into K =

[
N
M

]
non–overlapping

M–terms blocks (discarding the unused terms) and compute

• πi =

∑M
j=1 x(i−1)M+j

M
, i = 1, 2, . . . ,K,

• χ2 = 4M
∑K
i=1

(
πi − 1

2

)2
.

If igamc(u, x) = 1
Γ(u)

∫∞
x
e−ttu−1 dt denotes the incomplete gamma function,

where Γ(u) =
∫∞
0
e−ttu−1 dt, and

igamc

(
K

2
,
χ2

2

)
< 0.01
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then we conclude that the sequence xn, n = 1, 2, . . . , N , is non–random.

Binary matrix rank test (2000, pp. 24–27, Par. 2.5): Let xn, n = 1, 2, . . . , N , be a
binary sequence, where xn = 0∨1. Divide the sequence xn sequentially into disjoint

blocks with M.Q–terms thus obtaining K =
[

N
M.Q

]
blocks in total (after discarding

the unused terms).
• Collect the M.Q–terms blocks into M × Q matrices Ak, k = 1, 2, . . . ,K (each

row of the matrix Ak is filled successively with a Q–terms block of the original
sequence xn).

• Determine the binary (i.e. over F2) rank(Ak) for k = 1, 2, . . . ,K. If
FM = #{k ≤ K ; rank(Ak) =M}, and
FM−1 = #{k ≤ K ; rank(Ak) =M − 1} then compute

χ2 =
(FM − 0.2888K)2

0.2888K
+

(FM−1 − 0.5776K)2

0.5776K
+

+
(N − FM − FM−1 − 0.1336K)2

0.1336K
.

If

e−χ
2/2 < 0.001

then the conclusion is that the sequence xn, n = 1, 2, . . . , is non–random.
Discrete Fourier transform (spectral) test (2000, pp. 27–28, Par. 2.6): Let xn,
n = 1, 2, . . . , N , be a binary sequence, where xn = −1∨1. Apply the discrete Fourier
transform on xn to obtain

fj =

N∑
n=1

xne
2πi(n−1) j

N , j = 0, 1, . . . , N − 1.

Compute
• N1 = #{0 ≤ j ≤ N/2 ; |fj | <

√
3N},

• d =
N1 − 0.95(N/2)√
N(0.95)(0.05)/2

.

If

erfc

(
|d|√
2

)
< 0.01

then conclude that the sequence xn, n = 1, 2, . . . , is non–random.

(III) As in the case of circle sequences (see 3.11) the randomness of infinite binary
−1∨ 1–sequences xn can also be viewed from the point of pseudorandomness in the
sense of Bertrandias or Bass.

Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences, I. Measure of pseudoran-
domness, the Legendre symbol , Acta Arith. 82 (1997), no. 4, 365–377 (MR1483689 (99g:11095);
Zbl. 0886.11048).
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A.Rukhin – J. Soto – J.Nechvatal – M. Smid – E.Barker – S. Leigh – M.Levenson – M.Van-
gel – D.Banks – A.Heckert – J.Dray – S.Vo: A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication 800-
22, (2000 with revision dated May 15, 2001). (http://csrc.nist.gov/rng/SP800-22b.pdf).

2.26.1. Binary Champernowne sequence. In 2.18.7 we replace the
decimal representation of the consecutive integers by the dyadic one which
gives the sequence yn

1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, . . .

and then let

xn =

{
1, if yn = 1

−1, if yn = 0

i.e. the initial segment of xn is

1, 1,−1, 1, 1, 1,−1,−1, 1,−1, 1, 1, 1,−1, 1, 1, 1, 1,−1,−1,−1, . . . .

Then for the discrepancies we have

WN (xn) >
1

32

N

logN
, if N ≥ 2,

C
(2)
N (xn) >

1

48
N, if N ≥ 17.

Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences. II. The Champernowne,
Rudin – Shapiro, and Thue – Morse sequences, a further construction, J. Number Theory 73
(1998), no. 2, 256–276 (MR1657960 (99m:11084); Zbl. 0916.11047).

2.26.2. The Thue – Morse sequence. For a positive integer n, let s(n)
denote the sum of digits in the dyadic representation of n, and let

xn = (−1)s(n), n = 0, 1, . . . .

The sequence can also be defined by the recurrence relations

x0 = 1, x2n = xn, x2n+1 = −xn for all n = 0, 1, . . . .

For the discrepancies we have

WN (xn) ≤ 2(1 +
√
3)N log 3/ log 4, if N ∈ N,

C
(2)
N (xn) ≥

1

12
N, if N ≥ 5.
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Notes: (I) This sequence was repeatedly independently discovered by many au-
thors, e.g. by E. Prouhet (1851), A.Thue (1906), H.M.Morse (1921) and others.
The 0 ∨ 1 Thue – Morse sequence xn is defined by the recursion

x0 = 0, x2n = xn, and x2n+1 = 1− xn,

and its initial segment is

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . . .

It can be generated by so called Thue – Morse automaton (cf. M.Hörnquist (1999,
Chap. 2, p. 22) and J.–P.Allouche (2000)). K.Mahler (1929) proved that the related
dyadic number

α = 0.110100110010110 . . . .

is transcendental and M.Queffélec (1998) showed that also the continued fraction
expansion

α′ = [0; a, b, b, a, b, a, a, b, b, a, a, b, a, b, b, a, . . . ].

represents a transcendental number, where a ̸= b are two integers ≥ 2, and the
sequence of a’s and b’s is obtained from the 0∨1 Thue–Morse sequence by replacing
0’s by a’s and 1’s by b’s.

(II) The discrepancy bounds for WN and C
(2)
N were proved by Ch.Mauduit and

A. Sárközy (1998).
(III) D.J.Newman (1969) proved that

N−1∑
n=0,3|n

(−1)s(n) > c.N log 3/ log 4

for some constant c > 0 and all N . Consequently

#{0 ≤ n < N ; 3|n and 2|s(n)} − N

6
> c.N log 3/ log 4.

J.–P.Allouche: Algebraic and analytic randomness, in: Noise, oscillators and algebraic random-
ness. From noise communication system to number theory. Lectures of a school, Chapelle des Bois,
France, April 5–10, 1999, Lect. Notes Phys. 550, 345–356 Springer, Berlin, 2000, (MR1861985
(2002i:68099); Zbl. 1035.68089).
M.Hörnquist: Aperiodically Ordered Structures in One Dimension, Department of Physics and
Measurement Technology, Linköping University, Ph.D. thesis in theoretical physics, Linköping,
Sveden, 1999 (www.ifm.liu.se/˜micho/phd).
K.Mahler: Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichun-
gen, Math. Ann. 101 (1929), 342–366; Corrigendum, Math. Ann. 103 (1930), 532 (MR1512537
(MR1512635); JFM 55.0115.01 (JFM 56.0185.02)).
Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences. II. The Champernowne,
Rudin – Shapiro, and Thue – Morse sequences, a further construction, J. Number Theory 73
(1998), no. 2, 256–276 (MR1657960 (99m:11084); Zbl. 0916.11047).
M.Morse: Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22
(1921), 84–100 (MR1501161; JFM 48.0786.06).
D.J.Newman: On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21
(1969), 719–721 (MR0244149 (39 #5466); Zbl. 0194.35004).
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E.Prouhet: Mémoire sur quelques relations entre les puissances des nombres, C. R. Acad. Sci.
Paris Sér. I 33 (1851), 225.
M.Queffélec: Transcedance des fractions continues de Thue–Morse, J. Number Theory 73
(1998), 201–211 (MR1658023 (99j:11081); Zbl. 0920.11045).
A.Thue: On infinite character series (Über unendliche Zeichenreihen), (Swedish & Norwegian),
Norske vid. Selsk. Skr. Mat. Nat. Kl. (1906), no. 7, 22 p. (JFM 39.0283.01, JFM 37.0066.17).

2.26.3. The Rudin – Shapiro sequence. Define the pairs of polynomials
P2n(t), Q2n(t), n = 0, 1, . . . , of degree 2n − 1 by the recurrence relations:

P1(t) = Q1(t) = 1,

P2n+1(t) = P2n(t) + t2
n
Q2n(t),

Q2n+1(t) = P2n(t)− t2
n
Q2n(t).

The Rudin – Shapiro sequence is the sequence xn, n = 0, 1, . . . , formed by
the coefficients in the expression

P2n(t) =

2n−1∑
j=0

xjt
j .

The sequence can alternatively be defined also by the recurrence relations

x0 = 1, x2n = xn, x2n+1 = (−1)nxn for all n = 0, 1, . . . .

For the discrepancies we have

WN (xn) ≤ 2(2 +
√
2)N1/2, if N ∈ N,

C
(2)
N (xn) >

1

6
N, if N ≥ 4

and

supα∈[0,1)

∣∣∣∑N
n=1 xne

−2πinα
∣∣∣ ≤ (2 +

√
2)
√
N.

Notes: See Ch.Mauduit and A. Sárközy (1998) for the discrepancies WN , C
(2)
N and

W.Rudin (1959) for the supremum.

Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences. II. The Champernowne,
Rudin – Shapiro, and Thue – Morse sequences, a further construction, J. Number Theory 73
(1998), no. 2, 256–276 (MR1657960 (99m:11084); Zbl. 0916.11047).
W.Rudin: Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855–859
(MR0116184 (22 #6979); Zbl. 0091.05706).
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2.26.4. Paperfolding sequence. It is defined by the recurrence relation

x0 = 0, x4n = 0, x4n+2 = 1 and x2n+1 = xn.

The sequence xn is not quasiperiodic, but Besicovitch almost periodic (see
the def. 2.4.2) and its spectral measure (for the def. see 3.11) is discrete.
Notes: M.Mendès France and A.J. van der Poorten (1981). The sequence xn can
also be generated by folding a sheet of paper in the left (0) and the right (1) direc-
tion. Its initial segment is

0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, . . . .

J.H. Loxton and A.J. van der Poorten (1977) proved that
∑∞
n=0 xnα

n is transcen-
dental, if α (0 < |α| < 1) is algebraic. A description of the paperfolding automaton
can be found in M.Hörnquist (1999, Chap. 2, p. 27).

M.Hörnquist: Aperiodically Ordered Structures in One Dimension, Department of Physics and
Measurement Technology, Linköping University, Ph.D. thesis in theoretical physics, Linköping,
Sveden, 1999 (www.ifm.liu.se/˜micho/phd).
J.H. Loxton – A.J. van der Poorten: A class of hypertranscendental functions, Aequationes
Math. 16 (1977), no. 1–2, 93–106 (MR0476659 (57 #16218); Zbl. 0384.10014).
M.Mendés France – A.J. van der Poorten: Arithmetic and analytic properties of paper folding
sequences, Bull. Austral. Math. Soc. 24 (1981), no. 1, 123–131 (MR0630789 (83b:10040); Zbl.
0451.10018).

2.26.5. Period–doubling sequence. It is generated by the recurrence

x0 = 0, x2n = 0, and x2n+1 = 1− xn.

Notes: See M.Hörnquist (1999, Chap. 2, p. 24). The sequence starts with the
segment

0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, . . . .

M.Hörnquist: Aperiodically Ordered Structures in One Dimension, Department of Physics and
Measurement Technology, Linköping University, Ph.D. thesis in theoretical physics, Linköping,
Sveden, 1999 (www.ifm.liu.se/˜micho/phd).

2.26.6. Let p be a prime number, and let g(x) be a permutation polynomial
of Fp[x] (i.e. the associated polynomial function g : c→ g(c) from Fp into Fp

is a permutation of Fp) of degree m such that the multiplicity of the (only)
zero of g(x) is odd. Define the sequence xn, n = 1, 2, . . . , p, by

xn =

{(
g(n)
p

)
, if g(n) ̸≡ 0 (mod p) ,

1, if g(n) ≡ 0 (mod p) ,
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where
(
n
p

)
is the Legendre symbol. Then for k ∈ N, k < p, we have

Q(k)
p (xn) < 11km

√
p log p.

Notes: (I) Ch.Mauduit and A. Sárközy (1998, Th. 5). They illustrate the result by
following classes of permutation polynomials:
• linear polynomials ax+ b ∈ Fp[x].
• monomials xk with gcd(k, p− 1) = 1.
• The Dickson polynomials Dn(x, a) of the first kind of degree n, which are defined

by

Dn(x, a) =

[n/2]∑
i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i.

(II) If g(x) = x then some discrepancy estimates can be found in (1997).

Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences, I. Measure of pseudoran-
domness, the Legendre symbol , Acta Arith. 82 (1997), no. 4, 365–377 (MR1483689 (99g:11095);
Zbl. 0886.11048).
Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences. II. The Champernowne,
Rudin – Shapiro, and Thue – Morse sequences, a further construction, J. Number Theory 73
(1998), no. 2, 256–276 (MR1657960 (99m:11084); Zbl. 0916.11047).

2.26.7. Let α be an irrational number, and k a positive integer. Define the
sequence

xn =

{
+1, if {nkα} ∈ [0, 1/2),

−1, if {nkα} ∈ [1/2, 1).

Assume that k, l ∈ N, k ≥ 3, k ≥ 2l + 1, and that the partial quotients
in the continued fraction expansion of α = [a0; a1, a2, . . . ] are bounded, say,
ai ≤ K ∈ N for i ≥ 1.

Define σ∗(k) as follows: σ∗(3) = 9, σ∗(4) = 20, σ∗(5) = 51, σ∗(6) = 116,
σ∗(7) = 247, σ∗(8) = 422, σ∗(9) = 681, σ∗(10) = 1090, σ∗(11) = 1781, and
σ∗(k) = 2k2(2 log k+ log log k+3) for k ≥ 12. Then for all ε > 0 there exists
a number N0 = N0(K, k, ε) such that if N > N0, then

WN (xn) < N1−1/σ∗(k)+ε,

C
(l)
N (xn) < N1−1/σ∗(k)+ε

Notes: (I) Ch.Mauduit and A. Sárközy ([a]2000). In the proof they used Erdős –
Turán inequality 1.9.0.8. For the more general case in which the sequence nkα is
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replaced by nkα, where the sequence nk of positive integers increases, they proved
the bound

WN (xn) ≤ max
a,b,m

mDm(na+bjα),

where Dm is the classical extremal discrepancy of m points na+bα, na+b2α, . . . ,
na+bmα, all taken mod 1. Cf. W.Philipp and R.F.Tichy (2002) and H.Albre-
cher (2002).
(II) Mauduit and Sárközy (2000) generalized the results for sequence n2α to nkα,
they proved that
• limN→∞

1
N

∑N
n=1 xnxn+d = 0 for all fixed d ∈ N,

• limN→∞
1
N

∑N
n=1 xnxn+d1xn+d2 . . . xn+d2l = 0 for all l ∈ N and positive integers

d1 < d2 < · · · < d2l.

(III) Erdős suggested to study the sequence

yn =

{
+1, if {nkα} < {(n+ 1)kα},
−1, if {nkα} > {(n+ 1)kα}.

Mauduit and Sárközy ([a]2000) found for the correlation

• limN→∞
1
N

∑N
n=1 ynyn+1 = − 1

3

and they suggest the study of the sequences

zn =

{
+1, if {nα} < {nkα},
−1, if {nα} > {nkα}

for k ≥ 2, and

un =

{
+1, if {nc} ∈ [0, 1/2),

−1, if {nc} ∈ [1/2, 1)

for c > 0, c /∈ N.

H.Albrecher: Metric distribution results for sequences ({qnα⃗}), Math. Slovaca 52 (2002), no. 2,
195–206 (MR 2003h:11083; Zbl. 1005.11036).
Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences. V: On nα and (n2α) se-
quences, Monatsh. Math. 129 (2000), no. 3, 197–216 (MR1746759 (2002c:11088); Zbl. 0973.11076)).
[a] Ch.Mauduit – A. Sárközy: On finite pseudorandom binary sequences. VI: On (nkα) se-
quences, Monatsh. Math. 130 (2000), no. 4, 281–298 (MR1785423 (2002c:11089); Zbl. 1011.11054).
W.Philipp – R.Tichy: Metric theorems for distribution measures of pseudorandom sequences,
Monatsh. Math. 135 (2002), no. 4, 321–326 (MR1914808 (2003e:11083); Zbl. 1033.11039).

2.26.8. Open problem. Let θ = [0; a1, a2, . . . ] be an irrational number
in [0, 1] given by its continued fraction expansion and let pn(θ)/qn(θ), n =
0, 1, 2, . . . , be the corresponding sequence of its convergents. In the sequence

xn = qn(θ) (mod 2)
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find the frequency of each possible block (. . . , 0, . . . , 1, . . . , 0, . . . ) of length s
which occurs in xn as (xn+1, . . . , xn+s) for a special class of θ (e.g. with
bounded ai).

Notes: R.Moeckel (1982) proved that, for almost all θ, the three possible blocks
(0, 1), (1, 0) and (1, 1) of length s = 2 occur in xn with equal frequencies. The blocks
of lengths s = 3 and s = 4 are investigated in V.N.Nolte (1990).

R.Moeckel: Geodesic on modular surfaces and continued fractions, Ergodic Theory Dynamical
Systems 2 (1982), no. 1, 69–83 (MR0684245 (84k:58176); Zbl. 0497.10007).
V.N.Nolte: Some probabilistic results on the convergents of continued fractions, Indag. Math.
(N.S.) 1 (1990), no. 3, 381–389 (MR1075886 (92b:11053); Zbl. 0713.11038).



3. Multi–dimensional sequences

3.1 Criteria and basic properties

3.1.1. The s–dimensional sequence

xn = (xn,1, . . . , xn,s) mod 1

is

u.d.

if and only if it satisfies any of the following conditions:
• limN→∞

1
N

∑N
n=1 f({xn}) =

∫
[0,1]s f(x) dx holds for all continuous func-

tions f : [0, 1]s → R,
• limN→∞

1
N

∑N
n=1 e

2πih·xn = 0 holds for all h ∈ Zs, h ̸= 0,
• the one–dimensional sequence h1xn,1 + · · ·+ hsxn,s mod 1, n = 1, 2, . . . , is

u.d. for every integer vector (h1, . . . , hs) ̸= (0, . . . , 0),
• limN→∞DN (xn) = 0,
• limN→∞D∗

N (xn) = 0,

• limN→∞D
(2)
N (xn) = 0.

H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).

3.1.2. If xn is an infinite sequence in [0, 1) and s a positive integer, let

xn = (xn+1, . . . , xn+s).

If there is a constant c such that

lim sup
N→∞

A(Is;N ;xn)

N
≤ c|Is|

for all s ≥ 1 and every subinterval Is ⊂ [0, 1]s, then the sequence xn is

completely u.d.
A.G.Postnikov: A test for a completely uniformly distributed sequence, (Russian), Dokl. Akad.
Nauk. SSSR 120 (1958), 973–975 (MR0101858 (21 #665); Zbl. 0090.35504).

3 – 1
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3.1.3. Let f(x, y) be a twice continuously differentiable function defined
on [0, 1]2. If (xn, yn) mod 1, n = 1, 2, . . . , is u.d. in [0, 1]2, then

lim
N→∞

N∑
n=1

(
f

({
xn +

1

N

}
,

{
yn +

1

N

})
− f

({
xn +

1

N

}
, {yn}

)
−

− f

(
{xn} ,

{
yn +

1

N

})
+ f({xn} , {yn})

)
=

= f(1, 1)− f(1, 0)− f(0, 1) + f(0, 0).

Notes: R.F.Tichy (1982). If f(x, y) is a three times continuously differentiable
function, then∣∣∣∣∣

N∑
n=1

(
f

({
xn +

1

N

}
,

{
yn +

1

N

})
−

− f

({
xn +

1

N

}
, {yn}

)
− f

(
{xn} ,

{
yn +

1

N

})
+ f

(
{xn} , {yn}

))
−

−
(
f(1, 1)− f(1, 0)− f(0, 1) + f(0, 0)

)∣∣∣∣∣ ≤ C(f)DN .

Here DN denotes the discrepancy of (xn, yn) mod 1 and C(f) is a constant which
depends only on f , and which can be explicitly given using the Koksma – Hlawka
inequality. The results also remain true for weighted means.

Related sequences: 2.2.20

R.F.Tichy: Einige Beiträge zur Gleichverteilung modulo Eins, Anz. Österreich. Akad. Wiss.
Math.–Natur. Kl. 119 (1982), no. 1, 9–13 (MR0688688 (84e:10061); Zbl. 0495.10030).

3.2 General operations with sequences

3.2.1. If the sequence (xn,1/2, . . . , xn,s/2) mod 1 is u.d., then the sequence(
(−1)[xn,1]xn,1, . . . , (−1)[xn,s]xn,s

)
mod 1

is

u.d.
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P.J.Grabner – O. Strauch – R.F.Tichy: Maldistribution in higher dimension, Math. Panon. 8
(1997), no. 2, 215–223 (MR1476099 (99a:11094); Zbl. 0923.11110).

3.2.1.1 Let (m1, . . . ,ms) ∈ Ns and xn,i ∈ R for n ≥ 0 and 1 ≤ i ≤ s. If
the sequence (

{xn,1/m1}, . . . , {xn,s/ms}
)
, n = 0, 1, 2, . . . ,

is u.d. in [0, 1)s, then the sequence(
[xn,1], . . . , [xn,s]

)
, n = 0, 1, 2, . . . ,

is u.d. modulo (m1, . . . ,ms).

Notes:

H.Niederreiter: On a class of sequences of lattice points, J. Number Theory 4 (1972), 477–502
(MR0306144 (46 #5271); Zbl. 0244.10036).

3.2.2. LetMi, i = 1, 2, . . . , be a sequence of positive integers which satisfies
lim
k→∞

∑k−1
i=1 Mi/Mk = 0. For a sequence yk, k = 1, 2, . . . , in [0, 1)s, let H ⊂

[0, 1]s × [0, 1]s denote the set of all limit points of the sequence (yk−1,yk),
k = 2, 3, . . . . If the sequence xn, n = 1, 2, . . . , from [0, 1)s is given by the rule

xn = yk for

k−1∑
i=1

Mi ≤ n <

k∑
i=1

Mi,

then

G(xn) = {tcα(x) + (1− t)cβ(x) ; t ∈ [0, 1], (α,β) ∈ H},
where the d.f. cα : [0, 1]s → [0, 1] is defined by

cα(x) =

{
1, if x ∈ [α,1],

0, otherwise.

Notes: P.J.Grabner, O. Strauch and R.F.Tichy (1997). Consequently: Suppose
that for a given a set H ⊂ [0, 1]s there exists a sequence yk, k = 1, 2, . . . , in [0, 1]s

such that
(i) H coincides with the set of all limit points of yk,
(ii) lim

k→∞
(yk − yk−1) = 0.
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Then there exists a sequence xn, n = 1, 2, . . . , in [0, 1)s for which

G(xn) = {cα(x) ; α ∈ H}.
Related sequences: 2.12.4

P.J.Grabner – O. Strauch – R.F.Tichy: Maldistribution in higher dimension, Math. Panon. 8
(1997), no. 2, 215–223 (MR1476099 (99a:11094); Zbl. 0923.11110).

3.2.3. Let DN (xn) be the extremal discrepancy of the s–dimensional se-
quence xn = (xn,1, . . . , xn,s) in [0, 1)s and DN (xn,i) be the extremal discrep-
ancy of its ith coordinate sequence xn,i. Then

DN (xn) ≥ DN (xn,i) for i = 1, 2, . . . , s.

Notes: A similar result holds for the star discrepancyD∗
N , cf. [KN, p. 100, Ex. 1.14].

3.2.4. Let f(n) mod 1 be completely u.d., q1, . . . , qs be positive integers, and
α1, . . . , αs be defined by (with [·] and {·} denoting the integral and fractional
parts, resp.)

αν =

∞∑
k=1

[{f(sk + ν)}qν ]
qkν

, ν = 1, . . . , s.

Then the sequence
xn = (α1q

n
1 , . . . , αsq

n
s ) mod 1

is

u.d.
N.M.Korobov: On completely uniform distribution and conjunctly normal numbers, (Russian),
Izv. Akad. Nauk SSSR, Ser. Mat. 20 (1956), 649–660 (MR0083522 (18,720d); Zbl. 0072.03801).

3.2.5. If xn = (xn1, . . . , xns) ∈ (0, 1]s is u.d. with the discrepancy DN (xn),
then the sequence

yn =

(
1

xn1
, . . . ,

1

xns

)
mod 1

has the a.d.f.

g(x) =
s∏

i=1

∞∑
n=1

xi
n(n+xi)

for x = (x1, . . . , xs) ∈ [0, 1]s,

and
DN (yn) ≤ 2.12s(DN (xn))

1
s+1 .
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E.Hlawka: Cremonatransformation von Folgen modulo 1 , Monatsh. Math. 65 (1961), 227–232
(MR0130242 (24 #A108); Zbl. 0103.27701).

3.2.6. Let (un, vn, an, bn), n = 1, 2, . . . , be a sequence in the interval [0, δ]×
[0, 1]×[0, δ]×[0, 1] which has the limit distribution with density ρ(u, v, a, b) =
ρ1(u)ρ2(v)ρ3(a)ρ4(b) and the extremal discrepancy DN ((un, vn, an, bn)) with

respect to ρ. If Φ(µ, t) = 1−e−µt

µ for t ∈ [0,∞) and µ > 0 is a constant then
the discrepancy of the two–dimensional sequence(un

δ
Φ(µ, t) +

an
δ
, vnΦ(µ, t) + bn

)
mod 1

satisfies

DN ≤ c

(DN

(
(un, vn, an, bn)

)
µ2

) 1
5

+ δ2µ2

 .

Notes: Note that x = unΦ(µ, t) + an and ω = vnΦ(µ, t) + bn solve the system of
differential equations ẋ = p, ϕ̇ = ω, ṗ = −µp, and ω̇ = −µω in the variable t with
the initial condition p(0) = un and ω(0) = vn, where µ > 0 represents the friction.

E.Hlawka: Gleichverteilung und die willkürlichen Funktionen von Poincaré, Math. Slovaca 48
(1998), no. 5, 457–506 (MR1697611 (2000j:11120); Zbl 0956.11016).

3.2.7. Let h(x) denote a density on the s–dimensional unit cube [0, 1]s

with corresponding distribution function g(x) =
∫
[0,x] h(t) dt. Suppose that

h(x) factors in the form h(x) = h1(x1) . . . hs(xs), where x = (x1, . . . , xs)
and let gj denote the d.f. corresponding to hj for j = 1, . . . , s, i.e. g(x) =
g1(x1) . . . gs(xs). Furthermore, let xn = (xn,1, . . . , xn,s), n = 1, . . . , N , be a
sequence in [0, 1)s and let yn = (yn,1, . . . , xn,s), n = 1, . . . , N , be defined by

yn,j =
1

N

N∑
i=1

(
1 + xn,j − gj(xi,j)

)
.

Then the discrepancy DN (yn, g) of yn with respect to g can be estimated in
terms of the usual extremal discrepancy DN (xn) as follows

DN (yn, g) ≤

(
2 + 6s sup

x∈[0,1]s
h(x)

)
DN (xn).
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Notes: E.Hlawka (1997) applied this estimate to densities ht(x) which arose from
diffusion equations, the Schrödinger equation, the Klein – Gordon equation from
optics and thermodynamics, etc. For the one–dimensional case cf. 2.3.10.

E.Hlawka: Gleichverteilung und Simulation, Österreich. Akad. Wiss. Math.–Natur. Kl.
Sitzungsber. II 206 (1997 (1998)), 183–216 (MR1632927 (99h:11084); Zbl. 0908.11031).

3.2.8. Let un and vn be two u.d. and statistically independent sequences
in [0, 1). Then the sequence

xn = (un, vn, {un − vn}), n = 1, 2, . . . ,

has

the a.d.f. g(x)

which can be described as follows:
Divide the unit square [0, 1]2 into regions A,B,C,D,E, F,G,H, I as shown
on the following Figure

�
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�
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�
�
�
�
�
�

�
�
�

��

�
�
�
�
�
�
�
�
�
�
��

�
�
�

�
�
�

(0, 0) (1− x3, 0) (1, 0)
→ x1

(0, 1)↑
x2 (1− x3, 1) (1, 1)

(0, x3) (1, x3)

A

B

E

H

I

C

D

F

G
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Then

g(x1, x2, x3) =



x1x3, if (x1, x2) ∈ A,

−1
2(x

2
1 + x22 + x23) + x1x2 + x2x3, if (x1, x2) ∈ B,

−1
2x

2
1 + x1x2, if (x1, x2) ∈ C,

1
2x

2
2, if (x1, x2) ∈ D,

−1
2x

2
3 + x2x3, if (x1, x2) ∈ E,

−1
2x

2
2 + x1x2 + x1x3 + x2x3 − x1 − x3 +

1
2 , if (x1, x2) ∈ F,

1
2x

2
1 + x1x3 + x2x3 − x1 − x3 +

1
2 , if (x1, x2) ∈ G,

1
2(x

2
1 + x22 + x23) + x1x3 − x1 − x3 +

1
2 , if (x1, x2) ∈ H,

x1x2 + x2x3 − x2 if (x1, x2) ∈ I.

Notes: O. Strauch (2003). The Weyl criterion implies that the two–dimensional
sequence

(un, {un − vn})
is u.d., thus the face d.f.’s are

g(1, x2, x3) = x2x3, g(x1, 1, x3) = x1x3, g(x1, x2, 1) = x1x2.

Another d.f. having these three properties (distinct from the u.d.) is g(x1, x2, x3) =
min(x1x2, x1x3, x2x3).

O. Strauch: Reconstruction of distribution function by its marginals, Math. Institute, Slovak
Acad. Sci., Bratislava, Slovak Republic, 2003, 10 pp.

3.3 General sequences (Sequences involving continuous
functions)

3.3.1. Let λ > 3, β1 > 1 and 0 < β2 < 1. Suppose that

ω(ν) ≥ νλ and

(
1 +

β1
ν

)
ω(ν) ≤ ω(ν + 1) ≤ β2νω(ν)

for every sufficiently large ν. If f(x) =
∑∞

ν=0 aνx
ν with |aν | = e−ω(ν), then

the sequence
f(n) mod 1

is

completely u.d.
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Notes: N.M.Korobov (1950). In (1948) he gave the first example of a completely
u.d. sequence of the type f(n) mod 1 where

f(x) =

∞∑
ν=0

e−e
ν

xν .

E.D.Knuth (1965) gave the following different construction of a completely u.d.
sequence xn:
• let Ak be the block consisting of 2k

2

real numbers yk,i =
m
2k

mod 1 for 1 ≤ m ≤
2k, where

• yk,1 = · · · = yk,k = 0, and for i > k
• m is the least integer such that the k–tuple (yk,i−k+1, . . . , yk,i−1, yk,i) has not

previously occurred in Ak,
• Sk is a k.2k–fold repetition of the segment Ak.

Then the desired xn is the sequence of blocks Sk, i.e.

(xn)
∞
n=1 = (Sk)

∞
k=1.

Knuth proved the completely u.d. of xn using a result of L.R. Ford, Jr. (1957).
M.Vojvoda and M. Šimovcová (2001) replaced Ak in Knuth’s construction by a
linear recurring sequences associated with a primitive characteristic polynomial.

L.R. Ford, Jr.: A cyclic arrangement of n–tuples, Rand Corporation, Report P–1070, Santa Mon-
ica, Calif., 1957.
E.D.Knuth: Construction of a random sequence, Nordisk. Tidskr. Informations–Behandling 5
(1965), 246–250 (MR0197434 (33 #5599); Zbl. 0134.35701).
N.M.Korobov: On functions with uniformly distributed fractional parts, (Russian), Dokl. Akad.
Nauk SSSR 62 (1948), 21–22 (MR0027012 (10,235e); Zbl. 0031.11501).
N.M.Korobov: Concerning some questions of uniform distribution, (Russian), Izv. Akad. Nauk
SSSR, Ser. Mat. 14 (1950), 215–238 (MR0037876 (12,321a); Zbl. 0036.31104).
M.Vojvoda – M. Šimovcová: On concatenating pseudorandom sequences, J. Electrical Engineer-
ing 52 (2001), no. 10/s, 36–37 (Zbl. 1047.94012).

3.3.2. Let f(x) be an s + 1 times differentiable function defined for x ≥ 0
such that
(i) f (s)(x) → ∞ as x→ ∞,
(ii) f (s+1)(x) > 0 for x ≥ x0,
(iii) f (s+1)(x) → 0 as x→ ∞.

Then the sequence (
f(n), f ′(n), . . . , f (s)(n)

)
mod 1

is
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dense in [0, 1]s.

Notes: John Daily in his Ph.D. dissertation (cf. F.S.Cater, R.B.Crittenden and
Ch.Vanden Eynden (1976)). This generalizes the one–dimensional case 2.6.25 of
P.Csillag (1929). The two–dimensional case is studied by F.S.Cater, R.B.Crittenden
and Ch.Vanden Eynden (1976), cf. 2.6.23.

F.S.Cater – R.B.Crittenden – Ch.Vanden Eynden: The distribution of sequences modulo one,
Acta Arith. 28 (1976), 429–432 (MR0392903 (52 #13716); Zbl. 0319.10042).
P.Csillag: Über die Verteilung iterierter Summen von positiven Nullfolgen mod 1, Acta Litt.
Sci. Szeged 4 (1929), 151–154 (JFM 55.0129.01).

3.3.2.1 Multidimensional Fejér’s theorem. Let k be a fixed positive
integer and xn, n = 1, 2, . . . , be a sequence of real numbers satisfying (as
n→ ∞)
(i) ∆kxn ↘ 0,
(ii) ∆k−1xn → ∞.

Then the condition
(iii) n∆kxn → ∞
is a necessary and sufficient condition for the k–dimensional sequence

(xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . ,

to be

u.d.

Notes: Kemperman (1973, p. 144, Th. 5). For one-dimensional Fejér’s theorem see
2.2.10, 2.2.11, 2.6.1.

J.H.B.Kemperman: Distribution modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3)
21 (1973), 138–163 (MR0387224 (52 #8067); Zbl. 0268.10038).

3.3.3. Denote by Tq,y(x) the mapping Ty : [0, 1] → [0, 1] defined in 2.7.3 for
an integer q ≥ 2 and every y ∈ [0, 1]. Let y1 = 1

q1
, y2 = 1

q2
, where q1, q2

are two integers such that gcd(q1, q2) = 1. Then for every x1, x2 ∈ [0, 1] the
two–dimensional sequence of iterates(

T (n)
q1,y1(x1), T

(n)
q2,y2(x2)

)
, n = 0, 1, 2, . . . ,

is

u.d.
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and has the discrepancy

D∗
N ≤

1 + (q1 − 1)(q2 − 1)[logq1(Nq1)][logq2(Nq2)]

N
.

Notes: B.Lapeyre and G.Pagès (1989). For the one–dimensional case see 2.7.3.

B.Lapeyre – G.Pagès: Familles de suites à discrépance faible obtenues par itération de trans-
formations de [0, 1], C. R. Acad. Sci. Paris, Série I 308 (1989), no. 17, 507–509 (MR0998641
(90b:11076); Zbl. 0676.10038).

3.3.4. Let DN be the extremal discrepancy of a two–dimensional sequence
of the type

(xn, yn) mod 1

and DN (p, q) the one–dimensional extremal discrepancy of the sequence

pxn + qyn.

Then there exists an absolute constant c such that for every ε > 0

DN ≤ ε+ c

(
DN (0, 1) +DN (1, 0) +

∑
(p,q)=1
p>0,q>0

f(p, q, ε)DN (p, q)

)
,

where f(p, q, ε) = min(|pq|−1, |εpq|−2).

Notes: This is a quantitative version of the two–dimensional Weyl theorem 1.11.1.3.

W.J.Coles: On a theorem of van der Corput on uniform distribution, Proc. Cambridge Philos.
Soc. 53 (1957), 781–789 (MR0094329 (20 #848); Zbl. 0079.07202).

3.4 Sequences of the form a(n)θ

3.4.1. Kronecker sequences.

(I) The s–dimensional Kronecker sequence

nθ = (nθ1, . . . , nθs) mod 1

is

u.d.
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if and only if 1, θ1, . . . , θs are linearly independent over Z (or equivalently
over Q).

(II) If 1, θ1, . . . , θs are linearly independent (over Z) and if there exists a
function ϕ : R+ → R+ such that ϕ(t)/t is monotonically increasing and

∥h · θ∥ = ∥h1θ1 + · · ·+ hsθs∥ ≥ 1

ϕ(max(|h1|, . . . , |hs|))
=

1

ϕ(∥h∥∞)

for all 0 ̸= h = (h1, . . . , hs) ∈ Zs, then

DN (nθ) = O
(
logN log ϕ−1(N)

ϕ−1(N)

)
,

where ϕ−1(N) denotes the inverse function of ϕ(x).

(III) Let
δq(θ) = max

1≤j≤s
∥qθj∥

for θ = (θ1, . . . , θs) ∈ Rs and a positive integer q. If there exists a constant
C > 0 such that δq(θ) ≥ C/q1/s for every positive integer q then θ is called
badly approximable. If 1, θ1, . . . , θs, s ≥ 2, are linearly independent over Z
then for the isotropic discrepancy (see p. 1 – 87 ) we have

IN (nθ) = O
(
N−1/s

)
if and only if θ is badly approximable. In other words, if and only if the
linear form L = (

∑s
j=1mjθj) − m is extremal or badly approximable (i.e.

there exists a c > 0 such that N s|L| ≥ c if |mj | ≤ N for j = 1, 2, . . . , s and
all integral N > 0).

On the other hand, for every positive integer s there is a positive constant cs
such that for every θ and every N = 1, 2, . . . , we have

IN (nθ) > csN
−1/s.

If s = 2 then for all θ = (θ1, θ1) ∈ R2 and for infinitely many N we have

N1/2IN (nθ) ≥ 0.0433 . . . .

Notes: (I) u.d. of the Kronecker sequence was proved by H.Weyl (1916).
(II) [DT, p. 70,Th. 1.80].
(IIIa) For the definition of badly approximable numbers cf. [DT, p. 67]. The es-
timation of the isotropic discrepancy was proved by G. Larcher (1988, 1989), cf.
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[DT, p. 71, Th. 1.81]. With the lower bound he extended previous result IN (nθ) >
csN

−2/(s+1) proved by W.M. Schmidt (1977). For some related metric theorems, cf.
[DT, p. 66–90].
(IIIb) For the cube-discrepancy DC

N (nθ) (for the def. see 1.11.7) and for dimension
s ≥ 2, G. Larcher (1991) proved that

• DC
N (nθ) > c(s)max

(
1
N ,

rs−1

N1/s

)
for all θ ∈ Rs and all r ∈ (0, 1),

• DC
N (nθ) < c(s,θ)max

(
1
N ,

rs−1

N1/s

)
for badly approximable θ ∈ Rs and all r ∈ (0, 1),

• if θ ∈ Rs is not badly approximable, then for all r ∈ (0, 1) and for all c there is

an N such that DC
N (nθ) > c · r

s−1

N1/s .

(IV) A θ is called a good point (cf. L.–K.Hua and Y.Wang (1981, p. 82)) if

D∗
N (nθ) ≤ c(θ, ε)

N1−ε .

They proved (1981, p. 61, Th. 3.3) that if

∥h · θ∥ ≥ c(θ, ε)

∥h∥1+ε∞

holds for any integral vector h ̸= 0, then θ is a good point. For instance:
• If θ1, . . . , θs are real algebraic numbers such that 1, θ1, . . . , θs are linearly indepen-

dent over Z, then θ = (θ1, . . . , θs) is good point (this follows from W.M. Schmidt
(1970)).

• If θi = eri where ri, i = 1, 2, . . . , s, are different non–zero rational numbers, then
θ is good point (cf. A.Baker (1965)).

(V) Given θ with 1, θ1, . . . , θs linearly independent over Z, we say (Niederreiter (1975,
Definition 3) that θ is of finite type γ, γ ∈ R, if γ is the infimum of those numbers σ
for which there exists a positive constant c = c(σ,θ) such that

rσ(h)∥h · θ∥ ≥ c

holds for all lattice points h ∈ Zs with h ̸= 0 (cf. 2.8.1(V)). H.Niederreiter (1975,
Th. 7) proved that if θ is of finite type γ = 1, then the Abel discrepancy Dr(nθ) of
the sequence nθ, n = 0, 1, 2, . . . , satisfies

Dr(nθ) = O
(
(1− r)1−ε

)
for every ε > 0. A.Baker (1965) proved that θ = (er1 , . . . , ers) with distinct non–
zero rationals r1, . . . , rs is of type γ = 1.
(VI) If 1, θ1, . . . , θs are algebraic numbers linearly independent over Z then DN =
O(N−1+ε) for every ε > 0 (cf. H.Niederreiter (1972)).
(VII) Linear independence of 1, θ1, . . . , θs over Q for positive real roots

θi =

(
pi
qi

)1/mi

,
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where pi, qi,mi are positive integers, i = 1, 2, . . . , s, follows from a theorem proved
by L.J.Mordell (1953) provided that there is no relation of the form θn1

1 . . . θns
s ∈

Q with integers n1, . . . , ns unless n1 ≡ 0 (modm1) , . . . , ns ≡ 0 (modms). Ac-
tually Mordell proved a stronger result generalizing a previous result proved by
A.S. Besicovitch (1940), cf. 3.6.5.
(VIII) E.I. Kovalevskaja (2000) proved that if θ = (θ1, . . . , θs) satisfies (II) with
ϕ(t) = tσ, s < σ < s+ 1, then the sequence

xn = (nθ1, . . . , nθs) mod 1/2

gives a ”good approximation of zero”.
(IX) I.I. Pjateckĭı–Šapiro proved (cf. N.N.Korobov (1963, p. 85, Th. 10)) that for
every f(x) =

∑
h∈Zs che

2πih·x with
∑

h∈Zs |ch| <∞, there exits a θ depending on f
such that ∣∣∣∣∣ 1N

N∑
n=1

f(nθ)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ = O
(
logN

N

)
.

(X) N.N.Korobov (1963, p. 89, Th. 11) proved: If for θ and every 0 ̸= h ∈ Zs the
distance ||h · θ|| of h · θ = h1θ1 + · · ·+ hsθs to the nearest integer satisfies

||h · θ|| ≥ c0
r(h)(

∏s
i=1(log(r(hi) + 1)))γ

,

where γ ≥ 0, c0 > 0 are constants independent on h
(
here r(h) =

∏s
i=1 r(hi),

r(hi) = max(1, |hi|)
)
, then for every f ∈ Eαs (c) (i.e. f(x) =

∑
h∈Zs che

2πih·x, where
|ch| ≤ cr−α(h) for 0 ̸= h ∈ Zs) we have∣∣∣∣∣ 1N

N∑
n=1

f(nθ)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ = O
(

1

N

)
.

(XI)(i) For Kronecker s-dimensional sequence nθ = (nθ1, . . . , nθs) mod 1 and
an interval I = I1 × · · · × Is define the local discrepancy function by D(N, I) =∣∣A(I;N ;nθ) − N |I|

∣∣. Assume that 1, θ1, . . . , θs are linearly independent over Z.
P. Liardet (1987) proved that D(N, I) is bounded as N → ∞ if and only if there
exists an index i such that |Ii| = kθi mod 1 for some integer k and |Ij | = 1 for all
j ̸= i. G.Rauzy (1984) proved a criterion for D(N,A) being bounded for general
sets A ⊂ [0, 1]s and S. Ferenczi (1992) for measurable sets A ⊂ [0, 1]s.

(ii) Let s = 2 and 1, α, β be linearly independent. Let I be an interval in [0, 1)2 with
sides of length {qα}, {qβ} for an integer q. S. Hartman (1948) conjectured that in this
case the local discrepancy function D(N, I) is bounded. P. Szüsz (1955) showed that
this not true. Namely, using a continued fraction construction he showed that this
not true for any irrational β and any one of an uncountable set of α’s corresponding
to the given β even for q = 1. The negative answer also follows from P. Liardet’s
(1987) result in (XI) (i).
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(iii) Let I by the parallelogram determined by the vectors

(min({qα}, {qβ})/max({qα}, {qβ}), 0) and
(min({qα}, {qβ}),max({qα}, {qβ}))
for an integer q. P. Szüsz (1954) proved that in this case the local discrepancy
function D(N, I) is bounded.
(XII) V.V. Kozlov (1978) investigated the case of dimension s = 1 and then E.V.
Kolomeikina and N.G. Moshchevitin (2003) proved for general s: Let

xn = (nθ1 + ψ1, . . . , nθs + ψs) mod 1, n = 1, 2, . . .

be the Kronecker sequence, where θ1, . . . , θs, 1 are linearly independent over Q. Let
further f(x) be a 1-periodic function satisfying

∫
[0,1]s

f(x) dx = 0 and

(1) f(x) = p(x) + h(t · x)
where p(x) is a trigonometric polynomial, h(x) is a 1-periodic function of a single
variable x and t · x is the inner product. Then

lim inf
N→∞

sup
ψ1,...,ψs

N

∣∣∣∣ 1N
N∑
n=1

f(x)−
∫
[0,1]s

f(x) dx

∣∣∣∣ = 0.

Note that the vanishing of lim inf characterize the form of f(x) given by (1).

Related sequences: 3.6.5, 3.6.9, 3.6.6, 3.6.7

A.Baker: On some diophantine inequalities involving the exponential function, Canad. Math. J.
17 (1965), 616–626 (MR0177946 (31 #2204); Zbl. 0147.30901).
A.S. Besicovitch: On the linear independence of fractional powers of integers, J. London Math.
Soc. 15 (1940), 3–6 (MR0002327 (2,33f); Zbl. 0026.20301).
S. Ferenczi: Bounded remainder sets, Acta Arith 61 (1992), no. 4, 319–326 (MR1168091 (93f:11059);
Zbl. 0774.11037).
S.Hartman: Problème 37 , (French), Coll. Math. 1 (1948), 3, 239.
L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).
E.V.Kolomeikina – N.G.Moshchevitin: Nonrecurrence in mean of sums along the Kronecker
sequence, Math. Notes 73 (2003), no. 1, 132–135 (MR1993548 (2004f:11078); Zbl. 1091.11027).
(translation from Math. Zametki 73 (2003), no. 1, 140–143).

È.I. Kovalevskaja (Kovalevskaya): On the exact order of simultaneous approximations for al-
most all linear manifold’s points, (Russian), Vests̄ı Nats. Akad. Navuk Belarus̄ı Ser. F̄ız.-Mat.
Navuk, (2000), no. 1 23–27, 140 (MR1773665 (2001e:11083); ).
V.V.Kozlov: On integrals of quasiperiodic functions, Mosc. Univ. Mech. Bull. 33 (1978), no. 1-
2, 31–38 (translation from Vestn. Moskov. Univ., Ser. I (1978), 1, 106–115) (MR0478231 (57
#17717); Zbl. 0404.34034).
G.Larcher: On the distribution of s–dimensional Kronecker sequences, Acta Arith. 51 (1988),
no. 4, 335–347 (MR0971085 (90f:11065); Zbl. 0611.10033).
G.Larcher: On the distribution of the multiples of an s–tuple of real numbers, J. Number Theory
31 (1989), no. 3, 367–372 (MR0993910 (90h:11066); Zbl. 0671.10047).
G.Larcher: On the cube–discrepancy of Kronecker–sequences, Arch. Math. (Basel) 57 (1991),
no. 4, 362–369 (MR1124499 (93a:11064); Zbl. 0725.11036).
P. Liardet: Regularities of distribution, Compositio Math. 61 (1987), 267–293 (MR0883484
(88h:11052); Zbl. 0619.10053).
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L.J.Mordell: On the linear independence of algebraic numbers, Pacific J. Math. 3 (1953), 625–
630 (MR0058649 (15,404e); Zbl. 0051.26801).
H.Niederreiter: Methods for estimating discrepancy, in: Applications of Number Theory to
Numerical Analysis (Proc. Sympos., Univ. Montréal, Montréal, Que., 1971), (S.K. Zaremba ed.),
Academic Press, New York, 1972, pp. 203–236 (MR0354593 (50 #7071); Zbl. 0248.10025).
H.Niederreiter: Quantitative versions of a result of Hecke in the theory of uniform distribution
mod 1, Acta Arith. 28 (1975/76), no. 3, 321–339 (MR0389778 (52 #10609); Zbl. 0318.10037).
G.Rauzy: Ensembles à restes bornés, in: Seminar on number theory, 1983–1984 (Talence, 1983/1984),
Exp. No. 24, Univ. Bordeaux I, Talence, 1984, 12 pp. (MR0784071 (86g:28024); Zbl. 0547.10044)
W.M. Schmidt: Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125
(1970), 189–201 (MR0268129 (42 #3028); Zbl. 0205.06702).
W.M. Schmidt: Lectures on Irregularities of Distribution, Tata Institute of Fundamental Research,
Bombay, 1977 (MR0554923 (81d:10047); Zbl. 0434.10031).
P. Szüsz: Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheit-
squadrats Acta Math. Acad. Sci. Hungar. 5 no. 1-2, (1954), 35–39 (MR0064086 (16,224a); Zbl.
0058.03503).
P. Szüsz: Lösung eines Problems von Herrn Hartman (German), Stud. Math. 15 (1955), 43–55
(MR0074463 (17,589d); Zbl. 0067.02401).
H.Weyl: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352 (JFM
46.0278.06).

3.4.1.1 Let ai,n, n = 1, 2, . . . , i = 1, 2, be sequences of positive integers
such that a1,1 = a2,1 = 1, a1,2 = a2,2 = 2 and

a1,n+2 =


2 + 3a1,1a1,2...a2,n+1 , if n = 2k, k = 2m,

a1,n + [5 log3(a1,n + 1)], if n = 2k, k ̸= 2m,

1 +
[
42

(a1,1a1,2...a2,n) log a1,n ]
, if n = 2k + 1, k = 22m,

a1,n + [log2 log3(a1,n + log a1,n)], if n = 2k + 1, k ̸= 22m,

a2,n+2 =



2 + 75
3
a1,1a1,2...a2,n+1

, if n = 2k, k = 2m,

2 + a2,n +
[

3n
2n+2

log4 log(a22,n +
√
a2,n)

]
, if n = 2k, k ̸= 2m,

1 + 34
53

a1,1a1,2...a2,n+1

, if n = 2k + 1, k = 22m,

a2,n +
[

1√
n6+4

log3 log2n log(a2,n + 5 log log a2,n)
]
, if n = 2k + 1, k ̸= 22m,

for all n = 1, 2, . . . . Then the numbers

1,
∞∑
n=1

1
a1,n

,
∞∑
n=1

1
a2,n

are linearly independent over the rational numbers.

J.Hančl – P.Rucki – J. Šustek: A generalization of Sándor’s theorem using iterated logarithms,
Kumamoto J. Math. 19 (2006), 25–36 (MR2211630 (2007d:11080); Zbl. 1220.11087).
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3.4.1.2 Let ai,n , n = 1, 2, . . . , i = 1, 2, 3, be sequences of positive integers
such that a1,1 = 1, a2,1 = 2, a3,1 = 3, and

a1,n+1 =

{
a1,n + [log a1,n log

3/2 log a1,n + log3 log a1,n], if n ̸= 7m,

1 + 34
n(a1,1a1,2...a3,n)2

, otherwise,

a2,n+1 =


a2,n + [log a2,n log log a2,n log log

2 log a2,n log
2 log log log a2,n], if n ̸= 7m,

3 + 22
22

34
(a1,1a1,2...a3,n)3

, otherwise,

a3,n+1 =


a3,n + [3 log5/7 a3,n], if n ̸= 7m,

11 + 22
22

23
4
n(a1,1a1,2...a3,n)3

, otherwise.

for all n = 1, 2, . . . . Then the numbers

1,
∞∑
n=1

1
a1,n

,
∞∑
n=1

1
a2,n

,
∞∑
n=1

1
a3,n

are linearly independent over the rational numbers.

J.Hančl – P.Rucki – J. Šustek: A generalization of Sándor’s theorem using iterated logarithms,
Kumamoto J. Math. 19 (2006), 25–36 (MR2211630 (2007d:11080); Zbl. 1220.11087).

3.4.1.3 LetK ≥ 2 be an integer. Then for every sequence cn, n = 1, 2, . . . ,
of positive integers the numbers

1,
∞∑
n=1

1

2(K
n−n)cn

,
∞∑
n=1

1

2(K
n−2n)cn

, . . .
∞∑
n=1

1

2(K
n−(K−1)n)cn

are linearly independent over the rational numbers.

J.Hančl – J. Štěpnička – J. Šustek: Linearly unrelated sequences and problem of Erdős, Ra-
manujan J. 17 (2008), no. 3, 331–342 (MR2456837 (2009i:11089); Zbl. 1242.11049)

3.4.1.4 For every u.d. sequence xn ∈ [0, 1) the two-dimensional sequence

({2xn}, {3xn}), n = 1, 2, . . . ,

has a.d.f.

g(x, y) =



min
(
x
2 ,

y
3

)
, if x ∈ A,

x−1
2 +min

(
x+1
2 , y+1

3

)
, if x ∈ B,

y−2
3 +min

(
x+1
2 , y+2

3

)
, if x ∈ C,

x
2 + y−1

3 +min
(
x
2 ,

y
3

)
, if x ∈ D,

2y−1
3 +min

(
x
2 ,

y+1
3

)
, if x ∈ E,

x−1
2 + 2y−2

3 +min
(
x+1
2 , y+2

3

)
, if x ∈ F,
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where

0 1
3

2
3

1
2

1

1

A

B

C

D

E

F

Notes:
(I) J. Fialová personal communication.
(II) g(x, y) = |Φ−1([0, x)) ∩ Ψ−1([0, y))|, where Φ(x) = 2x mod 1 and Ψ(x) =
3x mod 1, see the following picture

0 1 0 1

Φ(x)

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

Ψ(x)

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

x

x
2

x+1
2

y

y
3

y+1
3

y+2
3

3.4.1.5 For every irrational α, {α} > 1
2 the two-dimensional sequence

({nα}, {(n+ 1)α}), n = 1, 2, . . . ,

has the a.d.f.

g(x, y) =



0, if (x, y) ∈ A,

x, if (x, y) ∈ B,

{α} − y, if (x, y) ∈ C,

{α} − y + x− (1− {α}), if (x, y) ∈ D,

x− (1− {α}), if (x, y) ∈ E,

y, if (x, y) ∈ F,

which is a copula, where
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0 1

{α}�
�
�

1− {α}
�

�
�
�

�
�

�
��

A

B
C

D

E

F

Notes:
(I) J. Fialová personal communication.
(II) F. Pillichshammer and S. Steinerberger (2009) proved that

lim
N→∞

1

N

N−1∑
n=0

∣∣{nα} − {(n+ 1)α}
∣∣ = 2{α}(1− {α}).

F.Pillichshammer – S. Steinerberger: Average distance between consecutive points of uniformly
distributed sequences, Unif. Distrib. Theory 4 (2009), no. 1, 51–67 (MR2501478 (2009m:11116);
Zbl. 1208.11088).

3.4.2. Let (f1(n), . . . , fs(n)), n = 1, 2, . . . , be an s–dimensional sequence of
positive integers which satisfies
(i) fi(n)|fi(n+ 1) for i = 1, 2, . . . , s, and n = 1, 2, . . . ,

(ii) fi(n+1)
fi(n)

→ ∞ as n→ ∞ for i = 1, 2, . . . , s.

Let the numbers αi, i = 1, 2, . . . , s, be defined by
(iii) αi = [αi] +

∑∞
n=1

cn,i
fi(n)

, cn,i are integers and 0 ≤ cn,i < fi(n)/fi(n− 1).

Then the sequence
(f1(n)α1, . . . , fs(n)αs) mod 1

is

u.d.

if and only if

cn,i =

[{
xi(n)

} fi(n)

fi(n− 1)

]
and

(x1(n), . . . , xs(n)) mod 1

is

u.d.
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Here we suppose that fi(0) = 1 and as usual, [x] is the integer part and {x}
is the fractional part of x, resp.

Notes: P.Gerl (1965) generalized in this way the result from 2.8.16 proved by
N.M.Korobov (1950).

P.Gerl: Konstruktion gleichverteilter Punktfolgen, Monatsh. Math. 69 (1965), 306–317
(MR0184922 (32 #2393); Zbl. 0144.28801).
N.M.Korobov: Concerning some questions of uniform distribution, (Russian), Izv. Akad. Nauk
SSSR, Ser. Mat. 14 (1950), 215–238 (MR0037876 (12,321a); Zbl. 0036.31104).

3.4.2.1 Let α1, . . . , αs be positive real numbers such that 1, α1, . . . , αs

are linearly independent over Q and let b1, . . . , bs be arbitray integers ≥ 2.
Then for any g ∈ N, the sequence(

{nα1/b
g
1}, . . . , {nαs/b

g
s}
)
, n = 0, 1, 2, . . . ,

is

u.d.

P.Grabner – P.Hellekalek – P. Liardet: The dynamical point of view of low-discrepancy
sequences, Unif. Distrib. Theory 7 (2012), no. 1, 11–70 (MR2943160; Zbl. 1313.11093)

3.4.2.2 Let d1, . . . , ds be distinct positive integers and let α1, . . . , αs be
positive irrational numbers. Then for any integers b1, . . . , bs ≥ 2 and any
g ∈ N the sequence(

{nd1α1/b
g
1}, . . . , {n

dsαs/b
g
s}
)
, n = 0, 1, 2, . . . ,

is

u.d.

P.Grabner – P.Hellekalek – P. Liardet: The dynamical point of view of low-discrepancy
sequences, Unif. Distrib. Theory 7 (2012), no. 1, 11–70 (MR2943160; Zbl. 1313.11093)

3.4.3. Open problem. Let qn, n = 1, 2, . . . , be a sequence of positive
integers and θ = (θ1, . . . , θs) be an s–dimensional real vector. Describe the
distribution of the sequence

qnθ = (qnθ1, . . . , qnθs) mod 1.
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Notes: Generalizing 2.8.5(VIII), H.Albrecher (2002) proved, for the mean value of

the weighted L2 discrepancy D
(2)
N (qnθ) (cf. 1.10.6), that

∫
[0,1]s

D
(2)
N (qnθ) dθ =

N∑
m,n=1

wmwn

(
1

3
+

+
1

12

(qm, qn)
2

qmqn

)s
+

N∑
m,n=1
qm=qn

wmwn

(
1

2s
−
(

5

12

)s)
− 1

3s
,

where wn are weights,
∑N
n=1 wn = 1 and (qm, qn) denotes the g.c.d. of qm and qn.

H.Albrecher: Metric distribution results for sequences ({qnα⃗}), Math. Slovaca 52 (2002), no. 2,
195–206 (MR 2003h:11083; Zbl. 1005.11036).

3.4.4. The set(
s+1∑
i=1

kiα1,i, . . . ,

s+1∑
i=1

kiαs,i

)
, k1, k2, . . . , ks+1 ∈ N,

is

dense in (−∞,∞)s

if and only if
∑s

i=0mi∆i ̸= 0 for all integers mi, where the determinants ∆i

depend on the coefficients αi,j .
M.G.Hudǎı–Verenov: On an everywhere dense set , Izv. Akad. Nauk Turkmen. SSR Ser. Fiz.–
Tech. Him. Geol. Nauk (Russian), 1962 (1962), no. 3, 3–11 (MR0173663 (30 #3873)).

3.4.5.

(I) Let K be an upper bound on the partial quotients of the finite or infinite
continued fraction expansion of a number α, and let N ≥ 1 do not exceed
the denominator of α when α is rational. Then for the extreme discrepancy
of the finite two–dimensional sequence

(0, 0) ,

(
1

N
,α

)
,

(
2

N
, 2α

)
, . . . ,

(
N − 1

N
, (N − 1)α

)
mod 1

we have

D∗
N ≤ c

logN

N
,
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where c is a constant which depends only on K.

(II) If all the partial quotients of the continued fraction expansion of α are
equal, say, to a positive integer a, and if N is an arbitrary positive integer
if α is irrational or does not exceed its denominator if α is rational, then for
the L2 discrepancy of our sequence we have

D
(2)
N = O

(
logN

N2

)
,

where the O–constant depends only on a.

Notes: (I) is proved in S.K. Zaremba (1966) and (II) can be found in V.T. Sós and
S.K. Zaremba (1979).

V.T. Sós – S.K. Zaremba: The mean–square discrepancies of some two–dimensional lattices,
Studia Sci. Math. Hungar. 14 (1979), no. 1–3, 255–271 (1982) (MR0645534 (84a:10054); Zbl.
0481.10048).
S.K. Zaremba: Good lattice points, discrepancy, and numerical integration, Ann. Mat. Pura
Appl. (4) 73 (1966), 293–317 (MR0218018 (36 #1107); Zbl. 0148.02602).

3.4.6. Let a, N , and k be positive integers with N ≥ 36, 1 ≤ k ≤
√
N and

gcd(a,N) = 1. If λ = 2 +
√
2, then the extreme discrepancy of the finite

two–dimensional sequence

(xn, xn+k) =
( a
N
n2,

a

N
(n+ k)2

)
mod 1, n = 0, 1, . . . , N − 1,

satisfies

D∗
N <

(3.24)λω(N)(logN)2 + 392(2λ)ω(N) logN√
N

,

where ω(N) denotes the number of distinct prime divisors of N .

Notes: D.L. Jagerman (1964). For the autocorrelation (cf. 2.15.1) he proved that

ψ(k) =
1

N

N−1∑
n=0

((1/2)−xn)((1/2)−xn+k) <
(0.81)λω(N)(logN)2 + 33(2λ)ω(N) logN√

N
.

D.L. Jagerman: The autocorrelation and joint distribution functions of the sequences
{
a
m
j2

}
,{

a
m
(j + τ)2

}
, Math. Comp. 18 (1964), 211–232 (MR0177499 (31 #1762); Zbl. 0134.14801).
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3.4.7. The two–dimensional finite sequence (called Roth sequence, see 3.18.2)(
t1
2
+
t2
22

+ · · ·+ tn
2n
,
tn
2

+
tn−1

22
+ · · ·+ t1

2n

)
, with ti = 0 or 1,

has N = 2n terms, and for its extreme discrepancy we have

n

3
< ND∗

N <
n

3
+ 3

for all n = 1, 2, . . . .
H.Gabai: On the discrepancy of certain sequences mod 1, Illinois J. Math. 11 (1967), 1–12
(MR0209252 (35 #154); Zbl. 0129.03102).

3.4.8. If α1, α2, α3 are real numbers such that α1, α2 + α1α3, and 1 are
linearly independent over the rationals, then the two–dimensional sequence(

α1n, α2n+ α3[α1n]
)
mod 1

is

u.d.

Furthermore, if for any integers k1, k2, k3 with k21 + k22 ̸= 0, we have

∣∣α1k1 + (α2 + α1α3)k2 − k3
∣∣ ≥ c

ru
,

where r = max(|k1|, |k2|), and c > 0, then

DN = O
(
N−1/(8u+12)

)
.

The O–constant depends on c, s, and α3.
B.Karimov: On the distribution of the fractional parts of certain linear forms in a unit square,
(Russian), Izv. Akad. Nauk UzSSR Ser. Fiz.–Mat. Nauk 10 (1966), no. 1, 19–22 (MR0204399 (34
#4241); Zbl. 0135.10704).
[a] B.Karimov: On the question of the number of fractional parts of certain linear forms in a
rectangle, (Russian), Izv. Akad. Nauk UzSSR Ser. Fiz.–Mat. Nauk 10 (1966), no. 2, 21–28
(MR0205928 (34 #5753); Zbl. 0144.28602).
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3.5 Sequences involving sum–of–digits functions

For the def. of the sum–of–digits function sq(n) see 2.9.

3.5.1. Let q1, . . . , qs be pairwise coprime integers ≥ 1. Then the s–dimensio-
nal sequence

xn = (sq1(n)θ1, . . . , sqs(n)θs) mod 1

is

u.d.

if and only if θ1, . . . , θs are irrational. Moreover, if θ1, . . . , θs are irrational
and there exists η ≥ 1 and a constant c1 > 0 such that for all integers h > 0
and for every j = 1, 2, . . . , s, we have ∥hθj∥ ≥ c1h

−η, then the discrepancy
DN of x0, . . . ,xN−1 is bounded by

DN ≤ c(c1, η, q)

(
log logN

logN

)1/(2η)

for every N . Conversely, if for some η ≥ 1 and some constant c2 > 0 there
exists j such that ∥hθj∥ ≤ c2h

−η for infinitely many integers h > 0 then

DN ≥ c′(c2, η, q)
1

(logN)1/(2η)

for infinitely many N .

M.Drmota – G. Larcher: The sum–of–digits–function and uniform distribution modulo 1 , J.
Number Theory 89 (2001), 65–96 (MR1838704 (2002e:11094); Zbl. 0990.11053).

3.5.1.1 Let γ = (γ0, γ1, . . .) be a sequence in R and let q ∈ N, q ≥ 2.
Given an n ∈ N0 with base q representation n = n0+n1q+n2q

2+ · · · , define
the weighted q-ary sum-of-digits function by

sq,γ(n) := γ0n0 + γ1n1 + γ2n2 + · · · .

Then for d ∈ N, weight-sequences γ(j) = (γ
(j)
0 , γ

(j)
1 , . . .) in R and qj ∈ N,

qj ≥ 2, j ∈ {1, . . . , d}, define

sq1,...,qd,γ(n) := (sq1,γ(1)(n), . . . , sqd,γ(d)(n)),

where γ = (γ0,γ1, . . .) with γk = (γ
(1)
k , . . . , γ

(d)
k ) for k ∈ N0.
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Open question: Let q1, . . . , qd ≥ 2 be pairwise coprime integers. Which

conditions imposed on the weight-sequences γ(j) = (γ
(j)
0 , γ

(j)
1 , . . .) in R, j ∈

{1, . . . , d}, implies that the sequence

sq1,...,qd,γ(n) mod 1, n = 0, 1, 2, . . . , (1)

is

u.d. mod 1?

Notes:
(I) Proposed by F.Pillichshammer (2007).

(II) If γ
(j)
k = q−k−1

j for all j ∈ {1, . . . , d} and all k ∈ N0, then we obtain the d-
dimensional van der Corput-Halton sequence which is u.d. modulo one.

(III) If γ
(j)
k = qkj αj for all j ∈ {1, . . . , d} and all k ∈ N0, then the sequence (1) has

the form ({n(α1, . . . , αd)})n≥0 which is u.d. modulo one if and only if 1, α1, . . . , αd
are linearly independent over Q.

(IV) If γ
(j)
k = αj ∈ R for all j ∈ {1, . . . , d} and all k ∈ N0, then M.Drmota

and G. Larcher (2001) showed that the sequence (1) is u.d. mod 1 if and only if
α1, . . . , αd ∈ R \Q.
(V) If q1 = · · · = qd = q then F. Pillichshammer (2007) showed that the sequence
(1) is u.d. mod 1 if and only if for every h ∈ Zd \{0} one of the following properties
holds: Either

∞∑
k=0

⟨h,γk⟩q ̸∈Z

∥⟨h,γk⟩∥2 = ∞

or there exists a k ∈ N0 such that ⟨h,γk⟩ ̸∈ Z and ⟨h,γk⟩q ∈ Z. Here ∥ · ∥ denotes
the distance to the nearest integer, i.e., for x ∈ R, ∥x∥ = mink∈Z |x− k| and ⟨·, ·⟩ is
the standard inner product.
(VI) R.Hofer, G. Larcher and F.Pillichshammer (2007) found a generalization where
the weighted sum-of-digits function is replaced by a generalized weighted digit-block-
counting function.
(VII) R.Hofer (2007): Let q1, . . . , qd ≥ 2 be pairwise coprime integers and γ(1), . . . , γ(d )

be given weight sequences in R. If the sum

∞∑
i=0

∥∥∥h(γ(j)2i+1 − qjγ
(j)
2i

)∥∥∥2
is divergent for every dimension j ∈ {1, . . . , d } and every nonzero integer h, then
the sequence (1) is u.d. in [ 0, 1)d.

M.Drmota – G. Larcher: The sum–of–digits–function and uniform distribution modulo 1 , J.
Number Theory 89 (2001), 65–96 (MR1838704 (2002e:11094); Zbl. 0990.11053).
R.Hofer: Note on the joint distribution of the weighted sum-of-digits function modulo one in case
of pairwise coprime bases, Unif. Distrib. Theory 2 (2007), no. 1, 35–47 (MR2357507 (2008i:11102);
Zbl. 1153.11036)
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R.Hofer – G. Larcher – F. Pillichshammer: Average growth-behavior and distribution prop-
erties of generalized weighted digit-block-counting functions, Monatsh. Math 154 no. 3, (2008),
199–230.(MR2413302 (2009d:11118); Zbl. 1169.11006).
F.Pillichshammer: Uniform distribution of sequences connected with the weighted sum-of-digits
function, Unif. Distrib. Theory 2 (2007), no. 1, 1–10 (MR2318528 (2008f:11082); Zbl. 1201.11081).

3.5.2. Let α be an irrational number with a continued fraction expansion
[a0; a1, a2, . . . ] and let qi, i = 0, 1, . . . , be the sequence of the denominators of
its convergents. Then the α–adic expansion of a positive integer n is defined

by n =
∑L(n)

k=0 εk(n)qk (also called Ostrowski expansion, cf. 2.8.1 (IV)). Put

σα(n) =
∑L(n)

k=0 εk(n) and θ = (θ1, . . . , θs). If 1, θ1, . . . , θs are algebraic and
linearly independent over the rationals, then for every ε > 0 there exists a
constant c = c(θ, ε, α) such that for the sequence

xn = σα(n)θ

we have
DN ≤ cL(N)−

1
2s

+ε.

Related sequences: 2.9.13

N.Kopecek – G. Larcher – R.F.Tichy – G.Turnwald: On the discrepancy of sequences as-
sociated with the sum–of–digits functions, Ann. Inst, Fourier (Grenoble) 37 (1987), no. 3, 1–17
(MR0916271 (89c:11119); Zbl. 0601.10038).

3.5.3.

Notes: A number system with base q of an order O of a number field is called
canonical if every element z ∈ O has the unique representation of the form z =∑k(z)
j=0 ajq

j where aj ∈ {0, 1, 2, . . . , |N(q)| − 1}. Then the sum-of-digits function
is defined by

sq(z) =

k(z)∑
j=0

aj .

In the ring of Gaussian integers Z[i] the all bases of the canonical number systems
are given by q = −b± i where b is a positive integer.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Order the Gaussian integer Z[i] to a sequence zn, n = 1, 2, . . . , according to
their norm |z| and let q be a canonical base in Z[i]. If θ is irrational then the
two–dimensional sequence

(arg zn, {sq(zn)θ})



3 – 26 3 Multi–dimensional sequences

is (cf. 1.5)

almost u.d. in (−π, π]× [0, 1)

with respect to the sequence of indices [πN ], N = 1, 2, . . . , i.e.

lim
N→∞

#
{
z ∈ Z[i] ; |z| <

√
N, arg z ∈ I, {sq(z)θ} ∈ J

}
πN

=
|I|
2π

· |J |

for all intervals I ⊂ (−π, π] and J ⊂ [0, 1). If θ is of finite type γ
(
cf. 2.8.1,

par. (V), (ii)
)
then for every ε > 0 we have

D[πN ] ≤
C(b, θ, ε)

(logN)
1
2γ

−ε
.

Notes: P.J.Grabner and P. Liardet (1999). For the characterization of canonical
bases consult I. Kátai and J. Szabó (1975).

Related sequences: 2.9.14

P.J.Grabner – P. Liardet: Harmonic properties of the sum–of–digits function for complex base,
Acta Arith. 91 (1999), no. 4, 329–349 (MR1736016 (2001f:11126); Zbl. 0949.11004).
I. Kátai – J. Szabó: Canonical number systems for complex integers, Acta Sci. Math. (Szeged)
37 (1975), no. 3–4, 255–260 (MR0389759 (52 #10590); Zbl. 0309.12001).

3.6 Sequences involving primes

See also: 3.10.7, 3.15.1, 3.15.5

3.6.1. If 0 < α1 < · · · < αs < 1 and pn stands for the nth prime then the
sequence

xn = (pα1
n , . . . , pαsn ),

is

u.d.

with

D∗
π(N) = O

(
logs+9N

N δ

)
,

where

δ =
1

3
min

i,j=1,...,s

(
1

4
, 1− αj , αi, |αi − αj |

)
.

Notes: I.D.Tolev (1991). On the other hand, S.Srinivasan and R.F.Tichy (1993)
proved that D∗

π(N) = O((logN)/Nδ) for any s–tuple of distinct positive non–integral

exponents α1, . . . , αs. They conjecture that D∗
π(N) = O((logN)/Nδ) for the s–

dimensional sequence (pα1
n+1, . . . , p

αs
n+s).
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S. Srinivasan – R.F.Tichy: Uniform distribution of prime power sequences, Anz. Österreich.
Akad. Wiss. Math.–Natur. Kl. 130 (1993), 33–36 (MR1294872 (95h:11071); Zbl. 0807.11037).
D.I. Tolev: On the simultaneous distribution of the fractional parts of different powers of prime
numbers, J. Number Theory 37 (1991), 298–306 (MR1096446 (92d:11085); Zbl. 0724.11043).

3.6.2. Let
• p1 < p2 < . . . be an arbitrary increasing sequence of prime numbers for

which pν+1 < e
1
3
p2ν , and

• ψ(ν) be an arbitrary integer–valued arithmetical function such that

ν
(
pν+1

pν

)3
< ψ(ν) < ep

2
ν .

Moreover define
• two sequences τν , nν , ν = 1, 2, . . . , by the relations τν = p2ν(pν − 1),
nν+1 = nν + ψ(ν)τν with n1 = 0.

If

f(x) =

∞∑
ν=1

(
1

qnν
− 1

qnν+1

)
xν

p2ν
, where q > 1 is an integer,

then, for every s ≥ 1, the sequence

xn =
(
f(n+ 1)qn+1, . . . , f(n+ s)qn+s

)
mod 1

is

u.d.

i.e. f(n)qn mod 1 is completely u.d.
N.M.Korobov: On completely uniform distribution and conjunctly normal numbers, (Russian),
Izv. Akad. Nauk SSSR, Ser. Mat. 20 (1956), 649–660 (MR0083522 (18,720d); Zbl. 0072.03801).

3.6.3. Let pn denote the nth prime and let Nn =
[
1 + en

3
]
for every n =

1, 2, . . . . Define the block

An =
(
log p1, . . . , log pn, 2 log p1, . . . ,

2 log pn, . . . , Nn log p1, . . . , Nn log pn
)
mod 1

Then the block sequence
ω = (An)

∞
n=1

is

completely u.d.
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Notes: This example was given by L.P. Starčenko (1959), and another proof can
be found in A.G.Postnikov (1960).

A.G.Postnikov: Arithmetic modeling of random processes, Trudy Math. Inst. Steklov. (Russian),
57 (1960), 1–84 (MR0148639 (26 #6146); Zbl. 0106.12101).
L.P. Starčenko: The contribution of a completely uniformly distributed sequence (Russian), Dokl.
Akad. Nauk SSSR 129 (1959), 519–521 (MR0108474 (21 #7190); Zbl. 0087.04401).

3.6.4. Let σ(f) be the abscissa of absolute convergence of the general Dirich-
let series f(z) =

∑∞
n=1 ann

−z (not necessarily possessing the Euler product
decomposition). Let pn be the sequence of primes in the ascending order.
For any real sequence xn the following statements are equivalent:
(i) If f is a Dirichlet series f and σ > σ(f) then

lim
N→∞

1

N

N∑
n=1

|f(σ + ixn)|2 = lim
T→∞

1

T

∫ T

0
|f(σ + it)|2 dt,

(ii) For every integer s > 0, the s–dimensional sequence

xn
2π

(log p1, log p2, . . . , log ps) mod 1, n = 1, 2, . . . ,

is u.d. in [0, 1]s,
(iii) The ∞–dimensional sequence

xn
2π

(log p1, log p2, . . . , log ps, . . . ) mod 1, n = 1, 2, . . . ,

is u.d. in [0, 1]∞, i.e. with respect to the compact abelian group (R/Z)∞.

For example conditions (i) – (iii) are satisfied for

xn = pn; xn = n; or a xn u.d. mod 1.

Notes: This was proved by A.Reich (1981) who also gives a countable set A ⊂ R
so that (i) holds for all xn = θn with θ /∈ A (for instance 1 /∈ A and απ /∈ A with
α ̸= 0 algebraic).

A.Reich: Dirichletreihen und gleichverteilte Folgen, Analysis 1 (1981), 303–312 (MR0727881
(85g:11061); Zbl. 0496.10026).
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3.6.5. If p1, . . . , ps is a finite sequence of different primes then 1,
√
p1, . . . ,√

ps are linearly independent over Z, and consequently Kronecker sequence
3.4.1 of the type

xn = (n
√
p1, . . . , n

√
ps) mod 1

is

u.d.

Notes: (I) This sequence xn was firstly employed by R.D.Richtnyer (1951).
F. James, J. Hoogland and R.Kleiss (1997) reportes that it behaved better in a di-
mension of about 15 than the other types of sequences they tested. For a dimension
s > 2 it is not known whether it is a low discrepancy sequence.
(II) The linear independence of 1,

√
p1, . . . ,

√
ps over Q follows from the following

theorem of A.S. Besicovitch (1940): Let ai = bipi, i = 1, 2, . . . , s, where pi are dif-
ferent primes, bi are positive integers not divisible by any of these primes and mi

are positive integers. If θi = a
1/mi

i are positive real roots and P (θ1, . . . , θs) is a
polynomial with rational coefficients of a degree less than or equal to mi − 1 with
respect to θi, then P (θ1, . . . , θs) can vanish only if all its coefficients vanish. For a
generalization cf. L.J.Mordell (1953) or 3.4.1.
(III) Since the roots

√
p1, . . . ,

√
ps generate an algebraic number field of degree 2s

over Q, H.Niederreiter (1978, p. 994) notes that the choices from 3.6.6 and 3.6.7 are
to be preferred because in these cases the coordinates belong to an algebraic number
field of degree s+ 1 over Q.

A.S. Besicovitch: On the linear independence of fractional powers of integers, J. London Math.
Soc. 15 (1940), 3–6 (MR0002327 (2,33f); Zbl. 0026.20301).
F. James – J.Hoogland – R.Kleiss: Multidimensional sampling for simulation and integra-
tion:measures, discrepancies, and quasi–random numbers, Comp. Phys. Comm 99 (1997), 180–220
(Zbl. 0927.65041).
L.J.Mordell: On the linear independence of algebraic numbers, Pacific J. Math. 3 (1953), 625–
630 (MR0058649 (15,404e); Zbl. 0051.26801).
R.D.Richtnyer: The evaluation of definite integrals, and quasi–Monte Carlo method based on
the properties of algebraic numbers, Report LA–1342, Los Almos Scientific Laboratory, Los Almos,
NM, 1951.

3.6.6. If p is a prime of the form p = 2s+ 3 and

θ =

(
2 cos

(
2π

p

)
, 2 cos

(
4π

p

)
, . . . , 2 cos

(
2πs

p

))
then the Kronecker sequence

xn = nθ mod 1

is
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u.d.

Notes: In Niederreiter (1972) an error in the quasi–Monte Carlo integration similar
to that in 3.4.1(X) was proved using algebraic irrational points satisfying certain con-
ditions. The above algebraic irrational points were proposed in H.Niederreiter (1978,
p. 994) as an example (cf. also 3.6.7) of algebraic irrational points fulfilling these
consitions.

H.Niederreiter: On a number–theoretic integration method , Aequationes Math. 8 (1972), 304–
311 (MR0319910 (47 #8451); Zbl. 0252.65023).
H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).

3.6.7. If p is a prime, ξ = p
1
s+1 and

θ = (ξ, ξ2, . . . , ξs)

then the Kronecker sequence

xn = nθ mod 1

is

u.d.

Notes: In Niederreiter (1972) an error in the quasi–Monte Carlo integration similar
to that in 3.4.1(X) was proved using algebraic irrational points satisfying certain con-
ditions. The above algebraic irrational points were proposed in H.Niederreiter (1978,
p. 994) as an example (cf. also 3.6.6) of algebraic irrational points fulfilling these
consitions.

H.Niederreiter: On a number–theoretic integration method , Aequationes Math. 8 (1972), 304–
311 (MR0319910 (47 #8451); Zbl. 0252.65023).
H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).

3.6.8. If p ≥ 5 is a prime and a1, . . . , as, b1, . . . , bs are integers such that
b1a

−1
1 , . . . , bsa

−1
s are distinct (mod p) and

zn =
(
(a1n+ b1)

−1, . . . , (asn+ bs)
−1
)
(mod p) ,

then the sequence

zn
p

mod 1, n = 0, 1, 2, . . . , p− 1,
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has discrepancy

DN < 1−
(
1− 1

p

)s

+

+

(
2s− 2
√
p

+
s+ 1

p
+

s

N
(2
√
p+ 1)

(
4

π2
log p+ 0.38 +

0.64

p

))
×

×
(

4

π2
log p+ 1.38 +

0.64

p

)s

for s ≥ 1 and N < p.
H.Niederreiter: On a new class of pseudorandom numbers for simulation methods, (In: Stochas-
tic programming: stability, numerical methods and applications (Gosen, 1992)), J. Comput. Appl.
Math. 56 (1994), 159–167 (MR1338642 (96e:11101); Zbl. 0823.65010).

3.6.9. Let p1, . . . , ps be a finite sequence of different primes of the form
4k + 1. In the ring of Gaussian integers Z(

√
−1) they can be decomposed

as pj = πj .πj , where πj , j = 1, . . . , j, are Gaussian primes. Then the s–
dimensional sequence

xn =

(
n.arg(π1/|π1|)

2π
, . . . ,

n.arg(πs/πs)

2π

)
mod 1

is

u.d.

and for its discrepancy we have

DN ≤ c
(logN)s

N1/s

with an absolute constant c.
E.Hlawka: Gleichverteilung und die willkürlichen Funktionen von Poincaré, Teil II , Österreich.
Akad. Wiss. Math.–Natur. Kl. Sitzungsber. II 208 (1999), 31–78 (MR1908803 (2003h:11087);
Zbl. 1004.11045).

3.6.10. Let h1(x), . . . , hk(x) be polynomials where x = (x1, . . . , xs), and p
be a prime. Let Ap be the block of s–dimensional points of the form

x

p
=

(
x1
p
, . . . ,

xs
p

)
mod 1,

where x runs through the all different values x (mod p) for which h1(x) ≡
· · · ≡ hk(x) ≡ 0 (mod p). If
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(i) h1(x), . . . , hk(x) are all of degree of at least 2 and at most d,
(ii) the system h1(x) = · · · = hk(x) = 0 defines an absolute variety of the

dimension s− k over rationals,
(iii) for all sufficiently large primes p and all k–tuples (a1, . . . , ak) of integers

which are not all divisible by p, the hypersurface a1h1(x)+ · · ·+akhk(x)
over Z/pZ is non–singular at infinity, and

(iv) s > 2k,

then the sequence Ap of blocks with p running over the primes is

u.d.
G.Myerson: The distribution of rational points on varieties defined over a finite field , Mathe-
matika 28 (1981), 153–159 (MR0645095 (83h:10041); Zbl. 0469.10002).

3.6.11. Let f ≥ 2 be fixed and p be a prime such that p ≡ 1 (mod f).
Let Ap be the block of s–dimensional points(

a

p
,
aζ

p
, . . . ,

aζs−1

p

)
, a = 0, . . . , p− 1,

where ζ is a primitive fth root of unity (mod p) and s = φ(f). Then the
sequence of individual blocks Ap, as p goes to infinity, is

u.d.

Notes: G.Myerson (1993, p. 186, Th. 57), also cf. 3.15.1(IV).

G.Myerson: A sampler of recent developments in the distribution of sequences, in: Number theory
with an emphasis on the Markoff spectrum (Provo, UT 1991), (A.D.Pollington and W.Moran eds.),
Lecture Notes in Pure and App.Math., Vol. 147, Marcel Dekker, New York, Basel, Hong Kong, 1993,
pp. 163–190 (MR1219333 (94a:11112); Zbl. 0789.11043).

3.7 Sequences involving number–theoretical functions

3.7.1. Given a rational number r, let s(r) be the Dedekind sum as defined in
2.20.30, and let v(n) be the Farey sequence of the reduced rational numbers
in [0, 1) ordered by increasing denominators. Then for any non–zero real
number α, the 2–dimensional sequence

u(n) =
(
v(n), αs(v(n))

)
is

u.d.
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G.Myerson: Dedekind sums and uniform distribution, J. Number Theory 28 (1988), 233–239
(MR0932372 (89e:11026); Zbl. 0635.10033).

3.7.2. Let a1 = 1 < a2 < · · · < aφ(n), 0 < ai < n, be the sequence of
all integers coprime to n and define a∗i by the congruence aia

∗
i ≡ 1 (mod n).

Then the sequence of blocks

An =

((
a1
n
,
a∗1
n

)
,

(
a2
n
,
a∗2
n

)
, . . . ,

(
aφ(n)

n
,
a∗φ(n)

n

))
, n = 1, 2, . . . ,

is

u.d.

and for its discrepancy we have

Dφ(n) ≤ 17

(
3

2

)2 d(n)
√
n

φ(n)
(logφ(n))2

for n ≥ 8.

Notes: (I) This follows from the classical bound for the Kloosterman sums (cf.
O. Strauch, M.Paštéka and G.Grekos (2003))∣∣∣∣∣∣

φ(n)∑
j=1

e
2πi

(
a

aj
n +b

a∗
j
n

)∣∣∣∣∣∣ ≤√(a, b, n) d(n)
√
n

where a, b, b ̸= 0, are integers, d(n) is the divisor function and (a, b, n) denotes the
greatest common divisor of a, b, and n.
(II) If n = pα is a power of an odd prime p with α > 2, and p - a, b then the result
mentioned in (I) was proved by H. Salié (1931) in the form ≤ cp

α
2 with an absolute

constant c, see also A.L.Whiteman (1945).
(III) If n = p is an odd prime and p - a, b then (I) was proved by A.Weil (1948) in
the form ≤ 2

√
p.

(IV) The estimate (I) was proved by T.Esterman (1961) for general n, see also
H.M.Andruhaev (1964).
(V) Multiple Kloosterman sums were introduced by A.V.Malyšev (1960), L. Carlitz
(1965) and others. For a history cf. the book by R. Lidl and H. Niederreiter (1983,
Chap. 5, Comments).
(VI) It is immediate that the continued fraction expansion ai

n = [0; b1, b2, . . . , bk]
implies

[0; bk, bk−1, . . . , b1] =


a∗i
n
, if k is odd,

n− a∗i
n

, if k is even.
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(VII) Let p1, p2 be two primes, N = p1p2, n = φ(N) = (p1 − 1)(p2 − 1). In the RSA
public key cryptosystem with modulus N , the public exponent ai and the secret one
a∗i are related by aia

∗
i ≡ 1 (mod n). The encryption and decryption algorithms are

C ≡Mai (modN), M ≡ Ca
∗
i (modN), where M is a message to be encrypted.

M.J.Wiener (1990) proved that if p1 < p2 < 2p1 and ai <
1
3n

1/4, then a∗i is the
denominator of a convergent of the continued fraction expansion of ai

N and he de-
scribed a polynomial time algorithm for computing a∗i and recovering p1, p2 (for
some improvements see A.Dujella (2003)).
(VIII) An open problem is to characterize n’s for which the interval I = [0, 1] ×
[0, 1/(3n3/4)] contains some elements of An

(
e.g. to characterize n’s with discrepancy

Dn < |I| = 1
3n3/4

)
.

H.M.Andruhaev: A sum of Kloosterman type, in: Certain Problems in the Theory of Fields, Izd.
Saratov. Univ., Saratov, 1964, pp. 60–66 (MR0205939 (34 #5764); Zbl. 0305.10032).
A.Dujella: Continued fractions and RSA with small secret exponent , Tatra. Mt. Math. Publ.
29 (2004), 101–112 (MR2201657 (2006j:94062); Zbl. 1114.11008).
T.Estermann: On Kloosterman’s sum, Mathematika 8 (1961), 83–86 (MR0126420 (23 #A3716);
Zbl. 0114.26302).
R.Lidl – H.Niederreiter: Finite Fields, Encyclopeadia of Mathematics and its Applications,
Vol. 20, Addison – Wesley Publishing Company, Reading, MA, 1983 (MR0746963 (86c:11106); Zbl.
0554.12010).
A.V.Malyšev: Gauss and Kloosterman sums, (Russian), Dokl. Akad. Nauk SSSR 133 (1960),
1017–1020 (English translation: Soviet. Math. Dokl. 1 (1961), 928–932 (MR0126419 (23 #A3715);
Zbl. 0104.04204)).
O. Strauch – M.Paštéka – G.Grekos: Kloosterman’s uniformly distributed sequence, J. Number
Theory 103 (2003), no. 1, 1–15 (MR2008062 (2004j:11081); Zbl. 1049.11083).
A.Weil: On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207
(MR0027006 (10,234e); Zbl. 0032.26102).
A.L.Whiteman: A note on Kloosterman sums, Bull. Amer. Math. Soc. 51 (1945), 373–377
(MR0012105 (6,259f); Zbl. 0060.10903).
M.J.Wiener: Cryptanalysis of short RSA secret exponents, IEEE Trans. Inform. Theory 36
(1990), no. 3, 553–558 (MR1053848 (91f:94018); Zbl. 0703.94004).

3.7.2.1 Given a prime number p > 2 and an integer n, 0 < n < p, define
n∗ by the congruence nn∗ ≡ 1 (mod p), 0 < n∗ < p. Then the s-dimensional
sequence (

n∗

p
,
(n+ 1)∗

p
, . . . ,

(n+ s− 1)∗

p

)
, n = 1, 2, . . . , p,

is u.d. as p→ ∞,

and the discrepancy bound is

D∗
p = O

(
(log p)s
√
p

)
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for all s ≥ 2, and that this estimate is essentially best possible up to the
logarithmic factor.
Notes:
(I) H. Niederreiter (1994). A generalization is given in H. Niederreiter and A. Win-
terhof (2000).
(II) Tsz Ho Chan (2004) proved that

1

p

p−2∑
n=1

∣∣∣∣n∗p − (n+ 1)∗

p

∣∣∣∣ = 1

3
+O

(
(log p)3
√
p

)
for every prime p > 2.

H. Niederreiter: Pseudorandom vector generation by the inverse method , ACM Trans. Model.
Comput. Simul. 4 (1994), no. 2, 191–212 (Zbl. 0847.11039).
H. Niederreiter – A. Winterhof: Incomplete exponential sums over finite fields and their ap-
plications to new inverse pseudorandom number generators, Acta Arith. XCIII (2000), no. 4,
387–399 (MR1759483 (2001d:11120); Zbl. 0969.11040).
Tsz Ho Chan: Distribution of difference between inverses of consecutive integers modulo P , J.
Number Theory (to appear).

3.7.3. Let 1 = a1 < a2 < · · · < aφ(n) = n− 1 be the integers coprime to n.
Denote by An the block

An =

(
a2 − a1
n/φ(n)

,
a3 − a2
n/φ(n)

, . . . ,
aφ(n) − aφ(n)−1

n/φ(n)

)
and its s–fold cartesian product denote by

An = An × · · · ×An

The sequence An of individual blocks has relative to the sequence of indices n
for which n/φ(n) → ∞ in [0,∞)s the d.f. g(x) of the form

g(x) =
s∏

i=1
(1− e−xi), where x = (x1, . . . , xs).

Related sequences: For the one–dimensional version cf. 2.23.3.

Ch.Hooley: On the difference between consecutive numbers prime to n. III , Math. Z. 90 (1965),
355–364 (MR0183702 (32 #1182); Zbl. 0142.29202).

3.7.4. For n = 1, 2, . . . , define the block

An =

((
1

n
,
12

n

)
,

(
2

n
,
22

n

)
, . . . ,

(
n

n
,
n2

n

))
mod 1.
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Then the sequence An, n = 1, 2, . . . , of individual blocks is

u.d.

Notes: This follows directly from the Weyl criterion and from the well–known
estimate for the quadratic Gauss sum

n∑
x=1

e
2πi

(
ax2+bx

n

)
= O(

√
n).

3.7.5. Let 0 ≤ α < β ≤ 1 be fixed. For large N consider the set HN of
pairs (p, q) with coprime coordinates p, and q which satisfy the conditions
0 ≤ p < q and αN < q < βN . Given a couple (p, q), let x be the integer
solution of the diophantine equation px − qy = 1 which satisfies |x| ≤ q/2
(i.e. x is the least absolute solution). For our HN define the block

AN =

{(
p

q
,
|x|
q

)
; (p, q) ∈ HN

}
.

Then the sequence AN , N = 1, 2, . . . , of individual blocks is

u.d.

which respect to the interval [0, 1]× [0, 1/2] and for its extremal discrepancy
we have

D#HN = O
(

1√
N

)
.

Notes: D.I.Dolgopyat (1994) extended in this way 2.20.37 of E.I. Dinaburg and
Ya.G. Sinăı. Here the u.d. is defined by

FN (x, y) =
#{(p, q) ∈ HN ; p/q ∈ [0, x), |x|/q ∈ [0, y)}

#HN
→ 2xy as N → ∞

and the extremal discrepancy by

D#HN
= sup
I⊂[0,1],I′⊂[0,1/2]

∣∣∣∣#{(p, q) ∈ HN ; p/q ∈ I, |x|/q ∈ I ′}
#HN

− 2|I∥I ′|
∣∣∣∣ .

Related sequences: For the one–dimensional case cf. 2.20.37.

E.I. Dinaburg – Ya.G. Sinăı: The statistics of the solutions of the integer equation ax− by = ±1,
(Russian), Funkts. Anal. Prilozh. 24 (1990), no. 3, 1–8,96 (English translation: Funct. Anal.
Appl. 24 (1990), no. 3, 165–171). (MR1082025 (91m:11056); Zbl. 0712.11018).
D.I.Dolgopyat: On the distribution of the minimal solution of a linear diophantine equation with
random coefficients, (Russian), Funkts. Anal. Prilozh. 28 (1994), no. 3, 22–34, 95 (English trans-
lation: Funct. Anal. Appl. 28 (1994), no. 3, 168–177 (MR1308389 (96b:11111); Zbl. 0824.11046)).
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3.7.6. Let φ(n) denote the Euler function and σ(n) the sum of divisors of n.
Put

xn =
φ(n)

φ(n− 1)
, for n = 2, 3, . . . ,

or

xn =
σ(n)

σ(n− 1)
, for n = 2, 3, . . . .

Then for every s ≥ 1 the s–dimensional sequence

(xn+1, . . . , xn+s)

is

dense in [0,∞)s,

i.e. xn is completely dense in [0,∞). Quantitatively, for every α = (α1, . . . ,
αs) ∈ [0,∞)s and every ε > 0 there exist positive constants c = c(α, ε) and
x0 = x0(α, ε) such that the number of positive integers n ≤ x which satisfy
|xn+i − αi| < ε for i = 1, 2, . . . , s, is greater than cx/ logs+1 x, whenever
x > x0.

Notes:
(I) The complete density of xn was proved A. Schinzel (1954, 1955).
(II) This quantitative result was proved by A. Schinzel and Y.Wang (1958). They
also proved the complete density of d(n)/d(n−1) where d(n) is the divisor function.
(III) P.–T. Shao (1956) extended this result to all multiplicative positive functions
fk(n), which satisfy the following conditions:

(i) limp→∞(fk(p
l)/plk) = 1 for any positive integer l, where p runs over the all

primes,

(ii) there exists an interval [a, b] with a = 0 or b = ∞ such that for any integer
M > 0 the set of numbers fk(N)/Nk with (N,M) = 1 is dense in [a, b].
(IV) P.Erdős and A. Schinzel (1961) generalized the results of A. Schinzel and
Y.Wang (1958) and P.–T. Shao (1956) to all positive multiplicative functions fk(x)
satisfying

∑
p(fk(p) − pk)2p−2k−1 < ∞ (the sum is over primes) and satisfying (ii)

and with the lover estimate cx/ logs+1 x replaced by cx.

P.Erdős – A. Schinzel: Distributions of the values of some arithmetical functions, Acta Arith.
6 (1960/1961), 437–485 (MR0126410 (23 #A3706); Zbl 0104.27202).
A. Schinzel: Quelques théoremes sur les fonctions φ(n) et σ(n), Bull. Acad. Polon. Sci. Cl. III
2 (1954), 467–469 (MR0067141 (16,675g); Zbl. 0056.27003).
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A. Schinzel: On functions φ(n) and σ(n), Bull. Acad. Polon. Sci. Cl. III 3 (1955), 415–419
(MR0073625 (17,461c); Zbl. 0065.27103).
A. Schinzel – Y.Wang: A note on some properties of the functions ϕ(n), σ(n) and θ(n), Bull.
Acad. Polon. Sci. Cl. III 4 (1956), 207–209 (MR0079024 (18,17c); Zbl. 0070.04201).
A. Schinzel – Y.Wang: A note on some properties of the functions ϕ(n), σ(n) and θ(n), Ann.
Polon. Math. 4 (1958), 201–213 (MR0095149 (20 #1655); Zbl. 0081.04203).
P.–T. Shao: On the distribution of the values of a class of arithmetical functions, Bull. Acad.
Polon. Sci. Cl. III 4 (1956), 569–572 (MR0083514 (18,719d); Zbl. 0072.03304).

3.7.6.1 Let φ(n) be the Euler function and Fn be the nth Fibonacci
number. The sequence(

φ(Fn+1)

φ(Fn)
,
φ(Fn+2)

φ(Fn)
, . . .

φ(Fn+k)

φ(Fn)

)
, n = 1, 2, . . .

is dense in [0,∞)k for every k = 1, 2, . . . .

Notes: F. Luca, V.J.Mej́ıa Huguet and F.Nicolae (2009). They have the following
comments:

- for any positive integer k and every permutation (i1, . . . , ik) there exist infinitely
many integers n such that φ(Fn+i1) < φ(Fn+i2) < · · · < φ(Fn+ik).

- P. Erdős, K.Győry and Z. Papp (1980) call two arithmetic functions f(n) and
g(n) independent if for every couple of permutations (i1, . . . , ik) and (j1, . . . , jk) of
(1, . . . , k), there exist infinitely many integers n such that both

f(n+ i1) < f(n+ i2) < · · · < f(n+ ik),

g(n+ j1) < g(n+ j2) < · · · < g(n+ jk).

- φ(n) and Carmichael λ(n) are independent (N.Doyon and F. Luca (2006)).

- σ(φ(n)) and φ(σ(n)) are indepedent (M.O.Hername and F. Luca (2009)).

Open problems (F. Luca, V.J.Mej́ıa Huguet and F.Nicolae (2009)):

- Are the functions φ(Fn) and Fφ(n) independent?

- Are the functions φ(Fn) and φ(Mn) independent?

NDoyon – F. Luca: On the local behavior of the Carmichael λ-function, Michigen Math. J. 54
(2006), 283–300 (MR2253631 (2007i:11133); Zbl. 1112.11047).
P.Erdős – K.Győry – Z. Papp: On some new properties of functions σ(n), φ(n), d(n) and ν(n),
Mat. Lapok 28 (1980), 125–131 (MR0593425 (82a:10004); Zbl. 0453.10004).
M.O.Hernane – F. Luca: On the independence of phi and σ, Acta Arith. 138 (2009), 337–346
(MR2534139 (2010f:11147); Zbl. 1261.11061).
F. Luca – V.J.Mej́ıa Huguet – F.Nicolae: On the Euler function of Fibonacci numbers, J.
Integer Sequences 9 (2009), A09.6.6 (MR2544925 (2010h:11005); Zbl. 1201.11006).

3.7.7. Let f(n) ≥ 1 be a multiplicative arithmetical function which fulfils
the conditions
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(i) limn→∞(f(pn))
n = 1, where pn is nth prime,

(ii) there exists a positive c > 0 such that f(pα) ≤ (f(p))α + (c/p2) holds
for every prime p and positive α,

(iii)
∏∞

n=1 f(pn) = ∞.

Then for every s ≥ 1 the s–dimensional sequence

(f(n+ 1), . . . , f(n+ s)) , n = 1, 2, . . . ,

is

dense in [1,∞)s,

i.e. f(n) is completely dense in [1,∞). As a consequence we have that any
of the following sequences

σ(n)

n
,

n

φ(n)
,

σ(n)

φ(n)

are completely dense in [1,∞).

Notes: This result was proved by J.T.Tóth (1997, Th. 20). J. Bukor and J.T.Tóth
(1998) gave the following related result: Let f(n) > 0 be a multiplicative arithmetical
function which satisfies
(i) limn→∞(f(pn))

n = 1, where pn is nth prime,

(ii)
∞∏
n=1

f(pn)<1

f(pn) = 0,

(iii)
∞∏
n=1

f(pn)>1

f(pn) = ∞.

Then the sequence

f(n), n = 1, 2, . . . ,

is completely dense in [0,∞).

J. Bukor – J.T.Tóth: On completely dense sequences, Acta Math. Inform. Univ. Ostraviensis 6
(1998), no. 1, 37–40 (MR1822513 (2001k:11147); Zbl. 1024.11052).
J.T.Tóth: Everywhere dense ratio sequences (Slovak), Ph.D. Thesis, Comenius’ University, Bratis-
lava, Slovakia, 1997.

3.7.8. Let f(n) be an additive arithmetical function which satisfies

(i)
∑
p

|f(p)|∗
p <∞,

(ii)
∑
p

(f(p)∗)2

p <∞,
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(iii)
∑

f(p)̸=0

1
p = ∞,

where x∗ = x for |x| ≤ 1 and x∗ = 1 for |x| > 1. Then for every s ≥ 1 the
s–dimensional sequence (

f(n+ 1), . . . , f(n+ s)
)

has in (−∞,∞)s the a.d.f.

g(x) which is continuous.

Notes: This result was proved by P.Erdős and A. Schinzel (1961, Th. 3). A similar
result was proved by I.Kátai (1969) (cf. A.G.Postnikov (1971, p. 366)).

P.Erdős – A. Schinzel: Distributions of the values of some arithmetical functions, Acta Arith.
6 (1960/1961), 437–485 (MR0126410 (23 #A3706); Zbl 0104.27202).
I. Kátai: On the distribution of arithmetical functions, Acta Math. Acad. Scient. Hungar. 20
(1969), no. 1–2, 69–87 (MR0237446 (38 #5728); Zbl. 0175.04103).
A.G.Postnikov: Introduction to Analytic Number Theory, (Russian), Izd. Nauka, Moscow,
1971 (MR0434932 (55 #7895); Zbl. 0231.10001). (for the English translation see (MR0932727
(89a:11001); Zbl. 0641.10001)).

3.7.9. The two–dimensional sequence(
log

(
ϕ(n)

n

)
, log

(
σ(n)

n

))
has in (−∞,∞)2 the a.d.f.

g(x, y)

which characteristic function is∏
p

(
1− 1

p

)(
1 +

∞∑
r=1

1

pr

(
1− 1

p

)i(s−t)(
1− 1

pirt

))

and for its star discrepancy we have

D∗
N = O

(
log22N

logN log3N

)
.

Notes: This was proved by A.S. Badarëv (1972), cf. D.S.Mitrinović, J. Sándor and
J.Crstici (1996, p. 95).

A.S. Badarëv: A two–dimensional generalized Esseen inequality and the distribution of the values
of arithmetic functions (Russian), Taškent Gos. Univ. Naučn. Trudy (1972), no. 418, Voprosi
Math., 99–110, 379 (MR0344214 (49 #8954)).
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D.S.Mitrinović – J. Sándor – J.Crstici: Handbook of Number Theory, Mathematics and its
Applications, Vol. 351, Kluwer Academic Publishers Group, Dordrecht, Boston, London, 1996
(MR1374329 (97f:11001); Zbl. 0862.11001).

3.7.10. Let ρ(n) = β(n) + iγ(n) be the sequence of the non–trivial zeros
of the Riemann zeta function ζ in the upper half of the critical strip and
ordered by 0 < γ(1) ≤ γ(2) ≤ . . . . Then, for every s–tuple α1, . . . , αs

linearly independent over the rationals, the sequence

xn = (α1γ(n), . . . , αsγ(n)) mod 1

is

u.d.

Notes: (I) In 1956 H.A.Rademacher (1974, p. 455) proved that under the Riemann
hypothesis the sequence tγ(n) is u.d. for every non–zero real t. P.D.T.A.Elliot (1972,
p. 105–106) established this result unconditionally by using a result of A. Selberg.
This implies (cf. for instance E.Hlawka (1984, p. 122–123)) the u.d. of our sequence
if α’s are linearly independent over the rationals.
(II) Assume that α and β are linearly independent over the rationals and β/α is
an irrational number of the type < ψ (i.e., n.∥n(α/β)∥ ≥ 1/ψ(n)). A. Fujii (1995)
proved that for the discrepancy of the two–dimensional sequence(

αγ(n)

2π
,
βγ(n)

2π

)
mod 1

we have

D∗
N = O

(
log log T

log T

)
+O

(√
log T

T
(ψ(CT ) + log T )

)
,

where N = N(T ) =
∑

0<γ(n)≤T ∼ (T/2π) log T and C is a positive constant.

Related sequences: See 2.20.25 for the one–dimensional case.

P.D.T.A. Elliott: The Riemann zeta function and coin tossing, J. Reine Angew. Math. 254
(1972), 100–109 (MR0313206 (47 #1761); Zbl. 0241.10025).
A.Fujii: On a problem and a conjecture of Rademacher’s, Commen. Math. Univ. St. Paul. 44
(1995), no. 1, 69–92 (MR1336419 (96m:11072); Zbl. 0837.11046).
E.Hlawka: The Theory of Uniform Distribution, A B Academic Publishers, Berkhamsted, 1984
(translation of the original German edition Hlawka (1979)) (MR0750652 (85f:11056); Zbl. 0563.10001).
H.A.Rademacher: Collected Papers of Hans Rademacher, Vol. II, Mathematicians of our times
4, The MIT Press, Cambridge (Mass.), London (England), 1974 (MR0505096 (58 #21343b); Zbl.
0311.01023).
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3.7.11. Let z1, . . . , zs be distinct fixed complex numbers such that 1
2 <

ℜ(zi) < 1 for i = 1, 2, . . . , s. Let ∆ > 0 be arbitrary but fixed, and ζ(z) be
the standard Riemann zeta function. Then the sequence

xn =
(
log |ζ(z1 + in∆)|, . . . , log |ζ(zs + in∆)|

)
, n = 1, 2, . . . ,

is

dense in Rs.

Notes: Follows from Voronin’s theorem (1975) on the universality of the Riemann
zeta function, cf. S.M.Voronin and A.A.Karacuba (A.A.Karatsuba) (1994, p. 240),
and K.Bitar, N.N.Khuri and H.C.Ren (1991).

K.Bitar – N.N.Khuri – H.C.Ren: Path integrals as discrete sums, Physical Review Letters 67
(1991), no. 7, 781–784 (MR1128186 (92g:81101); Zbl. 0990.81533).
S.M.Voronin: A theorem of ”universality” of the Riemann zeta function, (Russian), Izv. Akad.
Nauk SSSR, Ser. Mat. 39 (1975), no. 3, 475–486 (MR0472727 (57 #12419); Zbl. 0315.10037).
S.M.Voronin – A.A.Karacuba (A.A.Karatsuba): The Riemann Zeta Function, (Russian),
Fiziko–Matematicheskaya Literatura, Moscow, 1994 (MR1918212 (2003b:11088); Zbl. 0836.11029).

3.8 Polynomial sequences

3.8.1. Let pi(x) =
∑m

j=1 aijx
j , i = 1, 2, be real polynomials of degree m.

(i.e. a1m ̸= 0, a2m ̸= 0). Let real numbers λ1, λ2 satisfy the diophantine con-
ditions that the inequalities ∥λ1q∥ < q−1−γ1 , ∥λ2q∥ < q−1−γ2 , ∥λ1q+ λ2p∥ <
max(|q|, |p|)2−τ have only finitely many solutions, where τ, γ1, γ2 be given
in such a way that 0 < τ , 0 < γ1 ≤ 1 + τ , and 0 < γ2 ≤ 1 + τ . Then

for any real numbers η1 and η2 the two–dimensional sequence

(λ1p1(n)− η1, λ2p2(n)− η2) mod 1

is

u.d.

and for its star discrepancy we have

D∗
N = O

(
N1−min(β1,β2)

)
,

where β1 and β2 can be given explicitly.

Notes: This result was proved by È.I. Kovalevskaja (1971) and the proof uses the
method of trigonometric sums.
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È.I. Kovalevskaja (Kovalevskaya): The simultaneous distribution of the fractional parts of
polynomials, (Russian), Vesc̄ı Akad. Navuk BSSR, Ser. F̄ız.-Mat. Navuk, (1971), no. 5 13–23
(MR0389818 (52 #10648); Zbl 0226.10051).

3.8.2. Define the s–dimensional r–multiple sequence

xn = (f1(n), . . . , fs(n)) mod 1 with n = (n1, . . . , nr),

where 1 ≤ n1 ≤ N1, . . . , 1 ≤ nr ≤ Nr, and

fj(x1, . . . , xr) =

k1∑
t1=0

· · ·
kr∑

tr=0

αj(t1, . . . , tr)x
t1
1 . . . x

tr
r

are polynomials with real coefficients which satisfy

0 ≤ αj(t1, . . . , tr) < 1, for j = 1, 2, . . . , s, 0 ≤ t1 ≤ k1, . . . , 0 ≤ tr ≤ kr.

The set E of all s–tuples (f1, . . . , fs) of such polynomials can be decomposed
into two classes E1 and E2 such that for the star discrepancy (with respect
to the u.d.) of E2 we have

D∗
N1...Nr = O

(
e32κ

Nρ1

)
, where ρ1 =

1

33kκ log(8kκ)
,

and for E1 we have

D∗
N1...Nr = O

(
1

(Q0δ0)ν−ε

)
.

Here we used the following notation
• k = (k1 + 1) . . . (kr + 1), 1 < N1 = min(N1, . . . , Nr),

• ν =
(
max(k1, . . . , kr)

)−1
,

• κ = k1ν1 + · · ·+ krνr, where ν1, . . . , νr are positive integers such that

−1 <
logNi

logN1
− νi ≤ 0,

• N = (Nk1
1 . . . Nkr

r )1/κ, ∆ = N−2ρ, ρ = (32kκ log 8kκ)−1,
• for di ∈ Z with |di| ≤ ∆−1, i = 1, . . . , s, and tj ∈ N, j = 1, . . . , r, define

B = d1α1(t1, . . . , tr) + · · ·+ dsαs(t1, . . . , tr)
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• and find a, q ∈ Z and z ∈ R such that

B =
a

q
+ z, q ≥ 1, gcd(a, q) = 1, |z| ≤ 1

qτ
, τ = N t1

1 . . . N tr
r N

−1/3.

• for fixed d1, . . . , ds and variables 0 ≤ t1 ≤ N1, . . . , 0 ≤ tr ≤ Nr with
t1 + · · ·+ tr ≥ 1 denote by

• Q = Q(d1, . . . , ds) the least common multiple of q = q(t1, . . . , tr), and put
• δ = δ(d1, . . . , ds) = maxt1,...,tr N

t1
1 . . . N tr

r |z(t1, . . . , tr)|,
• Q0 = maxd1,...,ds Q(d1, . . . , ds),
• δ0 = maxd1,...,ds δ(d1, . . . , ds),
• (f1, . . . , fs) belongs to E1 if Q0 ≤ N0.1 and to E2 in the opposite case.
Notes: G.I.Archipov, A.A.Karacuba and V.N. Čubarikov (1987, p. 216, Th. 5). In
the case s = 2 they illustrate the result by the following example (1987, p. 219): Let
f1(x, y) and f2(x, y) be two polynomials with real coefficients which degrees in every
variable does not exceed k ≥ 4. LetN1 = N2 = N and α1(i, j) =

√
2, α2(i, j) =

√
3

for some 0 ≤ i, j ≤ k and i+ j ≥ 1. Then D∗
N2 = O(N−ρ), where ρ = c(k3 log k)−1

for some absolute constant c > 0.

G.I. Archipov – A.A.Karacuba – V.N. Čubarikov: Theory of Multiplies Trigonometric Sums,
(Russian), Nauka, Moscow, 1987 (MR 89h:11050; Zbl. 0638.10037).

3.8.3. Let p(x) = a0 + a1x + · · · + akx
k be a polynomial with at least

one irrational coefficient as, . . . , ak where s < k. Then the s–dimensional
sequence

(p(n+ 1), . . . , p(n+ s)) mod 1

is

u.d.

Notes: This generalization of Weyl’s result was proved by L.D.Pustyl’nikov (1993).
The case s = k can be found in [KN, p. 52, Ex. 6.10] and in G.Rauzy (1976, p. 47,
2.3. Application) and in this case the result also follows from a strictly ergodic dy-
namical system on the k–dimensional torus introduced by H. Furstenberg (1967).
Note that polynomials are not completely u.d., cf. N.M.Korobov (1950).

Related sequences: 2.14.1

H.Furstenberg: Disjointness in ergodic theory, minimal sets and a problem in diophantine
approximation, Math. Systems Theory 1 (1967), no. 1, 1–49 (MR0213508 (35 #4369); Zbl.
0146.28502).
N.M.Korobov: Concerning some questions of uniform distribution, (Russian), Izv. Akad. Nauk
SSSR, Ser. Mat. 14 (1950), 215–238 (MR0037876 (12,321a); Zbl. 0036.31104).
L.D.Pustyl’nikov: Distribution of the fractional parts of values of a polynomial Weyl sums and
ergodic theory, (Russian), Uspekhi Mat. Nauk 48 (1993), no. 4, 131–166 (MR1257885 (94k:11094);
Zbl. 0821.11039).
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G.Rauzy: Propriétés statistiques de suites arithmétiques, Le Mathématicien, Vol. 15, Collec-
tion SUP, Presses Universitaires de France, Paris 1976, 133 pp. (MR0409397 (53 #13152); Zbl.
0337.10036).

3.9 Power sequences

3.9.1. Let ai, bi, ci, i = 1, . . . , s, be non–zero real numbers, and 0 < ui < 1,
i = 1, . . . , s. If vi, i = 1, . . . , s, are such that 0 < u1v1 < u2v2 < · · · < usvs
and uivi /∈ Z, i = 1, . . . , s, then the s–dimensional sequence

xn = ((a1[b1n
v1 ] + c1)

u1 , . . . , (as[bsn
vs ] + cs)

us) mod 1

is

u.d.
P.J.Grabner – O. Strauch – R.F.Tichy: Maldistribution in higher dimension, Math. Panon. 8
(1997), no. 2, 215–223 (MR1476099 (99a:11094); Zbl. 0923.11110).

3.9.2. Let θ1, . . . , θs be irrational numbers. Then the s–dimensional se-
quence (

θ1n
s, θ2n

s−1, . . . , θsn
)
mod 1

is

u.d.

Notes: Cf. [KN, p. 52, Ex. 6.8]. For instance, the two–dimensional sequence(
2
√
2n2,

√
2n
)

mod 1

is u.d. It is used in I.J. H̊aland (1993, p. 328) and for the sequence [
√
2n]2

√
2 mod 1

cf. 2.16.4.

I.J. Håland: Uniform distribution of generalized polynomial , J. Number Theory 45 (1993), 327–
366 (MR1247389 (94i:11053); Zbl. 0797.11064).

3.9.3. Let α1, . . . , αs be non–zero real numbers, and let τ1, . . . , τs be distinct
positive numbers not in Z. Then the sequence

(α1n
τ1 , . . . , αsn

τs) mod 1

is

u.d.

Notes: [KN, p. 52, Ex. 6.9].
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3.9.3.1 Let p be a prime and r(X) be a rational function from Fp(X). If
r(X) is not of the form r(X) = AX + B, then for every m and N < p, the
m-dimensional sequence(

r(i)

p
, . . . ,

r(im)

p

)
mod 1, i = 0, 1, . . . , N − 1,

where i are not the poles of r(X) and are represented by {0, 1, . . . , p − 1},
has discrepancy

DN−s = O(N−1p1/2(log p)m+1),

where s is the number of poles of r(X).

J.Gutierrez – I.E. Shparlinski: On the distribution of rational functions on consecutive powers,
Unif. Distrib. Theory 3 (2008), no. 1, 85–91 (MR2453512 (2009k:11122); Zbl. 1174.11059).

3.9.4. If α is an arbitrary positive real and β a real irrational number then
the sequence (

α
√
n, βn

)
mod 1

is

dense in [0, 1]2.

Notes: Cf. A.M.Ostrowski (1980; Lem. 3).

A.M.Ostrowski: On the distribution function of certain sequences (mod 1), Acta Arith. 37
(1980), 85–104 (MR0598867 (82d:10073); Zbl. 0372.10036).

3.10 Exponential sequences

Notes: H.Niederreiter and R.F.Tichy (1985) proved that if an is a sequence of
distinct positive integers, then the sequence λan mod 1 is completely u.d. for almost
all λ > 1.

H.Niederreiter – R.F.Tichy: Solution of a problem of Knuth on complete uniform distribution
of sequences, Mathematika 32 (1985), no. 1, 26–32 (MR0817103 (87h:11070); Zbl. 0582.10036).

3.10.1. Given a real transcendental number λ > 1 and an integer p > λ,
let
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• n1 = 0, and nr =
∑r−1

i=1 p
i for r = 2, 3, . . . ,

• qr = 4prpp
r
, for r = 1, 2, . . . ,

• α0 = 0, and αk =
∑k

r=1
ar

qrλnr
for k = 1, 2, . . . , where ar are integers in the

interval [0, qr) for r = 1, 2, . . . .
• Further, if c is an integer, let

Sk(c,m1, . . . ,ms+1) =

pk−1∑
x=0

exp

(
2πi

(
αk−1 +

c

qkλnk

)
λnk+x

s∑
ν=1

mνλ
ν−1 +

2πims+1x

pk

)

and

Dr,k,s(c) =

r∑′

m1,...,ms+1=−r

|Sk(c,m1, . . . ,ms+1)|
r(m1) . . . r(ms+1)

,

where r(m) = max(1, |m|), and in the sum
∑′ the summand with m1 =

· · · = ms+1 = 0 is excluded.
• The transcendence measure of λ is defined by

Φ(λ, s,H) = min

∣∣∣∣∣
s+1∑
ν=1

mνλ
ν−1

∣∣∣∣∣ ,
where the minimum is taken over all mν , ν = 1, . . . , s + 1, such that
0 < max1≤ν≤s+1 |mν | ≤ H.

• Finally let, hr = 4(r2 − 1)
(
logp(p− logλΦ(λ, r − 1, r))

)
for r = 1, 2, . . . .

• Let λ be a transcendental number λ and p > λ an integer. Then for any
positive integer r there exist integers ak (hr+1 ≥ k > hr) such that

Dr,k,s(ak) ≤ r(3 + 2 ln r)s+1

(
6pk

(
λ

λ− 1

)3
)1/2

= O(pkr−1).

holds for every integer s ∈ [1, r].

If the integers ak fulfil the above conditions and

α =
∞∑
k=1

ak
qkλnk

,

then for every s ≥ 1 the sequence(
αλn+1, . . . , αλn+s

)
mod 1, n = 1, 2, . . . ,
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is

u.d.

i.e. αλn mod 1 is completely u.d.

Notes: M.B. Levin (1975, Th. 1). He proved the existence of such ak in Lem. 2.
M.F.Kulikova (1962, [a]1962) constructed number α1 such that α1λ

n mod 1 is u.d.,
where λ > 1 is real.

Related sequences: 2.17.9, 3.10.2, 3.10.3

M.F.Kulikova: A construction problem connected with the distribution of fractional parts of the
exponential function (Russian), Dokl. Akad. Nauk SSSR 143 (1962), 522–524 (MR0132737 (24
#A2574); Zbl. 0116.27105).
[a] M.F.Kulikova: Construction of a number α whose fractional parts {αgν} are rapidly and
uniformly distributed (Russian), Dokl. Akad. Nauk SSSR 143 (1962), 782–784 (MR0137694 (25
#1144); Zbl. 0131.29302).
M.B. Levin: The uniform distribution of the sequences {αλx}, (Russian), Mat. Sb. (N.S.) 98(140)
(1975), no. 2(10), 207–222,333 (MR0406947 (53 #10732); Zbl. 0313.10035).

3.10.2. Let λ > 1 be a real transcendental number such that for its tran-
scendence measure (cf. 3.10.1) we have

Φ(λ, s,H) ≥ H−c(s), H > H(λ),

where c(s) is a monotonically increasing function. Let p > λ be an integer
and
• n1,1 = 0, nr,i =

∑r−1
k=1 kp

k + (i− 1)pr for r = 2, 3, . . . , and i = 1, . . . , r + 1,
• Ar =

[
pr/2

]
,

• B > c(1),
• ψ(x) ≥ 1 be an integral valued monotonically increasing function such that

limx→∞ ψ(x) = ∞ and c(ψ(pr)) ≤ 2Br,
• qr = 4prψ(pr)pp

r
+ ψ(pr),

• ar,i ∈ [0, qr) be integers for r = 1, 2, . . . , and i = 1, . . . , r,

• define the numbers αr,j through αr,j =
∑r−1

k=1

∑k
i=1

ak,i
qkλ

nk,i +
∑j

i=1
ar,i

qrλnr,i
,

for r = 1, 2, . . . , and j = 1, . . . , r, where α0,0 = 0 and αr,0 = αr−1,r−1 for
r = 1, 2, . . . .

• if c is an integer, put

Sr,j(c,m1, . . . ,ms+1) =

pr−1∑
x=0

exp

(
2πi

(
αr,j−1 +

c

qrλnr,j

)
λnr,j+x

s∑
ν=1

mνλ
ν−1 +

2πims+1x

pr

)
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and

D′
r,j,s(c) =

Ar∑′

m1,...,ms+1=−Ar

|Sj,r(c,m1, . . . ,ms+1)|
r(m1) . . . r(ms+1)

,

D′′
r,j,s(c) =

Ar∑′

m1,...,ms=−Ar

|Sj,r(c,m1, . . . ,ms, 0)|
r(m1) . . . r(ms)

,

where r(m) = max(1, |m|), and
∑′ denotes the sum with m1 = · · · =

ms+1 = 0 excluded,
• if λ is a given transcendental and p an integer then there exist integers am,i

with m = 1, 2, . . . , i = 1, . . . ,m, such that

D′
m,i,s(am,i) = O

(
pm/2ms+1ψ(pm)

)
, D′′

m,i,s(am,i) = O
(
pm/2msψ(pm)

)
holds for every integer s ∈ [1, ψ(pm)].

If the integers am,i, m = 1, 2, . . . , i = 1, . . . ,m, fulfil the above conditions
and we define

α =
∞∑

m=1

m∑
i=1

am,i

qmλnm,i

then for every s ≥ 1 the discrepancy of the sequence

(αλn+1, . . . , αλn+s) mod 1, n = 1, 2, . . . ,

satisfies
NDN = O

(
N1/2(logN)s+(1/2)ψ(N)

)
.

Notes: M.B.Levin (1975, Th. 2). He proved the existence of such integers ar,j in
Lem. 4. Note that the numbers belonging to the Mahler’s S and T class, especially
the numbers e and π, possess the required transcendence measure. Levin (1975)
also claims that based on analogical ideas it is possible to prove that for every real
algebraic number λ > 1 of degree s there exists a number α such that

NDN = O
(
N1/2(logN)s+(1/2)

)
.

Related sequences: 3.10.1, 3.10.3

M.B. Levin: The uniform distribution of the sequences {αλx}, (Russian), Mat. Sb. (N.S.) 98(140)
(1975), no. 2(10), 207–222,333 (MR0406947 (53 #10732); Zbl. 0313.10035).
K.Mahler: Zur Approximation der Exponentialfunction und des Logarithmus, I, II , J. Reine
Angew. Math. 166 (1932), 118–150 (MR1581302; Zbl. 0003.38805; JFM 58.0207.01).
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3.10.3. Let λν > 1, ν = 1, . . . , s, be real numbers. Let p > max1≤ν≤s λν be
an integer and
• n1,1 = 0, nr,j =

∑r−1
k=1 kp

k + (j − 1)pr for r = 2, 3, . . . and j = 1, . . . , r+ 1,
• qr = 4prpp

r
,

• Ar =
[
pr/2

]
,

• ar,j,ν ∈ [0, qr) be integers for r = 1, 2 . . . , j = 1, . . . , r and ν = 1, . . . , s.
• Define the numbers αr,j,ν by

αr,j,ν =

r−1∑
k=1

k∑
i=1

ak,i,ν
qkλ

nk,i
+

j∑
i=1

ar,i,ν
qrλnr,i

,

for r = 1, 2, . . . , j = 1, . . . , r, and ν = 1, . . . , s, where α0,0,ν = 0, αr,0,ν =
αr−1,r−1,ν for r = 1, 2, . . . , and ν = 1, . . . , s.

• For a vector c = (c1, . . . , cs) = with integral coordinates put

Dr,j(c1, . . . , cs) =

Ar∑′

m1,...,ms+1=−Ar

|Sj,r(c,m1, . . . ,ms+1)|
r(m1) . . . r(ms+1)

,

D′
r,j(c1, . . . , cs) =

Ar∑′

m1,...,ms=−Ar

|Sj,r(c,m1, . . . ,ms, 0)|
r(m1) . . . r(ms)

,

where r(m) = max(1, |m|), and
∑′ denotes the sum with m1 = · · · =

ms+1 = 0 excluded, and finally let

Sr,j(c,m1, . . . ,ms+1) =

pr−1∑
x=0

exp

(
2πi

s∑
ν=1

mνλ
nr,j+x

(
αr,j−1,ν +

cν

qrλ
nr,j
ν

)
+

2πims+1x

pr

)
.

• If λν > 1, ν = 1, . . . , s, are given real numbers and p an integer such that
p > max{λs ; 1 ≤ ν ≤ s}, then there exist integers am,j,ν for m = 1, 2, . . . ,
j = 1, . . . ,m, and ν = 1, . . . , s, such that

Dm,j(am,j,1, . . . , am,j,s) = O
(
pm/2ms+1

)
,

D′
m,j(am,j,1, . . . , am,j,s) = O

(
pm/2ms

)
.
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If the integers am,j,ν for m = 1, 2, . . . , i = 1, . . . ,m, and ν = 1, . . . , s fulfil
the above conditions and

αν =
∞∑

m=1

m∑
j=1

am,j,ν

qmλ
nm,j
ν

, ν = 1, . . . , s,

then the sequence

(α1λ
n
1 , . . . , αsλ

n
s ) mod 1, n = 1, 2, . . . ,

is

u.d.

and its discerpancy satisfies

NDN = O(N1/2(logN)s+(1/2)).

Notes: cf. M.B. Levin (1975, Th. 2). The existence of am,j,ν is proved in Levin (1975,
Lem. 6). He also claims that using analogical ideas it is possible to prove that for
given real numbers λ > 1, c > 0 there exists a function f(x) such that

f(n)− f(m) ≥ s
(√
n−

√
m
)
, n ≥ m, n,m = 1, 2, . . . ,

a number α such that the discrepancy of the sequence

αλf(n) mod 1, n = 1, 2, . . . ,

satisfies
NDN = O

(
N1/2(logN)3/2

)
.

Related sequences: 3.10.1, 3.10.2

M.B. Levin: The uniform distribution of the sequences {αλx}, (Russian), Mat. Sb. (N.S.) 98(140)
(1975), no. 2(10), 207–222,333 (MR0406947 (53 #10732); Zbl. 0313.10035).

3.10.4. Let ν(λ) denote the degree of λ if λ is an algebraic number, and
ν(λ) = 1 if λ is transcendental. Given an arbitrary real sequence λn, n =
1, 2, . . . , there exists a real sequence αn, n = 1, 2, . . . , such that for all integers
j, k1, . . . , kj ≥ 1 the sequence

xn =
(
α1λ

n
k1 , . . . , α1λ

n+ν(λk1 )−1

k1
, . . . , αsλ

n
ks , . . . , αsλ

n+ν(λks )−1
ks

)
mod 1

is
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u.d. in [0, 1]s,

where s = ν(λk1) + · · ·+ ν(λks), and its discrepancy satisfies

DN = O

(
(logN)s+

3
2

√
N

)
.

M.B. Levin: Simultaneously absolutely normal numbers, (Russian), Mat. Zametki 48 (1990), no. 6,
61–71 (English translation: Math. Notes 48 (1990), no. 5–6, (1991), 1213–1220). (MR1102622
(92g:11077); Zbl. 0717.11029).

3.10.5. If α is a real number, and q ≥ 2 an integer, let

xn = (αqn, αnqn) mod 1.

If there exist constants c > 0 and 0 ≤ ε < 1 such that,

lim sup
N→∞

AN (I;N ;xn)

N
< c|I|

(
1 + log

1

|I|

)1−ε

for every subinterval I ⊂ [0, 1]2, then the sequence xn is

u.d.
A.G.Postnikov: On distribution of the fractional parts of the exponential function, Dokl. Akad.
Nauk. SSSR (N.S.) (Russian), 86 (1952), 473–476 (MR0050637 (14,359d); Zbl. 0047.05202).

3.10.6. Given an integer q ≥ 2, a real number θ and a real polynomial p(x),
let
• xn = θqn mod 1,
• yn = p(n) mod 1,
• xn = (xn+1, . . . , xn+s) and yn = (yn+1, . . . , yn+s).

If xn is u.d. (i.e. θ is normal in the base q, cf. 2.18), then for every s =
1, 2, . . . , the sequence

(xn,yn), n = 1, 2, . . . ,

has d.f.’s

g(x,y) ∈ G((xn,yn))

only of the form g(x,y) = g1(x)g2(y) for some g1(x) ∈ G(xn) and g2(y) ∈
G(yn), i.e. the sequences xn and yn are

completely statistically independent,

cf. 1.8.9.
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J.Coquet – P. Liardet: A metric study involving independent sequences, J. Analyse Math. 49
(1987), 15–53 (MR0928506 (89e:11043); Zbl. 0645.10044).

3.10.7. Let s ≥ 1, c > 1 and s − 1 < p < q − 1. If p1, . . . , ps be distinct
prime numbers, then the discrepancies DN of the following s–dimensional
sequences

xn =
(
pj(cN

p − np)1/q, j = 1, . . . , s
)

mod 1, n = 1, 2, . . . , N,

yn =
(
(pj)

p/q(cNp − np)1/q, j = 1, . . . , s
)

mod 1, n = 1, 2, . . . , N,

satisfy
0 < lim sup

N→∞
N1/qDN <∞.

Related sequences: 2.15.6.

W.–G.Nowak: Die Diskrepanz der Doppelfolgen (cNp − np)1/q und einige Verallgemeinerun-
gen, Österreich. Akad. Wiss. Math.–Natur. Kl. Sitzungsber. II 187 (1978), no. 8–10, 383–409
(MR0548968 (80m:10029); Zbl. 0411.10025).

3.11 Circle sequences

Notes: Let f(n), n = 0, 1, 2, . . . , be a sequence of complex numbers on the unit
circle. If the limit

γ(k) = lim
N→∞

1

N

N−1∑
n=0

f(n+ k)f(n)

exists for every k = 0, 1, 2, . . . , then the sequence γ(k), k = 0, 1, 2, . . . , is called
the correlation of the sequence f(n), n = 0, 1, 2, . . . . Here z is the complex
conjugate of z. Since γ(k) is a positive definite sequence, the Herglotz – Bochner
representation (cf. e.g. P.J. Brockwell and R.A.Davis (1987, p. 115–116))

γ(k) =

∫
zk dλ(z),

where the integration is taken over the unit circle, determines the spectral mea-
sure λ on the unit circle corresponding to the sequence f(n).1 Moreover

lim
N→∞

1

N

N∑
k=1

|γ(k)|2 =
∑
|z|=1

(
λ(z+)− λ(z−)

)2
.

1E.g. the spectral measure of the sequence e2πiαn
2

, n = 0, 1, 2, . . . , with α is irrational is
the Lebesgue measure, cf. 3.11.3.
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The Fourier – Bohr spectrum Bsp(f) of a f : N → unit circle (cf. 2.4.4) is the set
of all numbers α ∈ [0, 1) such that

lim sup
N→∞

∣∣∣∣∣ 1N
N∑
n=1

f(n)e2πinα

∣∣∣∣∣ > 0.

The sequence f(n) on the unit circle is said to be pseudorandom in the sense of
Bertrandias if
(i) f(n) has the correlation sequence γ(k), k = 0, 1, 2, . . . , and

(ii) limN→∞
1
N

∑N−1
k=0 |γ(k)|2 = 0,

and it is said to be pseudorandom in the sense of Bass if instead of (ii) the
following stronger condition
(ii′) limk→∞ γ(k) = 0

my be applied. J. Bass (1957) defined the notion of the (auto)correlation which
was already introduced by N.Wiener (1927, 1930). J. Bass (1959) defined the no-
tion of a pseudorandom function noting that it was N.Wiener (1930) who first
call the attention to such functions. This type of functions was studied then by
J.P.Bertrandias (1962) who also used them (1964) in the generalization of the
van der Corput criterion for u.d.

The above definitions can be used not only for circle sequences f(n) but also for arbi-
trary complex sequences. For real sequences xn, n = 1, 2, . . . , however, the following
slight modifications are necessary (cf. J.–P.Allouche (2000), M.Hörnquist (1999,
Chap. 2)):

Assume that the limit limN→∞
1
N

∑N
n=1 xne

−2πinα exists for each α ∈ [0, 1). Then

• c(α) = limN→∞
1
N

∑N
n=1 xne

−2πinα is called the Fourier – Bohr coefficient of
the sequence xn,

• Bsp(xn) = {α ∈ [0, 1) ; c(α) ̸= 0} is called the Fourier – Bohr spectrum of the
sequence xn.

Examples:

(i) If xn = (−1)[nβ] and β is irrational, then Bsp(xn) =
{
β
2 + kβ mod 1 ; k ∈ Z

}
.

(ii) If xn is the Thue – Morse sequence 2.26.2, then Bsp(xn) = ∅.
(iii) If xn is the Rudin – Shapiro sequence 2.26.3, then Bsp(xn) = ∅.
Assume that the limit limN→∞

1
N

∑N
n=1 xnxn+k exists for each integer k. Then

• λ(k) = limN→∞
1
N

∑N
n=1 xnxn+k, k = 0, 1, 2, . . . are called the correlation co-

efficients of the sequence xn,

• λ(k) =
∫ 1

0
e2πikt dg(t) for k = 0, 1, 2, . . . , define the unique d.f. g(x) on [0, 1] called

the spectral d.f. (or spectral measure) of the sequence xn,
• Wsp(xn) = {α ∈ [0, 1) ; g(α+0)− g(α− 0) ̸= 0} is called the Wiener spectrum

of the sequence xn.

Examples:
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(i) The spectral measure of the Fibonacci sequence is discrete.
(ii) The spectral measure of the Thue – Morse sequence is singular.
(iii) the spectral measure of the Rudin – Shapiro sequence is the Lebesgue measure.

Properties:
• Bsp(xn) of every sequence xn is countable.
• c(α) ≤

√
g(α+ 0)− g(α− 0) for every α ∈ [0, 1) and every sequence xn for which

c(α) and λ(k) exist for α ∈ [0, 1) and k = 0, 1, 2, . . . , cf. J.–P.Bertrandias (1966).
An immediate corollary of this theorem is that

• Bsp(xn) ⊂ Wsp(xn).

J.–P.Allouche: Algebraic and analytic randomness, in: Noise, oscillators and algebraic random-
ness. From noise communication system to number theory. Lectures of a school, Chapelle des Bois,
France, April 5–10, 1999, Lect. Notes Phys. 550, 345–356 Springer, Berlin, 2000, (MR1861985
(2002i:68099); Zbl. 1035.68089).
J. Bass: Sur certaines classes de fonctions admettant une fonction d’autocorrélation continue, C.
R. Acad. Sci. Paris 245 (1957), 1217–1219 (MR0096344 (20 #2828)); Zbl. 0077.33302).
J. Bass: Suites uniformément denses, moyennes trigonométrique, fonctions pseudo–aléatores,
Bull. Soc. Math. France 87 (1959), 1–64 (MR0123147 (23 #A476); Zbl. 0092.33404).
J.-P. Bertrandias: Fonctions pseudo–aléatiores et fonctions presque périodic, C.R. Acad. Sc.
Paris 255 (1962), 2226–2228 (MR0145279 (26 #2812); Zbl. 0106.11801).
J.–P.Bertrandias: Suites pseudo–aléatoires et critères d’équirépartition modulo un, Compositio
Math. 16 (1964), 23–28 (MR0170880 (30 #1115); Zbl. 0207.05801).
J.–P.Bertrandias: Espace de fonctions bornées et continues en moyenne asymptotique d’ordere
p, Bull. Soc. Math. France, Mémoire 5 (1966), 1–106 (MR0196411 (33 #4598); Zbl. 0148.11701).
P.J. Brockwell – R.A.Davis: Time Series: Theory and Methods, Springer Series in Statistics,
Springer Verlag, New York, 1987 (MR0868859 (88k:62001); Zbl. 0604.62083).
M.Hörnquist: Aperiodically Ordered Structures in One Dimension, Department of Physics and
Measurement Technology, Linköping University, Ph.D. thesis in theoretical physics, Linköping,
Sveden, 1999 (www.ifm.liu.se/˜micho/phd).
N.Wiener: The spectrum of an array and its application to the study of the translation properties
of a simple class of arithmetical functions, J. Math. and Phys. 6 (1927), 145–157 (JFM 53.0265.02).
N.Wiener: Generalized harmonic analysis, Acta Math. 55 (1930), 117–258 (MR1555316; JFM
56.0954.02).

3.11.1. Let ak, k = 0, 1, 2, . . . , be a sequence of real numbers and sk, k =
0, 1, 2, . . . , be a strictly increasing sequence of positive numbers tending to
infinity. Let

f(n) = e
2πi

∑∞
k=0 ak

[
n
sk

]
.

(I) If sk = qk with k = 0, 1, 2, . . . , and q ≥ 2 is a positive integer, then the
following three statements are equivalent
• f(n) is pseudorandom in the sense of Bertrandias (cf. 3.11),
•
∑∞

k=0 |ak|2 = ∞,
• the Fourier – Bohr spectrum of f(n) is empty.

(II) The same holds under the assumption that sk|sk+1 for k = 0, 1, 2, . . . .
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(III) If (sk, sk+1) = 1 for k = 0, 1, 2, . . . , and
∑∞

k=0
1
sk

< ∞, then f(n) is

pseudorandom in the sense of Bertrandis if and only if
∑∞

k=0 |ak|2 = ∞. On
the other hand, f(n) cannot be pseudorandom in the sense of Bass.

(IV) If sk = τk for k = 0, 1, 2, . . . , where τ is a real transcendental num-
ber, then f(n) is pseudorandom in the sense of Bertrandias if and only if∑∞

k=0 |ak|2 = ∞.
Notes: (I) was proved by J.Coquet and M.Mendès France (1977), (II) by J.Coquet
(1977), and (III) with (IV) by J.Coquet (1978).

J.Coquet: Fonctions q–multiplicatives. Applications aux nombres de Pisot – Vijayaraghavan,
Séminaire de Théorie des Nombres (1976–1977), 17, Lab. Théorie des Nombres, Centre Nat.
Recherche Sci., Talence, 1977, 15 pp. (MR0509630 (80g:10051); Zbl. 0383.10032).
J.Coquet: Sur certain suites pseudo–alétoires, Acta Sci. Math. (Szeged) 40 (1978), no. 3–4,
229–235 (MR0515203 (80g:10052); Zbl. 0349.10043).
J.Coquet – M.Mendès France: Suites à spectre vide et suites pseudo–aléatoires, Acta Arith.
32 (1977), no. 1, 99–106 (MR0435019 (55 #7981); Zbl. 0303.10047).

3.11.2. Let g : N → [0, 1] be a q–additive function (q > 1), i.e. if n =∑∞
k=0 ak(n)q

k is the q–adic digit expansion of an n = 1, 2, . . . , then (cf. 2.10)

g(n) =
∞∑
k=0

g(ak(n)q
k) and g(0) = 0.

Then for the sequence

f(n) = e2πig(n), n = 0, 1, 2, . . . ,

the following assertions are equivalent:
• is pseudorandom in the sense of Bertrandias,
• the Fourier – Bohr spectrum Bsp(f) of f(n) is empty,
•
∑∞

k=0

∑q−1
a=0 ∥g(aqk) + αaqk∥2 = +∞ for all α ∈ [0, 1), where ∥x∥ =

min({x}, 1− {x}),
•
∑∞

k=0

∑q−1
a=0 ∥g(aqk)− aqk∥2 = +∞,

• gy(n) − αny mod 1 is essentially divergent for all α, where ny =∑
0≤k≤y ak(n)q

k and gy(n) =
∑

0≤k≤y g(ak(n)q
k).

Notes: J.Coquet (1979). The last item was found by J.–L.Mauclaire (1993), and
later in (1997) he proved a generalization of it. J. Coquet, T.Kamae and M.Mendés
France (1977) proved that the circle sequence

f(n) = e2πiαsq(n), n = 0, 1, 2, . . . ,

where sq(n) is a sum–of–digits function in the base q (see the def. in 2.9), is pseu-
dorandom if and only if α is not of the form k

q−1 with k integer.
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J.Coquet: Sur la mesure spectrale des suites q–multiplicatives, Ann. Inst. Fourier (Grenoble) 29
(1979), no. 3, 163–170 (MR0552963 (82a:10064); Zbl. 0386.10031).
J.Coquet – T.Kamae – M.Mendès France: Sur la measure spectrale de certaines suites arith-
métiques, Bull. Soc. Math. France 105 (1977), no. 4, 369–384 (MR0472749 (57 #12439);
Zbl. 0383.10035).
J.–L.Mauclaire: Sur la réparation des fonctions q–additives, J. Théor. Nombres Bordeaux 5
(1993), no. 1, 79–91 (MR1251228 (94k:11089); Zbl. 0788.11032).
J.–L.Mauclaire: Some consequences a result of J. Coquet , J. Number Theory 62 (1997), no. 1,
1–18 (MR1429999 (98i:11062); Zbl. 0871.11050).

3.11.3. If for a real sequence xn and for every h = 1, 2, . . . , the sequence of
differences

xn+h − xn mod 1

is

u.d.

then the sequence
f(n) = e2πixn

has the correlation sequence γ(k), k = 0, 1, 2, . . . , which spectral measure λ
is

the Lebesgue measure.
A.Bellow: Some remarks on sequences having a correlation, in: Proceedings of the conference
commemorating the 1st centennial of the Circlo Matematico di Palermo (Italia, Palermo, 1984),
Rend. Circ. Mat. Palermo (2), Suppl. No. 8, 1985, pp. 315–320 (MR0881409 (88f:11070); Zbl.
0629.28012).

3.11.4. Let q > 1 be an integer base and let k ≥ 0 be the number of
different prime factors pj of q with pj ≡ 1 (mod 4), j = 1, . . . , k. Let Πq be
the set of points on the unit circle with finite q–adic digit expansions of their
coordinates. In case of k > 0 both coordinates of the points P ∈ Πq have
the same number of digits in the base q after the q–adic point. If the points
of Πq are arranged according to this number of digits in any way, then the
arising sequence P0, P1, . . . is

u.d. on the unit circle.

Notes: P. Schatte (2000). He also notes the following corollary of his results: Let
q > 1 be an integer base with a prime factor p ≡ 1 (mod 4). Then every point on
the unit circle can be approximated with arbitrary accuracy by points also on the
unit circle but with finite q–adic digit expansions.

P. Schatte: On the points on the unit circle with finite b–adic expansions, Math. Nachr. 214
(2000), 105–111 (MR1762054 (2001f:11125); Zbl. 0967.11028).
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3.11.5.
Notes: If zn = xn+ iyn is a complex sequence then we define zn mod 1 by the rule
zn mod 1 = xn mod 1+ yn mod 1 and the distribution of zn mod 1 we identify with
the distribution of two–dimensional sequence (xn, yn) mod 1 in [0, 1]2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If u and v are complex numbers, then the complex exponential sequence

zn = u.vn mod 1

is

u.d.

provided there exists a constant c > 0 such that

lim sup
N→∞

A(I;N ; zn)

N
≤ c|I|

for all subintervals I ⊂ [0, 1]2.
Related sequences: 2.18.19

A.G.Postnikov: A criterion for testing the uniform distribution of an exponential function in the
complex domain, Vestnik Leningrad. Univ. (Russian), 12 (1957), no. 13, 81–88 (MR0101859 (21
#666); Zbl. 0093.05302).

3.11.6. Curve generated by u.d. sequences. Let Γ = (x(t), y(t)),
t ∈ [0,∞) be a continuous and locally rectifiable curve. Let
• Γt be the initial segment of Γ having length t,
• Diam(Γ) = sup{d(x,y) ; x,y ∈ Γ}, where d is the Euclidean distance of

the space R2,
• Γε = {y ; x ∈ Γ, d(x,y) < ε},
• if Diam(Γ) = ∞ and limt→∞ t/Diam(Γt) = ∞, then the curve Γ is called

superficial,
• if Diam(Γ) <∞ and limε→0 |Γε|/ε = ∞, then the curve Γ is called super-

ficial, too, where |X| is the 2–dimensional Lebesgue measure of the plane
set X.

For a one–dimensional real sequence xn define in the complex plane C
• z0 = 0, zn = zn−1 + e2πixn−1 , n = 1, 2, . . . ,
• Γ(xn) is the curve Γ which passes successively through the complex points

zn, n = 0, 1, . . . , in such way that the points zn and zn+1 are connected
by a line segment.
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The sequence xn mod 1 is u.d. if and only if for each positive integer h the
curve Γ(hxn) is superficial.

Notes: F.M.Dekking and M.Mendès France (1981). If

dimΓ = lim inf
ε→0

lim inf
t→∞

log(ε−1|Γεt |)
log(ε−1Diam(Γεt ))

then they also proved that the relation dimΓ > 1 implies that Γ is superficial. In
the paper figures of some parts of Γ(xn) for xn = n

√
17, xn = n2

√
2, xn = n2e,

xn = n2π, xn = s2(n)(1/4), xn = s2(n)
√
3, xn = n2/5, and xn = (n+ 1) log(n+ 1)

can be found. Mendès France (1984) also studied the relation between the u.d. of xn
and the entropy of Γ(xn).

F.M.Dekking – M.Mendès France: Uniform distribution modulo one: a geometrical viewpoint ,
J. Reine Angew. Math. 329 (1981), 143–153 (MR0636449 (83b:10062); Zbl. 0459.10025).
M.Mendès France: Entropy of curves and uniform distribution, in: Topics in classical number
theory, Vol. I, II (Budapest, 1981), (G.Halász ed.), Colloq. Math. Soc. János Bolyai, Vol. 34,
North–Holland Publishing Co., Amsterdam, New York, 1984, pp. 1051–1067 (MR0781175; Zbl.
0547.10047).

3.12 Sequences involving trigonometric functions

3.12.1. Let 1, ω1, ω2 be linearly independent over the rational numbers.
Then the sequence

(cos 2πnω1, cos 2πnω2)

has the a.d.f.

g(x, y) =4

(
1

4
− g1(x)

)(
1

4
− g1(y)

)
+ 2

(
1

4
− g1(x)

)(
1− 2g2(y)

)
+ 2
(
1− 2g2(x)

)(1

4
− g1(y)

)
+
(
1− 2g2(x)

)(
1− 2g2(y)

)
,

where

g1(x) =
1

2π
arccosx and g2(x) =

1

2π
arccos(x− 1).

R.F.Tichy: On the asymptotic distribution of linear recurrence sequences, in: Fibonacci numbers
and their applications (Patras, 1984), Math. Appl., 28, Reidel, Dordrecht, Boston (Mass.), 1986,
pp. 273–291 (MR0857831 (87i:11095); Zbl. 0578.10053).
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3.13 Sequences involving logarithmic function

3.13.1. Let p1, . . . , ps be mutually coprime positive integers and j > 1.
Then the set of all d.f.’s of the s–dimensional sequence

xn =
(
(−1)[[log

(j) n]1/p1 ][log(j) n]1/p1 , . . . , (−1)[[log
(j) n]1/ps ][log(j) n]1/ps

)
mod 1

is

G(xn) = {cα(x) ; α ∈ [0, 1]s},
where

cα(x) =

{
1, for x ∈ [α,1],

0, otherwise.

P.J.Grabner – O. Strauch – R.F.Tichy: Maldistribution in higher dimension, Math. Panon. 8
(1997), no. 2, 215–223 (MR1476099 (99a:11094); Zbl. 0923.11110).

3.13.2. Let p1, . . . , ps be mutually coprime positive integers and j > 1.
Then the set of all d.f.’s of the s–dimensional sequence

xn =
(
[log(j) n]1/p1 , . . . , [log(j) n]1/ps

)
mod 1.

is

G(xn) =
{
tcα(x) + (1− t)cβ(x)

}
,

where t ∈ [0, 1], α = (α1, . . . , αs),β = (β1, . . . , βs) ∈ [0, 1]s, and if αi ̸= βi
then αi = 1, βi = 0 for i = 1, . . . , s.

Related sequences: 3.13.1.

P.J.Grabner – O. Strauch – R.F.Tichy: Maldistribution in higher dimension, Math. Panon. 8
(1997), no. 2, 215–223 (MR1476099 (99a:11094); Zbl. 0923.11110).

3.13.3. Let 1, α1, . . . , αs be linearly independent over the rationals. Then
the set G(xn) of all its d.f.’s of the sequence

xn = (α1 log log n, . . . , αs log log n) mod 1

satisfies

G(xn) ⊃
{
cα(x) ; α ∈ [0, 1]s

}
.

Notes: In other words, the sequence is uniformly maldistributed. This an example
was given by G.Myerson (1993).
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G.Myerson: A sampler of recent developments in the distribution of sequences, in: Number theory
with an emphasis on the Markoff spectrum (Provo, UT 1991), (A.D.Pollington and W.Moran eds.),
Lecture Notes in Pure and App.Math., Vol. 147, Marcel Dekker, New York, Basel, Hong Kong, 1993,
pp. 163–190 (MR1219333 (94a:11112); Zbl. 0789.11043).

3.13.4. The 2–dimensional sequence

(n2 log n, n log n) mod 1

is

u.d..

Notes: cf. [KN, p. 52, Ex. 6.11].

3.13.5. The 2–dimensional sequence

(log n, log log n) mod 1

is

everywhere dense in [0, 1]2 but not u.d.

More precisely, let cv(x) be the one–jump d.f. which has the jump of height 1
at x = v, i.e.

cv(x) =

{
0, for 0 ≤ x < v,

1, for v ≤ x ≤ 1.

Then the set of all d.f.’s of our sequence is

G({log n}, {log log n}) ={gu,v(x, y) ; u ∈ [0, 1], v ∈ [0, 1]}∪
∪ {gu,0,j,α(x, y) ; α ∈ A, u ∈ [0, 1], j = 1, 2, . . . }∪
∪ {gu,0,0,α(x, y) ; α ∈ A, u ∈ [α, 1]},

where A is the set of all limit points of the sequence en mod 1, and

gu,v(x, y) =gu(x) · cv(y),
gu,0,j,α(x, y) =gu,0,j,α(x) · c0(y),
gu,0,0,α(x, y) =gu,0,0,α(x) · c0(y),
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for (x, y) ∈ [0, 1)2, and

gu(x) =
emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1
,

gu,0,j,α(x) =
emax(α,x) − eα

ej+u
+
emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1

(
1− 1

ej−1

)
,

gu,0,0,α(x) =
emax(min(x,u),α) − eα

eu
,

while

gu,v(x, 1) = gu,0,j,α(x, 1) = gu,0,0,α(x, 1) = gu(x)

gu,v(1, y) = cv(y), gu,0,j,α(1, y) = hβ(y), with β = 1− 1

ej+u−α
.

Here, in the definition of gu,0,j,α(1, y), the constant d.f. hβ(y) = β, if y ∈ (0, 1)
for j = 0, 1, 2, . . . , but if j = 0, then u ≥ α in the definition of β.

Notes: O. Strauch and O.Blažeková (2003). In the above notation, the step d.f.
FNk

(x, y) (for the def. see 1.11) converges to g(x, y) with k → ∞ as follows:
• FNk

(x, y) → gu,v(x, y) if {logNk} → u and {log logNk} → v > 0,
• FNk

(x, y) → gu,0,j,α(x, y) if {logNk} → u, {log logNk} → 0, {e[log logNk]} → α,
[logNk]− [e[log logNk]] = j > 0, and

• FNk
(x, y) → gu,0,0,α(x, y) if {logNk} → u, {log logNk} → 0, {e[log logNk]} → α,

[logNk]− [e[log logNk]] = 0.

Note that {gu(x) ; u ∈ [0, 1]} coincides with G({log n}), see 2.12.1. The description
of the set A of all limit points of the sequence en mod 1, n = 1, 2, . . . , is an open
problem, cf. 2.17.2. The set G(log(n log n)) in 2.12.16 can be obtained from the
G({log n}, {log log n}) applying 2.3.21.

O. Strauch – O.Blažeková: Distribution of the sequence pn/n mod 1, Math. Institute, Slovak
Acad. Sci., Bratislava, Slovak Republic, 2003, 15 pp.

3.13.5.1 The two-dimensional sequence

({log n}, {log(n+ 1)}), n = 1, 2, . . . ,

has the set of d.f.s

gu(x, y) =
emin(x,y) − 1

e− 1
· 1

eu
+
emin(x,y,u) − 1

eu
,
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where u ∈ [0, 1] and if {logN} → u then

FN (x, y) =
{n ≤ N ; ({log n}, {log(n+ 1)}) ∈ [0, x)× [0, y)}

N
→ gu(x, y).

Notes:
(I) The directly of computation of the integral gives∫ 1

0

∫ 1

0

|x− y|dx dy gu(x, y) = 0 = lim
N→∞

1

N

N∑
n=1

|{log(n+ 1)} − {log n}| .

Note, that this can be also proved without using d.f.’s.

(II) Put gu(x, 1) = gu(x) = ex−1
e−1 · 1

eu + emin(x,u)−1
eu . Then by Sklar theorem in

3.19.7.3(IV) we have gu(x, y) = cu(gu(x), gu(y)), were the copula cu(x, y) = min(x, y)
for every u ∈ [0, 1].

3.13.5.2 For a u.d. sequence xn ∈ (0, 1) the two-dimensional sequence

(xn, {log xn}), n = 1, 2, . . . ,

has a.d.f.

g(x, y) =
ey − e

(e− 1)ei
+min

(
x,

1

ei−y

)
if x ∈

[
1

ei
,

1

ei−1

)
where i = 1, 2, . . . .
Notes:
(I) J. Fialová personal communication.
(II) The result follows directly from the figure

0 1

log x mod 1

1
e

1
e2

1
e3

1
e4

y

1
e1−y

1
e2−y
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3.13.5.3 For every u.d. sequence xn ∈ [0, 1) the two-dimensional sequence

(xn, {log n}), n = 1, 2, . . . ,

has the set of d.f.s

gu(x, y) = xgu(y), where gu(y) =
ey − 1

e− 1

1

eu
+
emin(y,u) − 1

eu
.

Notes: Every u.d. sequence xn ∈ [0, 1), n = 1, 2, . . . , is statistically independent
with the sequence {log n}, n = 1, 2, . . . .

3.13.6.
Notes: Let r(h) =

∏
1≤j≤smax(1, |hj |) for the integer vector h = (h1, . . . , hs) and

let ∥x∥ be the distance of x to the nearest integer. A real vector α = (α1, . . . , αs) is
called of finite type η if

η = inf {τ > 1 ; ∃c>0∀h̸=0 (r(h))τ∥h ·α∥ ≥ c}

and is called of constant type (may not exist for s > 1) if

r(h) ∥h ·α∥ ≥ c

for some constant c > 0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let β ̸= 0. The discrepancy of the sequence

αn+ β log n mod 1

(I) for α of the finite type η satisfies

DN ≪ N
− 1
η+1/2

+ε

(II) and if α is of the constant type then

DN ≪ (logN)s

N2/3
.

Notes: K.Goto and Y.Ohkubo (2000) extended the corresponding one–dimensional
result of Ohkubo (1999), cf. 2.12.31.

K.Goto – Y.Ohkubo: The discrepancy of the sequence (nα+ (logn)β), Acta Math. Hungar. 86
(2000), no. 1–2, 39–47 (MR1728588 (2001k:11149); Zbl. 0980.11032).
Y.Ohkubo: Notes on Erdős – Turán inequality, J. Austral. Math. Soc. A 67 (1999), no. 1, 51–57
(MR1699155 (2000d:11100); Zbl. 0940.11029).
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3.14 Sequences of rational numbers

3.14.1. Let N ≥ 1 and M ≥ 2 be integers. For an s–dimensional integer
sequence yn = (yn,1, . . . , yn,s), n = 1, . . . , N , define

xn =
yn

M
mod 1.

Then the extremal discrepancy of xn can be estimated as follows

DN ≤ 1−
(
1− 1

M

)s

+
∑

h=(h1,...,hs )̸=0

−M
2
<hi≤M

2
,i=1,...,s

1

r(h,M)

∣∣∣∣∣ 1N
N∑

n=1

e2πih·xn

∣∣∣∣∣ ,
and

D∗
N ≥ 1−

(
1− 1

M

)s

,

where r(h,M) =
∏s

j=1 r(hj ,M) with

r(h,M) =

{
M sin

(
π|h|
M

)
, for h ̸= 0 and −M

2 < h ≤ M
2 ,

1, for h = 0.

Notes: (I) H.Niederreiter (1992, p. 34, Th. 3.10; p. 41, Th. 3.14).
(II) If M = 2m with a positive integer m then P.Hellekalek ([a]1994) proved the
estimate

DN ≤ 1−
(
1− 1

M

)s
+

(
m+

1

2

)s
· max

h∈Zs,h̸=0
0≤hj<M for j=1,...,s

∣∣∣∣∣ 1N
N∑
n=1

Hh(xn)

∣∣∣∣∣ ,
where Hh =

∏s
i=1Hhi

(xi) with h = (h1, . . . , hs) and x = (x1, . . . , xs) denotes
the hth normalized Haar function on [0, 1)s, i.e. if h ≥ 1 and h = 2a + b with
0 ≤ b < 2a and x ∈ [0, 1) then

Hh(x) =


1, for x ∈ [b2−a, b2−a + 2−a−1),

−1, for x ∈ [b2−a + 2−a−1, (m+ 1)2−a),

0, otherwise.

and H0(x) = 1 for all x ∈ [0, 1]. (For the theory of Haar functions cf. F. Schipp
et al. (1990).) He also proved a similar formula using Walsh functions in (1994).

P.Hellekalek: General discrepancy estimates: The Walsh function system, Acta Arith. 67
(1994), 209–218 (MR1292735 (95h:65003); Zbl. 0805.11055).
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[a] P.Hellekalek: General discrepancy estimates II: The Haar function system, Acta Arith. 67
(1994), no. 4, 313–322 (MR1301821 (96c:11088); Zbl. 0813.11046).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
F. Schipp – W.R.Wade – P. Simon – J. Pál: An Introduction to Dyadic Harmonic Analysis,
Adam Hilger, Ltd., Bristol, 1990 (MR1117682 (92g:42001); Zbl. 0727.42017).

3.14.2. The finite sequence of N2 rational points in [0, 1)2(
i

N
,
j

N

)
, i = 0, 1, . . . , N − 1, j = 0, 1, . . . , N − 1,

has discrepancy

DN2 =
2

N
− 1

N2

and for every continuously differentiable f(x, y) defined on [0, 1]2 we have

lim
N→∞

N

∫ 1

0

∫ 1

0
f(x, y) dx dy − 1

N2

N−1∑
i,j=0

f

(
i

N
,
j

N

) =

=
1

2

∫ 1

0

(
f(1, y)− f(0, y)

)
dy +

1

2

∫ 1

0

(
f(x, 1)− f(x, 0)

)
dx.

Notes: The limit was published in Mathematics Today (1986, p. 202).

Mathematics Today. 1986, (Russian), (A.J.Dorogovcev ed.), Golovnoe Izdatel’stvo Izdatel’skogo
Ob”edineniya “Vishcha Shkola”, Kiev, 1986 (MR0867889 (87h:00011); Zbl. 0596.00002).

3.14.3. Suppose that s ≥ 2, m1, . . . ,ms are s positive integers, N =
m1 . . .ms and m = min(m1, . . . ,ms). Then the discrepancy of the s–di-
mensional finite sequence of N points(

a1
m1

,
a2
m2

. . . ,
as
ms

)
, 0 ≤ ai < mi, 1 ≤ i ≤ s,

satisfies
1

2m
≤ D∗

N ≤ 2s

m
.

Notes: L.–K.Hua and Y.Wang (1981, pp. 70–71, Th. 4.1–2).
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L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).

3.14.3.1 Let b ≥ 2, k ≥ 1, and t ≥ 1 be integers. Let the points

z0, z1, . . . , zN−1 ∈ [0, 1)t

be such that all their coordinates are rational numbers with the denomina-
tor bk. Then for the discrepancy DN of these points we have

DN = Ot

 1

bk
+

1

N

∑∗

H∈C(b)t×k

Wb(H)

∣∣∣∣N−1∑
n=0

e2πi(
1
b
H⊗zn)

∣∣∣∣
 .

Here

C(b) := (−b/2, b/2] ∩ Z is the least absolute residue system modulo b;

C(b)k is the set of k-tuples of elements of C(b);

C(b)t×k is the set of t× k matrices with entries from C(b);

H = (hj,l) ∈ C(b)t×k;

Wb(H) :=
∏t

j=1Qb(hj,1, . . . , hj,k), where

Qb(h1, . . . , hk) := b−d csc(π|hd/b)| if (h1, . . . , hk) ̸= 0 and

Qb(h1, . . . , hk) := 1 if (h1, . . . , hk) = 0;

H⊗ z :=
∑t

j=1

∑k
l=1 hj,lw

(j)
l , where z =

(
z(1), . . . , z(t)

)
∈ [0, 1)t with

z(j) =
∑k

l=1w
(j)
l b−l with all w

(j)
l ∈ {0, 1, . . . , b− 1};

the asterisk
∑∗

denotes that the zero matrix is omitted from the range of
summation.

H.Niederreiter – A.Winterhof: Discrepancy bounds for hybrid sequences involving digital ex-
plicit inversive pseudorandom numbers, Unif. Distrib. Theory 6 (2011), no. 1, 33–56 (MR2817759
(2012g:11143); Zbl. 1249.11075).

3.14.3.2 Let b ≥ 2, k ≥ 1, s ≥ 1, and t ≥ 1 be integers. Let the points

xn = (yn, zn) ∈ [0, 1)s+t, n = 0, 1, . . . , N − 1,

be such that y0,y1, . . . ,yN−1 ∈ [0, 1)s are arbitrary and the coordinates of all
points z0, z1, . . . , zN−1 ∈ [0, 1)t are rational numbers with the denominator
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bk. Let DN be the discrepancy of x0,x1, . . . ,xN−1. Then for any integer
H ≥ 1 we have

DN = Os,t

 1

bk
+

1

H
+

1

N

∑∗

h∈Zs, H∈C(b)t×k
M(h)≤H

Wb(H)

r(h)

∣∣∣∣N−1∑
n=0

e2πi(h·yn+
1
b
H⊗zn)

∣∣∣∣
 ,

where

M(h) := max1≤i≤s |hi|;
r(h) :=

∏s
i=1max(|hi|, 1);

the symbol · denotes the standard inner product in Rs, and

Wb(H) and H⊗ zn are defined in 3.14.3.1.

The asterisk
∑∗

denotes that the pair (h,H) = (0, 0) is omitted from the

range of summation.

H.Niederreiter: Further discrepancy bounds and Erdős-Turán-Koksma inequality for hybrid se-
quences, Monatsh. Math. 161 (2010), 193–222 (MR2680007 (2011i:11120); Zbl. 1273.11117).
H.Niederreiter: A discrepancy bound for hybrid sequences involving digital explicit inversive
pseudorandom numbers, Unif. Distrib. Theory 5 (2010), no. 1, 53–63 (MR2804662 (2012f:11143);
Zbl. 1249.11074).

3.15 Good lattice points

See also: 1.8.19

3.15.1. Good lattice points sequences.

(I) If g = (g1, g2, . . . , gs) ∈ Zs are integral vectors depending on N such that
the sequence

xn =
n

N
g =

(ng1
N

,
ng2
N

, . . . ,
ngs
N

)
mod 1, n = 1, . . . , N,

has discrepancy

DN (xn) = O
(
(logN)s

N

)
,

with O–constant not depending on N , then g is called a sequence of good
lattice points mod N (abbreviated g.l.p.)2

2It is also often convenient to call the vector g itself a good lattice point.
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(II) For every dimension s there is a constant cs such that for all N ∈ N
there is a g ∈ Zs such that the sequence xn = n

N g mod 1, n = 1, 2, . . . , N ,
has discrepancy

D∗
N ≤ cs

(logN)s

N
.

(III) Especially, for a prime p and s ≥ 2 there are g.l.p.’s gp ∈ Zs and an
effectively computable constant cs which only depends on s such that the
sequence

xn =
n

p
gp =

(
ng1,p
p

,
ng2,p
p

, . . . ,
ngs,p
p

)
mod 1, n = 1, . . . , p,

has discrepancy

Dp ≤ cs
(log p)s

p
.

Furthermore, given an M with 1 ≤ M ≤ p, there exits a gp ∈ Zs such that
the discrepancy of the sequence xn = n

pgp mod 1, n = 1, 2, . . . ,M , satisfies
the inequality

D∗
M ≤ cs

(log p)s+1

M
.

(IV) If p is a prime then there exists a primitive root g (mod p) such that for
gp = (1, g, . . . , gs−1) the discrepancy of the sequence

xn =
n

p
gp =

(
n

p
,
ng

p
, . . . ,

ngs−1

p

)
mod 1, n = 1, . . . , p,

satisfies

D∗
p = O

(
(log p)s log log p

p

)
.

(V) In the two–dimensional case we know that for every positive integer N
there exits a lattice point g = (1, g) with gcd (g,N) = 1 such that for the
sequence xn = n

N g mod 1, n = 1, 2, . . . , N , we have

D∗
N ≤ c2

(logN)(log logN)2

N
.

(VI) Suppose that, for the s–dimensional lattice point g = (g1, . . . , gs) ∈ Zs

the congruence

g · x =
s∑

i=1

gixi ≡ 0 (modN)
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has no integral solution in the domain ∥x∥∞ ≤M , x ̸= 0, x = (x1, . . . , xs) ∈
Zs (here ∥x∥∞ = max1≤i≤s(|xi|)). Then the star discrepancy of the finite
sequence xn = n

N g, n = 1, 2, . . . , N , satisfies

D∗
N ≤ cs

(log 3M)s

M
.

(VII) If g ∈ Zs, s ≥ 2, and N ≥ 2 is an integer then for the discrepancy of
the sequence xn = n

N g mod 1, n = 1, 2, . . . , N , we have

DN ≤ s

N
+

1

2
RN ,

where

RN =
∑

h=(h1,...,hs)∈Zs,h̸=0
−N/2<hi≤N/2, for i=1,...,s,

h·g≡0 (modN)

1

r(h)

and r(h) =
∏s

i=1max(1, |hi|). If we denote

ρN = min
h∈Zs,h ̸=0

h·g≡0 (modN)

r(h),

then we have

1

ρN
≤ RN ≤ c(s)

(logN)s

ρN
,

where c(s) depends only on s. Furthermore,

RN ≥ c′(s)
(logN)s

N
.

Notes: (I) The sequence of the form

xn =

(
ng1
p
,
ng2
p
, . . . ,

ngs
p

)
was first investigated by N.M.Korobov (1959, [a]1959) in connection with the nu-
merical computation of multiple integrals. His results are summarized in the book
Korobov (1963).
(II) The existence of g.l.p.’s modulo a prime was proved by E.Hlawka (1962) and
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Korobov (1963, p. 96, Lemma 20) (for a proof cf. [KN, p. 154, Th. 5.7] and L.–
K.Hua and Y.Wang (1981, p. 92, Th. 4.29)). In Hlawka (1964) further explicit
error–estimates for numerical computations of multiple integrals can be found.
• The existence of g.l.p.’s g for composite integers N was proved by S.K. Zaremba
(1973, 1974) in the form ∑

0<∥h∥∞<N
h·g≡0 (modN)

1

r(h)
<

1

N
(c+ 2 logN)s,

with c = 2. H.Niederreiter (1978/79) improved this to c = 1.4 and for N a prime
or a prime power to c = 0.81. If N is a prime then there exits a g ∈ Zs such that
(cf. [KN, p. 156]) ∑

0<∥h∥∞<p
h·g≡0 (mod p)

1

r(h)
<

2

p
(5 log p)s.

(IIa) Korobov (1963) did not use the name g.l.p. but in (1963, p. 96) he called
coordinates of g = (g1, . . . , gs) the optimal coefficients modulo N with index β
provided gi, i = 1, 2, . . . , s, are coprime to N and∑

0<∥h∥∞<N
h·g≡0 (modN)

1

r(h)
≤ c0

(logN)β

N

(more precisely, if this inequality is true for infinitely many N and corresponding
g = g(N), c0 = c0(s), and β = β(s)). He proved (1963, p. 141. Th. 22) that g is
optimal (for some index β) if and only if DN = O((logN)β1/N) with a β1 = β1(s).
If g is of the form g = (1, g, . . . , gs−1) with N = p a prime and 1 < g < p, then
Korobov (1963, p. 148, Th. 23) proved that g is optimal if g minimalizes the function

H(g) =
3s

p

p∑
k=1

s−1∏
i=0

(
1− 2

{
kgi

p

})
.

In the case s = 2 the value H(g) can be computed using O(log p) arithmetical op-
erations. The method is based on the continued fraction machinery provided we
know the continued fraction expansion g/p = [0; a1, a2, . . . ], see N.M.Dobrovol’skĭı,
A.R. Esayan, S.A. Pikhtil’kov, O.V.Rodionova and A.E.Ustyan (1999) and
N.M.Dobrovol’skĭı and O.V.Rodionova (2000).
In the case of general g = (g1, . . . , gs) if N = p > 2 is a prime number and g1 = 1,
then Korobov (1963, p. 120, the proof of Th. 18) proved that g has optimal coordi-
nates (coprime with p) if for every i = 1, 2, . . . , s−1, the coordinate gi+1 minimalizes
the expression

p−1∑
k=1

i+1∏
j=1

(
1− 2 log

(
2 sinπ

{
kgj
p

}))
.
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(III) Hua and Wang (1981, p. 93, Th. 4.30).
(IV) H.Niederreiter (1977, 1978). Korobov (1959) pointed out that a g.l.p. may
take the form g = (1, g, . . . , gs−1) and in (1960, 1963) he noted that to find the
integer g it requires O(p2) elementary operations (for s = 2 see (IIa)).
(V) G. Larcher (1986) improved (II) for s = 2. It is conjectured that for an arbitrary
dimension s the result (II) can be improved to

D∗
N ≤ cs

(logN)s−1(log logN)k(s)

N

with a suitable k(s).
(VI) Hua and Wang (1981; p. 57, Th. 3.2)
(VII) H.Niederreiter (1992, p. 107, Th. 5.6; p. 108, (5.11)). The lower bound was
given by G. Larcher (1987).
(VIII) G.Harman (1998) proved that for every prime p there exits a lattice point
g ∈ Zs such that the ball discrepancy (cf. the def. in 1.11.8) of the sequence
xn = n

pg, n = 1, 2, . . . , p, satisfies

D
B(r)
N ≤ c(s)

(
(prs)

s−1
s+1

p
+

1

p

)
for all r ∈ (0, 1).
(IX) A.I. Saltykov (1963) computed g.l.p.’s if the modulus N is a prime number for
dimensions s = 3, 4, 5, 6 and if N is a product of two primes and s = 3, 4, 5, 6, 7, 8,
see Korobov (1963, p. 217–222 Appendix). Y.Wang, G.S.Xu and R.X. Zhang (1978)
computed tables of g.l.p.’s modulo N in s dimensions for N ≤ 5.5× 107 and s ≤ 18.
H. Sugiura (1995) compiled tables for g.l.p.’s up to the number of sample points
N = 23644 for s = 3, up to N = 4590 for s = 4 and up to N = 1230 for s = 5.
He deduced efficient formulas in 3, 4, 5, and 6 dimensions from the tables, see also
G.Kedem and S.K. Zaremba (1974).
(X) For the sequence xn = n

N g(N) mod 1, n = 1, 2, . . . , N , P. Zinterhof (1987) uses
the so–called practical lattice points of the form

g(N) = ([Ner1 ], [Ner2 ], . . . , [Ners ]),

where ri = pi/ps+1 with pi denoting the ith prime.
(XI) Suppose that f is represented by the absolutely convergent Fourier series f(x) =∑

h∈Zs che
2πih·x (x ∈ Rs) with Fourier coefficients ch =

∫
[0,1]s

f(x)e−2πih·x dx. Then

1

N

N∑
n=1

f
( n
N

g
)
−
∫
[0,1]s

f(x) dx =
∑

h∈Zs,h̸=0
h·g≡0 (modN)

ch

(cf. Korobov (1963, p. 98, Lemma 21) and Niederreiter (1992, p. 103)).
(XII) Denote by Eαs (c) the set of all functions f on Rs represented by the multiple
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Fourier series f(x) =
∑

h∈Zs che
2πih·x, where |ch| ≤ cr−α(h) for every h ̸= 0 and for

given c > 0 and α > 1 (this class was first investigated by Korobov (1963, p. 29)).
Then for any g ∈ Zs and any integer N ≥ 1 we have

(
cf. Korobov (1963, p. 104,

Formula 128) and Niederreiter (1992, p. 104, Th. 5.3)
)

max
f∈Eα

s (c)

∣∣∣∣∣ 1N
N∑
n=1

f
( n
N

g
)
−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ = c.
∑

h∈Zs,h̸=0
h·g≡0 (modN)

1

(r(h))α
,

where α > 1 and c > 0 are real.
• If r(h0) = min{r(h) ; h ·g ≡ 0 (modN) ,0 ̸= h ∈ Zs} and f ∈ Eαs (c) then we have∣∣∣∣∣ 1N

N∑
n=1

f
( n
N

g
)
−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤ 4cα

(
3α2

α− 1

)s
(1 + log r(h0))

s−1

(r(h0))α
,

see N.S. Bachvalov (1959) and Korobov (1963, p. 126, Th. 19).
• If g is an s–dimensional g.l.p. modulo a prime p (cf. (II)) and f ∈ Eαs (c) then we
have (cf. [KN, p. 156–157, Ex. 5.4])∣∣∣∣∣1p

p∑
n=1

f

(
n

p
g

)
−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≤ c(1 + 2ζ(α))s
1 + 2α(5 log p)sα

pα
,

where ζ(α) is the Riemann zeta function.

• If g (modN) is a g.l.p. and f ∈ Eαs (c) then the error term is again O
(

(logN)sα

Nα

)
(see Korobov (1963, p. 101, Th. 12)), and for every g ∈ Zs, N > 2s, α > 1, c > 1,
there exists an f ∈ Eαs (c) such that∣∣∣∣∣ 1N

N∑
n=1

f
( n
N

g
)
−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ ≥ c.c′
(logN)s−1

Nα
,

where c′ = c′(α, s) (see Korobov (1963, p. 104, Th. 13)).
(XIII) In the series of papers (1994-1997) S.M.Voronin described a method how to
find an integer vector g and a prime p such that∫

[0,1]s
f(x) dx =

1

p

p∑
n=1

f

(
n

p
g

)
if a Fourier polynomial f(x) =

∑
h∈A⊂Zs che

2πih·x (A is finite) is given. His tech-
nique is based on the theory of divisors in algebraic number fields.

For example, if s = 2 let p ≡ 1 (mod 4) be a prime such that p - (h21 + h22) for every
h = (h1, h2) ∈ A and h ̸= 0. Then g = (b1, b2), where p = b21 + b22. If s = q − 1
with q a prime, Voronin and V.I. Skalyga (1996) proved the existence of a prime p
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and an integer a which satisfy p ≡ 1 (mod q), gcd(a, p) = 1, a
p−1
q ̸≡ 1 (mod p) such

that for the lattice point g = (1, a(p−1)/q, . . . , a(q−2)(p−1)/q) we have
∫
[0,1]s

f(x) dx =
1
p

∑p
n=1 f

(
n
pg
)
.
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N.M.Dobrovol’skĭı – A.R. Esayan – S.A. Pikhtil’kov – O.V.Rodionova – A.E.Ustyan: On
an algorithm to finding optimal coefficients, (Russian), Izv. Tul. Gos. Univ. Ser. Mat. Mekh.
Inform., 5 (1999), no. 1, Matematika, 51–71 (MR1749344 (2001g:65023)).
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SSSR (N.S.), 132 (1960), 1009–1012 (English translation: Soviet. Math. Dokl, 1 (1960), 696–700
(MR0120768 (22 #11517); Zbl. 0094.11204)).
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no. 2, 99–181 (MR0476679 (57 #16238); Zbl. 0366.65004).
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1994), Lecture Notes Numer. Appl. Anal. 14, Kinokuniya, Tokyo, 1995, pp. 181–195 (MR1469005
(98e:65015); Zbl. 0835.65046).
Y.Wang – G.S.Xu – R.X. Zhang: A number–theoretic method for numerical integration in high
dimension, I , Acta Math. Appl. Sinica 1 (1978), no. 2, 106–114 (MR0497641 (82i:65018); Zbl
0504.10027).
S.M.Voronin: On quadrature formulas, (Russian), Izv. Ros. Akad. Nauk Ser. Mat. 58 (1994),
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no. 5, 189–194 (Zbl. 0836.41020). (English translation: Russian Acad. Sci. Izv. Math. 59 (1995),
no. 2, 417–422 (MR1307316 (95m:41058); Zbl. 0841.41029)).
S.M.Voronin: On the construction of quadrature formulas, (Russian), Izv. Ros. Akad. Nauk Ser.
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Ros. Akad. Nauk Ser. Mat. 60 (1996), no. 5, 13–18 (English translation: Russian Acad. Sci. Izv.
Math. 60 (1996), no. 5, 887–891 (MR1427393 (97j:65046); Zbl. 0918.41028)).
S.M.Voronin: On interpolation formulas for classes of Fourier polynomials, (Russian), Izv. Ros.
Akad. Nauk Ser. Mat. 61 (1997), no. 4, 19–36 (English translation: Russian Acad. Sci. Izv. Math.
61 (1997), no. 4, 699–715 (MR1480755 (98h:11103); Zbl. 1155.11339)).
S.K. Zaremba: Good lattice points modulo primes and composite numbers, in: Diophantine Ap-
proximation and Its Applications (Washington, D.C., 1972), (C.F. Osgood ed.), Academic Press,
New York, 1973, pp. 327–356 (MR0354595 (50 #7073); Zbl. 0268.10016).
S.K. Zaremba: Good lattice points modulo composite numbers, Monatsh. Math. 78 (1974), 446–
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347–353 (MR0902029 (88i:65036); Zbl. 0609.65011).

3.15.2. Zaremba conjecture. Let N ≥ 2 be an integer. Then the conjec-
ture claims the existence of an integer a ≥ 1 with gcd(a,N) = 1 such that in
the simple continued fraction expansion

a

N
= [a0; a1, a2, . . . , al]

we have the inequality ai ≤ 5 for all partial quotients ai, i = 1, 2, . . . , l.

There exists an interesting connection between good lattice points in the
two–dimensional case and the continued fractions of rational numbers. Let
K = max1≤i≤k ai, then the quantity

ρN = min
h∈Z2,h̸=0

h·g≡0 (modN)

r(h)

(for the def. of r(h) see p. 1 – 68 ) computed for the two–dimensional lattice
point g = (1, a) satisfies the inequality

N

K + 2
≤ ρN ≤ N

K

and applying 3.15.1(VII) to the sequence

xn =
n

N
g mod 1, n = 1, 2, . . . , N,

we obtain the estimate

DN ≤ 2

N
+

1

2
c(2)(K + 2)

(logN)2

N
.
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This implies that for smaller values of K we get better good lattice points
modulo a fixed N .

Notes: (I) This conjecture was formulated by S.K. Zaremba (1972, pp. 69 and 76)
on the basis of unspecified numerical evidence. H.Niederreiter (1986) proved the
conjecture for N of the type N = 2n or N = 3n, n = 1, 2, . . . . More precisely his
result states that there exists an integer 1 ≤ a < N with gcd (a,N) = 1 such that
K ≤ 3. Niederreiter (1992, p. 146) recommends for further reading: I. Borosh and
H.Niederreiter (1983), T.W.Cusick (1985, 1989), or J.W. Sander (1987).
(II) If a

N = [a0; a1, a2, . . . , al] and
pj
qj

= [a0; a1, a2, . . . , aj ], j = 0, 1, 2, . . . , l, then

ρN = min
0≤j≤l

qj |qja− pjN |,

see Niederreiter (1992, p. 122, Th. 5.15).
(III) Niederreiter (1992, p. 123, (5.39))

DN ≤ 1+
∑l

j=1 aj

N .

It is conjectured that

min
a∈Z

gcd(a,N)=1

∑l
j=1 aj = O(logN).

G.Larcher (1986) proved the bound O((logN)(log logN)2).
(IV) If Fm, m = 1, 2, . . . , are Fibonacci numbers then g = (1, Fm−1) for N = Fm,
while K = 1, as it is well–known. This selection of two–dimensional good lattice
points g was first explicitly used by N.S. Bachvalov (1959). V.N.Temlyakov (1989)
proved the optimality of g in numerical integration of a class of functions with
bounded mixed derivates.
(V) If a is a positive integer then G. Larcher ([b]1986) proved that for the sequence

xn =
(
n
N ,

na
N

)
mod 1, n = 1, 2, . . . , N ,

we have (for the def. of the dispersion d∞N cf. 1.11.17)

d∞N = max(AQ(N), AQ(N)−1),

where (using the continued fraction expansion a/N = [0; a1, a2, . . . ])

• Ak = min
(
fk−1 − [hk] · fk, qk−1+([hk]+1).qk

N

)
,

• hk = Nfk−1−qk−1

qk+N.fk
,

• fk =
∥∥qk. aN ∥∥ (the distance to the nearest integer),

• Q(N) is defined by q2Q(N) ≤ N < q2Q(N)+1.

Applying this to

xn =
(
n
Fm
, nFm−1

Fm

)
mod 1, n = 1, 2, . . . , Fm,

he found that

d∞Fm
=

F[m/2]+1

Fm

which yields

lim
N→∞

min
a∈N

d∞N
√
N = 1√

2
.
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(VI) J. Bourgain and A.Kontorovich (2014) proved Zaremba’s conjecture for almost
all N and for K = 50.
(VII) D. Hensley (2006), p. 38, Th. 3.2, proved that there are at least on the order
xδ integers N between x and x + εx for which ai ≤ K. Here δ is the Hausdorff
dimension of the Cantor set CK consisting of all numbers x with continued fraction
expansion x = [0; a1, a2, . . . , ai . . . ] with ai ≤ K, i = 1, 2, . . . .
(VIII) Also, Hensley (2006), p. 34, conjectured the strong version of Zaremba’s
conjecture saying that ai ≤ K = 2 for all sufficiently large N .
(IX) Also consult with S.Y. Huang (2015), I.D. Kan and D.A. Frolenkov (2014) and
I.D. Kan (2015).
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T.W.Cusick: Products of simultaneous approximations of rational numbers, Arch. Math. (Basel)
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3 – 78 3 Multi–dimensional sequences

3.15.3. Let Qs be a real algebraic number field of degree s and ω1, . . . , ωs

be an integer basis of Qs, where ω2, . . . , ωs are irrational numbers, and let
N,h1, . . . , hs be integers which satisfy∣∣∣∣hjN − ωj

∣∣∣∣ ≤ c(Qs, ε)

N1+ 1
s−1

, j = 2, 3, . . . , s.

Then the discrepancy of the finite s–dimensional sequence

xn =

(
n

N
,
nh2
N

, . . . ,
nhs
N

)
mod 1, n = 1, 2, . . . , N,

satisfies

D∗
N ≤ c(Qs, ε)

N
1
2
+ 1

2(s−1)
−ε
,

with ε being an arbitrary pre–assigned positive number. If 1 ≤ M ≤
N

1
2
+ 1

2(s−1) then for the sequence(
nh2
N

, . . . ,
nhs
N

)
mod 1, n = 1, 2, . . . ,M,

we have

D∗
M ≤ c(Qs, ε)

M1−ε
.

Notes: L.–K.Hua and Y.Wang (1981, p. 86, Th. 4.16–17)).

L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).

3.15.4. Let Rs = Q
(
cos 2π

m

)
be the real cyclotomic field (of degree s =

φ(m)
2 ). Let the integers cj be such that∣∣∣∣ cjN − 2 cos

2π(j − 1)

m

∣∣∣∣ ≤ c(Rs, ε)

N1+ 1
s−1

, j = 2, 3, . . . , s,

where c(Rs, ε) depends on Rs and ε. Then the star discrepancy of the finite
s–dimensional sequence

xn =
(nc1
N
,
nc2
N
, . . . ,

ncs
N

)
mod 1, n = 1, 2, . . . , N,
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satisfies the inequality

D∗
N ≤ c(Rs, ε)

N
1
2
+ 1

2(s−1)
−ε
,

where ε is an arbitrary pre–assigned positive number. If 1 ≤M ≤ N
1
2
+ 1

2(s−1)

then for the sequence(nc2
N
, . . . ,

ncs
N

)
mod 1, n = 1, 2, . . . ,M,

we have

D∗
M ≤ c(Rs, ε)

M1−ε
.

Notes: L.–K.Hua and Y.Wang (1981, p. 87, Th. 4.18–19)).

L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).

3.15.5. Let p be a prime greater than the integer s. Then the star discrep-
ancy of the finite sequence

xn =

(
n

p2
,
n2

p2
, . . . ,

ns

p2

)
mod 1 n = 1, 2, . . . , p2,

satisfies

D∗
p2 ≤ cs

(log p)s

p
.

If f ∈ Eα
s (c) (i.e. f(x) =

∑
h∈Zs che

2πih·x, |ch| ≤ c
(r(h))α , α > 1) then for

the error term we have∣∣∣∣∣∣ 1p2
p2∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣∣ ≤ (s− 1)σ

p
+
βsc

pα
,

where β < 4 + 2
α−1 and σ =

∑
h∈Zs |ch|. In the opposite case, for every

g = (g1, . . . , gs) ∈ Zs with gcd(gi, p) = 1 for i = 1, 2, . . . , s, there exists an
f ∈ Eα

s (c) such that for

xn =

(
g1n

p2
,
g2n

2

p2
, . . . ,

gsn
s

p2

)
mod 1, n = 1, 2, . . . , p2,
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we have ∣∣∣∣∣∣ 1p2
p2∑
n=1

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣∣ ≥ c

p
.

Notes: (I) N.M.Korobov (1957) investigated this sequence in connection with ap-
proximation of multiple integrals. The given star discrepancy is from L.–K.Hua and
Y.Wang (1981, p. 79, Th. 4.8). The error terms in the quadrature formulas are from
Korobov (1963, p. 70, Th. 5; p. 74, Th. 7). It is also true that if f(x) can be expressed

as an absolutely convergent Fourier series and the partial derivative ∂2sf(x)
∂x2 is contin-

uous and for any integers j1, ..., jr the partial derivatives ∂2rf(x)
∂x2

j1
...∂x2

jr

are bounded in

magnitude by a constant C, then
∣∣∣ 1
p2

∑p2

n=1 f(xn)−
∫
[0,1]s

f(x) dx
∣∣∣ ≤ (s−1)σ

p + sC
10p2 .

(II) With the aim to approximate the multiple integral equation of the form

ϕ(x) = λ
∫
[0,1]s

K(x,y)ϕ(y) dy + f(x)

Korobov (1959) investigated the sequence

xn =

(
n

p
,
n2

p
, . . . ,

ns

p

)
mod 1, n = 1, 2, . . . , p,

where p > s is a prime. For this sequence we have
(
cf. L.–K.Hua and Y.Wang

(1981, p. 79, Th. 4.9)
)

D∗
p ≤ cs

(log p)s
√
p

.

With the same xn and f ∈ Eαs (c) we again have
∣∣∣ 1p∑p

n=1 f(xn)−
∫
[0,1]s

f(x) dx
∣∣∣ ≤

(s−1)σ√
p + βsc

pα , where β < 4+ 2
α−1 , see Korobov (1963, p. 72, Th. 6) and also L.–K.Hua

and Y.Wang (1981, p. 134, Th. 7.3).
(III) The star discrepancy of the double sequence

xn,k =

(
k

p
,
nk

p
, . . . ,

ns−1k

p

)
mod 1, n, k = 1, 2, . . . , p,

satisfies by L.–K.Hua and Y.Wang (1981, p. 79, Th. 4.7) the inequality

D∗
p2 ≤ cs

(log p)s

p
.

L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).
N.M.Korobov: Approximate calculation of repeated integrals by number–theoretical methods,
(Russian), Dokl. Akad. Nauk SSSR (N.S.), 115 (1957), 1062–1065 (MR0098714 (20 #5169);
Zbl. 0080.04601).
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N.M.Korobov: Approximate solution of integral equations, (Russian), Dokl. Akad. Nauk SSSR
(N.S.), 128 (1959), 235–238 (MR0112260 (22 #3114); Zbl. 0089.04202).

3.16 Lattice points involving recurring sequences

3.16.1. Let Fm be the mth Fibonacci number. Then the star discrepancy
of the two–dimensional finite sequence(

n

Fm
,
nFm−1

Fm

)
mod 1, n = 1, 2, . . . , Fm,

satisfies

D∗
Fm ≤ c

(log 3Fm)2

Fm
.

Notes: L.–K.Hua and Y.Wang (1981, p. 92, Th. 4.28). Actually they proved that
if Qn, n = 1, 2, . . . , is a linear recurring sequence of positive integers such that
• Q1 ≤ Q2 with gcd(Q1, Q2) = 1,
• Qn = anQn−1 +Qn−2, n = 3, 4, . . . , where
• a3, a4, . . . is a sequence of positive integers, an ≤M with M a constant,

then there exists a constant c(Q1, Q2,M) such that for the star discrepancy of the
sequence (

n

Qm
,
nQm−1

Qm

)
mod 1, n = 1, 2, . . . , Qm,

we have

D∗
Qm

≤ c(Q1, Q2,M)
(log 3Qm)2

Qm
.

L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).

3.16.2. Assume that
• α is a P.V. number of degree s, i.e. α > 1 and its conjugates satisfy

|α(2)| ≤ · · · ≤ |α(s)| < 1,
• α is the root of the irreducible polynomial xs−as−1x

s−1−· · ·−a1x−a0 = 0,
• Qn, n = 0, 1, 2, . . . , is a sequence of integers defined by the recurrence

relation
• Qn = as−1Qn−1 + · · ·+ a1Qn−s+1 + a0Qn−s, n = s, s+ 1, . . . , where
• Q0 = Q1 · · · = Qs−2 = 0, Qs−1 = 1, and denote
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• Qn(j) = Qn+j−1 − as−1Qn+j−2 − · · · − as−j+2Qn+1 − as−j+1Qn, j =
2, 3, . . . , s.

Then the discrepancy of the s–dimensional finite sequence

xn =

(
n

Qm
,
nQm(2))

Qm
, . . . ,

nQm(s)

Qm

)
mod 1, n = 1, 2, . . . , |Qm|,

satisfies

D∗
|Qm| ≤

c(α, ε)

|Qm|
1
2
+ ρ

2
−ε
,

where ρ = − log |α(s)|
logα and ε is an arbitrary pre–assigned positive number. IfM

fulfils the inequalities 1 ≤ M ≤ |Qm|
1
2
+ ρ

2 then for the (s − 1)–dimensional
sequence (

nQm(2))

Qm
, . . . ,

nQm(s)

Qm

)
mod 1, n = 1, 2, . . . ,M,

we have

D∗
M ≤ c(α, ε)

M1−ε

with ε being an arbitrary pre–assigned positive number.

Notes: L.–K.Hua and Y.Wang (1981, p. 88, Th. 4.20–1).

L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).

3.16.3. Let Fn, n = 0, 1, 2, . . . , be the sequence of integers (the so–called
s–dimensional Fibonacci sequence) defined by the recurrence relation
• Fn = Fn−1 + · · ·+ Fn−s+1 + Fn−s, n = s, s+ 1, . . . , where
• F0 = F1 = · · · = Fs−2 = 0, Fs−1 = 1, and denote
• Fn(j) = Fn+j−1 − Fn+j−2 − · · · − Fn+1 − Fn for j = 2, 3, . . . , s.

Then for the star discrepancy of the s–dimensional finite sequence

xn =

(
n

Fm
,
nFm(2))

Fm
, . . . ,

nFm(s)

Fm

)
mod 1, n = 1, 2, . . . , Fm,

we have

D∗
Fm ≤ c(s)

F
1
2
+ 1

2s+1 log 2
+ 1

22s+3

m
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and if M satisfies 1 ≤ M ≤ F
1
2
+ 1

2s+1 log 2
+ 1

22s+2

m , then for the (s − 1)–dimen-
sional sequence(

nFm(2))

Fm
, . . . ,

nFm(s)

Fm

)
mod 1, n = 1, 2, . . . ,M,

we have

D∗
M ≤ c(s, ε)

M1−ε

with ε being an arbitrary pre–assigned positive number.
Notes: L.–K.Hua and Y.Wang (1981, p. 89, Th. 4.22–3).

L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).

3.17 Lattice rules

C.f. H.Niederreiter (1992, pp. 125–146) and for the def. see 1.8.20.

(I) For every s–dimensional N–point lattice rule with N ≥ 2, the node set

x0,x1, . . . ,xN−1

consists exactly of all the fractional parts{
r∑

i=1

ki
ni

gi

}
with integers 0 ≤ ki < ni and 1 ≤ i ≤ r,

where the integer r with 1 ≤ r ≤ s and the integers n1, . . . , nr ≥ 2 with
ni+1|ni for 1 ≤ i ≤ r − 1 and n1 . . . nr = N are uniquely determined.
Furthermore, the vectors g1, . . . ,gs ∈ Zs are linearly independent, and, for
each 1 ≤ i ≤ r the coordinates of gi and ni are coprime. (I.H. Sloan and
J.N. Lyness (1989), cf. Niederreiter (1992, p. 130, Th. 5.28)).

• The integer r is called the rank of the lattice rule.

• The integers n1, . . . , nr are called the invariants of the lattice rule.

(II) If f(x) is a periodic function represented by its absolutely convergent
Fourier series f(x) =

∑
h∈Zs che

2πih·x with Fourier coefficients given by ch =∫
[0,1]s f(x)e

−2πih·x dx then

1

N

N−1∑
n=0

f(xn)−
∫
[0,1]s

f(x) dx =
∑

h∈L⊥,h̸=0

ch.
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For the set Eα
s (c) of all f(x) for which |ch| ≤ c(r(h))−α for all non–zero

h ∈ Zs and some constants c > 0 and α > 1 we have (cf. Niederreiter (1992,
p. 127, Th. 5.23))

max
f∈Eαs (c)

∣∣∣∣∣ 1N
N−1∑
n=0

f(xn)−
∫
[0,1]s

f(x) dx

∣∣∣∣∣ = c.Pα(L),

where the discrepancy Pα(L) of lattice rule L is defined by

Pα(L) =
∑

h∈L⊥,h̸=0

(r(h))−α

and L⊥ is the dual lattice of L, see 1.8.20. The maximum is attained at
f(x) = c ·

∑
h∈Zs

e2πih·x

(r(h))α .

(III) For the extremal discrepancy DN of the node set x0,x1, . . . ,xN−1 of
an s–dimensional point lattice rule L with s ≥ 2 and N ≥ 2 we have (see
Niederreiter (1992, p. 136, Th. 5.35, and p. 138, Th. 5.37) and also Niederre-
iter (1985))

1

csρ(L)
≤ DN <

s

N
+

1

ρ(L)

(
2

log 2

)s−1(
(logN)s +

3

2
(logN)s−1

)
,

where c2 = 4, c3 = 27, and cs =
2
π ((π + 1)s − 1) for s ≥ 4. Here

• for any s–dimensional lattice L the figure of merit ρ(L) is defined by

ρ(L) = min
h∈L⊥,h̸=0

r(h).

The lattice discrepancy Pα(L) defined in (II) satisfies the estimates

1

(ρ(L))α
≤ Pα(L) = O

(
(1 + log ρ(L))s−1

(ρ(L))α

)
,

cf. I.H. Sloan and P.J.Kachoyan (1987).

H.Niederreiter ([a]1992, Coroll. 2) proved that for every s ≥ 2 and any pre-
scribed invariants n1 and n2, there exists an s–dimensional N–point (where
N = n1n2) lattice rule of rank 2 such that the discrepancy of the node set
x0, . . . ,xN−1 satisfies

DN ≤ c(s)

(
(logN)s

N
+

logN

n1

)
.
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The general lower bound of DN for any s–dimensional N -point lattice rule
is (cf. Niederreiter ([a]1992))

DN ≥ 1

n1
.

Notes: (IV) the g.l.p. sequence (see 3.15.1)

xn =
n

N
g mod 1, n = 0, 1, . . . , N − 1,

with g = (g1, . . . , gs) ∈ Zs and gcd(g1, . . . , gs, N) = 1 is the lattice rule of rank 1.
(V) The s–dimensional lattice rule(

k1
m
, . . . ,

ks
m

)
, ki ∈ Z, 0 < ki ≤ m for 1 ≤ i ≤ s,

has the rank s, invariants ni = m for 1 ≤ i ≤ s, and N = ms points. If f ∈ Eαs (c)
(see the def. in (II)) then N.M.Korobov (1963, p. 49, Th. 3) proved the error term
estimate ∣∣∣∣∣∣ 1

ms

m∑
k1,...,ks=1

f

(
k1
m
, . . . ,

ks
m

)
−
∫
[0,1]s

f(x) dx

∣∣∣∣∣∣ = O
(

1

mα

)
and the order of the error is the best possible because it is attained for some f ∈
Eαs (c).
L.–K.Hua and Y.Wang (1981, p. 131, Th. 7.1) estimated the supremum of the left–
hand side with f running over Eαs (c) by ≤ c(2ζ(α) + 1)sm−αwith a suitable c.
(VI) We have

1 ≤ ρ(L) ≤ n1,

where n1 is the first invariant of L. This implies that

ρ(L) ≤ N/2

for rank ≥ 1, see Niederreiter (1992, p. 133, Lemma 5.32, Rem. 5.33).
(VII) Niederreiter (1992, p. 144, Th. 5.44) proved: If L is an s–dimensional N–point
lattice rule and k ≥ 2 is an integer, then k−1L is a ksN–point lattice rule of rank s
with dual lattice (k−1L)⊥ = kL⊥.
(VIII) Niederreiter (1992, p. 139, Lemma 5.39): For s ≥ 2, let a rank 1 ≤ r ≤ s and
invariants n1, . . . , nr ≥ 2 with ni+1|ni for i = 1, 2, . . . , r − 1 be given. Let L1 be an
s–dimensional n1–point lattice rule of rank 1 generated by g1 = (g1,1, . . . , g1,s) ∈ Zs,
with gcd(g1,1, n1) = 1. Then an s–dimensional lattice rule L with rank r and invari-
ants n1, . . . , nr exists such that the node set of L contains the node set of L1.
(IX) F.J.Hickernell (1998) expressed the discrepancy P2k(L) in terms of Bernoulli
polynomials B2k(x)

P2k(L) = −1 + 1
N

∑N−1
n=0

∏s
j=1

(
1− (−1)k(2π)2k

2k! B2k(xn,j)
)
,
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where xn = (xn,1, . . . , xn,s) and x0, . . . ,xN−1 is the s–dimensional N–point lattice
rule.
(X) I.H. Sloan and L.Walsh (1990) gave several examples of lattice rules of rank 2.

F.J.Hickernell: Lattice rules: How well do they measure up? (P.Hellekalek and G. Larcher eds.),
in: Random and quasi-random point sets, Lecture Notes in Statistics 138, pp. 109–166, Springer,
New York, NY, 1998 (MR1662841 (2000b:65007); Zbl. 0920.65010).
L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).
H.Niederreiter: The serial test for pseudo–random numbers generated by the linear congruential
method , Numer. Math 46 (1985), 51–68 (MR0777824 (86i:65010); Zbl. 0541.65004).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
[a]H.Niederreiter: The existence of efficient lattice rules for multidimensional numerical inte-
gration, Math. Comp. 58 (1992), no. 197, 305–314 (MR1106976 (92e:65023); Zbl. 0743.65018).
I.H. Sloan – P.Kachoyan: Lattice methods for multiple integration: Theory, error analysis and
examples, SIAM J. Numer. Anal. 24 (1987), 116–128 (MR0874739 (88e:65023); Zbl. 0629.65020).
I.H. Sloan – J.N. Lyness: The representation of lattice quadrature rules as multiple sums, Math.
Comp. 52 (1989), 81–94 (MR0947468 (90a:65053); Zbl. 0659.65018).
I.H. Sloan – L.Walsh: A computer search of rank–2 lattice rules for multidimensional quadrature,
Math. Comp. 54 (1990), no. 189, 281–302 (MR1001485 (91a:65061); Zbl. 0686.65012).

3.18 Sequences involving radical inverse function

3.18.1. Halton sequence. Let n =
∑∞

j=0 aj(n)q
j , aj ∈ {0, 1, . . . , q − 1},

be the q–adic digit expansion of the integer n, where q ≥ 2 is an integer. The
radical inverse function (cf. 2.11.2) or the Monna map in the base q is
defined by γq(n) =

∑∞
j=0 aj(n)q

−j−1 for n = 0, 1, 2, . . . . The Halton sequence
in the bases q1, . . . , qs is defined by

xn = (γq1(n), . . . , γqs(n)), n = 0, 1, 2, . . . .

For the pairwise coprime bases q1, . . . , qs the Halton sequence is

u.d.

and for the discrepancy of x0,x1, . . . ,xN−1 we have

DN (xn) = O
(
(logN)s

N

)
,

more precisely

D∗
N <

s

N
+

1

N

s∏
i=1

(
qi − 1

2 log qi
logN +

qi + 1

2

)



3.18 Sequences involving radical inverse function 3 – 87

for N = 1, 2, . . . .
Notes: (I) J.H.Halton (1960) and for the discrepancy cf. H.Niederreiter (1992,
p. 29, Th. 3.6).
(II) I.M. Sobol’ (1969, p. 176, Th. 3) gave the estimate

D∗
N ≤ 1

N

s∏
i=1

(
qi − 1

log qi
logN + 2qi − 1

)
.

(III) L.–K.Hua and Y.Wang (1981, p. 74, Th. 4.3) proved

D∗
N ≤ 1

N

s∏
i=1

(
qi log(qiN)

log qi

)
but for xn with n = 1, 2, . . . , N (not with n = 0, 1, . . . , N − 1).
(IV) If 2 ≤ q1 < q2 < · · · < qs are pairwise coprime bases then G. Larcher (1986)
proved that for the isotropic discrepancy IN (cf. 1.11.9) of xn we have

N1/sIN ≤ c.q21q2 . . . qs−1q
s
s .

(V) P.Hellekalek and H.Niederreiter (2011): The s-dimensional Halton sequence
xn, n = 0, 1, 2, . . . , is u.d. if and only if the bases qi, i = 1, 2, . . . , s are pairwise
coprime.
(VI) P.Grabner, P.Hellekalek and P. Liardet (2012): Moreover, if q1, . . . , qs are pair-
wise coprime, then the Halton sequence is also well-distributed [Coroll.33, p. 28].

Related sequences: 2.11.2, 3.18.3.

J.H.Halton: On the efficiency of certain quasi–random sequences of points in evaluating multi–
dimensional integrals, Numer. Math. 2 (1960), 84–90 (MR0121961 (22 #12688); Zbl. 0090.34505).
P.Grabner – P.Hellekalek – P. Liardet: The dynamical point of view of low-discrepancy
sequences, Unif. Distrib. Theory 7 (2012), no. 1, 11–70 (MR2943160; Zbl. 1313.11093)
P.Hellekalek – H.Niederreiter: Constructions of uniformly distributed sequences using the
b-adic method , Unif. Distrib. Theory 6 (2011), no. 1 185–200.(MR2817766; Zbl. 1333.11071)
L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).
G.Larcher: Über die isotrope Discrepanz von Folgen, Arch. Math. (Basel) 46 (1986), no. 3,
240–249 (MR0834843 (87e:11091); Zbl. 0568.10029).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).
J.G. van der Corput: Verteilungsfunktionen I – II , Proc. Akad. Amsterdam 38 (1935), 813–821,
1058–1066 (JFM 61.0202.08, 61.0203.01; Zbl. 0012.34705, 0013.05703).
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3.18.1.1 For van der Corput sequence xn = γq(n), n = 0, 1, . . . , in base q
the two-dimensional sequence

(γq(n), γq(n+ 1)), n = 0, 1, 2, . . . ,

has the a.d.f.

g(x, y) =


0, if (x, y) ∈ A,

1− (1− y)− (1− x) = x+ y − 1, if (x, y) ∈ B,

y − 1
qi
, if (x, y) ∈ Ci,

x− 1 + 1
qi−1 , if (x, y) ∈ Di,

where A, B, Ci and Di, i = 1, 2, ..., are as in the following figure

0 1

1
q

1
q2

1
q3

1− 1
q 1− 1

q2
1− 1

q3

�
�
�
�
�
�
�
�
�

�
��

�
�
�
�
�
�

�
�
�A

B

C1

D1

C2

D2

This a.d.f. is a copula.
Notes:
(I) There follows that every point (γq(n), γq(n+ 1)), n = 0, 1, 2, . . . , lies on the line
segment

Y = X − 1 +
1

qk
+

1

qk+1
, X ∈

[
1− 1

qk
, 1− 1

qk+1

]
for k = 0, 1, . . . .
(II) F. Pillichshammer and S. Steinerberger (2009) proved that

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| =
2(q − 1)

q2
.
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In J. Fialová and O. Strauch (2011) an alternative proof via d.f.’s is given.

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| =
∫ 1

0

∫ 1

0

|x− y|dx dy g(x, y) = 1− 2

∫ 1

0

g(x, x) dx.

J. Fialová – O. Strauch: On two-dimensional sequences composed by one-dimensional uniformly
distributed sequences, Unif. Distrib. Theory 6 (2011), no. 2, 101–125 (MR2817763 (2012e:11135);
Zbl. 1313.11089)
F.Pillichshammer – S. Steinerberger: Average distance between consecutive points of uniformly
distributed sequences, Unif. Distrib. Theory 4 (2009), no. 1, 51–67 (MR2501478 (2009m:11116);
Zbl. 1208.11088).

3.18.1.2 For van der Corput sequence xn = γq(n), n = 0, 1, . . . , in base q
the two-dimensional sequence

(γq(n), γq(n+ 2)), n = 0, 1, 2, . . . ,

g(x, y) =



x, if (x, y) ∈ D0,

y − 2
q , if (x, y) ∈ C0,

0, if (x, y) ∈ A0,

y + x− 1, if (x, y) ∈ B0,

x− 1 + 2
q , if (x, y) ∈ E0,

y, if (x, y) ∈ F0,

0, if (x, y) ∈ A,

x+ y − 1 + 1
q , if (x, y) ∈ B,

x− 1 + 1
q +

1
qi
, if (x, y) ∈ Di,

y − 1
qi+1 , if (x, y) ∈ Ci,

1
q , if (x, y) ∈ A′,

x+ y − 1, if (x, y) ∈ B′,

x− 1 + 1
q +

1
qi
, if (x, y) ∈ D′

i,

y − 1
qi+1 , if (x, y) ∈ C ′

i,

where the regions A’s, B’s, C’s, and D’s of [0, 1]2 are given as in the following
figure
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0 1

2
q

1
q

1− 2
q 1− 1

q

�
�
�
�
�
�

�
�
�

��

�
�
�

��

D0

C0

A0

B0

E0

F0

D1
C1

A

B

D2

C2

D′
1
C′

1

A′

B′

D′
2

C′
2

This g(x, y) is a copula.

All terms of the sequence (γq(n), γq(n + 2)), n = 1, 2, ..., lies in the line seg-
ments

Y = X +
2

q
, X ∈

[
0, 1− 2

q

)
, or

Y = X +
1

q
+

1

qi+1
+

1

qi+2
− 1, X ∈

[
1− 1

q
− 1

qi+1
, 1− 1

q
− 1

qi+2

)
or

Y = X +
1

q
+

1

qi+1
+

1

qi+2
− 1, X ∈

[
1− 1

qi+1
, 1− 1

qi+2

)

for i = 0, 1, . . . . Note that for q = 2, the interval
[
0, 1− 2

q

]
×
[
2
q , 1
]
is empty.

J. Fialová – L.Mǐśık – O. Strauch: An asymptotic distribution function of three-dimensional
shifted van der Corput sequence, Applied Mathematics 5 (2014), 2334–2359 (http://dxdoi.org/
10.4236/am.2014515227).

3.18.1.3 The points

(γq(n), γq(n+ s)), n = 0, 1, 2, . . .
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lie on the diagonals of intervals

I0 =

[
0, 1− s

q

]
×
[
s

q
, 1

]
,

I
(i)
1 =

[
1− s− 1

q
− 1

qi
, 1− s− 1

q
− 1

qi+1

]
×
[

1

qi+1
,
1

qi

]
, i = 1, 2, . . . ,

I
(i)
2 =

[
1− s− 2

q
− 1

qi
, 1− s− 2

q
− 1

qi+1

]
×
[
1

q
+

1

qi+1
,
1

q
+

1

qi

]
,

i = 1, 2, . . . ,

I
(i)
3 =

[
1− s− 3

q
− 1

qi
, 1− s− 3

q
− 1

qi+1

]
×
[
2

q
+

1

qi+1
,
2

q
+

1

qi

]
,

i = 1, 2, . . . ,

I
(i)
4 =

[
1− s− 4

q
− 1

qi
, 1− s− 4

q
− 1

qi+1

]
×
[
3

q
+

1

qi+1
,
3

q
+

1

qi

]
,

i = 1, 2, . . . ,

...

I
(i)
l−1 =

[
1− s− l + 1

q
− 1

qi
, 1− s− l + 1

q
− 1

qi+1

]
×
[
l − 2

q
+

1

qi+1
,
l − 2

q
+

1

qi

]
,

i = 1, 2, . . . ,

...

I(i)s =

[
1− 1

qi
, 1− 1

qi+1

]
×
[
s− 1

q
+

1

qi+1
,
s− 1

q
+

1

qi

]
, i = 1, 2, . . . .

V.Baláž– J. Fialová – M.Hoffer – M.R. Iacó – O. Strauch: The asymptotic distribution func-
tion of the 4-dimensional shifted van der Corput sequence, Tatra Mt. Math. Publ. 64 (2015), 75–92
(MR3458785; Zbl 06545459).

3.18.1.4

Every point of the sequence

(γq(n), γq(n+ 1), γq(n+ 2)), n = 1, 2, . . .
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lies on the diagonals of intervals

I =

[
0, 1− 2

q

]
×
[
1

q
, 1− 1

q

]
×
[
2

q
, 1

]
,

I(i) =

[
1− 1

qi
, 1− 1

qi+1

]
×
[

1

qi+1
,
1

qi

]
×
[
1

q
+

1

qi+1
,
1

q
+

1

qi

]
, i = 1, 2, . . . ,

J (k) =

[
1− 1

q
− 1

qk
, 1− 1

q
− 1

qk+1

]
×
[
1− 1

qk
, 1− 1

qk+1

]
×
[

1

qk+1
,
1

qk

]
,

k = 1, 2, . . . ,

where |I| = 0 if q = 2, and these intervals are maximal with respect to the
set inclusion. The a.d.f. of this sequence is given by

g(x, y, z) =min
(
|[0, x] ∩ IX |, |[0, y] ∩ IY |, |[0, z] ∩ IZ |

)
+

∞∑
i=1

min
(
|[0, x] ∩ I(i)X |, |[0, y] ∩ I(i)Y |, |[0, z] ∩ I(i)Z |

)
+

∞∑
k=1

min
(
|[0, x] ∩ J (k)

X |, |[0, y] ∩ J (k)
Y |, |[0, z] ∩ J (k)

Z |
)
.

For example

g(x, x, x) =


0 if x ∈

[
0, 2q

]
,

x− 2
q if x ∈

[
2
q , 1−

1
q

]
,

3x− 2 if x ∈
[
1− 1

q , 1
]
.

J. Fialová – L.Mǐśık – O. Strauch: An asymptotic distribution function of three-dimensional
shifted van der Corput sequence, Applied Mathematics 5 (2014), 2334–2359 (http://dxdoi.org/
10.4236/am.2014515227).

3.18.1.5 The maximal 4-dimensional intervals containing points

(γq(n), γq(n+ 1), γq(n+ 2), γq(n+ 3)), n = 0, 1, 2, . . .
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on its diagonals are

I =

[
0, 1− 3

q

]
×
[
1

q
, 1− 2

q

]
×
[
2

q
, 1− 1

q

]
×
[
3

q
, 1

]
I(i) =

[
1− 1

qi
, 1− 1

qi+1

]
×
[

1

qi+1
,
1

qi

]
×
[
1

q
+

1

qi+1
,
1

q
+

1

qi

]
×
[
2

q
+

1

qi+1
,
2

q
+

1

qi

]
, i = 1, 2, . . . ,

J (j) =

[
1− 2

q
− 1

qj
, 1− 2

q
− 1

qj+1

]
×
[
1− 1

q
− 1

qj
, 1− 1

q
− 1

qj+1

]
×
[
1− 1

qj
, 1− 1

qj+1

]
×
[

1

qj+1
,
1

qj

]
, j = 1, 2, . . . ,

K(k) =

[
1− 1

q
− 1

qk
, 1− 1

q
− 1

qk+1

]
×
[
1− 1

qk
, 1− 1

qk+1

]
×
[

1

qk+1
,
1

qk

]
×
[
1

q
+

1

qk+1
,
1

q
+

1

qk

]
, k = 1, 2, . . . ,

and the a.d.f. of this 4-diemnsional sequence is given by formula

g(x, y, z, u)

=min
(
|[0, x] ∩ IX |, |[0, y] ∩ IY |, |[0, z] ∩ IZ |, |[0, u] ∩ IU |

)
+

∞∑
i=1

min
(
|[0, x] ∩ I(i)X |, |[0, y] ∩ I(i)Y |, |[0, z] ∩ I(i)Z |, |[0, u] ∩ I(i)U |

)
+

∞∑
j=1

min
(
|[0, x] ∩ J (j)

X |, |[0, y] ∩ J (j)
Y |, |[0, z] ∩ J (j)

Z |, |[0, u] ∩ J (j)
U |
)

+

∞∑
k=1

min
(
|[0, x] ∩K(k)

X |, |[0, y] ∩K(k)
Y |, |[0, z] ∩K(k)

Z |, |[0, u] ∩K(k)
U |
)
.

For example

g(x, x, x, x) =


0, if x ∈

[
0, 3q

]
,

x− 3
q , if x ∈

[
3
q , 1−

1
q

]
,

4x− 3, if x ∈
[
1− 1

q , 1
]
.

for q ≥ 4.
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V.Baláž– J. Fialová – M.Hoffer – M.R. Iacó – O. Strauch: The asymptotic distribution func-
tion of the 4-dimensional shifted van der Corput sequence, Tatra Mt. Math. Publ. 64 (2015), 75–92
(MR3458785; Zbl 06545459).

3.18.1.6

• Let G0, G1, G2, . . . be an enumeration system where Gn is a linear recur-
rence given by Gn+d = a0Gn+d−1 + · · ·+ ad−1Gn, n = 0, 1, 2, . . . .

• Let its characteristic polynomial xd = a0x
d−1+· · ·+ad−1 has a PV- number

β as a root. Then a0 ≥ a1 ≥ · · · ≥ ad−1 ≥ 1 and β-expansion of β is

β = a0 +
a1
β

+ · · ·+ dd−1

βd−1
.

Let

• ϕβ(n) be the Monna map, and ϕβ(n), n = 0, 1, 2, . . . , is β-van der Corput
sequence;

• T : [0, 1) → [0, 1) be the von Neumann-Kakutani map defined by ϕβ(n),
i.e. Tn(0) = ϕβ(n);

• n1, . . . , ns be non-negative integers;

• kn, n = 1, 2, . . . , be Hartman uniformly distributed and Lp-good universal
for a p ∈ [1,∞] (see 1.8.33 and 1.8.34).

Then the sequence

(ϕβ(kn + n1), . . . , ϕβ(kn + ns)), n = 1, 2, . . .

has the a.d.f in [0, 1)s.

P. Lertchoosakul – A. Jaššová – R.Nair – M.Weber: Distribution functions for subsequences
of generalized van der Corput sequences, Unif. Distrib. Theory (to appear).
W.Parry: On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960),
401–416 (MR0142719 (26 #288); Zbl. 0099.28103)).

3.18.1.7 Subsequences of Halton sequence. Let d1, . . . , ds be dis-
tinct positive integers and let α1, . . . , αs be positive irrational numbers. Put
fi(n) = [αin

di ] for 1 ≤ i ≤ s and n ≥ 0. Then the sequence(
γq1(f1(n)), . . . , γqs(fs(n))

)
, n = 0, 1, 2, . . . ,

is
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u.d.

for arbitrary (not necessary distinct) integers q1, . . . , qs, qi ≥ 2, 1 ≤ i ≤ s.

Notes: P.Hellekalek and H.Niederreiter (2011) proved generally: The sequence(
γq1(f1(n)), . . . , γqs(fs(n))

)
is u.d. if and only if the integer sequence (f1(n), . . . , fs(n))

is uniformly distributed modulo (qg1 , . . . , q
g
s ) for all g ∈ N.

P.Hellekalek – H.Niederreiter: Constructions of uniformly distributed sequences using the
b-adic method , Unif. Distrib. Theory 6 (2011), no. 1 185–200.(MR2817766; Zbl. 1333.11071)

3.18.1.8 Let α1, . . . , αs be positive real numbers such that 1, α1, . . . , αs

are linearly independent over Q. Put fi(n) = [nαi] for 1 ≤ i ≤ s. Then the
sequence (

γq1(f1(n)), . . . , γqs(fs(n))
)
, n = 0, 1, 2, . . . ,

is

u.d.

for arbitrary integers q1, . . . , qs ≥ 2. Note that of the assumptions in 3.18.1.7
not all di’s can be equal 1.

P.Hellekalek – H.Niederreiter: Constructions of uniformly distributed sequences using the
b-adic method , Unif. Distrib. Theory 6 (2011), no. 1 185–200.(MR2817766; Zbl. 1333.11071)

3.18.2. Hammersley sequence. Let n =
∑∞

j=0 aj(n)q
j , aj ∈ {0, 1, . . . , q−

1}, be the q–adic digit expansion of the integer n, where q ≥ 2 is an in-
teger. The van der Corput sequence in the base q is defined by γq(n) =∑∞

j=0 aj(n)q
−j−1, n = 1, 2, . . . (see 2.11.2). If s ≥ 2, N ≥ 1 and q1, . . . , qs−1 ≥

2 are integers, then the N-terms Hammersley sequence in the bases
q1, . . . , qs−1 is defined by

xn =
(
γq1(n), . . . , γqs−1(n),

n

N

)
, n = 0, 1, 2, . . . , N − 1.

If the bases q1, . . . , qs−1 are pairwise coprime then for its discrepancy we have

DN (xn) = O
(
(logN)s−1

N

)
,

or more precisely that

D∗
N <

s

N
+

1

N

s−1∏
i=1

(
qi − 1

2 log qi
logN +

qi + 1

2

)
.
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Notes: (I) J.M.Hammersley (1960) generalized K.F.Roth’s (1954) construction of
the two–dimensional sequence( n

N
, γ2(n)

)
, n = 0, 1, 2, . . . , N − 1.

In the case when N is a power of 2 this sequence is known as the Roth sequence(
cf. H.Niederreiter (1978, p. 977)

)
. P. Peart (1982) proved that in the case N = 2k

the dispersion dN (cf. 1.11.17) of this sequence satisfies

NdN =


√
2N − 2

√
N + 1, if k is even,√

(5/2)N −
√
8N + 1, if k is odd.

He also showed that these types of Hammersley sequences in the unit square attain
the best possible order of magnitude.
(II) For the discrepancies, cf. H.Niederreiter (1992, p. 31, Th. 3.8).
(III) I.M. Sobol’ (1969, p. 182, Th. 4) proved

D∗
N ≤ 1

N

s−1∏
i=1

(
qi − 1

log qi
logN + 2qi − 1

)
, and

(IV) L.–K.Hua and Y.Wang (1981, p. 78, Th. 4.5) proved that

D∗
N ≤ 1

N

s−1∏
i=1

(
qi log(qiN)

log qi

)
but for xn with n = 1, 2, . . . , N (instead of for n = 0, 1, . . . , N − 1) and N >
max(q1, . . . , qs−1).
(V) If 2 ≤ q1 < q2 < · · · < qs−1 are pairwise coprime bases then G. Larcher (1986)
proved that for the isotropic discrepancy IN (cf. 1.11.9) of xn we have

N1/sIN ≤ c.qs−1.

J.M.Hammersley: Monte Carlo methods for solving multiple problems, Ann. New York Acad.
Sci. 86 (1960), 844–874 (MR0117870 (22 #8644); Zbl. 0111.12405).
L.–K.Hua – Y.Wang: Applications of Number Theory to Numerical Analysis, Springer Verlag &
Science Press, Berlin, Heidelberg, New York, Beijing, 1981 (MR0617192 (83g:10034); Zbl. 0465.10045).
(Chinese edition: Science Press, Beijing, 1978 (MR0617192 (83g:10034); Zbl. 0451.10001)).
G.Larcher: Über die isotrope Discrepanz von Folgen, Arch. Math. (Basel) 46 (1986), no. 3,
240–249 (MR0834843 (87e:11091); Zbl. 0568.10029).
H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
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P.Peart: The dispersion of the Hammersley sequence in the unit square, Monatsh. Math. 94
(1982), no. 3, 249–261 (MR0683058 (85a:65010); Zbl. 0484.10033).
K.F.Roth: On irregularities of distribution, Mathematika 1 (1954), 73–79 (MR0066435 (16,575c);
Zbl. 0057.28604).
I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).

3.18.2.1 Digitally shifted Hammersley sequences.

Let x = 0.x1x2 . . . xm and y = 0.y1y2 . . . ym be two real numbers written in
the dyadic expansion. Define x ⊕ y = z = 0.z1z2 . . . zm, where zi = xi + yi
(mod 2), i = 1, 2, . . . ,m. Let γ2(n) be the van der Corput radical inverse
function (cf. 2.11.1, 2.11.2(V)) defined by γ2(n) = 0.a0a1 . . . am−1 for a
nonnegative integer n = am−1am−2 . . . a0 (again in the dyadic expansion).

Then for the L2 discrepancy D
(2)
N of the sequence( n

N
, γ2(n)⊕ x

)
, n = 0, 1, . . . , N − 1, with N = 2m

we have

N2D
(2)
N =

m2

64
− 19m

192
− lm

16
+
l2

16
+
l

4
+

3

8
+

m

16.2m
− l

8.2m
+

1

4.2m
− 1

72.4m
,

where l denotes the number of zeros in the dyadic expansion of x. If m is
even and l = m/2, then

D
(2)
N = O

(
logN

N2

)
which is the best possible estimate (cf. 1.11.4.1). A similar situation also
holds in the case of odd m and l = (m− 1)/2.
Notes: (I) P.Kritzer and F.Pillichshammer (2006) and partial results can be found
in (2005,Th. 2 and 3).
(II) For the L2 discrepancy of the 2–dimensional Hammersley sequence (cf. 3.18.2,
also called Roth sequence)( n

N
, γ2(n)

)
, n = 0, 1, . . . , N − 1, N = 2m

the following exact formula

N2D
(2)
N =

m2

64
+

29m

192
+

3

8
− m

16.2m
+

1

4.2m
− 1

72.22m
.

was proved by I.V.Vilenkin (1967) and independently by J.H.Halton and S.K. Za-
remba (1969).

Related sequences: 2.11.1, 2.11.2(V), 3.18.2, 3.18.4.
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J.H.Halton – S.K. Zaremba: The extreme and L2 discrepancies of some plane set , Monatsh.
Math. 73 (1969), 316–328 (MR0252329 (40 #5550); Zbl. 0183.31401).
P.Kritzer – F. Pillichshammer: Point sets with low Lp–discrepancy, Math. Slovaca 57 (2007),
no. 1, 11-32 (MR2357804 (2009a:11155); Zbl 1153.11037).
P.Kritzer – F. Pillichshammer: An exact formula for the L2 of the shifted Hammersley point
set , Unif. Distrib. Theory 1 (2006), no. 1, 1–13 (MR2314263 (2008d:11084); Zbl. 1147.11041).
I.V.Vilenkin: Plane sets of integration, (Russian), Zh. Vychisl. Mat. Mat. Fiz. 7 (1967),
no. 1, 189–196 (MR0205464 (34 #5291); Zbl. 0187.10701). (English translation: U.S.S.R. Comput.
Math. Math. Phys. 7 (1967), 258–267).

3.18.3. Permuted Halton sequences. Let q1, . . . , qs be s pairwise co-
prime integers and let a permutation πqi on {0, 1, 2, . . . , qi − 1} and the rad-

ical inverse function (cf. 2.11.2) γqi(n) =
∑k(n)

j=0 aj(n)/q
j+1
i for the qi-adic

digit expansion of n =
∑k(n)

j=0 aj(n)q
j
i (ak(n)(n) > 0) be assigned to each

qi, i = 1, . . . , s. Then the permuted Halton sequence (or scrambled
Halton sequence) over πq1 , . . . , πqs is defined by

xn = (xn,1, . . . , xn,s),

where

xn,i =
πqi(a0(n))

qi
+
πqi(a1(n))

q2i
+ · · ·+

πqi(ak(n)(n))

q
k(n)+1
i

.

The sequence xn is

u.d.

and is of low discrepancy because

D
(2)
N = O

(
(logN)s

N2

)
.

Notes: (I) These sequences were introduced by E.Braaten and G.Weller (1979).
They used different primes pi, i = 1, . . . , s, for the bases and permutations πpi
defined by induction: πpi(0) = 0 and if we know πpi(1), . . . , πpi(j), we take for
πpi(j + 1) the element which minimizes the L2 discrepancy of the sequence

πpi(1)

pi
, . . . ,

πpi(j)

pi
,
πpi(j + 1)

pi
.

(II) B.Tuffin (1998) used four approaches: Let pi by the ith prime, permuta-
tions πp1 , . . . , πpj be fixed, and π(1), . . . , π(K) be given permutations of 0, 1, 2, . . . ,
pj+1 − 1.
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• For permutation πpj+1
we chose that π(k) with k, 1 ≤ k ≤ K, which minimizes the

L2 discrepancy D
(2)
pj+1−1 of the (j+1)–dimensional permuted Halton sequence xn,

n = 1, 2, . . . , pj+1 − 1, over permutation πp1 , . . . , πpj , π
(k).

• The same procedure but with the L2 discrepancy replaced by the diaphony.
• For fixed s the search goes over a sequence of permutation πp1 , . . . , πps such that

πp1(0) = 0, . . . , πps(0) = 0, which minimizes the L2 discrepancy D
(2)
p1...ps of the

permuted Halton sequence xn, n = 1, 2, . . . , p1 · · · ps.
• The same procedure as the last one but minimizing the diaphony (cf. 1.11.5).

Related sequences: Generalized van der Corput sequence 2.11.3, and Halton se-
quence 3.18.1.

E.Braaten – G.Weller: An improved low–discrepancy sequence for multidimensional quasi–
Monte Carlo integration, J. Comput. Phys. 33 (1979), 249–258 (Zbl. 426.65001).
B.Tuffin: A new permutation choice in Halton sequence, in: Monte Carlo and Quasi–Monte
Carlo Methods 1996 (Proceedings of a conference at the University of Salzburg, Austria, July 9–12,
1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in Statistics, 127,
Springer Verlag, New York, Berlin, 1998, pp. 427–435 (MR1644537 (99d:65018); Zbl. 0885.65025).

3.18.4. Zaremba two–dimensional sequence. Let N be a power of 2,
say N = 2k, k ≥ 1. Define the N terms sequence xn ∈ [0, 1)2 by

xn =

(
ak−1

2
+
ak−2

22
+ . . .

a0
2k
,
a′0
2

+
a′1
22

+ · · ·+
a′k−1

2k

)
, n = 0, 1, 2, . . . , N−1,

where n = ak−12
k−1 + · · · + a0 is the dyadic expansion of n, and a′i = ai if

i is odd and a′i = 1 − ai if i is even for i = 0, 1, 2, . . . , k − 1. Then the L2

discrepancy of xn satisfies

D
(2)
N = O(k2−2k).

J.H.Halton – S.K. Zaremba: The extreme and L2 discrepancies of some plane set , Monatsh.
Math. 73 (1969), 316–328 (MR0252329 (40 #5550); Zbl. 0183.31401).

3.19 (t,m, s)–nets and (t, s)–sequences

For definitions, see 1.8.17 and 1.8.18. In this section q ≥ 2 will denote a given
integer base.

(I) For any (t,m, s)–net xn, n = 1, 2, . . . , N , N = qm, in the base q with
m ≥ 1 we have

D∗
N ≤ Bs(q)q

t (logN)s−1

N
+O

(
qt
(logN)s−2

N

)
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with

Bs(q) =

(
q − 1

2 log q

)s−1

if either s = 2 or q = 2 and s = 3, 4, otherwise

Bs(q) =
1

(s− 1)!

(
[q/2]

log q

)s−1

.

The dispersion d∞N of xn, n = 1, 2, . . . , N , N = qm (for the def. see 1.11.17)
satisfies

d∞N ≤ q(s−1+t)/sN−1/s.

(II) For any (t, s)–sequence xn, n = 1, 2, . . . , in the base q we have

D∗
N ≤ Cs(q)q

t (logN)s

N
+O

(
qt
(logN)s−1

N

)
for all N ≥ 2, where the O-constant depends only on q and s, where

Cs(q) =
1

s

(
q − 1

2 log q

)s

if either s = 2 or q = 2 and s = 3, 4, otherwise we have

Cs(q) =
1

s!

q − 1

2[q/2]

(
[q/2]

log q

)s

.

For the dispersion we have

d∞N ≤ q(s+t)/sN−1/s

for all N ≥ 1. Thus, every (t, s)–sequence is a low discrepancy sequence in
[0, 1)s (for the def. see 1.8.15) and also a low dispersion one (see 1.8.16).
Notes: (III) Small improvements of the value t lead to considerably better discrep-
ancy bounds for the (t, s)–sequence. The best possible expected case is thus t = 0,
but for every base q ≥ 2 and every dimension s ≥ 1, a necessary condition for the
existence of a (t, s)–sequence in the base q is

t ≥ s

q
− logq

(
(q − 1)s+ q + 1

2

)
.

Let ts(q) be the least value of t such that there exists a (t, s)–sequence in the base
q. If q = pα1

1 . . . pαr
r with p1 < · · · < pr, is the canonical factorization of q, then

ts(q) ≤ c
s

log p1
+ 1
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for all s ≥ 1 with an absolute constant c > 0.
(IV) If q is a prime power then a (0, s)–sequence in the base q exists if and only if
s ≤ q.
(V) If there exists a (t, s)–sequence in the base q, then a (t,m, s+1)–net in the base
q exists for every integer m ≥ t.
(VI) The following so–called propagation rules are true for (t,m, s)–nets in an
arbitrary integer base q ≥ 2:
• Every (t,m, s)–net over Fq is a (k,m, s)–net over Fq for t ≤ k ≤ m.
• If 1 ≤ r ≤ s then every (t,m, s)–net over Fq can be transformed into a (t,m, r)–net

over Fq.
• Every (t,m, s)–net over Fq can be transformed into a (t, k, s)–net over Fq with
t ≤ k ≤ m.

• Every (t,m, s)–net over Fq can be transformed into a (t+ k,m+ k, s)–net over Fq
for every k ∈ N.

(VII) A (0, 2, s)–net in the base q exists if and only if there exist s − 2 mutually
orthogonal latin squares of order q (see Niederreiter (1992, p. 60, Th. 4.18)).
(VIII) The general theory of (t,m, s)–nets and (t, s)–sequences was developed by
H.Niederreiter (1987). He also gives a detailed information for the star discrep-
ancies (I) and (II) and he also proved (V) (cf. also H.Niederreiter and C.-P.Xing
([a]1996) and Sobol’ (1967, Part 5)). Theorem (III) was proved by H.Niederreiter
and C.-P.Xing ([a][b]1996). Most of the known constructions of (t,m, s)–nets and
(t, s)–sequences are based on the digital method 3.19.1 which was introduced by
H.Niederreiter (1987, Sect. 6). Surveys on the subject can be foun in H.Niederreiter
(1992, Chap. 4), G. Larcher (1998), H.Niederreiter and C.-P.Xing (1998).
(IX) From the history: Firstly, a formal definition was given by I.M. Sobol’ (1966).
In (1967) he proved that for every s ≥ 1 there exist (t, s)–sequences over F2 with
t = O(s log s), see 3.19.5. He also for the first time investigated ts(2) as the least
value of t for which there exists a (t,m, s)–net in the base 2 for an infinitely many
m and he proved that t1(2) = t2(2) = t3(2) = 0, t4(2) = 1, and in general that
ts(q) = O(s log s). Sobol’ (1967) also mentiones that the number ts(2) may be used
for a geometric characterization of the cube [0, 1]s.
Secondly, H. Faure (1982) proved that for every prime p there exists a (0, s)–sequence
over Fp if s ≤ p, see 3.19.6. Niederreiter (1987) extended this result to every prime
power q (see (IV)).
(X) Estimates for the dispersions d∞N of (t,m, s)–nets and (t, s)–sequences was given
by Niederreiter (1988).
(XI) For tables of (t,m, s)–nets and (t, s)–sequences cf. G.L.Mullen, A.Mahalanabis
and H.Niederreiter (1995).

H.Faure: Discrépance de suites associées à un système de numération (en dimension s), Acta
Arith. 41 (1982), 337–351 (MR0677547 (84m:10050); Zbl. 0442.10035).
G.Larcher: Digital point sets: Analysis and application, in: Random and Quasi–Random Point
Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statistics, 138, Springer Verlag, New York,
Berlin, 1998, pp. 167–222 (MR1662842 (99m:11085); Zbl. 0920.11055).
G.L.Mullen – A.Mahalanabis – H.Niederreiter: Tables of (t,m, s)–net and (t, s)–sequence
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parameters, in: Monte Carlo and Quasi–Monte Carlo Methods in Scientific Computing (Proceed-
ings of a conference at the University of Nevada, Las Vegas, NV, June 23–25, 1994), (H.Niederreiter,
P.J. Shiue eds.), Lecture Notes in Statistics, Vol. 106, Springer Verlag, New York, 1995, pp. 58–86
(MR1445781 (97m:11105), (entire collection MR 97j:65002); Zbl. 0838.65004)).
H.Niederreiter: Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987),
273–337 (MR0918037 (89c:11120); Zbl. 0626.10045).
H.Niederreiter: Low discrepancy and low–dispersion sequences, J. Number Theory 30 (1988),
51–70 (MR0960233 (89k:11064); Zbl. 0651.10034).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
[a] H.Niederreiter – C.-P.Xing: Low–discrepancy sequences and global function fields with
many rational places, Finite Fields Appl. 2 (1996), no. 3, 241–273 (MR1398076 (97h:11080);
Zbl. 0893.11029).
[b] H.Niederreiter – C.-P.Xing: Quasi random points and global functional fields, in: Fi-
nite Fields and Applications (Glasgow, 1995), (S. Cohen and H.Niederreiter eds.), London Math.
Soc. Lecture Note Ser., 233, Cambridge Univ. Press, Cambridge, 1996, pp. 269–296 (MR1433154
(97j:11037); Zbl. 0932.11050).
H.Niederreiter – C.-P.Xing: Nets, (t, s)–sequences and algebraic geometry, in: Random and
Quasi–Random Point Sets, (P.Hellekalek and G. Larcher eds.), Lecture Notes in Statistics, 138,
Springer Verlag, New York, Berlin, 1998, pp. 267–302 (MR1662844 (99k:11121); Zbl. 0923.11113).
I.M. Sobol’: Distribution of points in a cube and integration nets, (Russian), Uspechi Mat. Nauk
21 (1966), no. 5(131), 271–272 (MR0198678 (33 #6833)).
I.M. Sobol’: Distribution of points in a cube and approximate evaluation of integrals, (Russian),
Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784–802 (MR0219238 (36 #2321)).
I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).

3.19.1. Digital (t,m, s)–nets.
• Let q be a prime power.
• For n = 0, 1, 2, . . . , qm−1 let n =

∑m−1
r=0 ar(n)q

r be the q–adic digit expan-
sion of n in the base q. Consider the digits a0(n), . . . , am−1(n) as elements
of the field Fq.

• Let C(1), . . . , C(s) be m×m-matrices over Fq. The matrix C(i) will called
the generator matrix of the ith coordinate. The jth row of C(i) will be

denoted by C
(i)
j .

• Let (y
(i)
1 (n), . . . , y

(i)
m (n))T = C(i) · (a0(n), . . . , am−1(n))

T for i = 1, . . . , s,
and

• Ψ : Fq → {0, 1, . . . , q − 1}.
• Then the finite sequence

xn =

 m∑
j=1

Ψ(y
(1)
j (n))

qj
, . . . ,

m∑
j=1

Ψ(y
(s)
j (n))

qj

 for n = 0, 1, . . . , qm − 1,
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is called a digital net over Fq and if it is also a (t,m, s)–net in the base q,
then it is called a digital (t,m, s)–net constructed over Fq.

The sequence

x0, . . . ,xqm−1

is a

(t,m, s)–net

in the base q if and only if for all integers 0 ≤ d1, . . . , ds ≤ m with d1 + · · ·+
ds = m− t, the system of vectors C

(i)
j , j = 1, . . . , di, i = 1, . . . , s, is linearly

independent over Fq. For the star discrepancy D∗
N , N = qm, we again have

D∗
N = O

(
qt
(logN)s−1

N

)
,

where the O-constant depends only on s and q, see 3.19 (I)

Notes: (I) The concept of digital nets over a ring was introduced by H.Niederreiter
(1987, Sect. 6) and he also proved the above criterion. On the other hand, the previ-
ous constructions of I.M. Sobol’ (1967) and H. Faure (1982) also lead to digital nets.
(I′) More precisely, Niederreiter (1992, p. 63, Par. 4.3) understands under the gen-
eral construction principles the following situation:
• R is a commutative ring with identity and the number of its elements is q,
• ψr : {0, 1, . . . , q − 1} → R are bijections for 0 ≤ r ≤ m− 1,
• ηi,j : R→ {0, 1, . . . , q − 1} are bijections for 1 ≤ i ≤ s and 1 ≤ j ≤ m,

• c
(i)
j,r ∈ R for 1 ≤ i ≤ s, 1 ≤ j ≤ m, and 0 ≤ r ≤ m− 1,

• let n =
∑m−1
r=0 ar(n)q

r with ar(n) ∈ {0, 1, . . . , q − 1} for n = 0, 1, . . . , qm − 1, and
put

• y
(i)
n,j = ηi,j

(∑m−1
r=0 c

(i)
jr ψr

(
ar(n)

))
,

• x
(i)
n =

∑m
j=1 y

(i)
n,jq

−j ,

Then the finite s–dimensional sequence xn = (x
(1)
n , . . . , x

(s)
n ) ∈ [0, 1)s, for n =

0, 1, . . . , qm − 1, is called the digital net constructed over R.
(II) H.Niederreiter and C.-P.Xing (1998, Coroll. 4) proved: If there exist n digital
(tk,mk, sk)–nets constructed over Fqrk for 1 ≤ k ≤ n (r1, . . . , rn are positive inte-
gers), then there also exists a digital (t,

∑n
k=1 rkmk,

∑n
k=1 sk)–net constructed over

Fq with t =
∑n
k=1mk −min1≤k≤n(mk − tk).

(III) G. Larcher (1998) introduced the concept of a digital translation net using
the construction
• Let C(i) · (a0(n), . . . , am−1(n))

T +WT
i =: (y

(i)
1 (n), . . . , y

(i)
m (n))T for i = 1, . . . , s,

where Wi, i = 1, 2, . . . , s, are the so–called translation vectors.
(IV) The finite field Fq can be replaced by the ring Zq of all integers (mod q).
G. Larcher, H.Niederreiter and W.Ch. Schmid (1996) proved that: If q = pα1

1 . . . pαr
r ,
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p1 < · · · < pr, is the canonical factorization of q, then a digital (0,m, s)–net con-
structed over Zq exists if and only if s ≤ p1 + 1. For a general ring of order q the
condition is s ≤ pα1

1 + 1.
(V) W.Ch. Schmid (1996) introduced a shift–nets over Fq: consider the firstm×m
matrix C(1) not as a system C(1) = (C

(1)
1 , . . . ,C

(1)
m ) of row vectors (over Fq), but

as a system of column vectors C(1) = (D
(1)
1 , . . . ,D

(1)
m ). The remaining matrices C(i)

are then built using the shift to the left procedure, i.e. C(2) = (D
(1)
2 , . . . ,D

(1)
m ,D

(1)
1 ),

. . . , C(m) = (D
(1)
m ,D

(1)
1 . . . ,D

(1)
m−1). In the original construction it was m = s and

the corresponding shift–net is a digital (t, s, s)–net. Schmid (1998) gave matrices
with provide the binary shift–nets (0, 3, 3), (1, 4, 4), (1, 5, 5), (2, 6, 6), etc.
• Conjecture (Schmid (1998)): Let t ≥ 1 and m ≥ t be integers. If a binary (t, s, s)–
shift–net exists, then for each k ∈ N also a binary (t+k, s+k, s+k)–shift–net exists.
(VI) Larcher ([b]1998): For every s–dimensional digital net over a prime base p and
having N = pm elements and constructed by m×m matrices C(1), . . . , C(s) we have

D∗
N ≤

s−1∑
w=0

(p− 1)w
∑

(d1,...,dw)∈Xw

p−(d1+···+dw+h(d1,...,dw)),

where Xw is the set of all w–tuples (d1, . . . , dw) of positive integers for which the

system of vectors C
(i)
j with j = 1, 2, . . . , di and i = 1, 2, . . . , w is linearly indepen-

dent over Fp
(
X0 contains the ”zero–tuple” ()

)
, and h(d1, . . . , dw) = max

{
h ≥

0 ; (d1, . . . , dw, h) ∈ Xw+1

}
.

(VII) If we take a family of suitable test–functions from the class Eαs (c) (cf. p. 3 –
72 ) then G. Larcher ([c]1998) showed that the integration errors over (t,m, s)–nets
in the base q = 2 are essentially smaller than for good lattice points sequences (cf.
3.15) and Halton sequences (cf. 3.18.1), see his tables (1998, p. 208–209, Table 4a,
4b).

H.Faure: Discrépance de suites associées à un système de numération (en dimension s), Acta
Arith. 41 (1982), 337–351 (MR0677547 (84m:10050); Zbl. 0442.10035).
[a] G.Larcher: On the distribution of digital sequences, in: Monte Carlo and Quasi–Monte Carlo
Methods 1996 (Proceedings of a conference at the University of Salzburg, Austria, July 9-12,
1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in Statistics, 127,
Springer Verlag, New York, Berlin, 1998, pp. 109–123 (MR1644514 (99d:11083); Zbl. 1109.65306).
[b] G.Larcher: A bound for the discrepancy of digital nets and its application to the analysis
of certain pseudo–random number generators, Acta Arith. 83 (1998), no. 1, 1–15 (MR1489563
(99j:11086); Zbl. 0885.11050).
[c] G.Larcher: Digital point sets: Analysis and application, in: Random and Quasi–Random
Point Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statistics, 138, Springer Verlag, New
York, Berlin, 1998, pp. 167–222 (MR1662842 (99m:11085); Zbl. 0920.11055).
G.Larcher – H.Niederreiter: Generalized (t, s)–sequence, Kronecker–type sequences, and dio-
phantine approximations of formal Laurent series, Trans. Amer. Math. Soc. 347 (1995), no. 6,
2051–2073 (MR1290724 (95i:11086); Zbl. 0829.11039).
G.Larcher – H.Niederreiter – W.Ch. Schmid: Digital nets and sequences constructed over
finite rings and their application to quasi–Monte Carlo integration, Monatsh. Math. 121 (1996),
no. 3, 231–253 (MR1383533 (97d:11119); Zbl. 0876.11042).
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H.Niederreiter – C.-P.Xing: Low–discrepancy sequences obtained from algebraic function fields
over finite fields, Acta Arith. 72 (1995), no. 3, 281–298 (MR1347491 (96g:11099); Zbl. 0833.11035).
W.Ch. Schmid: An algorithm to determine the quality parameter of binary nets, and the new shift–
method , in: Proc. International Workshop ”Parallel Numerics ’96” (Gozd Martuljek, Slovenia),
(R.Trobek et al. eds.), 1996, pp. 51–63.
W.Ch. Schmid: Shift-nets: a new class of binary digital (t,m, s)–nets, in: Monte Carlo and Quasi–
Monte Carlo Methods 1996 (Proceedings of a conference at the University of Salzburg, Austria,
July 9–12, 1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in
Statistics, 127, Springer Verlag, New York, Berlin, 1998, pp. 369–381 (MR1644533 (99d:65023);
Zbl. 0884.11033).
I.M. Sobol’: Distribution of points in a cube and approximate evaluation of integrals, (Russian),
Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784–802 (MR0219238 (36 #2321)).

3.19.2. Digital (t, s)–sequences.
• Let q be a prime power.
• For n = 0, 1, 2, . . . , let n =

∑∞
r=0 ar(n)q

r be the q–adic digit expansion of
n in the base q (ar(n) > 0 only for a finitely many r’s). Consider the digits
a0(n), a1(n), . . . as elements of the field Fq.

• Let C(1), . . . , C(s) be ∞×∞-matrices over Fq.

• Let (y
(i)
1 (n), y

(i)
2 (n), . . . )T = C(i) · (a0(n), a1(n), . . . )T for i = 1, . . . , s, and

• Ψ : Fq → {0, 1, . . . , q − 1} be a bijection.
• Then the infinite sequence

xn =

 ∞∑
j=1

Ψ(y
(1)
j (n))

qj
, . . . ,

∞∑
j=1

Ψ(y
(s)
j (n))

qj

 , for n = 0, 1, . . . ,

is called a digital sequence constructed over Fq.
• Let Ci,m denote the left upper m×m submatrix of C(i).

(A) If there exists a function T : N → N such that C(1,m), . . . , C(s,m) generate
a digital (T (m),m, s)–net constructed over Fq for all m = 1, 2, . . . , then the
sequence

x0,x1, . . . ,

is called a digital (T, s)–sequence constructed over Fq. For its first N
terms we have the following discrepancy estimate

D∗
N ≤ C ′

s(q)
1

N

k∑
m=1

pT (m)ms−1,

where k is such that qk ≤ N < qk+1. Here C ′
s(q) is a constant which depends

only on s and q.
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(B) If the digital sequence xn, n = 0, 1, 2, . . . , is a (t, s)–sequence (e.g. if
T (m) ≤ t for m = 1, 2, . . . ), then it is called a digital (t, s, )–sequence
constructed over Fq. For its star discrepancy we may use the estimate
3.19(II), i.e.

D∗
N = O

(
qt
(logN)s

N

)
for all N ≥ 2, where O-constant depends only on s and q.

Notes: (I) van der Corput sequence in the base q is a (0, 1)–sequence in the base q
and actually a digital (0, 1)–sequence constructed over the ring Zq.
(II) The discrepancy bound for (T, s)–sequences was given by G. Larcher (1998) as
combining the bounds from G.Larcher and H.Niederreiter (1995).
(III) H. Faure (1982) took for the generating matrix C(1) the Pascal’s triangle, i.e.

C(i) = (C
(i)
j,k), where

C
(i)
j,k =

{(
j
k

)
(i− 1)j−k, for 0 ≤ k ≤ j,

0, for k > j.

He obtained T (m) = 0 identically and the resulting (0, s)–sequence had a prime base
p ≥ s. This type of a sequence is also called the Faure sequence, see 3.19.6.
(IV) Let ds(q) be the least value of t for which there exists a digital (t, s)–sequence
constructed over Fq. For all s ≥ 1 we have
• ds(2) ≥ s log2(3/2)− 4 log2(s− 2)− 23 for s ≥ 3 (W.Ch. Schmid (1998)),
• ds(5) ≤ 3s+ 1 (Niederreiter and Xing (1998), p. 281),
• ds(27) ≤ 12

5 s+ 1 (Niederreiter and Xing (1998), p. 281),

• ds(q) ≥ s
q − logq

(
(q−1)s+q+1

2

)
for all prime powers q and all s ≥ 1 (H.Niederreiter

and C.-P.Xing ([b]1996, 1998)),

• ds(q) ≤ 3q−1
q−1 (s− 1)− (2q+4)(s−1)1/2

(q2−1)1/2
+ 2 for every prime power q and every s ≥ 1

(Xing and Niederreiter (1995)),
• ds(q) ≤ c s

log q + 1 for all prime powers q with an absolute constant c > 0 (Nieder-

reiter and Xing ([a]1996)),
• ds(q) ≤ c′ s

q1/4
+ 1 if the (prime power) q is a square, here c′ > 0 is an absolute

constant (Niederreiter and Xing ([a]1996)),
• ds(q

2) ≤ ps
q−1 , for q = pr and every s ≥ 1 (Xing and Niederreiter (1995)).

(V) Analogically to 3.19.1(I′) Niederreiter’s general schema for construction of digital
(t, s)–sequences modulo q is (see H.Niederreiter and Ch.Xing ([a]1998)): We fix the
dimension s ≥ 1 and choose the following
(S1) bijections ψr : {0, 1, . . . , q − 1} → Fq for r = 0, 1, 2, . . . , with ψr(0) = 0 for all

sufficiently large r,

(S2) maps η
(i)
j : Fq → {0, 1, . . . , q − 1} for 1 ≤ i ≤ s and j ≥ 1,

(S3) elements c
(i)
j,r ∈ Fq for 1 ≤ i ≤ s and j ≥ 1 and r ≥ 0.
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Let n =
∑∞
r=0 ar(n)q

r be the q–adic digit expansion of n in the base q with ar(n) ∈
{0, 1, . . . , q − 1} and put

xn =

 ∞∑
j=1

η
(1)
j

(∑∞
r=0 c

(1)
j,rψr(ar(n))

)
qj

, . . . ,

∞∑
j=1

η
(s)
j

(∑∞
r=0 c

(s)
j,rψr(ar(n))

)
qj

 .

If xn is a (t, s)–sequence in the base q, then it is called a digital (t, s)–sequence
constructed over Fq.
(S4) Let s = 1 and let C = (cj,r) be a generator matrix from (S3). For a given l, let
a = ρ(C; l) be the maximal integer such that the vectors (cj,1 . . . , cj,l), j = 1, 2, . . . , a,
are linearly independent. Then the sequence xn constructed in (S3) for s = 1, is
a digital (t, 1)-sequence, where t = supl≥1(l − ρ(C; l)). Note that the generator
matrix C = (cj,r) is the unit one in case of van der Corput sequence, thus it is a
(0, 1)-sequence.

(VI) Let s = 1 and let C = (cj,r) be a generator matrix as in (S3). For given l, let
a = ρ(C; l) be the maximal integer such that the vectors (cj,1 . . . , cj,l), j = 1, 2, . . . , a
are linearly independent. Then the sequence xn constructed in (S3) for s = 1, is a
digital (t, 1)-sequence, where t = supl≥1(l − ρ(C; l)). Note that for van der Corput
sequence the generator matrix (cj,r) is the unit matrix, thus it is a (0, 1)-sequence.

H.Faure: Discrépance de suites associées à un système de numération (en dimension s), Acta
Arith. 41 (1982), 337–351 (MR0677547 (84m:10050); Zbl. 0442.10035).
G.Larcher: On the distribution of digital sequences, in: Monte Carlo and Quasi–Monte Carlo
Methods 1996 (Proceedings of a conference at the University of Salzburg, Austria, July 9-12,
1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in Statistics, 127,
Springer Verlag, New York, Berlin, 1998, pp. 109–123 (MR1644514 (99d:11083); Zbl. 1109.65306).
G.Larcher – H.Niederreiter: Generalized (t, s)–sequence, Kronecker–type sequences, and dio-
phantine approximations of formal Laurent series, Trans. Amer. Math. Soc. 347 (1995), no. 6,
2051–2073 (MR1290724 (95i:11086); Zbl. 0829.11039).
[a] H.Niederreiter – C.-P.Xing: Low–discrepancy sequences and global function fields with
many rational places, Finite Fields Appl. 2 (1996), no. 3, 241–273 (MR1398076 (97h:11080);
Zbl. 0893.11029).
[b] H.Niederreiter – C.-P.Xing: Quasi random points and global functional fields, in: Fi-
nite Fields and Applications (Glasgow, 1995), (S. Cohen and H.Niederreiter eds.), London Math.
Soc. Lecture Note Ser., 233, Cambridge Univ. Press, Cambridge, 1996, pp. 269–296 (MR1433154
(97j:11037); Zbl. 0932.11050).
H.Niederreiter – C.-P.Xing: Nets, (t, s)–sequences and algebraic geometry, in: Random and
Quasi–Random Point Sets, (P.Hellekalek and G. Larcher eds.), Lecture Notes in Statistics, 138,
Springer Verlag, New York, Berlin, 1998, pp. 267–302 (MR1662844 (99k:11121); Zbl. 0923.11113).
[a]H.Niederreiter – C.-P.Xing: The algebraic–geometry approach to low–discrepancy sequences,
in: Monte Carlo and Quasi–Monte Carlo Methods 1996 (Proceedings of a conference at the Univer-
sity of Salzburg, Austria, July 9–12, 1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof
eds.), Lecture Notes in Statistics, 127, Springer Verlag, New York, Berlin, 1998, pp. 139–160
(MR1644516 (99d:11081); Zbl. 0884.11031).
W.Ch. Schmid: Shift-nets: a new class of binary digital (t,m, s)–nets, in: Monte Carlo and Quasi–
Monte Carlo Methods 1996 (Proceedings of a conference at the University of Salzburg, Austria,
July 9–12, 1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof eds.), Lecture Notes in
Statistics, 127, Springer Verlag, New York, Berlin, 1998, pp. 369–381 (MR1644533 (99d:65023);
Zbl. 0884.11033).
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C.-P.Xing – H.Niederreiter: A construction of low-discrepancy sequences using global function
fields, Acta Arith. 73 (1995), no. 1, 87–102 (MR1358190 (96g:11096); Zbl. 0848.11038).

3.19.3. Niederreiter sequences.
• Let q be a prime power.
• For n = 0, 1, 2, . . . , let n =

∑∞
r=0 ar(n)q

r be the q–adic digit expansion of
n in the base q.

• Let p1(x), . . . , ps(x) ∈ Fq[x] be pairwise coprime polynomials over the finite
field Fq and s ≥ 1 be arbitrary. Let deg pi(x) = ei ≥ 1 for 1 ≤ i ≤ s.

• Let j ≥ 1 and gij(x) ∈ Fq[x] be such that gcd(gij(x), pi(x)) = 1 for 1 ≤
i ≤ s and limj→∞(jei − deg gij(x)) = ∞ for 1 ≤ i ≤ s.

• For 0 ≤ k < ei, 1 ≤ i ≤ s, and j ≥ 1 the elements ai(j, k, r) ∈ Fq are
defined by the series expansion

xkgij(x)

pi(x)j
=

∞∑
r=w

ai(j, k, r)x
−r−1.

• Put ci(j, r) = ai(q + 1, u, r) ∈ Fq for 1 ≤ i ≤ s, j ≥ 1 and j − 1 = qei + u
where 0 ≤ u < ei.

• Put xi(n, j) =
∑∞

r=0 ci(j, r)ar(n), where xi(n, j) ∈ Fq.
• Finally, put xn,i =

∑∞
j=1 xi(n, j)q

−j for 1 ≤ i ≤ s.

Then the sequence

xn = (xn,1, . . . , xn,s), n = 1, 2, . . . ,

is a

(t, s)–sequence

in the base q with t =
∑s

i=1(ei − 1).

Notes: This construction was given by H.Niederreiter (1988), see also [DT, p. 383-
386]. For the discrepancy bounds 3.19(II) may used.

H.Niederreiter: Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987),
273–337 (MR0918037 (89c:11120); Zbl. 0626.10045).
H.Niederreiter: Low discrepancy and low–dispersion sequences, J. Number Theory 30 (1988),
51–70 (MR0960233 (89k:11064); Zbl. 0651.10034).

3.19.4.
• q is a prime power,
• Fq is the finite field of order q,
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• Fq(z) is the rational function field over Fq,
• Fq((z

−1)) is the field of formal Laurent series over Fq,
• if L =

∑∞
k=w ukz

−k ∈ Fq((z
−1)) with uw ̸= 0, let Fr(L) =

∑∞
k=max(1,w) ukz

−k

denote its fractional part and let
• ν be the standard degree valuation on Fq((z

−1)) given by ν(L) = −w,
• given L =

∑∞
k=w ukz

−k ∈ Fq((z
−1)), define the associated real number

expressed in the base q, by Φ(L) =
∑∞

k=max(1,w) ukq
−k,

• to a given non–negative integer n =
∑m(n)

r=0 ar(n)q
r, ar(n) ∈ Fq, written in

the q–adic digit expansion in the base q associate the polynomial n(z) ∈
Fq[z] defined by n(z) =

∑m(n)
r=0 ar(n)z

r.

If L1, L2, . . . , Ls ∈ Fq((z
−1)) then the associated sequence xn ∈ [0, 1]s is

defined by
xn = (Φ(n(z)L1(z)), . . . ,Φ(n(z)Ls(z))).

(A) The sequence xn is

u.d.

if and only if 1, L1, . . . , Ls are linearly independent over the rational function
field Fq(z).

(B) If there is a constant c ∈ Z such that for all Q1, . . . , Qs ∈ Fq[z] (not all 0)
we have

ν(Fr(
s∑

i=1

QiLi)) ≥ −c−
s∑

i=1

degQi,

then the sequence xn is a

digital (c− s, s)–sequence

over Fq and for its discrepancy we have (applying 3.19(II))

D∗
N (xn) = O

(
(logN)s

N

)
.

Notes: (I) G. Larcher and H.Niederreiter (1993,1995), where part(A)=Th.1(1993),
part(B)=Th. 2(1995).
(II) This method is digital, since if the used formal Laurent series are Li(x) =∑∞
k=wi

uk,ix
−k, where wi ≤ 1, for 1 ≤ i ≤ s, then the same xn can be constructed

by method 3.19.2 using matrices C(i) which have rows

C
(i)
j = (uj,i, uj+1,i, uj+2,i, . . . ) for j = 1, 2, . . . .

(III) If
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• q = 2,
• Φm(L) =

∑m
k=max(1,w) ukq

−k for L(x) =
∑∞
k=w ukx

−k,

• Li(x) = gi(x)/f(x), i = 1, 2, . . . , s, where
• f(x) ∈ F2[x] with deg f = m,
• deg gi < m, deg 0 = −1,

then G. Larcher, A. Lauss, H.Niederreiter and W.Ch. Schmid (1996) proved (see also
Larcher (1998)): The sequence

xn =

(
Φm

(
n(x)g1(x)

f(x)

)
, . . . ,Φm

(
n(x)gs(x)

f(x)

))
, n = 0, 1, . . . , 2m − 1,

is a (t,m, s)–net over F2 with

t = m− s+ 1−min

s∑
i=1

deg hi,

where the minimum runs over all non–zero s–tuples (h1(x), . . . , hs(x)) of polynomials
from F2[x] with deg hi < m, i = 1, . . . , s, and for which f divides

∑s
i=1 gihi.

Polynomial s–tuples g = (g1, . . . , gs) (mod f) which lead to a ”small” t is called
good s–tuples g and if g = (1, g, g2, . . . , gs) (mod f) then g is called optimal
polynomial. In Larcher, Lauss, Niederreiter and Schmid (1996) various existence
results for such g and g are given.
(IV) Every L ∈ Fq((z−1)) has the unique continued fraction expansion L = [A0;A1,
A2, . . . ], where Ai ∈ Fq[z] for all i ≥ 0 and degAi ≥ 1 for i ≥ 1. Similar to the case
of the simple continued fraction expansion of real numbers, the expansion is finite
for rational L and infinite for irrational L. Larcher and Niederreiter (1993) proved:

If L is irrational, then for all integers N with q
∑H−1

i=1 degAi < N ≤ q
∑H

i=1 degAi and
H ≥ 1, the star discrepancy of the first N terms of the one–dimensional sequence

xn = Φ(n(z)L(z))

satisfies

ND∗
N ≤ q + 1

q
+

1

4

H∑
i=1

qdegAi(1 + q− degAi)2.

Consequently, if L has bounded partial quotients (i.e. degAi ≤ K for all i ≥ 1),
then ND∗

N = O(logN) for all N ≥ 2. See also Larcher (1998, p. 190–191, Th. 17).

(V) Let s = 1. Let f(z) =
∑∞
j=k xjz

−j ∈ GFb{z} be a formal Laurent series. For
f(z) define the Hankel matrix H(f(z)) as

H(f(z)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 · · · xn · · ·
x2 x3 x4 · · · xn+1 · · ·
...

. . .
. . .

. . .
... · · ·

xn−1 xn xn+1 · · · x2n−2 · · ·
xn xn+1 xn+2 · · · x2n−1 · · ·
...

...
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Larcher and Niederreiter (1993) were the first who used a Hankel matrix as a
generator matrix in the form C = H(p(z)/q(z)), where deg q(z) < deg p(z),
gcd (q(z), p(z)) = 1. They called the resulting digital (t, 1)-sequence the poly-
nomial Weyl sequence. They determined t as follows: If the continued fraction
expansion of q(z)/p(z) over GFb is q(z)/p(z) = [0, g1(z), g2(z), . . . , gK(z)], then put

ρ(H; l) =

{
dk, if dk ≤ l < dk+1 for some o ≤ k < K,

dK , otherwise,

where dk =
∑k
i=1 deg gi(z) for k = 1, 2, . . . ,K and d0 = 0. Then t = supl≥1(l −

ρ(H; l)).

G.Larcher: Digital point sets: Analysis and application, in: Random and Quasi–Random Point
Sets, (P.Hellekalek, G. Larcher eds.), Lecture Notes in Statistics, 138, Springer Verlag, New York,
Berlin, 1998, pp. 167–222 (MR1662842 (99m:11085); Zbl. 0920.11055).
G.Larcher – H.Niederreiter: Kronecker–type sequences and non–Archimedean Diophantine
approximations, Acta Arith. 63 (1993), no. 4, 379–396 (MR1218466 (94c:11063); Zbl. 0774.11039).
G.Larcher – H.Niederreiter: Generalized (t, s)–sequence, Kronecker–type sequences, and dio-
phantine approximations of formal Laurent series, Trans. Amer. Math. Soc. 347 (1995), no. 6,
2051–2073 (MR1290724 (95i:11086); Zbl. 0829.11039).
G.Larcher – A. Lauss – H.Niederreiter – W.Ch. Schmid: Optimal polynomials for (t,m, s)–
nets and numerical integration of multivariate Walsh series, SIAM J. Numer. Anal. 33 (1996),
no. 6, 2239–2253 (MR1427461 (97m:65046); Zbl. 0861.65019).

3.19.5. Sobol’ sequences. Let n =
∑m(n)

j=0 aj(n)2
j be the dyadic expansion

of a non–negative integer n. Given any γ, δ ∈ [0, 1) with dyadic expansions
γ = 0.c1c2 . . . and δ = 0.d1d2 . . . define γ ⊕ δ = 0.e1e2 . . . by ei = ci +
di (mod 2) for all i. In F2 consider the following recurring formulas for k =
1, . . . , s,

• z
(k)
j+mk

= b
(k)
mk−1z

(k)
j+mk−1 + · · ·+ b

(k)
1 z

(k)
j+1 + z

(k)
j , j = 0, 1, . . . ,

with characteristic polynomials

• p(k)(x) = xmk + b
(k)
mk−1x

mk−1 + · · ·+ b
(k)
1 x+ 1.

Apply this recurrence relation to dyadic rationals with initial values

• (y
(k)
0 , . . . , y

(k)
mk−1) = (1/2, . . . , 1/2mk)

and compute the dyadic sequences

• y
(k)
j+mk

= b
(k)
mk−1y

(k)
j+mk−1 ⊕ · · · ⊕ b

(k)
1 y

(k)
j+1 ⊕ y

(k)
j ⊕

(
y
(k)
j /2mk

)
, j = 0, 1, 2, . . . ,

• xn,k = a0(n)y
(k)
0 ⊕ a1(n)y

(k)
1 ⊕ · · · ⊕ am(n)(n)y

(k)
m(n), n = 0, 1, 2, . . . ,

finally also consider the van der Corput sequence 2.11.1

• xn =
∑m(n)

j=0 aj(n)2
−(j+1), n = 0, 1, 2, . . .

If, for k = 1, 2, . . . , s, the recurring formulas z(k)(j) are distinct in F2 and
every non–trivial solution of z(k)(j) has the period 2mk − 1 (i.e. equivalently,
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all characteristic polynomials p(k)(x) in F2[x] are distinct, irreducible, and
the minimal step i for which p(k)(x)|xi + 1 is i = 2mk − 1; in other words,
they are primitive), then the sequences

xn = (xn,1, . . . , xn,s), n = 0, 1, 2, . . . , is a (t, s)–sequence,

and

x∗
n = (xn,1, . . . , xn,s, xn), n = 0, 1, 2, . . . , is a (t, s+ 1)–sequence

for

t = m1 + · · ·+ms − s.

Notes: (I) I.M. Sobol’ (1966, 1967). He also proved that:
• φ∞(N) ≤ 2s−1+t for every (t,m, s)–net in the base q = 2 and N = 2m (here
φ∞(N) is the non–uniformity, cf. 1.11.13). This is also true for every initial N
terms (N = 1, 2, . . . ) of any (t, s)–sequence in the base q = 2.

• ND∗
N ≤ 2t

∑s−1
j=0

(
m−t
j

)
, for every (t,m, s)–net in the base q = 2 with m ≥ s−1+t

if N = 2m.
• ND∗

N ≤ 2t
∑s−1
j=0

(
[log2N ]−t+1

j

)
, for every (t, s)–sequences in the base q = 2 and

N ≥ 2s−1+t.

For details we refer to Sobol’ (1969, Chap. 6, Par. 3–5).
(II) Using the lists of all primitive polynomials over F2 arranged according to their
non–decreasing degrees and bearing in mind that the number of primitive polynomi-

als of degree m is φ(2m−1)
m , Sobol’ (1969, pp. 215–218) found that the minimal t (for

fixed s denoted by ts) for which there exists a (t, s)–sequence satisfies ts = O(s log s).

I.M. Sobol’: Distribution of points in a cube and integration nets, (Russian), Uspechi Mat. Nauk
21 (1966), no. 5(131), 271–272 (MR0198678 (33 #6833)).
I.M. Sobol’: Distribution of points in a cube and approximate evaluation of integrals, (Russian),
Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784–802 (MR0219238 (36 #2321)).
I.M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, (Russian), Library of
Applied Analysis and Computational Mathematics, Izd. ”Nauka”, Moscow, 1969 (MR0422968 (54
#10952); Zbl. 0195.16903).

3.19.6. Faure sequences. Let n =
∑m(n)

j=0 aj(n)q
j be the q–adic digit

expansion of a non–negative integer n. Given a γ ∈ [0, 1) with q–adic digit
expansion γ = 0.c1c2 . . . and an infinite integer matrix C, define C · γ as
0.d1d2 . . . , where (d1, d2, . . . ) = C · (c1, c2, . . . )T (mod q). Assume that
• q is the smallest prime number with q ≥ s,

• C is the Pascal triangle matrix and thus for its i-th power (C)i = (C
(i)
j,k)

we have
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• C
(i)
j,k =

{(
j
k

)
ij−k, for 0 ≤ k ≤ j,

0, for k > j,
moreover consider the van der Corput sequence 2.11.1

• xn,1 =
∑m(n)

j=0 aj(n)q
−(j+1), n = 0, 1, 2, . . . ,

and define
• xn,i = (C)i−1 · xn,1, i = 1, 2, . . . .

Then

xn = (xn,1, . . . , xn,s), n = 0, 1, 2, . . . ,

is a

(0, s)–sequence in the base q.

Notes: (I) H. Faure (1982). He also proved that, for every N ≥ 1,

D∗
N (xn) ≤ Fs(q)

(logN)s

N
+O

(
(logN)s−1

N

)
where

Fs(q) =
1

s!

(
q − 1

2 log q

)s
.

(II) Clearly, xn,i =
∑∞
j=1

y
(i)
j (n)

qj where (y
(i)
1 (n), y

(i)
2 , . . . ) = (C)i−1·(a0(n), a1(n), . . . ).

Thus, xn is digital.

H.Faure: Discrépance de suites associées à un système de numération (en dimension s), Acta
Arith. 41 (1982), 337–351 (MR0677547 (84m:10050); Zbl. 0442.10035).

3.19.7. Niederreiter – Xing sequences.
• q = pm, p is a prime,
• K/Fq is a global function field,
• g is the genus of K/Fq,
• νP (k) is the normalized discrete valuation corresponding to the place P of
K/Fq,

• P∞ is a fixed rational place of K/Fq,
• R is the ring of elements of K that have no pole outside P∞,
• n1 < n2 < . . . are all the so–called pole numbers of P∞,

Given an integer s ≥ 1 we choose k1, . . . , ks ∈ R such that
• the zero sets Z(k1), . . . , Z(ks) are pairwise disjoint,
• nei − ei < n1 where ei = −νP∞(ki) ≥ 1 for 1 ≤ i ≤ s,
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For every pole number nr we can find wr ∈ R such that (ωr)∞ = nrP∞, r =
1, 2, . . . . Since (ki)∞ = eiP∞, each ei is a pole number of P∞, consequently
nfi = ei for uniquely determined positive integer fi for each 1 ≤ i ≤ s. Define
for 1 ≤ i ≤ s
• {wi,0, wi1 , . . . , wi.ei−1} = {1, w1, w2, . . . , wei} \ {wfi}, and write for j ≤ 1
• j − 1 = Q(i, j)ei + u(i, j), where Q(i, j) and u(i, j) are integers and 0 ≤
u(i, j) < ei.

Then we have the following expansion at P∞

wi,u(i,j)k
−Q(i,j)−1 = z−g

∞∑
r=0

c
(i)
j,rz

r

where c
(i)
j,r ∈ Fq and z is a local unifromizing parameter at P∞. The coeffi-

cients c
(i)
j,r ∈ Fq can serve as the elements in (S3) in construction 3.19.2(V) of

a digital (t, s)–sequence in the base q where

t = g + 1 +
s∑

i=1

(ei − 1).

Notes: H.Niederreiter and Ch.Xing (1995). In (1996) they call the above procedure
the first construction and gave also two others algebraic–geometrical constructions
of (t, s)–sequences. Their methods yield (t, s)–sequences in the base 2 with 16 ≤ s ≤
126 having currently the smallest parameters t.

H.Niederreiter – C.-P.Xing: Low–discrepancy sequences obtained from algebraic function fields
over finite fields, Acta Arith. 72 (1995), no. 3, 281–298 (MR1347491 (96g:11099); Zbl. 0833.11035).
H.Niederreiter – C.-P.Xing: The algebraic–geometry approach to low–discrepancy sequences,
in: Monte Carlo and Quasi–Monte Carlo Methods 1996 (Proceedings of a conference at the Univer-
sity of Salzburg, Austria, July 9–12, 1996), (H.Niederreiter, P.Hellekalek, G. Larcher, P. Zinterhof
eds.), Lecture Notes in Statistics, 127, Springer Verlag, New York, Berlin, 1998, pp. 139–160
(MR1644516 (99d:11081); Zbl. 0884.11031).

Hybrid sequences

3.19.7.1 Let z0, z1, . . . be a digital explicit inversive sequence as defined
in 2.25.10.1. Let q = pk with a prime p and an integer k ≥ 1. For a given
integer t with 1 ≤ t ≤ q, let 0 ≤ d1 < d2 < · · · < dt < q be integers. Consider
the hybrid sequence

xn = ({nα}, zn+d1 , . . . , zn+dt) ∈ [0, 1)s+t, n = 0, 1, . . . .
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Let α ∈ Rs be of finite type η. Then for 1 ≤ N ≤ q the discrepancy DN of
the first N terms of the sequence xn satisfies

DN = Oα,t,ε

(
max

(
N−1/((η−1)s+1)+ε,

2(k−1)t+k/2k1/2N−1/2(logN)sq1/4(log q)t(1 + log p)k/2
))

for all ε > 0, where the implied constant depends only on α, t, and ε.

Notes:
(I) H.Niederreiter (2010).
(II) If η = 1 then

DN = Oα,t

(
2(k−1)t+k/2k1/2N−1/2(logN)sq1/4(log q)t(1 + log p)k/2

)
.

H.Niederreiter: A discrepancy bound for hybrid sequences involving digital explicit inversive
pseudorandom numbers, Unif. Distrib. Theory 5 (2010), no. 1, 53–63 (MR2804662 (2012f:11143);
Zbl. 1249.11074).

3.19.7.2 For integers b ≥ 2 and n ≥ 0, let n =
∑∞

j=0 aj(n)b
j be the digit

expansion of n in the base b, where aj(n) ∈ {0, 1, . . . , b − 1} for all j ≥ 0
and aj(n) = 0 for all sufficiently large j. Then the radical-inverse function
γb in the base b is γb(n) =

∑∞
j=0 aj(n)b

−j−1. For a given dimension s ≥ 1, let
b1, . . . , bs be pairwise coprime integers ≥ 2. Then the Halton sequence (in the
bases b1, . . . , bs) is given by yn =

(
γb1(n), . . . , γbs(n)

)
∈ [0, 1)s, n = 0, 1, . . .

It is a classical low-discrepancy sequence.

Let z0, z1, . . . be a digital explicit inversive sequence as defined in 2.25.10.1.
Let q = pk with a prime p and an integer k ≥ 1. For a given integer t with
1 ≤ t ≤ q, let 0 ≤ d1 < d2 < · · · < dt < q be integers. Consider the hybrid
sequence obtained by “mixing” the Halton sequence and a digital explicit
inversive sequence

xn =
(
γb1(n), . . . , γbs(n), zn+d1 , . . . , zn+dt

)
∈ [0, 1)s+t, n = 0, 1, . . .

The discrepancy DN of the first N terms of the sequence xn satisfies

DN = Ob1,...,bs,t

((
2kq1/2(1 + log p)k(log q)tN−1

)1/(s(k−1)t+s+1)
)

where the implied constant depends only on b1, . . . , bs, and t.
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H.Niederreiter – A.Winterhof: Discrepancy bounds for hybrid sequences involving digital ex-
plicit inversive pseudorandom numbers, Unif. Distrib. Theory 6 (2011), no. 1, 33–56 (MR2817759
(2012g:11143); Zbl. 1249.11075).

Sequences (xn, yn) where both xn and yn are u.d.

3.19.7.3 All d.f.’s g(x, y) of the sequence (xn, yn) has marginals

g(x, 1) = x,

g(1, y) = y.

These d.f.’s are called copulas and they were introduced by M. Sklar (1959).
For basic properties of copulas consult R.B. Nelsen (1999).

Let G2,1 be the set of all two-dimensional copulas. Some basic properties
of G2,1:
(I) G2,1 is closed under pointwise limit and convex linear combinations.
(II) For every g(x, y) ∈ G2,1 and every (x1, y1), (x2, y2) ∈ [0, 1]2 we have

|g(x2, y2)− g(x1, y1)| ≤ |x2 − x1|+ |y2 − y1|.
(III) For every g(x, y) ∈ G2,1 we have

g3(x, y) = max(x+ y − 1, 0) ≤ g(x, y) ≤ min(x, y) = g2(x, y),

where g3(x, y) and g2(x, y) are copulas (the so called Fréchet-Hoeffding bounds,
see R.B. Nelsen [1999, p. 9]).
(IV) M. Sklar (1959) proved that for every d.f. g(x, y) on [0, 1]2 there ex-
ists a copula c(x, y) ∈ G2,1 such that g(x, y) = c(g(x, 1), g(1, y)) for every
(x, y) ∈ [0, 1]2. If g(x, 1) and g(1, y) are continuous, then the copula c(x, y) is
uniquely determined (cf. Nelsen [p. 15, Th. 2.3.3]). Furthermore, if f(x, y)
is continuous we have
(V)

∫ 1
0

∫ 1
0 f(x, y) dg(x, y) =

∫ 1
0

∫ 1
0 f(g

−1(x, 1), g−1(1, y)) dc(x, y).
(VI) Examples:

gθ(x, y) = (min(x, y))θ(xy)1−θ, where θ ∈ [0, 1] (Cuadras-Augé family, cf.
Nelsen [1999, p. 12, Ex. 2.5]),

g4(x, y) =
xy

x+y−xy (see Nelsen [1999, p. 19, 2.3.4]),

g̃(x, y) = x+ y− 1+ g(1− x, 1− y) for every g(x, y) ∈ G2,1 (Survival copula,
see Nelsen [1999, p. 28, 2.6.1]).

Related sequences: 3.18.1.1, 3.18.1.2, 3.4.1.4, 3.4.1.5.

R.B.Nelsen: An Introduction to Copulas. Properties and Applications, Lecture Notes in Statis-
tics 139, Springer, New York, NY, 1999 (2nd ed. Springer 2006). (MR1653203 (99i:60028); Zbl.
0909.62052).
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M. Sklar: Fonctions de répartition à n dimensions et leur marges, Publ. Inst. Stat. Univ. Paris
8 (1960), 229–231 (MR0125600 (23 #A2899); Zbl. 0100.14202).

3.20 Pseudorandom Numbers Congruential Generators

3.20.1. Matrix generator. The matrix numbers generator produced the
s–dimensional vector sequence

xn =
1

M
yn, where yn+1 ≡ A · yn (modM) , n = 0, 1, . . . ,

where y0 is an initial s–dimensional integer vector different from 0 (modM),
and A is an s× s matrix with integer elements and non–singular modulo M .
Then we have
• xn is purely periodic,
• if M = p is a prime modulus, then xn has the maximal period ps − 1 if

and only if the characteristic polynomial of A is primitive over Fp.

Notes: H.Niederreiter (1992, p. 207, Th. 10.2; 1995). For a discrepancy of the
sj–dimensional sequence zn = (xn, . . . ,xn+j−1) cf. (1992, p. 209, Th. 10.4).

H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
H.Niederreiter: New developments in uniform pseudorandom number and vector generation,
in: Monte Carlo and quasi–Monte Carlo methods in scientific computing (Las Vegas, NV, 1994),
Lecture Notes in Statist., Vol. 106, Springer Verlag, New York, 1995, pp. 87–120 (MR1445782
(97k:65019); Zbl. 0893.11030; entire collection MR1445777 (97j:65002)).

3.20.2.
• Let p be a prime,
• m a positive integer,
• q = pm,
• A be a non–singular m×m matrix over Fp,
• z0 ∈ (Fp)

m initial vector different from 0,
• zn+1 := zn ·A, zn = (zn,1, . . . , zn,m),
• xn =

∑m
j=1

zn,j
pj

,

The sequence xn, n = 0, 1, 2, . . . , and consequently also zn, n = 0, 1, 2, . . . , is
purely periodic and has the maximal possible period pm−1 if and only if the
characteristic polynomial of A

(
i.e. det(x ·E−A)

)
is a primitive polynomial

of degreem over Fp. Equivalently, there exists a primitive element σ of Fq and
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a basis β1, . . . , βm of Fq over Fp such that zn,j = Tr(βjσ
n) for j = 1, 2, . . . ,m

and n = 0, 1, 2, . . . , where Tr is the trace function Tr : Fq → Fp.
For every s, 2 ≤ s ≤ m, N = pm − 1, and fixed primitive element σ of Fq,
the sequence

xn = (xn, xn+1, . . . , xn+s−1), n = 0, 1, . . . , N − 1,

has the discrepancy with the average D∗
N = O((logN)s/N), where the aver-

age is taken over all ordered bases of Fq over itself.

Notes: This method was introduced in full generality in H.Niederreiter (1993) and
it was studied in detail in (1995).

H.Niederreiter: Factorization of polynomials and some linear–algebra problems over finite fields,
in: Computational linear algebra in algebraic and related problems (Essen, 1992), Linear Algebra
Appl. 192 (1993), 301–328 (MR1236747 (95b:11114); Zbl. 0845.11042).
H.Niederreiter: The multiple recursive matrix method for pseudorandom number generation,
Finite Fields Appl. 1 (1995), no. 1, 3–30 (MR1334623 (96k:11103); Zbl. 0823.11041).

3.21 Miscellaneous items

Here we list some sequences which we have find after finishing the work over
the manuscript.

3.21.1. Generalized ratio sequences. Let xn be an increasing sequence
of positive integers. If the lover asymptotic density d(xn) > 0 (for the def.
see p. 1 – 3 ), then there exists a positive integer k such that the sequence

xm1xm2 . . . xmk

xn1xn2 . . . xnk
, m1,m2, . . . ,mk, n1, n2, . . . , nk = 1, 2, . . . ,

is

dense in [0,∞).

Notes: This complements the result mentioned in 2.22.2. The proof of J. Bukor and
J.T.Tóth (2003) is based on the result of O. Strauch and J.T.Tóth (1998) saying
that d(xn) ≤ 1 − |X| for every open set X ⊂ [0, 1] not containing an accumulation
point of xm

xn
, m,n = 1, 2, . . . , where |X| denotes the Lebesgue measure of X.

J. Bukor – J.T.Tóth: On accumulation points of generalized ratio sets of positive integers, Acta
Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), no. 6, 37–43 (MR2054713 (2005h:11020);
Zbl. 1050.11012).
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O. Strauch – J.T.Tóth: Asymptotic density of A ⊂ N and density of the ratio set R(A),
Acta Arith. 87 (1998), no. 1, 67–78 (correction ibid. 103 (2002), no. 2, 191–200). (MR1659159
(99k:11020); Zbl. 0923.11027).

3.21.2. Absolutely abnormal numbers. Let d2 = 22 and define recur-
sively dj = jdj−1/(j−1) for j = 3, 4, . . . . Then

θ =
∞∏
j=2

(
1− 1

dj

)
is a real transcendental number which is

not normal for any base q ≥ 2.

Notes: This complements the result of 2.18.

G.Martin: Absolutely abnormal numbers, Amer. Math. Monthly 108 (2001), no. 8, 746–754
(MR1865662 (2002m:11071); Zbl. 1036.11035).

3.21.3. Generalized two–dimensional Zaremba sequence. Let q ≥ 2,
m > 0, a, b be fixed integers. Define

• n =
∑∞

j=0 aj(n)q
j is the expansion of n in the base q,

• γq(n) =
∑∞

j=0 aj(n)q
−j−1 is the radical inverse function, see 2.11.2,

• γ′q(n) =
∑∞

j=0 a
′
j(n)q

−j−1, where a′j(n) ≡ aj(n) + aj + b (mod q) for
j = 0, 1, . . . ,
• N = qm.

Then the finite two–dimensional sequence

xn =
( n
N
, γ′q(n)

)
, n = 0, 1, . . . , N − 1,

has the q–adic diaphony (see 1.11.5)

DFN (xn) = O
(√

logN

N

)
.

Notes: If a = b = 1, then we obtain the two–dimensional Zaremba sequence
defined in 3.18.4. V.S.Grozdanov and S.S. Stoilova (2003) called the sequence xn
the generalized Zaremba net in base q. They also introduced the notion of the
q–adic diaphony.
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V.S.Grozdanov – S.S. Stoilova: On the b–adic diaphony of the Roth net and generalized Zaremba
net , Math. Balkanica (N.S.) 17 (2003), no. 1–2, 103–112 (MR2096244 (2005f:11144); Zbl. 1053.11066).

3.21.4. Sequences on two–dimensional sphere S2. Let A,B,C be the
rotations of the tree–dimensional Euclidean space with respect to the x, y, z–
axes, each through an angle of arccos

(
−3

5

)
. Let Wk be the set of nontrivial

words in A,B,C,A−1, B−1, C−1 of length ≤ k (all the obvious cancelations
such as AA−1 have been carried out). Then Wk consists of N = 3

2(5
k − 1)

elements, say ψ1, ψ2, . . . , ψN . If P ∈ S2 is a suitable chosen starting point,
then the orbital points

xn = ψn(P ), n = 1, 2, . . . , N,

have spherical–cap discrepancy (for def. see 1.11.10)

SN = O

(
(logN)2/3

N1/3

)
.

Notes: A.Lubotzky, R. Phillips and P. Sarnak (1986). R.F.Tichy (1990) used this
sequence for approximate solutions of some initial–valued problems defined on S2.

A.Lubotzky – R.Phillips – P. Sarnak: Hecke operators and distributing points on the sphere. I ,
Comm. Pure Appl. Math 39 (1986), no. S, suppl., S149–S186 (MR0861487 (88m:11025a); Zbl.
0619.10052).
R.F.Tichy: Random points in the cube and on the sphere with applications to numerical analysis,
J. Comput. Appl. Math. 31 (1990), no. 1, 191–197 (MR1068159 (91j:65009); Zbl. 0705.65003).

3.21.5. Salem numbers.
Notes: As we have defined in 2.17.7, a Salem numbers is a real algebraic integer,
greater than 1, with the property that all its conjugates lie on or within the unit
circle, and at least one conjugate lies on the unit circle.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let θ be the Salem numbers of degree greater than or equal to 8. Then the
sequence

xn = θn mod 1, n = 1, 2, . . . ,

has

a.d.f. g(x) ̸= x

which satisfies

|(g(y)− g(x))− (y − x)| ≤ 2ζ

(
deg(θ)− 2

4

)
(2π)1−

deg(θ)
2 (y − x),
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where ζ(z) is the Riemann zeta function, deg(θ) is the degree of θ over Q
and 0 ≤ x < y ≤ 1.

Notes: (I) This was proved by S.Akiyama and Y.Tanigawa (2004). They also
proved that if the Salem number θ is of degree 4 or 6 then xn has a.d.f. g(x) ̸= x
such that

|(g(y)− g(x))− (y − x)| ≤ 4π− 3
2
√
y − x if deg(θ) = 4,

and

|(g(y)− g(x))− (y − x)| ≤ y − x

2π2

(
log

1

y − x
+ 1 + (y − x)

)
if deg(θ) = 6.

(II) Salem numbers are the only known concrete numbers whose powers are dense
mod 1 in [0, 1], see 2.17.7 and the monograph of M.J. Bertin, A.Decomps-Guilloux,
M.Grandet-Hugot, M.Pathiaux-Delefosse, and J.P. Schreiber (1992, pp. 87–89). The
survey paper of E.Ghate and E.Hironaka (2001) deals with the following open
problem: Is the set of Salem numbers bounded away from 1? D.H. Lehmer (1933)
found the monic polynomial

L(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

where its real root θ = 1.17628 . . . is both the smallest known Salem number.
(III) The result implies that if deg(θ) → ∞, then g(x) → x. In 2.4.4.1 Y.Dupain
and J. Lesca (1973) proved (see 2.4.4.1): If deg(θ) → ∞, then there exists a u.d.
subsequence xh(n) such that the asymptotic density of h(n) is arbitrarily close to 1.

A.Akiyama – Y.Tanigawa: Salem numbers and uniform distribution modulo 1, Publ. Math.
Debrecen 64 (2004), no. 3–4, 329–341 (MR 2058906; Zbl. 1072.11053).
M.–J. Bertin – A.Decomps–Guilloux – M.Grandet–Hugot – M.Pathiaux–Delefosse –
J.–P. Schreiber: Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992 (MR1187044 (93k:11095);
Zbl. 0772.11041).
Y.Dupain – J. Lesca: Répartition des sous-suites d’une suite donnée, Acta Arith. 23 (1973),
307–314 (MR0319884 (47 #8425); Zbl. 0263.10021).
E.Ghate – E.Hironaka: The arithmetic and geometry of Salem numbers, Bull. Amer. Math.
Soc. (N.S.) 38 (2001), no. 3, 293–314 (MR1824892 (2002c:11137); Zbl. 0999.11064).
D.H. Lehmer: Factorization of certain cyclotomic functions, Ann. Math. 34 (1933), 461–469
(MR1503118; Zbl. 0007.19904).
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4. Appendix

This Appendix contains some useful technical complementary results to that
of Chapter 1 grouped loosely by the subject.

4.1 Technical theorems

We shall list here some important theorems from the mathematical analysis
which have applications in the theory of u.d. sequences. We start with the
well–known

4.1.1 Basic formulas

1. |1− e2πix| = 2| sinπx| for x ∈ R,
2. |1 + e2πix| = 2| cosπx| for x ∈ R,
3. |e2πix − e2πiy| ≤ 2π|x− y| for x, y ∈ R,

4.

∣∣∣∣ 1N N∑
n=1

e2πihnθ
∣∣∣∣ ≤ 1

N | sin(πhθ)| for an irrational θ and integer h ̸= 0, more

precisely

5.

∣∣∣∣ 1N N∑
n=1

e2πihnx
∣∣∣∣ =

{ | sinπNx|
N | sin(πhx)| , if x ̸∈ Z,
1, if x ∈ Z,

6.
∣∣∣∑M+N

n=M+1 e
2πinθ

∣∣∣ = ∣∣∣ sin(πθN)
sin(πθ)

∣∣∣ , ∣∣∣∫ x+T
x e2πiθt dt

∣∣∣ = ∣∣∣ sin(πθT )
πθ

∣∣∣ for irra-

tional θ, where M is an integer and x, T are arbitrary real numbers.

7.

∣∣∣∣ 1N N∑
n=1

e2πinh·θ
∣∣∣∣ ≤ 1

2N∥h·θ∥ for s–dimensional non–zero h ∈ Zs and

θ ∈ Rs,

8. {x} = 1
2 −

∞∑
k=1

sin(2πkx)
πk is the Fourier series expansion of the fractional

part function {x},

9. {x} = 1
2 −

K∑
k=1

sin(2πkx)
πk + θ

π(K+1) sin(πx) for |θ| ≤ 1,

10. c[0,x)(t) = x +
∞∑
k=1

sin(2πkt)+sin(2πk(x−t))
πk is the Fourier expansion of the

indicator function,

4 – 1
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11. FN (x) = x+
∞∑

k=−∞
k ̸=0

ck

(
1
N

∑N
n=1 e

2πikxn
)
where ck are the coefficients in

c[0,x)(t) =
∞∑

k=−∞
cke

2πikt.

12. c[0,x)({y}) = x+
∑
n̸=0

1
2πin

(
1−e−2πinx

)
e2πiny+ 1

2cZ(y)−
1
2cZ+x(y), where

x ∈ [0, 1];

13. c[0,{x−y}({x}) = {x− y} − {x}+ {y} for x, y ∈ R. . . . [J. Schoißengeier
(1984), p. 243 and p. 250.]

14.
∣∣∣∫ x+T

x e2πiθt dt
∣∣∣ = ∣∣∣ sin(πθT )

πθ

∣∣∣, for irrational θ.
J. Schoißengeier: On the discrepancy of (nα), Acta Arith. 44 (1984), 241–279 (MR0774103
(86c:11056); Zbl. 0506.10031).

4.1.2 Continued fractions

1. qiα−pi = (−1)i

qiri+1+qi−1
, where α = [a0; a1, a2, . . . ] is the continued fraction

expansion of α with partial quotients ai and convergents pi/qi;

2. pi
qi

= [a0; a1, . . . , ai], p0 = a0, q0 = 1, p−1 = 1, q−1 = 0,

3. ri+1 = [ai+1; ai+2, . . . ],
qi−1

qi
= [0 : ai, ai−1, . . . , a1],

4. {qiα} =

{
|qiα− pi| if 2|i,
1− |qiα− pi| if 2 - i,

see [A. Ya.Khintchine (1963)];

5. {(n+ qi)α} = {nα}+ qiα− pi for n ≤ qi

[L. Roçadas (2008)];

6. {jα} < {kα} ⇔ {j(pm+1/qm+1)} < {k(pm+1/qm+1)} if max(|j|, |k|, |j−
k|) < qm+1

[J. Schoißengeier (1984)];

7. |qk−1α− pk−1| = 1
qk

+O
(

1
ak+1qk

)
[J. Schoißengeier (1987)], more precisely

8. |qk−1α− pk−1| = 1
qk

− 1

qkakrk+1

(
1+ 1

akrk+1
+

qk−2
akqk−1

) .
A. Ya.Khintchine (A.J. Chinčin): Continued Fractions, P.Noordhoff, Ltd., Groningen, the Nether-
lands, 1963 (MR0161834 (28#5038); Zbl 0117.28503), another translation into English (MR0161833
(28 #5037); Zbl 0117.28601)). (Russian 2nd. ed.: Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow–
Leningrad, 1949 (MR0044586 (13,444e)); German edition B. G. Teubner Verlagsgesellschaft, Leipzig,
1956 (MR0080630 (18,274f); Zbl. 0071.03601)).
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L.Roçadas: Bernoulli polynomials and (nα)-sequences, Unif. Distrib. Theory 3 (2008), no. 1,
127–148 (MR2475821 (2009m:11118); Zbl. 1174.11061).
J. Schoißengeier: On the discrepancy of (nα), Acta Arith. 44 (1984), 241–279 (MR0774103
(86c:11056); Zbl. 0506.10031).
J. Schoißengeier: Eine Explizite Formel für

∑
n≤N B2({nα}), in: Zahlentheoretische Analysis II

(Seminar, Wien, 1984–86), (E.Hlawka eds.), Lecture Notes in Mathematics, 1262, Springer-Verlag,
Berlin-Heidelberg, 1987, pp. 134–138 (MR1012966 (90j:11021); Zbl 0622.10007).

4.1.3 Fractional parts of nα

(I) Let α be irrational, I be an interval in [0, 1] and assume that {nα} ∈ I.
Using the notation from Fig. 1 we have

0

I ′′2

I ′2
I ′′1

I ′1

I1

{nα}
I2

I

1

I ′

Figure 1:

{(n+ k)α} ∈ I1 ⇔ {kα} ∈ I ′1,

{(n+ k)α} ∈ I2 ⇔ {kα} ∈ I ′2,

{(k + n)α} ∈ I ⇔ {kα} /∈ I ′.

(II) The intervals I1, I2, I
′
1, I

′
2 can be replaced by a parameter 0 < t < 1 in

the form that for every n, k ∈ N and every 0 < t < 1 we have

0 < {nα} − {(n+ k)α} = t⇔ 1− {kα} = t,

0 < {(n+ k)α} − {nα} = t⇔ {kα} = t.

(III) Let I ⊂ [0, 1] be an interval and k ∈ N. Then both numbers {nα}
and {(n + k)α} lie in I if and only if the sawtooth graph of the function
y = x + {kα} mod 1 intersects I × I and simultaneously {nα} lies in the
projection of this intersection onto the x-axis, see Fig. 2.
(IV) Given an interval I of the form I = (0, t), t ≤ 1/2, define a and b
as the least positive integers such that {aα} ∈ (0, t) and {bα} ∈ (1 − t, 1).
Let {nα} ∈ (0, t) and let k be minimal with {(n + k)α} ∈ (0, t). Then
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{kα}

0 1

1

ProjxXk

I × I

Figure 2:

t− {aα} ≤ 1− {bα} and

k =


a, if 0 < {nα} < t− {aα},
a+ b, if t− {aα} < {nα} < 1− {bα},
b, if 1− {bα} < {nα} < t.

Moreover a and b are relatively prime.
Notes: (I), (II) and (III) are due to Š. Porubský and O. Strauch (2010). (IV) is
from N.B. Slater (1950, 1967). Š. Porubský and O. Strauch (2010) also give a formula
for k similar to the above one for intervals |I| > 1/2.

N.B. Slater: The distribution of the integers N for which {θN} < ϕ, Proc. Cambridge Philos.
Soc. 46 (1950), 525–534 (MR0041891 (13,16e); Zbl. 0038.02802).
N.B. Slater: Gaps and steps for the sequence nθ mod 1, Proc. Cambridge Phil. Soc. 63 (1967),
1115–1123 (MR0217019 (36 #114); Zbl. 0178.04703).
Š. Porubský – O. Strauch: Binary sequences generated by sequences {nα}, n = 1, 2, . . . , Publ.
Math. 77 (2010), No. 1-2, 139-170 (MR2675740 (2011f:11092)).

4.1.4 Summation formulas

The following summation formulas are well–known:
Theorem 4.1.4.1 (Euler summation formula). If F (t) is a complex val-
ued function with a continuous derivative on the interval [1, N ], then

N∑
n=1

F (n) =

∫ N

1
F (t) dt+ 1

2(F (1) + F (N)) +

∫ N

1
({t} − 1

2)F
′(t) dt.

Cf. [KN, p. 8, formula (2.3)].
Theorem 4.1.4.2 (Sonin summation formula). Let F (t) be twice con-
tinuously differentiable on the interval (a, b], and

ρ(x) = −{x}+ 1

2
, σ(x) =

∫ x

0
ρ(t) dt.
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Then∑
a<n≤b

F (n) =

∫ b

a
F (x) dx+ ρ(b)F (b)− ρ(a)F (a)− σ(b)F ′(b) + σ(a)F ′(a)+

+

∫ b

a
σ(x)F ′′(x) dx.

Note that |ρ(x)| ≤ 1/2 and |σ(x)| ≤ 1/8. Cf. I.M.Vinogradov (1985, p. 37).

The above two formulas are special cases of the following one, cf. for instance
E.Hlawka, J. Schoissengeier and R.Taschner (1991, pp. 104–5):
Theorem 4.1.4.3 (Euler-McLaurin summation formula). Let Bn(x)
be the nth Bernoulli polynomial. Suppose that F : [a, b] → C is q times

differentiable with
∫ b
a |F (q)(x)|dx < ∞. Then for every m, 1 ≤ m ≤ q, we

have∑
a<n≤b

F (n) =

=

∫ b

a
F (x) dx+

m∑
k=1

(−1)k

k!

(
Bk({b})F (k−1)(b)−Bk({a})F (k−1)(a)

)
+

+
(−1)m+1

m!

∫ b

a
Bm({x})F (m)(x) dx.

If a, b ∈ Z, then the second sum can also written in the form

m∑
k=1

(−1)k

k!
Bk

(
F (k−1)(b)− F (k−1)(a)

)
.

Notes: Let Bn = Bn(0) be the nth Bernoulli number. The Bn(x) and Bn can be
determined using the following recurrence relation:

Bn(x) =
n∑
k

(
n

k

)
Bkx

n−k, Bn =
n∑
j=1

1

j + 1

j∑
i=1

(−1)i
(
j

i

)
in, B0 = 1.

The next formula can be found, for instance, in E.Hlawka, J. Schoissengeier
and R.Taschner (1991, p. 78):
Theorem 4.1.4.4 (Abel partial summation). If f, h : Z+ → C and P ,
Q are integers with P ≤ Q then

Q∑
n=P

f(n)h(n) = f(Q+ 1)

Q∑
n=P

h(n) +

Q∑
n=P

(f(n)− f(n+ 1))

n∑
m=P

h(m).
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If moreover, f : [1,∞) → R has continuous derivative f ′ and g(x) =∑[x]
n=1 h(n), then the above formula can also be expressed in the form

[x]∑
n=1

f(n)h(n) = f(x)g(x)−
∫ x

1
g(t)f ′(t) dt

for every x ∈ [1,∞).

The exponential sums can be handled using the estimate, cf. (KN, p. 17,
Th. 2.7):
Theorem 4.1.4.5 (van der Corput lemma). Let a and b be integers with
a < b, and let f be twice differentiable on [a, b] with f ′′(x) ≥ ϱ > 0 or
f ′′(x) ≤ −ϱ < 0 for x ∈ [a, b]. Then,∣∣∣∣∣

b∑
n=a

e2πif(n)

∣∣∣∣∣ ≤ (|f ′(b)− f ′(a)|+ 2
)( 4

√
ϱ
+ 3

)
.

For the summation of e2πif(n) can often be useful also the next result (cf.
E.C.Titchmarch (1986, Lemma 4.7)):
Theorem 4.1.4.6. Let f(x) be a real function with continuous and decreas-
ing derivative f ′(x) on (a, b) and put f ′(b) = A, f ′(a) = B. Then

∑
a<n≤b

e2πif(n) =
∑

A−c<k<B+c

∫ b

a
e2πi(f(x)−kx) dx+O(log(B −A+ 2)),

where c is any positive constant less than 1.

cf. [KN, p. 25, Lemma 3.1] and B.Massé and D. Schneider (2014):
Theorem 4.1.4.7 (van der Corput’s Fundamental Inequality). Let N
be a positive integer gretaer than 1, a1, . . . , aN be N complex numbers of
modulus 1. Then there exists an absolute constant C such that for all positive
integer H < N we have∣∣∣∣ 1N

N∑
n=1

an

∣∣∣∣2 ≤ C

H
+
C

H

H∑
h=1

∣∣∣∣ 1

N − h

N−h∑
n=1

anan+h

∣∣∣∣.
Tsuji’s extension:
Theorem 4.1.4.8. Let N be a positive integer greater than 1, a1, . . . , aN be
N complex numbers of modulus 1, let wn be a sequence of positive weights
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and Wn = w1 + · · ·+ wN . Then for all positive integer H < N we have∣∣∑N
n=1wnan

∣∣2
WN+H−1

≤ 1

H2

N∑
n=1

w2
n|an|2

H−1∑
j=0

1

wn+j

+ 2ℜ

(
1

H2

H−1∑
h=1

Nh∑
n=1

wnwn+hanan+h

H−1∑
j=0

1

wn+j

)
.

The following estimate play a central role in the quantitative theory of u.d.
(cf. H.Niederreiter and W.Philipp (1973) and H.Niederreiter (1978)): Let

F̂ (h) =

∫ 1

0
e2πiht dF (t) for every integer h

be the the Fourier – Stieltjes transform of a function F : [0, 1] → R with
bounded variation.
Theorem 4.1.4.9. Let F be a d.f. and let G : [0, 1] → R satisfy the Lipschitz
condition |G(u) − G(v)| ≤ L|u − v| for u, v ∈ [0, 1], and G(0) = 0 and
G(1) = 1. Then, for any positive integer m, we have

sup
u,v∈[0,1]

∣∣(F (v)− F (u))− (G(v)−G(u))
∣∣ ≤

≤ 4L

m+ 1
+

4

π

m∑
h=1

(
1

h
− 1

m+ 1

) ∣∣F̂ (h)− Ĝ(h)
∣∣,

or also

sup
u,v∈[0,1]

∣∣(F (v)− F (u))− (G(v)−G(u))
∣∣ ≤ (6L

π2

∞∑
h=1

1

h2
∣∣F̂ (h)− Ĝ(h)

∣∣2)1/3

.

Notes: Application of this theorem to the step d.f. F (t) = FN (t) = A([0,t);N ;xn)
N

(cf. 1.3) and function G(t) = t yields the Erdős – Turán theorem 1.9.0.8, and thus a
discrepancy bound for DN . The second formula of this Theorem gives immediately
the Le Veque theorem 1.9.0.7, and can be found in H.Niederreiter (1975), also cf.
H.Niederreiter (1978, pp. 974, 976).

The next formula can be used to express a discrete sum in terms of Riemann
– Stieltjes integral.



4 – 8 Appendix

Theorem 4.1.4.10. If x1, x2, . . . , xN is a finite sequence from [0, 1] and
f : [0, 1] → R a continuous function then

1

N

N∑
n=1

f(xn) =

∫ 1

0
f(x) dFN (x),

where FN (x) is again the step d.f. given by (cf. 1.3)

FN (x) =
A([0, x);N ;xn)

N
for x ∈ (0, 1),

and FN (0) = 0 and FN (1) = 1.
Notes: This theorem is also valid for the Riemann integrable functions f for which
none of x1, . . . , xN is a point of its discontinuity.

It is necessary to take into account the possible jumps of FN (x) at limit
points 0 and 1 of the integration, e.g. the integration limits could be

∫ 1+0
0−0 .

For the Riemann – Stieltjes integrals the integration method by parts can be
used:
Theorem 4.1.4.11. Let f and g be two functions defined on [0, 1]. The
following Riemann – Stieltjes integrals exist simultaneously and∫ 1

0
f(x) dg(x) = [f(x)g(x)]10 −

∫ 1

0
g(x) df(x).

Remember that the Riemann – Stieltjes integrals are undefined if f and g
have a jump at a common point x.
Notes: (I) A short account of the theory of Riemann – Stieltjes integration can be
found in the book H.Riesel (1985, pp. 358–367, Appendix 9).
(II) The by parts method also yields a proof for the Euler’s summation formula:∑n
k=m f(k) =

∫ n+0

m−0
f(x) d[x] =

∫ n+0

m−0
f(x) dx−

∫ n+0

m−0
f(x) d(x− [x]) =

∫ n
m
f(x) dx−∫ n+0

m−0
d(x − [x] − (1/2)) =

∫ n
m
f(x) dx − [f(x)(x − [x] − (1/2)]n+0

m−0 +
∫ n
m
(x − [x] −

(1/2))f ′(x) dx =
∫ n
m
f(x) dx+ f(m)/2 + f(n)/2 +

∫ n
m
(x− [x]− (1/2))f ′(x) dx.

(III) S.K. Zaremba (1968) found the following variant of the integration by parts:
Let f(x) and g(x) be periodic with the unit period in each of the s coordinates of
x. It suffices to assume that one of these functions is continuous and the other is of
bounded variation in the sense of Vitali over [0, 1]s (see p. 1 – 73 ), then∫

[0,1]s
f(x) dg(x) = (−1)s

∫
[0,1]s

g(x) df(x).

In the proofs of some integral equations referred to in 4.2 the Helly theorems
are systematically used:
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Theorem 4.1.4.12 (First Helly theorem). Any sequence gn of d.f.’s con-
tains a subsequence gkn such that the sequence gkn(x) converges for every
x ∈ [0, 1] and its point limit limn→∞ gkn(x) = g(x) is also a d.f.
Theorem 4.1.4.13 (Second Helly theorem). If we have limn→∞ gn(x) =
g(x) a.e. on [0, 1], then for the s–dimensional integral of a continuous func-
tion f : [0, 1]s → R we have

lim
n→∞

∫ 1

0
. . .

∫ 1

0
f(t1, . . . , ts) dgn(t1) . . . dgn(ts) =

=

∫ 1

0
. . .

∫ 1

0
f(t1, . . . , ts) dg(t1) . . . dg(ts).

The Second Helly theorem is occasionally also called the Helly – Bray
Theorem (cf. R.G. Laha and V.K.Rohatgi (1979, p. 135, Th. 3.1.3). One of
the most important applications of this theorem is the following result:
Theorem 4.1.4.14. For every sequence xn in [0, 1] and any increasing se-
quence of indices Nk, k = 1, 2, . . . , with limk→∞ FNk = g(x) a.e. we have

lim
k∞

1

N s
k

Nk∑
i1,...,is=1

f(xi1 , . . . , xis) =

∫ 1

0
. . .

∫ 1

0
f(t1, . . . , ts) dg(t1) . . . dg(ts).

If I = {i1, . . . , il} ⊂ {1, 2, . . . , s} is a non–empty set of indices and x =
(x1, . . . , xs) a given vector, then xI will denote the vector (xi1 , . . . , xil). Fur-
ther, if g(x) is an s–dimensional d.f. then the face d.f. gI(x) is defined by
(see 1.11)

gI(x) = g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1)).

Theorem 4.1.4.15 (The multi–dimensional second Helly theorem).
Let f : [0, 1]s → R be a bounded function, gn(x), n = 1, 2, . . . , and g(x)

be s–dimensional d.f.’s (for the def. see 1.11). If limn→∞(gn)I(x) = gI(x)
at every common continuity point xI ∈ (0, 1)l, l = 1, 2, . . . , s, of (gn)I(x),
n = 1, 2, . . . , and gI(x), then

lim
n→∞

∫
[0,1]s

f(x) dgn(x) =

∫
[0,1]s

f(x) dg(x)

provided the all Riemann – Stieltjes integrals exist.
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Theorem 4.1.4.16 (Lebesgue theorem on dominant convergence).
If fn for n = 1, 2, . . . , and g are Lebesgue integrable on [0, 1] then
limn→∞ fn(x) = f(x) a.e., and |fn(x)| ≤ g(x) a.e. over [0, 1] for n = 1, 2, . . . ,
imply that f is Lebesgue integrable and

lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
f(x) dx.

If f , g are Riemann integrable functions then the following mean value theo-
rems are well–known (cf. for instance Ryshik and Gradstein (1957, pp. 129–
130):
Theorem 4.1.4.17 (The first mean value theorem). Suppose that f(x)
is continuous throughout the interval (0, 1) such that m ≤ f(x) ≤ M for
x ∈ (0, 1), and g(x) is integrable over that interval, and that g(x) does not
change its sign in the interval (0, 1). Then there exists at least one ξ ∈ [0, 1]
such that ∫ 1

0
f(x)g(x) dx = f(ξ)

∫ 1

0
g(x) dx.

Theorem 4.1.4.18 (The second mean value theorem). Let f(x) be a
non–negative function on the interval (0, 1), and g(x) be integrable over the
same interval.

(1) If f(x) is non–increasing function throughout the interval (0, 1) then there
exists at least one ξ ∈ [0, 1] such that∫ 1

0
f(x)g(x) dx = f(0)

∫ ξ

0
g(x) dx.

(2) If f(x) is non–decreasing then for some ξ ∈ [0, 1]∫ 1

0
f(x)g(x) dx = f(1)

∫ 1

ξ
g(x) dx

(3) If the function f(x) is monotonic then for some ξ ∈ [0, 1]∫ 1

0
f(x)g(x) dx = f(0)

∫ ξ

0
g(x) dx+ f(1)

∫ 1

ξ
g(x) dx,

or generally ∫ 1

0
f(x)g(x) dx = A

∫ ξ

0
g(x) dx+B

∫ 1

ξ
g(x) dx,

where A ≥ f(0 + 0) and B ≤ f(1 − 0) if f is decreasing, and A ≤ f(0 + 0)
and B ≥ f(1− 0) if f is increasing.
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Finally, we add the following well–known theorem from the elementary anal-
ysis which has many applications in the theory of u.d. (see e.g. 2.22.1,
2.6.18) and which is known under different names, e.g. as Stolz’s or Cesàro’s
theorem, or Cauchy – Stolz theorem 1

Theorem 4.1.4.19. If the real–valued sequences xn and yn, n = 1, 2, . . . ,
satisfy at least one of the conditions:
(i) yn is strictly monotone, |yn| → ∞,
(ii) yn is strictly monotone, xn → 0, yn → 0,

and if the limit (finite or infinite) limn→∞
xn+1−xn
yn+1−yn

exists, then the limit of
the sequence xn

yn
also exists and

lim
n→∞

xn
yn

= lim
n→∞

xn+1 − xn
yn+1 − yn

.

Notes: O. Stolz (1888). For application in continued fraction transformations cf.
V.L.Danilov et al. (1961, p. 272).
Pick’s Theorem. P be a lattice polygon, B(P) denote the number of lattice points
on the boundary of P, I(P) denote the number of lattice points inside P and A(P)
denote the area of P. Then every simple lattice polygon P satisfies

1

2
B(P) + I(P) = A(P) + 1.

(I) G. Pick (1899); J. Beck [p. 27](2014); H. Steinhaus [p. 96](1983); M.Krebs and
Th.Wright (2010);
(II) There are some beautiful higher-dimensional extensions of Pick’s formula based
upon deep work in combinatorial algebraic geometry, in particular around toric
varieties. For a readable introduction see R. Morelli (1993).
(III) Another simple result, J. Beck [p. 28](2014): Let A ⊂ R2 be a Lebesgue
measurable set in the plane with finite measure (that we call the area). Then∫ 1

0

∫ 1

0

#{(A+ x) ∩ Z2}dx = area(A).

J. Beck: Probabilistic Diophantine approximation (Randomness in lattice point counting), Sprin-
ger Monographs in Mathematics, Springer, Cham, 2014 (MR3308897; Zbl. 1304.11003).
V.L.Danilov – A.N. Ivanova – E.K. Isakova – L.A. Lyusternik – G.S. Salekhov – A.N.Kho-
vanskĭı – L.Ja. Claf – A.R.Yanpol’skĭı: Mathematical Analysis (Functions, limits, series, con-
tinued fractions), (Russian), Companion Mathematical Library, Gos. Izd. Fiz.–Mat. Literatury,
Moscow, 1961 (English translation: International Series of Monographs in Pure and Applied Math-
ematics Vol. 69, Pergamon Press, Oxford - London - Edinburgh - New York - Paris - Frankfurt,
1965). (Zbl. 0129.26802).

1A.L. Cauchy used this theorem for yn = n.
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E.Hlawka: The Theory of Uniform Distribution, A B Academic Publishers, Berkhamsted, 1984
(translation of the original German edition Hlawka (1979)) (MR0750652 (85f:11056); Zbl. 0563.10001).
E.Hlawka –J. Schoißengeier – R.Taschner: Geometric and Analytic Number Theory, Univer-
sitext, Springer Verlag, Berlin, Heidelberg, New York, 1991 (German edition Manz Verlag, Vienna,
1986) (MR1123023 (92f:11002); Zbl. 0749.11001).
M.Krebs – Th.Wright: On Cantor’s first uncountability proof, Pick’s theorem, and the irra-
tionality of the golden ratio, Am. Math. Mon. 117 (2010), no. 7, 633–637 (MR2681523 (2011e:11127);
Zbl. 1220.11088).
L.Kuipers – H.Niederreiter: Uniform Distribution of Sequences, Pure and Applied Mathemat-
ics, John Wiley & Sons, New York, London, Sydney, Toronto, 1974 (MR0419394 (54 #7415); Zbl.
0281.10001).
R.G. Laha – V.K.Rohatgi: Probability Theory, Wiley Series in Probability and Mathematical
Statistics, John Wiley & Sons, New York, 1979 (MR0534143 (80k:60001); Zbl. 0409.60001).
B.Massé – D. Schneider: The mantissa distribution of the primorial numbers, Acta Arith. 163
(2014), no. 1, 45–58 (MR3194056; Zbl. 1298.11074).
R.Morelli: Pick’s theorem and the Todd class of a toric variety, Adv. Math. 100 (1993), no. 2,
183–231 (MR1234309 (94j:14048); Zbl. 0797.14018).
H.Niederreiter: Quantitative versions of a result of Hecke in the theory of uniform distribution
mod 1, Acta Arith. 28 (1975/76), no. 3, 321–339 (MR0389778 (52 #10609); Zbl. 0318.10037).
H.Niederreiter: Quasi–Monte Carlo methods and pseudo–random numbers, Bull. Amer. Math.
Soc. 84 (1978), no. 6, 957–1041 (MR0508447 (80d:65016); Zbl. 0404.65003).
H.Niederreiter: Random Number Generation and Quasi–Monte Carlo Methods, CBMS–NSF
Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1992, vi+241 pp. (MR1172997 (93h:65008); Zbl. 0761.65002).
H.Niederreiter – W.Philipp: Berry – Esseen bounds and a theorem of Erdős and Turán on
uniform distribution mod 1, Duke Math. J. 40 (1973), 633–649 (MR0337873 (49 #2642); Zbl.
0273.10043).
G.Pick: Geometrisches zur Zahlenlehre, (German), Sitzungsberichte des deutschen naturwissen-
schaftlich-medicinischen Vereines für Böhmen “Lotos” in Prag. (Neue Folge) 19 (1899), 311-319
(JFM 33.0216.01).
H.Riesel: Prime Numbers and Computer Method for Factorization, Progres in Mathematics,
Vol. 57, Birkhäuser Boston, Inc., Boston, MA, 1985 (MR0897531 (88k:11002); Zbl. 0582.10001).
I.M.Ryshik – I.S.Gradstein: Tables of Series, Products, and Integrals, (German and English
dual language edition), VEB Deutscher Verlag der Wissenschaften, Berlin, 1957 (translation from
the Russian original Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951 (MR0112266
(22 #3120))).
H. Steinhaus: Mathematical snapshots, Galaxy Book 726, 3rd American rev. and enl. ed., Oxford
University Press, Oxford etc., 1983 (MR1710978 (2000h:00002); Zbl. 0513.00002).
O. Stolz: Über eine Verallgemeinerung eines Satzes von Cauchy, Math. Ann. 33 (1888), 237–245
(MR1510540; JFM 20.0244.04).
E.C.Titchmarsh: The Theory of the Riemann Zeta–function, (2nd ed. Edited and with a preface
by D.R.Heath–Brown), Claredon Press, Oxford University Press, New York, 1986 (MR0882550
(88c:11049); Zbl. 0601.10026).
M.Tsuji: On the uniform distribution of numbers mod 1, J. Math. Soc. Japan 4 (1952), 313–322
(MR0059322 (15,511b); Zbl. 0048.03302).
I.M.Vinogradov: Selected Works, Springer Verlag, Berlin, 1985 (MR0807530 (87a:01042); Zbl.
0577.01049) Translated from Russian edition, Izd. Akad. Nauk SSSR, Moscow, 1952 (MR0052367
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21 (1968), 85–96 (MR0235731 (38 #4034); Zbl. 0174.08402).
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4.2 Integral identities

The following list of integrals from O. Strauch (1999, pp. 132–135) and his
papers (1989, 1990, [a]1994, [b]1994, 1997, 2000) may be instrumental:

(I) For every d.f. g, g̃, g1, g2, g3, and g4 we have:∫ 1

0

∫ 1

0
−|x− y|

2
d(g1(x)− g2(x)) d(g3(y)− g4(y)) =

=

∫ 1

0
(g1(x)− g2(x))(g3(x)− g4(x)) dx,

consequently (cf. O. Strauch (1989, p. 130)2∫ 1

0

∫ 1

0
−|x− y|

2
d(g(x)− g̃(x)) d(g(y)− g̃(y)) =

∫ 1

0
(g(x)− g̃(x))2 dx

and thus∫ 1

0
(g(x)−g̃(x))2 dx =

∫ 1

0

∫ 1

0
|x− y|dg(x) dg̃(x)

− 1

2

∫ 1

0

∫ 1

0
|x− y|dg(x) dg(x)− 1

2

∫ 1

0

∫ 1

0
|x− y|dg̃(x) dg̃(x).

Similarly∫ 1

0

∫ 1

0
|x− y|dg(x) dg̃(y) =

∫ 1

0
g(x) dx+

∫ 1

0
g̃(x) dx− 2

∫ 1

0
g(x)g̃(x) dx,

or in a special case (cf. O. Strauch ([a]1994, p. 178))∫ 1

0

∫ 1

0
|x− y|dg(x) dg(y) =

= 2

(∫ 1

0
g(x) dx−

∫ 1

0
g2(x) dx

)
=

= 2

∫ 1

0

(∫ x

0
g(t) dt

)
dg(x).

In the case of restricted integral range (0 ≤ α ≤ 1) we have

2The multidimensional integrals of the type
∫ ∫

|x − y|α dg(x) dg(y) were studied by
R. Alexander and K.B. Stolarsky (1974), R. Alexander (1991) and others.
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∫ α

0

∫ α

0
|x− y| dg(x) dg(y) = 2

(
g(α)

∫ α

0
g(x) dx−

∫ α

0
g2(x) dx

)
.

For 0 ≤ α ≤ β ≤ 1 we have∫ 1

0

∫ 1

0
|xα− yβ|dg(x) dg(y) =

= 2β

∫ α/β

0
g(x) dx+ (β − α)

(
1−

∫ 1

0
g(x) dx

)
−

− 2α

∫ 1

0
g(x)g

(
xα

β

)
dx− αβ

(∫ 1

0
g(x) dx

)2

+

+ αβ

∫ 1

0
g(x) dx

∫ α/β

0
g(x) dx.

O. Strauch (1990, p. 251) proved that∫ 1

0

∫ 1

0
|x− y|k d(g(x)− x) d(g(y)− y)

=


0, if k = 0,

−2
∫ 1
0 (g(x)− x)2 dx, if k = 1,

−k(k − 1)
∫ 1
0

∫ 1
0 (g(x)− x)(g(y)− y)|x− y|k−2 dx dy, if k ≥ 2,

and that∫ 1

0

∫ 1

0
|x− y|k d(g(x)− x) dy = −

∫ 1

0
(g(x)− x)(xk − (1− x)k) dx.

(II) If f : [0, 1] → [0, 1] and H : [0, 1]2 → R are continuous functions then for

gf (x) =

∫
f−1([0,x))

1 dg(u),

we have the following known integral transforms∫ 1

0

∫ 1

0
H(x, y) dgf (x) dgf (y) =

∫ 1

0

∫ 1

0
H(f(x), f(y)) dg(x) dg(y).

If f : [0, 1]2 → [0, 1] is continuous and gf (x) =
∫
f−1([0,x)) 1 dg(u) dg(v) then∫ 1

0

∫ 1

0
H(x, y) dgf (x) dgf (y) =

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
H(f(x, y), f(u, v)) dg(x) dg(y) dg(u) dg(v)
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and in the special case∫ 1

0
h(f(x)) dg(x) =

∫ 1

0
h(x) dgf (x).

(III) If

Fg̃(x, y) =

∫ 1

0
g̃2(t) dt−

∫ 1

x
g̃(t) dt−

∫ 1

y
g̃(t) dt+ 1−max(x, y),

then (cf. O. Strauch ([b]1994, p. 618))∫ 1

0
(g(x)− g̃(x))2 dx =

∫ 1

0

∫ 1

0
Fg̃(x, y) dg(x) dg(y)

or more generally∫ 1

0
(g1(x)− g̃(x))(g2(x)− g̃(x)) dx =

∫ 1

0

∫ 1

0
Fg̃(x, y) dg1(x) dg2(y).

(For the proof compute
∫ 1

0

∫ 1

0
Fg̃(x, y) d(g1(x) + g2(y)) d(g1(y) + g2(y)).)∫ 1

0
(gf (x)− g̃f (x))

2 dx =

∫ 1

0

∫ 1

0
Fg̃f (f(x), f(y)) dg(x) dg(y).

(IV) If

Ff,h(x, y) =

= max(f(x), h(y))+max(f(y), h(x))−max(f(x), f(y))−max(h(x), h(y)) =

=
1

2
(|f(x)− h(y)|+ |f(y)− h(x)| − |f(x)− f(y)| − |h(x)− h(y)|) ,

then (cf. O. Strauch ([b]1994, p. 628)∫ 1

0
(gf (x)− gh(x))

2 dx =

∫ 1

0

∫ 1

0
Ff,h(x, y) dg(x) dg(y).

There follows from the above that∫ 1

0

∫ 1

0
Ff,h(x, y) dg(x) dg̃(y) =

∫ 1

0

(
gf (x)− gh(x)

)(
g̃f (x)− g̃h(x)

)
dx
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and ∫ 1

0
g2f (x) dx =

∫ 1

0

∫ 1

0

(
1−max(f(x), f(y))

)
dg(x) dg(y).

O. Strauch (2000, p. 427) proved that∫∫
0≤x≤y≤1

((
gf (y)− gf (x)

)
−
(
gh(y)− gh(x)

))2
dx dy =

=

∫ 1

0

∫ 1

0
F

(1)
f,h(x, y) dg(x) dg(y),

where
F

(1)
f,h(x, y) = Ff,h(x, y)−

(
f(x)− h(x)

)(
f(y)− h(y)

)
.

This follows from the fact that the integral on the right-hand side is equal to∫ 1

0

(
gf (x)− gh(x)

)2
dx−

(∫ 1

0

(
gf (x)− gh(x)

)
dx

)2

and
∫ 1

0
gf (x) dx = 1−

∫ 1

0
f(x) dg(x) gives(∫ 1

0

(
gf (x)− gh(x)

)
dx

)2

=

∫ 1

0

∫ 1

0

(
f(x)− h(x)

)(
f(y)− h(y)

)
dg(x) dg(y).

(V) If g1 is a strictly increasing solution of gf = g̃f (with g̃ fixed) and f ′(x)
is continuous, then (cf. Strauch (2000, p. 437, Th. 4))∫ 1

0

(
gf (x)− g̃f (x)

)2
dx =

∫ 1

0

(
g(x)− g1(x)

)
f ′(x)

(
gf (f(x)− g̃f (f(x))

)
dx.

On the other hand, if g1 is a strictly increasing solution of g = gf , then∫ 1

0

(
g(x)− gf (x)

)2
dx =

=

∫ 1

0

(
g(x)− g1(x)

)(
g(x)− gf (x) + f ′(x)

(
gf (f(x))− g(f(x))

))
dx,

and it is also true that∫ 1

0

(
g(x)− gf (x)

)2
dx =

∫ 1

0

∫ 1

0
Fgf (x, y) dg(x) dg(y).

(VI) Let ψ(y) = a(x)y2 + b(x)y + c(x) be a polynomial in the variable y,
where a(x), b(x) and c(x) are integrable functions in [0, 1] and put

F (x, y) =

∫ 1

max(x,y)
a(t) dt+

1

2

∫ 1

x
b(t) dt+

1

2

∫ 1

y
b(t) dt+

∫ 1

0
c(t) dt.



4.2 Integral identities 4 – 17

Then (cf. O. Strauch (1997, p. 219, Lemma 5))∫ 1

0
ψ(g(x)) dx =

∫ 1

0

∫ 1

0
F (x, y) dg(x) dg(y)

for every d.f. g(x).
(VII) Given a finite sequence x1, x2, . . . , xN in [0, 1), a d.f. g(x), and a con-

tinuous f : [0, 1] → R, let FN (x) = A([0,x);N ;xn)
N . Then

1

N

N∑
n=1

f(xn)−
∫ 1

0
f(x) dg(x) = −

∫ 1

0
(FN (x)− g(x) df(x)

which implies

N∑
n=1

f(xn) = N

(∫ 1

0
f(x) dg(x)−

∫ 1

0
(FN (x)− g(x)) df(x)

)
.

(VIII) If F (x, y) defined on [0, 1]2 is continuous and symmetric, then we have

1

N2

N∑
m,n=1

F (xm, xn)−
∫ 1

0

∫ 1

0
F (x, y) dg(x) dg(y)

=− 2

∫ 1

0
(FN (x)− g(x)) dx F (x, 1)

+

∫ 1

0

∫ 1

0
(FN (x)− g(x))(FN (y) + g(y)) dy dx F (x, y).
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O. Strauch: Some applications of Franel – Kluyver’s integral, II , Math. Slovaca 39 (1989),
127–140 (MR1018254 (90j:11079); Zbl. 0671.10002).
O. Strauch: On the L2 discrepancy of distances of points from a finite sequence, Math. Slovaca
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[b]O. Strauch: L2 discrepancy, Math. Slovaca 44 (1994), 601–632 (MR1338433 (96c:11085); Zbl.
0818.11029).
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O. Strauch: Distribution of Sequences (in Slovak), Mathematical Institute of the Slovak Academy
of Sciences, DSc Thesis, Bratislava, Slovakia, 1999.
O. Strauch: Moment problem of the type

∫ 1
0

∫ 1
0 F (x, y) dg(x) dg(y) = 0, in: Proceedings of the

International Conference on Algebraic Number Theory and Diophantine Analysis held in Graz,
August 30 to September 5, 1998, (F.Halter–Koch, R.F.Tichy eds.), Walter de Gruyter, Berlin,
New York, 2000, pp. 423–443 (MR1770478 (2001d:11079); Zbl. 0958.11051).

4.3 Basic statistical notions

Let xn and yn be sequences of real numbers.

• The mean value of xn is given by

EN (xn) =
1

N

N∑
n=1

xn.

• The dispersion (variance) of xn is defined by

D
(2)
N (xn) =

1

N

N∑
n=1

(xn − EN (xn))
2 =

1

N

N∑
n=1

x2n − (EN (xn))
2,

while

√
D

(2)
N (xn) is the standard deviation.

• The correlation coefficient of xn and yn is

RN (xn, yn) =
|EN (xnyn)− EN (xn)EN (yn)|√

D
(2)
N (xn)D

(2)
N (yn)

.

(I) Since

|EN (xnyn)− EN (xn)EN (yn)| =

∣∣∣∣∣ 1N
N∑

n=1

(xn − EN (xn))(yn − EN (yn))

∣∣∣∣∣ ,
the Cauchy inequality implies that if

RN (xn, yn) = 1, D
(2)
N (xn) > 0, D

(2)
N (yn) > 0,

then
xn = ANyn +BN

for all n = 1, 2, . . . , N , where

AN =
EN (xnyn)− EN (xn)EN (yn)

D
(2)
N (xn)

and BN = EN (yn)−ANEN (xn).
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(II) The Tchebyschev inequality

1

N
#{n ≤ N ; |xn − EN (xn)| ≥ ε} ≤

D
(2)
N (xn)

ε2

implies (cf. M.Paštéka and R.F.Tichy (2003))

1

N
#{n ≤ N ; |xn −ANyn −BN | ≥ ε} ≤

(
1− (RN (xn, yn))

2
)
D

(2)
N (xn)

ε2
.

(III) A deterministic model of probability theory and statistics is presented in
E.Hlawka (1998). The definition of the probability of an event makes use of
u.d. of sequences here. Hlawka also discusses other subjects as the recontre
problem, Markov chains, the construction of u.d. sequences with respect to
the normal distribution, etc.

E.Hlawka: Statistik und Gleichverteilung, Grazer Math. Ber. 335 (1998), ii+206 pp (MR1638218
(99g:11093); Zbl. 0901.11027).
M.Paštéka – R.F.Tichy: A note on the correlation coefficient of arithmetic functions, Acta
Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 109–114 (MR2054720 (2005c:11101)).

4.3.1 A dynamical system

• Let (X,B, µ) be a probability space, i.e. X is a set, B is a σ-algebra of
subsets of X, and µ is a measure on (X,B) such that µ(X) = 1,

• T : X → X be a measurable map (i.e. A ∈ B implies T−1(A) ∈ B), that is
measure-preserving (i.e. A ∈ B implies µ(T−1A) = µ(A)).

• (X,B, µ, T ) is called a dynamical system.

• The system is ergodic if T−1A = A, A ∈ B means that either µ(A) or
µ(X −A) = 0.

• The system is uniquely ergodic if there is only one such ergodic T .

Theorem 4.3.1.1. [(Birkhoff 1931)]. For all L1 integrable f : X → X the
limit

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) = f̃(x)

exists for µ-almost all x ∈ X. If the dynamical system is ergodic, then
f̃(x) =

∫
X f(y) dµ(y) holds µ-almost everywhere.

Theorem 4.3.1.2. (X,B, µ, T ) is uniquely ergodic if and only if for all con-
tinuous f : X → X the relation

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =

∫
X
f(y) dµ(y)
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holds uniformly in x.

Theorem 4.3.1.3. Suppose that kn is Hartman uniformly distributed and
L2-good universal and f : X → X is continuous. Then (X,B, µ, T ) is
uniquely ergodic if and only if

lim
N→∞

1

N

N−1∑
n=0

f(T knx) =

∫
X
f(y) dµ(y)

for all x ∈ X.

Notes:
(I) Theorem 4.3.1.2, see the expository paper P.J.Grabner, P.Hellekalek and P. Liardet
(2012).
(II) Theorem 4.3.1.3, see A. Jaššová, P. Lertchoosakul and R.Nair.

P.Grabner – P.Hellekalek – P. Liardet: The dynamical point of view of low-discrepancy
sequences, Unif. Distrib. Theory 7 (2012), no. 1, 11–70 (MR2943160; Zbl. 1313.11093)
A. Jaššová – P. Lertchoosakul – R.Nair: On variants of Halton sequence, Monatsh. Math 180
(2016), no. 4, 743–764 (MR3521126; Zbl 1347.11058).
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Théor. Approximation 16 (1987), no. 1, 1–9 (MR0938777 (89i:11084); Zbl. 0642.26006).
Quoted in: 1.8.14, 2.3.17, 2.3.18, 2.6.28, 2.6.32, 2.6.34, 2.8.4, 2.8.13, 2.12.32, 2.12.33, 2.14.8, 2.14.9
V.V.Andrievskii – H.–P.Blatt – H.N.Mhaskar: A local discrepancy theorem, Indag. Mathem.,
N.S. 12 (2001), no. 1, 23–39 (MR1908137 (2003g:11084); Zbl. 1013.42017).
Quoted in: 1.10.10, 2.14.2
H.M.Andruhaev: A sum of Kloosterman type, in: Certain Problems in the Theory of Fields, Izd.
Saratov. Univ., Saratov, 1964, pp. 60–66 (MR0205939 (34 #5764); Zbl. 0305.10032).
Quoted in: 3.7.2
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Math., 99–110, 379 (MR0344214 (49 #8954)).
Quoted in: 3.7.9
D.H.Bailey – R.E.Crandall: On the random character of fundamental constant expansions,
Experiment. Math. 10 (2001), no. 2, 175–190 (MR1837669 (2002h:11067); Zbl. 1047.11073).
Quoted in: 2.18.1
A.Baker: On some diophantine inequalities involving the exponential function, Canad. Math. J.
17 (1965), 616–626 (MR0177946 (31 #2204); Zbl. 0147.30901).
Quoted in: 3.4.1
R.C.Baker: Riemann sums and Lebesgue integrals, Quart. J. Math. Oxford Ser. (2) 27 (1976),



Bibliography 5 – 23

no. 106, 191–198 (MR0409395 53 #13150; Zbl. 0333.10033).
Quoted in: 2.22.1
R.C.Baker: Entire functions and uniform distribution modulo one, Proc. London Math. Soc. (3)
49 (1984), no. 1, 87–110 (MR0743372 (86h:11055); Zbl. 0508.10023).
Quoted in: 2.6.21, 2.19.12
R.C.Baker: Diophantine Inequalities, London Math. Soc. Monographs. New Series, Vol. 1, Ox-
ford Sci. Publ. The Clarendon Press, Oxford Univ. Press, Oxford, 1986 (MR0865981 (88f:11021);
Zbl. 0592.10029).
Quoted in: 1.9
R.C.Baker: Entire functions and discrepancy, Monatsh. Math. 102 (1986), 179–182 (MR0863215
(88a:11070); Zbl. 0597.10035).
Quoted in: 2.6.21
R.C.Baker: On the values of entire functions at the positive integers, in: Analytic and elementary
number theory (Marseille, 1983), Publ. Math. Orsay, 86–1, Univ. Paris XI, Orsay, 1986, pp. 1–5
(MR0844580 (87m:11062); Zbl. 0582.10022).
Quoted in: 2.6.21
R.C.Baker – G.Harman: Sequences with bounded logarithmic discrepancy, Math. Proc. Cam-
bridge Philos. Soc. 107 (1990), no. 2, 213–225 (MR1027775 (91d:11091); Zbl. 0705.11040).
Quoted in: 1.10.7, 2.12.31, 2.19.9
R.C.Baker – G.Harman: On distribution of αpk modulo one, Mathematika 38 (1991), no. 1,
170–184 (MR1116693 (92f:11096); Zbl. 0751.11037).
R.C.Baker – G.Kolesnik: On distribution of pα modulo one, J. Reine Angew. Math. 356 (1985),
174–193 (MR0779381 (86m:11053); Zbl. 0546.10027).
Quoted in: 2.19.2
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Bull. Soc. Math. France 87 (1959), 1–64 (MR0123147 (23 #A476); Zbl. 0092.33404).
Quoted in: 3.11
C.Baxa: On the discrepancy of the sequence (α

√
n). II , Arch. Math. (Basel) 70 (1998), no. 5,

366–370 (MR1612590 (99f:11096); Zbl. 0905.11033).
Quoted in: 2.15.4
C.Baxa: Some remarks on the discrepancy of the sequence (α

√
n), Acta Math. Inf. Univ. Os-

traviensis 6 (1998), no. 1, 27–30 (MR1822511 (2002a:11088); Zbl. 1024.11053).
Quoted in: 2.15.4
C.Baxa: Calculation of improper integrals using uniformly distributed sequences, Acta Arit. 119
(2005), no. 4, 366–370 (MR2189068 (2007b:11112); Zbl. 1221.11163).
Quoted in: 2.8.1
C.Baxa – J. Schoißengeier: Minimum and maximum order of magnitude of the discrepancy of
(nα), Acta Arith. 68 (1994), 281–290 (MR1308128 (95j:11073); Zbl. 0828.11038).
Quoted in: 2.8.1
C.Baxa – J. Schoißengeier: On the discrepancy of the sequence (α

√
n), J. Lond. Math. Soc.

(2) 57 (1998), no. 3, 529–544 (MR1659825 (99k:11118); Zbl. 0938.11041).
Quoted in: 2.15.4
C.Baxa – J. Schoißengeier: Calculation of improper integrals using (nα)–sequences, Monatsh.
Math. 135 no. 4, (2002), 265–277 (MR1914805 (2003h:11084); Zbl. 1009.11054).
Quoted in: 2.8.1
W.Bayrhamer: Quasi–zufällige Suchmethoden der globalen Optimierung, Universität Salzburg
(1986).
S.Beatty: Problem 3173 , Amer. Math. Monthly 33 (1926), no. 3, 159 (solution: ibid. 34 (1927),
no. 3, 159). (MR1520888; JFM 53.0198.06).
Quoted in: 2.16.1
J. Beck: Probabilistic Diophantine approximation (Randomness in lattice point counting), Sprin-
ger Monographs in Mathematics, Springer, Cham, 2014 (MR3308897; Zbl. 1304.11003).
Quoted in: 2.8.1, 2.11.1, 4.1.4
J. Beck: A two–dimensional van Ardenne-Ehrenfest theorem in irregularities of distribution, Com-
positio Math. 72 (1989), no. 3, 269–339 (MR1032337 (91f:11054); Zbl. 0691.10041).
Quoted in: 1.8.15, 1.11.4
J. Beck – W.W.L.Chen: Note on irregularities of distribution, Mathematika 33 (1986), 148–163
(MR0859507 (88a:11071); Zbl. 0601.10039).
Quoted in: 1.11.8
J. Beck – W.W.L.Chen: Irregularities of Distribution, Cambridge Tracts in Mathematics, Vol. 89,
Cambridge University Press, Cambridge, New York, 1987 (MR0906524 (89c:11117); Zbl. 0631.10034).
Quoted in: Preface, 1.11.2, 1.11.4
J. Beck – V.T. Sós: Discrepancy theory, in: Handbook of Combinatorics, Vol. II, (R.Graham,
M.Grotschel and L. Lovász eds.), Elsevier Science B.V., Amsterdam, 1995, pp. 1405–1446
(MR1373682 (96m:11060); Zbl. 0851.11043).
Quoted in: Preface
H.Behnke: Zur Theorie der Diophantischen Approximationen, Hamburger Abh. 3 (1924), 261–
318 (MR3069431; JFM 50.0124.03).
Quoted in: 2.8.1
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sian), Ž. Vyčisl. Mat. i Mat. Fiz., 1 (1961), no. 3, 418–424 (MR0138918 (25 #2358); Zbl.
0234.65032).
Quoted in: 1.11.3(Vd)
D.G.Champernowne: The construction of decimals normal in the scale ten, J. London Math.
Soc., 8 (1933), 254–260 (JFM 59.0214.01; Zbl. 0007.33701).
Quoted in: 2.18.7, 2.18.8
Tsz Ho Chan: Distribution of difference between inverses of consecutive integers modulo P , J.
Number Theory (to appear).
Quoted in: 3.7.2.1
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A.Córdoba – Ch.L. Fefferman – L.A. Seco: Weyl sums and atomic energy oscillations, Rev.
Mat. Iberoamericana 11 (1995), 165–226 (MR1321777 (95k:81029); Zbl. 0836.11028).
L.L.Cristea – J.Dick – G. Leobacher – F. Pillichshammer: The tent transformation can im-
prove the convergence rate of quasi-Monte Carlo algorithms using digital nets, Numer. Math. 105
(2007), no. 3, 413–455 (MR2266832 (2007k:65007); Zbl. 1111.65002).
Quoted in: 1.11.3
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N.G. de Bruijn – P. Erdős: Sequences of points on a circle, Nederl. Akad. Wetensch., Proc. 52
(1949), 14–17 (MR0033331 (11,423i); Zbl. 0031.34803). (=Indag. Math. 11 (1949), 46–49).
Quoted in: 1.10.11, 2.12.3
N.G. de Bruijn – K.A.Post: A remark on uniformly distributed sequences and Riemann integra-
bility, Nederl. Akad. Wetensch. Proc. Ser. A 71 30 (1968), 149–150 (MR0225946 (37 #1536);
Zbl. 0169.38401). (=Indag. Math. 30 (1968), 149–150).
Quoted in: 2.1.1
L. de Clerck: A proof of Niederreiter’s conjecture concerning error bounds for quasi–Monte Carlo
integration, Adv. in Appl. Math. 2 (1981), no. 1, 1–6 (MR0612509 (82e:65022); Zbl. 0461.65021).
Quoted in: 1.9
L. de Clerck: De exacte berekening van de sterdiscrepantie van de rijen van Hammersley in 2
dimensies, (Dutch), Ph.D. Thesis, Leuven, 1984.
Quoted in: 1.11.2
L. de Clerck: A method for exact calculation of the stardiscrepancy of plane sets applied to the
sequences of Hammersley, Monatsh. Math. 101 (1986), no. 4, 261–278 (MR0851948 (87i:11096);
Zbl. 0588.10059).
Quoted in: 1.11.2
F.M.Dekking – M.Mendès France: Uniform distribution modulo one: a geometrical viewpoint ,
J. Reine Angew. Math. 329 (1981), 143–153 (MR0636449 (83b:10062); Zbl. 0459.10025).
Quoted in: 3.11.6
H.Delange: On some arithmetical functions, Illinois J. Math. 2 (1958), 81–87 (MR0095809 (20
#2310); Zbl. 0079.27302).
Quoted in: 2.20.21, 2.20.22, 2.20.23
H.Delange: Sur certain functions arithmétiques, C. R. Acad. Sci. Paris 246 (1958), 514–517
(MR0095810 (20 #2311); Zbl. 0079.06703).
Quoted in: 2.20.23
H.Delange: Sur la distribution de certains entieres , C. R. Acad. Sci. Paris 246 (1958), 2205–
2207 (MR0095811 (20 #2312); Zbl. 0081.04201).
Quoted in: 2.20.23
H.Delange: Sur la distribution des fractions irréducible de dénominateur n ou de dénominateur
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P.Erdős – R.R.Hall: Some distribution problems concerning the divisors of integers, Acta Arith.
26 (1974/75), 175–188 (MR0354592 (50 #7070); Zbl. 0272.10021).
Quoted in: 2.20.24
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P.Fatou: Séries trigonométriques et séries de Taylor , Acta Math. 30 (1906), 335–400 (MR1555035;
JFM 37.0283.01).
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J.Hančl – P.Rucki – J. Šustek: A generalization of Sándor’s theorem using iterated logarithms,
Kumamoto J. Math. 19 (2006), 25–36 (MR2211630 (2007d:11080); Zbl. 1220.11087).
Quoted in: 2.8.1.1, 3.4.1.1, 3.4.1.2
G.H.Hardy: Properties of logarithmico–exponential functions, Proc. London Math. Soc. 10
(1911), 54–90 (MR1576038; JFM 42.0437.02).
Quoted in: 2.6.35
G.H.Hardy: A problem of diophantine approximation, Jour. Indian. Math. Soc. 11 (1919),
162–166.
Quoted in: 2.17.8
G.H.Hardy: Orders of Infinity, 2nd ed., Cambridge Tracts in Math. and Phys., Vol. 12, Cam-
bridge, 1924 (JFM 50.0153.04).
Quoted in: 2.6.35
G.H.Hardy – J.E. Littlewood: Some problems of Diophantine approximation I: The fractional
part nkθ, Acta Math. 37 (1914), 155–191 (MR1555098; JFM 45.0305.03).
Quoted in: 2.14.1
G.H.Hardy – J.E. Littlewood: Some problems of Diophantine approximation II: The trigono-
metrical series associated with the elliptic θ–functions, Acta Math. 37 (1914), 193–239 (MR1555099;
JFM 45.0305.03).
G.H.Hardy – J.E. Littlewood: Some problems of Diophantine approximation IV: The series∑

e(λn) and the distribution of the points (λnα), Proc. Natl. Acad. Sci. U.S.A. 3 (1917), 84–88
(JFM 46.1450.01).
G.H.Hardy – J.E. Littlewood: Notes on the theory of series. XXIV. A curious power-series,
Proc. Cambridge Philos. Soc. 42 (1946), 85–90 (MR0015529 (7,433f); Zbl. 0060.15705).
Quoted in: 2.8.1
G.H.Hardy – E.M.Wright: An Introduction to the Theory of Numbers, 3nd edition ed., Claren-
don Press, Oxford, 1954 (MR0067125 (16,673c); Zbl. 0058.03301).
Quoted in: 2.3.23, 2.19.15
S.Hartman: Sur une condition supplémentaire dans les approximations diophantiques, Colloq.
Math. 2 (1949), no. 1, 48–51 (MR0041174 (12,807a); Zbl. 0038.18802).
Quoted in: 2.8.13, 2.13.6
G.Harman: On the distribution of

√
p modulo one, Mathematika 30 (1983), 104–116 (MR0720954

(85e:11051); Zbl. 0504.10019).
Quoted in: 2.19.2
G.Harman: On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), no. 1,
9–18 (MR0686496 (84d:10044); Zbl. 0504.10018).
G.Harman: Some cases of the Duffin and Schaeffer conjecture, Quart. J. Math. Oxford Ser.(2)
41 (1990), no. 2, 395–404 (MR1081102 (92c:11073); Zbl. 0688.10046).
Quoted in: 2.23.6
G.Harman: Small fractional parts of additive forms in prime variables, Quart. J. Math. Oxford
46 (1995), no. 183, 321–332 (MR1348820 (96f:11089); Zbl. 0851.11039).
G.Harman: Metric Number Theory, London Math. Soc. Monographs, New Series, Vol. 18, Claren-
don Press, Oxford, 1998 (MR1672558 (99k:11112); Zbl. 1081.11057).
Quoted in: 1.8.28



Bibliography 5 – 45
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E.Hlawka: Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafunk-
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Natur. Kl. Sitzungsber. II 184 (1975), 355–365 (MR0422183 (54 #10175); Zbl. 0336.10049).
Quoted in: 1.10.4, 1.11.16
E.Hlawka: Zur Theorie der Gleichverteilung, Anz. Österreich. Akad. Wiss. Math.–Natur. Kl.,
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(80j:10057); Zbl. 0406.10001). (English translation 1984).
Quoted in: Preface
E.Hlawka: Gleichverteilung und Quadratwurzelschnecke, Monatsh. Math. 89 (1980), no. 1, 19–44
(MR0566292 (81h:10069); Zbl. 0474.68092).
Quoted in: 2.13.12
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I. Kátai: On the distribution of arithmetical functions, Acta Math. Acad. Scient. Hungar. 20
(1969), no. 1–2, 69–87 (MR0237446 (38 #5728); Zbl. 0175.04103).
Quoted in: 3.7.8
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G.Larcher: Über die isotrope Discrepanz von Folgen, Arch. Math. (Basel) 46 (1986), no. 3,
240–249 (MR0834843 (87e:11091); Zbl. 0568.10029).
Quoted in: 1.11.9, 3.18.1, 3.18.2
G.Larcher: The dispersion of a special sequence, Arch. Math. (Basel) 47 (1986), no. 4, 347–352
(MR 88k:11044; Zbl. 584.10031).
Quoted in: 1.11.17, 3.15.2
G.Larcher: Quantitative rearrangement theorems, Compositio Math. 60 (1986), no. 2, 251–259
(MR0868141 (87m:54094); Zbl. 0612.10043).
G.Larcher: A best lower bound for good lattice points, Monatsh. Math. 104 (1987), 45–51
(MR0903774 (89f:11103); Zbl. 0624.10043).
Quoted in: 3.15.1
G.Larcher: A new extremal property of the Fibonacci ratio, Fibonacci Quart. 26 (1988), no. 3,
247–255 (MR0952432 (89k:11053); Zbl. 0655.10054).
G.Larcher: On the distribution of s–dimensional Kronecker sequences, Acta Arith. 51 (1988),
no. 4, 335–347 (MR0971085 (90f:11065); Zbl. 0611.10033).
Quoted in: 1.11.9, 3.4.1
G.Larcher: On the distribution of sequences connected with digit–representation, Manuscripta
Math. 61 (1988), no. 1, 33–44 (MR0939138 (89f:11104); Zbl. 0647.10034).
Quoted in: 2.9.4
G.Larcher: On the distribution of the multiples of an s–tuple of real numbers, J. Number Theory
31 (1989), no. 3, 367–372 (MR0993910 (90h:11066); Zbl. 0671.10047).
Quoted in: 3.4.1
G.Larcher: On the cube–discrepancy of Kronecker–sequences, Arch. Math. (Basel) 57 (1991),



Bibliography 5 – 57

no. 4, 362–369 (MR1124499 (93a:11064); Zbl. 0725.11036).
Quoted in: 1.11.7, 3.4.1
G.Larcher: Zur Diskrepanz verallgemeinter Ziffernsummenfolgen, Österreich. Akad. Wiss.
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P. Lertchoosakul – A. Jaššová – R.Nair – M.Weber: Distribution functions for subsequences
of generalized van der Corput sequences, Unif. Distrib. Theory (to appear).
Quoted in: 1.8.33, 1.8.34, 3.18.1.6
J. Lesca: Sur les approximationnes a’une dimension, Univ. Grenoble, Thése Sc. Math., Grenoble,
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Carlo Simulation, (G.I. Schuëller and P.D. Spans eds.), A.A.Balkema Publishers, Rotterdam, 2001,
pp. 3–9.
Quoted in: 2.25.9



5 – 68 Bibliography

H.Niederreiter: A discrepancy bound for hybrid sequences involving digital explicit inversive
pseudorandom numbers, Unif. Distrib. Theory 5 (2010), no. 1, 53–63 (MR2804662 (2012f:11143);
Zbl. 1249.11074).
Quoted in: 1.8.32, 2.25.10.1, 3.14.3.2, 3.19.7.1
H.Niederreiter: Further discrepancy bounds and Erdős-Turán-Koksma inequality for hybrid se-
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uniform distribution mod 1, Duke Math. J. 40 (1973), 633–649 (MR0337873 (49 #2642); Zbl.
0273.10043).
Quoted in: 1.11.2, 4.1.4
H.Niederreiter – J. Schoißengeier: Almost periodic functions and uniform distribution mod 1,
J. Reine Angew. Math. 291 (1977), 189–203 (MR0437482 (55 #10412); Zbl. 0338.10053).
Quoted in: 1.5, 2.3.11, 2.22.14
H.Niederreiter – I.E. Shparlinski: On the distribution and lattice structure of nonlinear congru-
ential pseudorandom numbers, Finite Fields Appl. 5 (1999), no. 3, 246–253 (MR1702905
(2000i:11126); Zbl. 0942.11037).
Quoted in: 2.25.8
H.Niederreiter – I.E. Shparlinski: On the distribution of inverse congruential pseudorandom
numbers in parts of the period , Math. Comp. 70 (2001), no. 236, 1569–1574 (MR1836919
(2002e:11104); Zbl. 0983.11048).
Quoted in: 2.25.8
H.Niederreiter – I.E. Shparlinski: Recent advances in the theory of nonlinear pseudorandom
number generators, in: Monte Carlo and Quasi–Monte Carlo Methods 2000 (Proceedings of a Con-
ference held at Hong Kong Baptist University, Hong Kong SAR, China, Nov. 27–Dec. 1, 2000, (Kai–
Tai Fang, F.J.Hickernell, H.Niederreiter eds.), Springer Verlag, Berlin, Heidelberg 2002, pp. 86–102
(MR1958848 (2003k:65005); Zbl. 1076.65008).
Quoted in: 2.25, 2.25.6, 2.25.7
H.Niederreiter – I.H. Sloan: Lattice rules for multiple integration and discrepancy, Math.
Comp. 54 (1990), 303–312 (MR0995212 (90f:65036); Zbl. 0689.65006).
Quoted in: 1.11.2
H.Niederreiter – R.F.Tichy: Solution of a problem of Knuth on complete uniform distribution
of sequences, Mathematika 32 (1985), no. 1, 26–32 (MR0817103 (87h:11070); Zbl. 0582.10036).
Quoted in: 3.10
H.Niederreiter – J.M.Wills: Diskrepanz und Distanz von Maßen bezüglich konvexer und Jor-
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des Nombres de Bordeaux 1982/1983, Exp. No. 20, Univ. Bordeux I, Talence, 1983, 21 pp.
(MR0750320 (86c:11051); Zbl. 0529.10046).
Quoted in: 2.8.5
I.Z. Ruzsa: Connections between the uniform distribution of a sequence and its differences, in:
Topics in classical number theory, Vol. I, II, (Budapest 1981), (G.Halász ed.), Colloq. Math. Soc.
János Bolyai, Vol. 34, North–Holland Publishing Co., Amsterdam, New York, 1984, pp. 1419–1443
(MR0781190 (86e:11062); Zbl. 0572.10035).
Quoted in: 2.2.1
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S. Schäffer: Fractional parts of pairs of quadratic polynomials, J. London Math. Soc. (2) 51
(1995), no. 3, 429–441 (MR1332881 (96d:11080); Zbl. 0833.11029).
P. Schatte: On H∞–summability and the uniform distribution of sequences, Math. Nachr. 113
(1983), 237–243 (MR0725491 (85f:11057); Zbl. 0526.10043).
Quoted in: 1.8.5, 2.2.13, 2.6.8
P. Schatte: On mantissa distribution in computing and Benford’s law , J. Inform. Process. Cy-
bernet. 24 (1988), no. 9, 443–455 (MR0984516 (90g:60016); Zbl. 0662.65040).
Quoted in: 2.12.26
P. Schatte: On the uniform distribution of certain sequences and Benford’s law , Math. Nachr.
136 (1988), 271–273 (MR0952478 (89j:11075); Zbl. 0649.10044).
Quoted in: 2.24.3
P. Schatte: On Benford’s law for continued fractions, Math. Nachr. 148 (1990), 137–144
(MR1127337 (92m:11077); Zbl. 0728.11036).
Quoted in: 2.12.27



Bibliography 5 – 79

P. Schatte: On transformations of distribution functions on the unit interval- a generalization of
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– Slowakisches Kolloquium über Zahlentheorie (Maria Trost, 1992), (F.Halter–Koch, R.F.Tichy
eds.), Grazer Math. Ber., 318, Karl–Franzens – Univ. Graz, 1993, pp. 155–166 (MR1227412
(94g:11056); Zbl. 0792.11023).
Quoted in: 2.8.1
J. Schoißengeier: The integral mean of discrepancy of the sequence (nα), Monatsh. Math. 131
(2000), no. 3, 227–234 (MR1801750 (2001h:11098); Zbl. 0972.11067).
Quoted in: 2.8.1
M.R. Schroeder: Number Theory in Science and Communication. With Applications in Cryp-
tography, Physics, Digital Information, Computing and Self–similarity, 3rd ed., Springer Verlag,
Berlin, 1997 (MR1457262 (99c:11165); Zbl. 0997.11501).
Quoted in: 2.12.21
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W.Sierpiński: Un théorème sur les nombres irrationeles, Bull. Intern. Acad. Sci. (Cracovie) A
(1909), 727–727 (JFM 40.0220.04).
W.Sierpiński: On the asymptotic value of a certain sum, (Polish), Rozprawy Wydz. Mat. Przyr.
Akad. Um. 50 (1910), 1–10.(JFM 41.0282.01).
Quoted in: 2.8.1
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Akad. Wiss. Math.–Natur. Kl. 130 (1993), 33–36 (MR1294872 (95h:11071); Zbl. 0807.11037).
Quoted in: 3.6.1
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A.Thue: On infinite character series (Über unendliche Zeichenreihen), (Swedish & Norwegian),
Norske vid. Selsk. Skr. Mat. Nat. Kl. (1906), no. 7, 22 p. (JFM 39.0283.01, JFM 37.0066.17).
Quoted in: 2.26.2
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J.T.Tóth: Everywhere dense ratio sequences (Slovak), Ph.D. Thesis, Comenius’ University, Bratis-
lava, Slovakia, 1997.
Quoted in: 3.7.7
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J.G. van der Corput – C.Pisot: Sur la discrépance modulo un. (Première communication),
Proc. Akad. Wet. Amsterdam 42 (1939), 476–486 (JFM 65.0170.02; Zbl. 0021.29701). (=Indag.
Math. 1 (1939), 143–153).
Quoted in: 1.9, 2.1.6
J.G. van der Corput – C.Pisot: Sur la discrépance modulo un. (Deuxème communication),
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Zbl. 0252.10011).
Quoted in: 2.9.12
E. Zhabitskaya: Continued fractions with minimal remainders, Unif. Distrib. Theory 5 (2010),
no. 2, 55–78.(MR2651862 (2011e:11125); Zbl 1313.11081).
Quoted in: 2.23.7.2
W.Zhang: On the difference between an integer and its inverse modulo n, J. Number Theory 52
(1995), no. 1, 1–6 (MR1331760 (96f:11123); Zbl. 0826.11002).
Quoted in: 2.20.35
W.Zhang: On the distribution of inverse modulo n, J. Number Theory 61 (1996), no. 2, 301–310
(MR1423056 (98g:11109); Zbl. 0874.11006).
Quoted in: 2.3.20, 2.20.35
W.Zhang: Some estimates of trigonometric sums and their applications, Acta Math. Hungarica
76 (1997), no. 1–2, 17–30 (MR1459767 (99b:11093); Zbl. 0906.11043).
Quoted in: 2.20.35
W.Zhang: On the distribution of inverse modulo p, Acta Arith. 100 (2001), no. 2, 189–194
(MR1864154 (2002j:11115); Zbl. 0997.11077).
Quoted in: 2.20.36
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teilungsmethoden, Österreich. Akad. Wiss. Math.–Natur. Kl. Sitzungsber. II 185 (1976), no. 1–3,
121–132 (MR0501760 (58 #19037); Zbl. 0356.65007).
Quoted in: 1.10.2
P. Zinterhof: Gratis lattice points for multidimensional integration, Computing 38 (1987), no. 4,
347–353 (MR0902029 (88i:65036); Zbl. 0609.65011).
Quoted in: 3.15.1



Name index

A

Abel, N.H. 1.5, 1.8.2, 1.8.6, 1.10.8, 1.11.15,
2.8.1, 4.1.4

Achan, L. 1.11.2, 1.11.2.4

Achyeser (Achieser), N.I. 2.1.4

Adhikari, S.D. 2.17.4

Adler, R. 1.8.24(VII), 2.18.22

Adolphson,A. 2.20.32

Aistleitner, Ch. 2.13.5, 2.13.6

Akiyama, S. 2.17.1, 2.19.8, 3.21.5

Albrecher,H. 2.26.7, 3.4.3

Alexander, R. 4.2

Allakov, I. 2.19.4

Allouche, J.–P. 2.26.2, 3.11

Alon,N. 2.8.5.1

Amoroso, F. 2.14.2

Amstler, C. 1.10.2

Andreeva,V.A. 1.10.6

Andrica,D. 1.8.14, 2.3.17, 2.3.18, 2.6.28,
2.6.32, 2.6.33, 2.6.34, 2.8.4, 2.8.13,
2.12.32, 2.12.33, 2.14.8, 2.14.9

Andrievskii, V.V. 1.10.10, 2.14.2

Andruhaev,H.M. 3.7.2

Archipov,G.I. 3.8.2

Arias de Reyna, J. 2.8.1

Atanassov, E.Y. 2.11.4

B

Bachvalov,N.S. 3.15.1, 3.15.2
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Delange,H. 2.10.4, 2.20.21, 2.20.22, 2.20.23,
2.23.1

de la Rue,T. 2.12.26

de Mathan,B. 1.8.27

Dekking, F.M. 3.11.6

Descombes, R. 2.8.1

Deshouillers, J.-M. 2.20.16.1, 2.20.16.2

Decomps–Guilloux,A. 3.21.5

Diaconis, P. 2.12.25, 2.12.26, 2.12.28

Diamond,H.G. 2.20.9

Dick, J. 1.11.3, 1.8.18.2

Dickson, L.E. 2.22.12, 2.26.6

Dinaburg, E.I. 2.20.37, 2.20.38, 3.7.5

Dirichlet, P.G.L. (Lejeune Dirichlet) 1.12,
2.20.25, 2.20.27, 2.22.12, 3.6.4

Dobrovol’skĭı, N.M. 1.11.4, 3.15.1

Doeblin,W. 2.21.1.1

Doyon,N. 3.7.6.1

Dolgopyat,D.I. 2.20.37, 3.7.5

Dray, J. 1.8.21, 2.25

Dress, F. 2.2.8, 2.8.5, 2.23.4

Drmota,M.: Quotations of [DT] + 1.8.12,
1.8.30, 1.12, 2.9.1, 2.10.1, 3.5.1, 3.15.1,
3.18.1

Drobot,V. 2.8.1, 2.14.1

Dubickas,A. 2.17.1, 2.17.4, 2.17.7, 2.17.8,
2.18.2

Ducan,R.L. 2.12.21, 2.12.22.1

Duffin,R.J. 1.8.28, 2.23.6

Dufresnoy, J. 2.17.8

Dumont, J.–M. 2.18.3

Duncan,R.L. 2.12.21, 2.12.22, 2.24.5

Dupain,Y. 1.8.26, 2.4.4.1, 2.8.1

Durand, F. 2.17.10.2

Dyson, F. 2.20.26

E

Edwards,R.E. 2.1.4

Ehlich,H. 2.17.6

Eichenauer–Herrmann, J. 2.25.5, 2.25.8,
2.25.9, 2.25.10, 2.25.10.1, 2.25.11

Elliott, P.D.T.A. 1.6, 2.1.4, 2.2.4, 2.20,
2.20.1, 2.20.2, 2.20.3, 2.20.5, 2.20.7,
2.20.9, 2.20.11, 2.20.14, 2.20.25, 3.7.10

Emmerich, F. 2.25.9

Erdélyi, T. 2.14.2

Erdős, P. 1.8.25, 1.9, 1.9.0.8, 1.10.1, 1.10.7,
1.10.8, 1.10.11, 1.11.2, 1.11.8, 1.11.10,
1.11.15, 1.11.17, 2.8, 2.8.1, 2.8.1.1,
2.8.1.2, 2.8.1.3, 2.8.10, 2.12.3, 2.12.31,
2.14.2, 2.17.11, 2.18.4, 2.18.7, 2.18.8,
2.19.18, 2.20.3, 2.20.4, 2.20.7, 2.20.9,
2.20.11, 2.20.14, 2.20.21, 2.20.24, 2.20.39,
2.20.39.1, 2.23.7.1, 2.26.7, 3.4.1.3, 3.7.6,
3.7.6.1, 3.7.8, 3.13.6, 3.14.3.2, 3.15.1,
4.1.4

Esayan,A.R. 3.15.1

Estermann,T. 3.7.2

Euler, L. 1.8.23, 2.20.9, 2.20.11, 2.20.16.1,
2.20.16.2, 2.20.35, 2.22.13, 2.23.1, 3.6.4,
3.7.6, 3.7.6.1, 4.1.4
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F

Făınlĕıb, A.S. 2.20.11

Fang, K.–T. Preface

Farey, J. 2.20.30, 2.23.4

Farmer,D.W. 2.20.26

Fast, H. 1.8.8

Fatou, P.

Faure,H. 1.8.17, 1.8.18, 2.11.1, 2.11.2,
2.11.3, 2.11.4, 2.11.6, 3.19, 3.19.1, 3.19.2,
3.19.3, 3.19.6

Fefferman,Ch.L.

Fejér, L. 1.8.4, 2.2.10, 2.2.11, 2.2.16, 2.6.1,
2.6.2, 2.6.13

Ferenczi, S. 2.8.1, 3.4.1

Fermer,D.W. 2.20.26

Fialová, J. 1.11.3

Fibonacci, L.P. 2.8.1, 2.8.6, 2.9.10, 2.9.12,
2.11.2.1, 2.12.21, 2.12.22, 2.12.22.1,
2.12.34, 2.18.21

Filip, F. 1.8.24, 2.22.2, 2.22.5.1

Fiorito,G.

Flatto, L. 2.17.1, 2.17.4

Fleischer,W. 1.11.5

Florek, F. 2.8.1

Fomenko,O.M. 2.19.3

Fomin, S.V. 1.6

Ford, Jr., L.R. 3.3.1

Fourier, J.-B.J. 1.9, 1.11.3, 2.1.4, 2.3.11,
2.4.4, 2.17.6, 2.20.26, 2.26, 2.26.3, 3.11,
3.11.1, 3.11.2, 3.15.1

Franel, J. 2.8.1, 2.22.1, 2.23.4

Fredholm, E.I. 1.12

Friedlander, J.B. 2.25.7, 2.25.8

Fridy, J.A. 1.8.8

Frolov,K.K. 1.8.20

Frostman,O.

Frougny,C. 2.17.1

Fuchs,A. 1.5(V)

Fujii, A. 2.20.25, 2.20.27, 2.20.28, 2.20.29,
2.20.37, 2.20.38, 3.7.10

Fulier, J. 2.20.16

Furstenberg,H. 2.8.1, 2.8.3, 2.17.10.1, 3.8.3

G

Gabai, H. 3.4.7

Galambos, J. 2.20.5

Garaev,M.Z. 2.20.16.3, 2.23.7.1

Gauss, C.F. 2.9.14, 2.18.22, 2.20.7, 2.20.26

Geelen, J.F. 2.8.1, 2.8.19

Gel’fand, I.M. 1.11.4

Gelfond,A.O. (Gel’fond) 2.1.6, 2.10

Gentle, J.E. Preface,

Gerl, P. 2.8.8, 3.4.2

Ghate, E. 3.21.5

Giuliano Antonini, R. 1.5(V), 1.8.4, 2.12.1

Glasner, S. 2.8.5.1

Glazunov,N.M. 2.20.32

Goins, E.H. 2.22.17

Goldstern,M.

Golubeva, E.P. 2.19.3

Goto,K. (Gotô) 1.9, 1.10.1, 2.2.8, 2.6.7,
2.12.25, 2.12.31, 2.15.3, 2.19.11, 3.13.6

Gorazdov,V.S. 2.11.2

Grabner, P.J. 1.8.9, 1.8.10, 1.8.22, 1.10.3,
1.11.2, 1.11.2.1, 1.11.10, 1.11.14, 2.9.11,
2.9.14, 2.10.5, 2.10.6, 2.11.2, 2.11.7,
2.11.7.1, 2.18.21, 3.2.1, 3.2.2, 3.5.3, 3.9.1,
3.13.1, 3.13.2

Gradstein, I.S. 2.3.25, 2.22.13, 4.1.4.17,
4.1.4.18

Graham,R.L. 2.8.1

Grandet–Hugot,M. 3.21.5

Grekos,G. 2.3.19, 2.3.20, 2.20.35, 2.22.5.1,
2.22.9, 2.22.11, 3.7.2

Grisel, G.

Gristmair,K. 2.13.5

Gritsenko, S.A. 2.19.2

Groemer,H. 1.10.11

Grozdanov,V.S. 1.11.3, 1.11.5, 2.11.1,
2.11.2, 2.11.6, 3.21.3

Gutierrez, J. 3.9.3.1

Guy,R.K. 2.23.7.1

Győry,K. 3.7.6.1
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H

Haber, S. 2.11.1

Habsieger, L. 2.3.24

H̊aland, I.J. 2.16.2, 2.16.4, 2.16.5, 2.16.6,
3.9.2

Halász,G. 2.2.3

Halberstam,H. 1.2

Hall, R.R. 1.8.26, 2.20.24

Halton, J.H. 2.8.1, 2.11.2, 2.11.5, 3.18.1,
3.18.4

Hammersley, J.M. 3.18.2

Hančl, J. 2.8.1.1, 2.8.1.3, 3.4.1.1, 3.4.1.2,
3.4.1.3, 2.8.1.1, 3.4.1.1, 3.4.1.2

Hardy,G.H. Preface, 1.11.3, 2.3.23, 2.6.35,
2.6.36, 2.8.1, 2.12.17, 2.13.5, 2.14.1,
2.17.8, 2.19.15, 2.20.35

Harman,G. 1.8.28, 1.9, 1.9.0.8, 1.10.7,
1.11.8, 2.12.31, 2.19.2, 2.19.9, 2.23.6,
3.15.1

Hartman, S. 2.8.13, 2.13.6, 3.4.1

Hausdorff, F. 2.1.4, 2.8, 2.10.6, 2.17, 2.18.15

Haviland, E.K. 2.3.4

Hecke, E. 1.9, 2.8.1

Heckert, A. 1.8.21, 2.25

Heinrich, S. 1.11.3, 1.11.4

Hejhal, A.D. 2.20.26

Hellekalek, P. 2.11.2, 2.11.2.1, 1.8.22, 1.11.5,
1.11.18, 2.25, 2.25.1, 2.25.11, 3.14.1

Helly, E. 1.3, 1.11 2.1.4

Helson,H. 2.17.6

Hensley,D. 2.23.5, 2.23.7

Hername,M.O. 3.7.6.1

Herrmann, E. 2.25.5, 2.25.8, 2.25.11

Hickernell, F.J. 1.11.3, 1.11.12, 3.17

Hilbert, D. 1.11.3, 1.11.12, 2.23.7.1

Hildebrand,A. Preface, 2.20.4, 2.20.7

Hironaka, E. 3.21.5

Hlawka, E. Preface, 1.5, 1.8.1, 1.8.12,
1.8.19, 1.9, 1.8.23, 1.9.0.4, 1.10.4, 1.10.8,
1.11.3.1, 1.11.3, 1.11.9, 1.11.16, 1.12,
2.2.1, 2.2.20, 2.2.22, 2.3.4, 2.3.10, 2.3.13,
2.3.15, 2.3.24, 2.3.29, 2.3.30, 2.6.13, 2.7.2,

2.8.1, 2.12.29, 2.12.30, 2.12.31, 2.13.12,
2.20.25, 2.20.35, 3.2.5, 3.2.6, 3.2.7, 3.6.9,
3.7.10, 3.15.1, 4, 4.1.4.3, 4.1.4.4, 4.3

Hofer,M. 2.13.5, 2.13.6

Hofer, R. 1.8.18.1, 2.11.2.1

Hofstadter,D.R. 2.24.10

Hölder,O. 1.8.3, 1.8.5

Holt, J.J. 1.11.8

Hoogland, J. 3.6.5

Hooley, Ch. 2.23.3, 2.23.5, 3.7.3

Horbowicz, J. 2.1.1

Hörnquist,M. 2.26.2, 2.26.4, 2.26.5, 3.11

Hua, L.–K. Preface, 1.12, 3.15.1, 3.15.5,
3.14.3, 3.16.1, 3.16.2, 3.16.3, 3.15.3,
3.15.4, 3.18.1, 3.18.2, 2.11.2, 3.4.1

Hudǎi – Verenov,M.G. 3.4.4

Huxley, M.N. 2.2.2

I

Iljasov, I. 2.20.11

Ionascu, E. 2.7.4, 2.7.4.1

Isakova, E.K. 4.1

Isbell, J. 2.22.12

Ivanova,A.N. 4.1

Iwaniec,H. 2.20.16.1, 2.20.16.2

J

Jacobs,K.

Jager, H. 2.8.1, 2.12.27, 2.21.1.1

Jagerman,D.L. 2.15.1, 3.4.6

Jaglom,A.M. 1.11.4

James, F. 3.6.5

Janpol’skĭı, A.R. 4.1

Janvresse, É. 2.12.26

Jessen, B. 2.22.1

Ji,G.H. 2.8.1

K

Kac,M. 1.8.24, 2.19.14, 2.20.7

Kachoyan, P. 1.8.20, 3.17

Kaczorowski, J. 2.20.27
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Keane,M. 1.8.24(VII), 2.18.22

Keynes,H.B. 2.8.1

Kahane, J.–P. 1.8.10, 2.17.6

Kakutani, S. 2.24.8, 2.24.9, 2.11.2

Kamae,T. 2.2.1, 3.11.2

Kamarul, H.H. 2.8.5.1

Kanemitsu, S. 2.12.26, 2.12.27, 2.24.3

Kano,T. 1.10.1, 2.2.8, 2.12.25, 2.19.11

Karacuba,A.A. (Karatsuba) 2.12.23,
2.12.24, 2.14.6, 2.20.33, 2.20.34, 3.7.11,
3.8.2

Karimov,B. 3.4.8

Kátai, I. 2.9.14, 2.20.16.5, 2.20.24, 3.5.3,
3.7.8

Katz,N.M. 2.20.26, 2.20.31, 2.20.32

Katz, T.M. 2.19.8

Kawai, H. 2.9.13

Kedem,G. 3.15.1

Keller, A. 1.11.3(II), 1.12

Kemperman, J.H.B. 2.2.11, 2.2.14, 2.2.15,
2.2.16, 2.2.17, 2.2.18, 2.2.19

Kennedy, P.B. 2.2.9

Kesten, J. 1.9, 2.8.1

Keston, J.F. 2.17.6

Khintchine,A. (Chinčin) 2.8

Khovanskĭı, A.N. 4.1

Khoshnevisan,D. 1.8.24

Khuri, N.N. 3.7.11

Kiss, P. 2.8.1, 2.24.2, 2.24.7

Kleiss, R. 3.6.5

Klinger, B. 1.11.16

Kloosterman,H. 2.20.31, 2.20.32, 2.20.37,
2.20.38

Kluyver, J.C. 2.22.1

Kmet’ová,M. 2.17.10

Knapowski, S. 1.8.23, 2.22.1

Knuth,D.E. 1.8.12, 1.8.21, 2.25, 2.25.1,
2.25.5, 2.25.8, 2.16.6, 3.3.1

Koksma, J.F. Preface, 1.7, 1.9, 1.11.2,
1.11.2.1, 2.1.1, 2.1.6, 2.8.1, 2.20.35,
2.6.10, 2.6.18, 2.17

Kolesnik,G.: 2.6.29, 2.6.30, 2.6.31, 2.6.36,
2.6.37, 2.12.18, 2.12.19, 2.12.20, 2.13.4,
2.13.5, 2.13.6.1, 2.17.7.1, 2.19.2, 2.19.13

Kolmogorov,A.N. 1.6

Konyagin, S. 2.22.2

Kopecek,N. 3.5.2

Kopřiva, J. 2.23.4

Korobov,N.M. Preface, 1.8.12, 1.8.19,
1.8.24, 1.11.3(Vd), 1.12, 2.2.1, 2.4.1,
2.8.16, 2.8.17, 2.8.18, 2.17.9, 2.18.14,
2.18.15, 3.2.4, 3.3.1, 3.6.2, 3.8.3, 3.15.1,
3.15.5

Kós,G. 2.14.2

Kostyrko, P. 1.7, 1.8.8

Kotlyar, B.D. 2.12.1, 2.12.2

Kováč, E. 1.8.3

Kovalevskaja, È.I. 3.4.1, 3.8.1

Kra, B. 2.17.10.1

Kraaikamp,C. 2.21.1.1

Krause, M. 1.11.3, 1.11.15, 2.20.35

Kritzer, P. 1.8.18, 2.11.2.1

Kronecker, L. 3.4.1

Kubilius, J. 2.20.7

Kuipers, L.: Quotations of [KN] + 1.8.23,
1.10.2, 2.3.4, 2.6.1, 2.6.5, 2.6.6, 2.6.9,
2.6.11, 2.6.12, 2.12.22, 2.13.7, 2.13.8,
2.13.10, 2.13.11, 2.24.1, 3.8.3, 3.9.2, 3.9.3,
3.13.4

Kulikova,M.F. 3.10.1

Kunoff, S. 2.12.26

L

Lagarias, J.C. 1.8.21, 2.17.1, 2.17.4, 2.25,
2.25.7

Laha,R.G. 4.1.4.12, 4.1.4.13

Lambert, J.P. 1.11.17

Lange, L.H. 2.22.18

Lapeyre, B. 2.7.3

Larcher,G. 1.11.3, 1.11.9, 1.11.7, 1.11.17,
1.8.18, 1.8.18.1, 2.9.1, 2.9.4, 2.10.1,
2.11.2.1, 2.25.4, 3.4.1, 3.5.1, 3.5.2, 3.15.1,
3.15.2, 3.18.1, 3.18.2, 3.19, 3.19.1, 3.19.2,
3.19.4

László, B. 2.3.22, 2.20.10
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Lauss, A. 3.19.4

Lawton,B. 2.2.1, 2.14.1

Lebesgue,H. 1.8.24, 2.1.1, 2.6.12, 2.8,
2.20.20, 2.22.1

Legendre,A.–M. 2.14.4, 2.26.6

L’Ecuyer, P. 2.25, 2.25.1, 2.25.11

Leeb,H. 1.11.5

Lehmer,D.H. 2.18, 2.20.39.2, 2.22.5, 2.25.1,
3.21.5

Lehn, J. 2.25.8

Leigh, S. 1.8.21, 2.25

Leitmann,D. 2.19.2

Lenstra,H.W. 2.21.1.1

Leobacher,G. 1.11.3

Lerch,M. 2.8.1

Lesca, J. 1.8.27, 2.4.4.1, 2.8.5

Levenson,M. 1.8.21, 2.25

LeVeque,W.J. 1.5, 1.9, 1.9.0.7, 1.10.2,
2.2.11, 2.5.1, 2.8.1, 2.13.9

Levin, B.V. 2.20.5

Levin,M.B. 1.8.24, 2.24.1, 3.10.1, 3.10.2,
3.10.3, 3.10.4

Lewis, T.G. 2.25.3

Li, H.Z.

Liardet, P. Preface 1.7, 1.8.9, 1.8.22, 1.9,
2.9.1, 2.9.11, 2.9.14, 2.11.2, 2.12.27,
2.18.20, 2.20.11, 3.5.3, 3.10.6

Lidl, R. 2.25.2, 3.7.2

Linnik,Yu.V. 2.1.6, 2.14.1

Liouville, J. 2.6.37, 2.12.18, 2.18.7, 2.18.13,
2.19.13

Lipschitz, R. 2.3.30, 2.6.31, 2.6.36, 2.20.11

Littlewood, J.E. Preface, 2.8.1, 2.14.1

Ljusternik, L.A. 4.1

Losert, V. 2.4.2, 2.5.2, 2.8.5

Lorentz,G.G. 1.8.25

Loxton, J.H. 2.26.4

Lu,H.W. 2.8.1

Lubotzky,A. 3.21.4

Luca, F. 2.13.6, 2.20.9, 2.20.11, 2.20.12,
2.20.16.1, 2.20.16.2, 2.20.16.3, 2.20.16.4,
2.20.16.5,2.20.16.6, 2.20.39.1, 2.22.5,
2.23.7.1, 3.7.6.1

Lucas, F.E.A. 2.12.21, 2.12.22.1

Lynes, J.N. 3.17

M

Mačaj,M. 1.7, 1.8.8

Mahalanabis, A. 3.19

Maharam,D. 2.20.20

Mahler,K. 2.17.1, 2.17.7, 2.18.7, 2.26.2,
3.10.2

Maize, E. 1.11.3

Mallows,C.L. 2.24.10

Malyšev,A.V. 3.7.2

Marcinkiewicz, J. 2.4.4

Madritsch,M. 2.13.5, 2.13.6

Markov,A.A. (Markoff) 1.8.10, 1.8.23,
1.8.24, 1.12, 2.8.1, 3.6.11, 3.13.3, 4.3

Marsaglia,G. 2.25

Marstrand, J.M. 2.8

Martin,G. 3.21.2

Martinez, P. 2.18.7

Matoušek, J. Preface, 1.11.3, 2.5.5

Mauclaire, J.–L. 3.11.2

Mauduit, Ch. 1.8.22, 1.9, 2.8.5, 2.19.10,
2.26, 2.26.1, 2.26.2, 2.26.3, 2.26.6, 2.26.7,
2.8.1.4

Maxfield, J.E. 1.8.24

Meijer, H.G. 2.23.2

Mej́ıa Huguet, V.J. 2.20.11, 3.7.6.1

Mendel, G. 1.12

Mendès France,M. Preface, List of symbols,
1.8.24, 2.2.1, 2.2.4, 2.2.8, 2.4.1, 2.4.2,
2.6.22,2.8.5, 2.9.1, 2.9.2, 2.9.9, 2.9.11,
2.10.2, 2.10.3, 2.14.1, 2.16.3, 2.17.4,
2.17.8, 2.18.12, 2.18.15, 2.20.1, 2.26.4
3.11.1, 3.11.2, 3.11.6

Mersenne,M. 2.20.9, 2.20.11, 2.25.1

Mhaskar,H.N. 1.10.10, 2.14.2

Mignotte,M. 2.14.2, 2.17.8

Mikolás,M. 2.23.4

Mináč, J. 2.20.15

Mǐśık, L. 2.22.2, 2.22.5.1, 2.22.10
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Mitrinović, D.S. 2.3.23, 2.20.31, 3.7.9

Mises von,R. 1.8.1, 2.6.19

Mőbius,A.F. 2.20.11, 2.23.1

Moeckel, R. 2.26.8

Molnár, S.H. 2.5.1, 2.5.4, 2.24.2, 2.24.7

Montgomery,H.L. 1.9, 1.9.0.8, 2.20.26

Moran,W. 1.8.24

Moskvin,D.A. 2.8.7

Morase,M. 2.26.2

Mordell, L.J. 3.4.1

Morokoff,W. 1.11.5

Morse,H.M. 2.26.2

Mück,R. 1.11.3, 2.3.10

Mullen,G.L. 3.19

Musmeci, R.

Myerson,G. 1.8.10, 1.8.23, 2.2.5, 2.3.2, 2.4.1,
2.12.2, 3.6.10, 3.6.11, 3.7.1, 3.13.3

Müntz, C.H. 1.10.4

N

Nagasaka,K. 2.12.1, 2.12.26, 2.12.27, 2.24.3,
2.24.4

Nair, R. 2.8

Nakai, Y.–N. 2.18.7, 2.18.8

Naor,M. 2.25.6

Nechvatal, J. 1.8.21, 2.25, 2.26

Ness,W. 2.13.12

Neville, E.H. 2.23.4

Neumann von, J. 1.12, 2.11.2

Newcomb, S. 2.12.26

Newman,D.J. 2.26.2

Nicolae, F. 2.20.11, 3.7.6.1

Niederreiter, H.: Quotations of [KN] + 1.1,
1.5, 1.8.1, 1.8.15, 1.8.17, 1.8.18, 1.8.19,
1.8.20, 1.8.21, 1.8.32, 1.8.22, 1.8.23, 1.9,
1.9.0.5, 1.9.0.6, 1.10.8, 1.10.11, 1.11.2,
1.11.2.1, 1.11.3, 1.11.4, 1.11.9, 1.11.13,
1.11.15, 1.11.17, 2.2.7, 2.2.8, 2.3.11, 2.6.2,
2.6.21, 2.8.1, 2.8.2, 2.8.5, 2.11.1, 2.11.2.1,
2.11.3, 2.12.3, 2.12.7, 2.12.16, 2.15.1,
2.19.4, 2.20.12, 2.20.31, 2.22.14, 2.22.16,
2.23.2, 2.23.4, 2.25, 2.25.1, 2.25.2, 2.25.3,

2.25.4, 2.25.5, 2.25.6, 2.25.7, 2.25.8,
2.25.9, 2.25.10.1, 3.4.1, 3.6.6, 3.6.7, 3.6.8,
3.7.2, 3.7.2.1, 3.8.3, 3.9.2, 3.9.3, 3.10,
3.13.4, 3.14.1, 3.15.1, 3.15.2, 3.17, 3.18.1,
3.18.2, 3.19, 3.19.1, 3.19.2, 3.19.3, 3.19.4,
3.19.7, 3.20.1, 3.20.2, 4, 4.1.4.9

Nillsen,R. 1.8.24

Nolte, V.N. 2.26.8

Ninomiya, S. 2.11.7.1

Novak, E. 1.11.3

Novoselov, E.V. 2.20.13

Nowak,W.–G. 2.15.6, 3.10.7

Nuzhdin,O.V. 1.11.14

O

Oderfeld, J. 2.8.1

Odlyzko,A.M. 2.3.9, 2.20.26

Ohkubo,Y. 1.9, 2.3.6.1, 2.3.6.2, 2.3.6.3,
2.6.3, 2.6.7, 2.6.26, 2.7.2, 2.8.11, 2.12.12,
2.12.31, 2.15.3, 2.19.7.1, 2.19.8, 2.19.9.1,
2.19.14.1, 2.19.19.1, 3.13.6

Olivier,M. 2.19.10

Oren, I. 2.8.1

Oskolkov,V.A. 2.8.1

Ostrowski, A.M. 1.10.11, 2.8.1, 2.9.13,
2.15.7, 2.12.3, 2.15.7, 3.9.4

Owen,A.B. 2.5.5

P

Pagés,G. 2.7.3, 2.11.2

Papp, Z. 3.7.6.1

Paštéka,M. 1.5, 1.10.6, 2.3.19, 2.3.20, 2.5.1,
2.20.35, 3.7.2, 4.3

Parent,D.P. 2.3.6, 2.8.1, 2.8.14, 2.12.1,
2.14.7, 2.16.1, 2.18.11, 2.18.12, 2.19.8,
2.3.3,

Parry,W. 2.11.7.1

Pathiaux–Delefosse,M. 3.21.5

Pavlov,A.I. 2.12.1, 2.19.8

Payne,W.H. 2.25.3

Peart, P. 1.11.17, 3.18.2

Perelli, A. 2.23.4
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Peres, Y. 2.4.2, 2.8.5.1, 2.14.5

Petersen,G.M. 1.5

Petersen,K. 2.8.1

Pethő, A. 2.24.7

Pikhtil’kov, S.A. 3.15.1

Philipp,W. 1.11.2, 1.11.2.1, 2.26.7, 4.1.4.9

Phillips, R. 3.21.4

Pillai, S.S. 1.8.24, 2.17.1, 2.18.7

Pillichshammer, F. 1.11.3, 2.2.9.1, 2.11.2.1,
1.8.18, 1.8.18.2

Pisot, Ch. 1.9, 2.1.6, 2.2.6, 2.8.3, 2.14.1,
2.17.4, 2.17.7, 2.17.8

Pjateckĭı – Šapiro, I.I. (Šapiro – Pjateckĭı)
1.5, 1.8.24, 2.17.1, 2.18.16, 2.18.16.1,
2.18.17, 2.18.18, 2.18.19, 2.19.2

Poincaré, H. 2.2.1, 2.3.29, 2.3.30

Pollaczek, F. 2.14.2

Pollington,A.D. 1.8.24, 2.2.5, 2.3.2, 2.4.1,
2.12.2, 2.17, 2.17.1, 2.17.4

Pólya,G. Preface, 1.8.23, 2.1.1, 2.2.19, 2.3.4,
2.3.16, 2.3.26, 2.3.27, 2.6.1, 2.12.1, 2.12.8,
2.14.4, 2.15.1, 2.18.7, 2.22.13

Pomerance, C. 1.8.21, 2.25, 2.25.7, 2.25.8

Porubský, Š. 1.5, 1.8.23, 2.3.14, 2.5.1,
2.20.15, 2.20.17, 2.22.1, 2.22.5

Popovici, F. 2.13.6

Posner, E.C. 2.17.6

Post,K.A. 2.1.1

Postnikov,A.G. 1.8.12, 1.8.24 2.2.1, 2.4.1,
2.8.7, 2.18.7, 2.18.19, 2.20.8, 2.20.11,
3.1.2, 3.6.3, 3.7.8, 3.10.5, 3.11.5

Pourchet, Y. 2.17.4

Prochorov, Ju.V. 2.20.8

Proinov, P.D. 1.10.1, 1.10.6, 1.11.3, 2.8.2,
2.11.1, 2.11.2, 2.11.6

Prouhet, E. 2.26.2

Pushkin, L.N. 1.8.24

Pustyl’nikov, L.D. 3.8.3

Q

Queffélec,M. 2.26.2

R

Rademacher,H.A. 2.20.25, 3.7.10

Radoux,Ch. 2.9.10

Raimi, R.A. 2.12.26

Rajski, C. 2.8.1

Ramanujan, S. 2.20.39.2

Ramshaw, L. 2.8.1

Rath, P. 2.17.4

Rauzy,G. Preface, 1.8.9, 1.8.12, 2.3.5, 2.3.6,
2.4.3, 2.4.4, 2.5.2, 2.6.1, 2.6.20, 2.6.21,
2.8.1, 2.12.27, 2.12.31, 2.24.3, 3.8.3

Rédei, L. 2.17.4, 2.17.8

Reich,A. 3.6.4

Reingold,O. 2.25.6

Reisel, H. 4.1.4.11

Ren,H.C. 3.7.11

Rényi, A. 2.11.7.1

Reversat,M. 1.8.27

Reznick, B. 2.13.9

Rhin,G. 2.6.21, 2.9.13, 2.19.4, 2.19.12,

Ribenboim,P. 2.19.15, 2.19.19

Richtnyer, R.D. 3.6.5

Rieger,G.J. 2.16.7, 2.16.8, 2.20.37, 2.20.38

Riemann,B. 1.3, 1.5, 1.7, 2.1.1, 2.2.19,
2.2.20, 2.3.21, 2.5.1, 2.8.1, 2.18.20,
2.20.12, 2.20.25, 2.20.26, 2.20.28, 2.20.29,
2.23.4

Rigo,M. 2.17.10.2

Rindler, H. 2.2.20, 2.4.2, 2.5.2, 2.8.5

Rivat, J. 2.19.10

Rivkind, Ja.I. 2.5.1

Rodionova,O.V. 3.15.1

Rohatgi, V.K. 4.1.4.12, 4.1.4.13

Roth,K.F. 1.2, 1.8.15, 1.9, 1.11.2, 1.11.2.6,
1.11.2.7, 1.11.4, 1.11.4.1, 1.11.4.2, 1.11.8,
2.8.2, 3.4.6, 3.18.2, 3.18.2.1, 3.21.3

Rucki, P. 2.8.1.1, 3.4.1.1, 3.4.1.2

Ruderman,H.D. 2.8.1

Rudin,W. 2.26.3

Rudnick, Z. 1.8.29

Rukhin,A. 1.8.21, 2.25, 2.26
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Ruzsa, I.Z. 1.9.0.8, 1.11.7, 2.2.1, 2.8.5,
2.12.3, 2.16.4

Ryshik, I.M. 2.3.25, 2.22.13, 4.1.4.17,
4.1.4.18

S

Šalát, T. 1.7, 1.8.8, 2.1.1, 2.3.14, 2.3.23,
2.5.1, 2.8.16, 2.19.15, 2.19.18, 2.19.19,
2.20.18, 2.20.19, 2.22.1, 2.22.2, 2.22.3

Salekhov,G.S. 4.1

Salem,R. 1.8.10, 2.1.1, 2.4.4.1, 2.8.3, 2.17,
2.17.7.1, 2.17.7, 2.17.8

Salvati, S. 2.1.1

Saltykov,A.I. 3.15.1

Sander, J.W. 3.15.2

Sándor, J. 2.3.23, 2.8.1.1, 2.20.31, 3.7.9

Sakarovitch, J. 2.17.1

Saradha,N. 2.17.4

Sárközy,A. 1.8.22, 2.26, 2.26.1, 2.26.2,
2.26.3, 2.26.6, 2.26.7, 2.8.1.4

Sarkar, P.B. 2.12.28

Sarnak, P. 1.8.29, 2.20.26, 3.21.4

Sato,M. 2.20.32, 2.20.39.2

Schaefer, P. 2.22.18

Schaeffer,A.C 1.8.28, 2.23.6

Schäffer, S.

Schanuel, S. 2.22.12

Schatte, P. 1.8.5, 2.2.13, 2.3.5, 2.5.1, 2.6.8,
2.12.26, 2.12.27, 2.24.3, 2.24.4, 3.11.4

Schiffer, J. 2.18.7, 2.18.10

Schinzel, A. 2.3.23, 2.19.15, 2.20.11, 2.20.19,
3.7.6, 3.7.8

Schmeling, J. 2.5.1

Schmid,W.Ch. 3.19.1, 3.19.2, 3.19.4

Schmidt, E. 2.14.2

Schmidt,K. 2.11.7.1, 2.17.8

Schmidt,W.M. 1.8.15, 1.8.24, 1.9, 1.9.0.6,
1.10.4, 1.11.2, 1.11.2.5, 2.11.2, 2.18.6,
3.4.1

Schnabl, R. 1.8.25

Schneider, R.

Schnitzer, F.J. 2.21.1

Schoenberg, I.J. 1.8.1, 1.8.3, 1.8.8, 2.1.4,
2.3.4, 2.3.7, 2.3.14, 2.15.5, 2.20.11,
2.22.13

Schönhage,A. 1.10.11, 2.12.3

Schoißengeier, J. 1.5, 2.2.20, 2.2.22, 2.3.11,
2.3.13, 2.3.15, 2.8.1, 2.12.30, 2.15.1,
2.15.4, 2.18.7, 2.19.2, 2.22.14, 4.1.4.3,
4.1.4.4

Schreiber, J.–P. 3.21.5

Schroeder,M.R. 2.12.21

Schwarz,W. 2.20.11

Seco, L.A.

Shao, P.–T. 3.7.6

Shapiro, L. 1.9, 2.8.1, 2.11.2, 2.26.3, 2.20.7

Shiokawa, I. 2.18.7, 2.18.8

Shiue, P. J.-S. 2.8.1, 2.12.26, 2.12.27, 2.24.1,
2.24.3

Shohat, J.A. 2.1.4

Shokrollahi,M.A. 2.23.7.1

Shparlinski, I.E. (Šparlinskĭı, I.E.) 2.20.11,
2.20.16.3, 2.20.16.4, 2.20.16.6, 2.23.7.1,
2.24.1, 2.25, 2.25.6, 2.25.7, 2.25.8, 3.9.3.1

Shub,M. 2.23.7.1, 2.25.7

Shutov,A.V. 2.8.1

Shukhman,B.V. 1.11.14

Shparlinski, I.E. 2.20.11, 2.20.16.3,
2.20.16.4, 2.20.16.6, 2.23.7.1, 2.25, 2.25.6,
2.25.7, 2.25.8

Siegel, C.L. 2.17.8

Sierpiński,W. 1.8.24, 2.8.1, 2.18.1, 2.19.15,
2.20.10

Šimovcová,M. 3.3.1

Simpson,R.J. 2.8.1, 2.8.19

Sinăı, Ya.G. 2.20.37, 2.20.38, 3.7.5

Širokov, B.M. 2.20.13

Skalyga,V.I. 3.15.1

Skriganov,M.M. 1.11.4

Slater, N.B. 2.8.1, 4.1.3

Sloan, I.H. 1.8.20, 1.11.2, 1.11.3, 3.17

Sloss, B.G. 2.1.1

Smale, S. 2.23.7.1

Smeets, I. 2.21.1.1
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Smid,M. 1.8.21, 2.25

Smı́tal, J. 2.19.15, 2.22.4

Smorodinsky,M. 1.8.24(VII), 2.18.22

Sobol’, I.M. Preface, 1.3, 1.8.17, 1.8.18, 1.9,
1.9.0.4, 1.11.3, 1.11.13, 1.11.14, 2.11.1,
2.11.2, 3.18.1, 3.18.2, 3.19, 3.19.1, 3.19.3,
3.19.5,

Sobolev, S.L. 1.11.3, 1.11.12

Solomyak,B. 2.14.5

Somos,M. 2.6.32

Sonin,N.Y. 4.1.4

Sós, V.T. Preface, 2.8.1, 3.4.5

Soto, J. 1.8.21, 2.25, 2.26

Spaniel, J. 1.11.3

Spence, E. 2.23.1

Springer, T.A. 2.20.32

Srinivasan, S. 3.6.1

Stănică, P. 2.7.4, 2.7.4.1

Starčenko, L.P. 3.6.3

Staudt von,K. 2.20.39.1

Stegbuchner,H. 1.11.2, 1.11.2.3, 1.11.5

Steiner,W. 1.9, 2.11.7.1

Steinerberger, S. 2.2.9.1, 2.8.12, 2.13.7

Steinhaus,H. 2.8.1, 2.8.19, 2.14.1

Stepanov, S.A. 2.20.32

Štěpnička, J. 2.8.1.3, 3.4.1.3

Stieltjes, T.J. 1.3, 1.7, 2.3.21

Stoilova, S.S. 1.11.3, 1.11.5, 3.21.3

Stolarsky,K.B. 4.2

Stolz,O. 4.1, 4.1.4.11, 4.1.4.19, 4.1.4

Stoneham,R.G. 2.18.13

Strandt, S. 2.25.5

Strano,M.

Strauch,O. 1.2, 1.7, 1.8.8, 1.8.10, 1.8.11,
1.8.23, 1.8.27, 1.8.28, 1.9, 1.10.1, 1.10.2,
1.10.3, 1.10.9, 1.10.11, 1.11.3, 1.11.4,
1.11.11, 1.12, 2.1.4, 2.1.5, 2.1.7, 2.2.21,
2.2.22, 2.3.3, 2.3.4, 2.3.9, 2.3.13, 2.3.14,
2.3.15, 2.3.19, 2.3.20, 2.3.21, 2.3.24,
2.3.25, 2.5.1, 2.6.18, 2.8.5, 2.12.1, 2.12.2,
2.12.4, 2.12.16, 2.12.28, 2.12.29, 2.12.30,
2.14.1, 2.17.1, 2.19.16, 2.19.19, 2.20.11,

2.20.18, 2.20.35, 2.22.1, 2.22.2, 2.22.5.1,
2.22.6, 2.22.7, 2.22.8, 2.22.9, 2.22.11,
2.23.1, 2.23.6, 3.2.1, 3.2.2, 3.2.8, 3.7.2,
3.9.1, 3.13.1, 3.13.2, 3.21.1, 4.2, 1.8.9

Strzelecki, E. 2.8.10

Stux, I.E. 2.6.27, 2.19.2

Sugiura,H. 3.15.1

Sun,Y. 2.5.1

Supnick, F. 2.17.6

Surányi, J. 2.8.1

Šustek, J. 1.8.24, 2.8.1.1, 2.8.1.3, 3.4.1.1,
3.4.1.2, 3.4.1.3

Świerczkowski, S. 2.8.1

Szabó, J. 2.9.14, 3.5.3

Szegő,G. Preface, 2.1.1, 2.2.19, 2.3.16,
2.3.26, 2.3.27, 2.6.1, 2.12.1, 2.12.8, 2.14.2,
2.14.4, 2.15.1, 2.18.7

Szüsz, P. 1.11.2, 1.11.2.1, 2.8.1, 2.18.3,
2.18.9, 3.4.1

T

Taschner, R.J. 2.2.1, 4.1.4.3, 4.1.4.4

Tamarkin, J.D. 2.1.4

Tanigawa,Y. 3.21.5

Tate, J. 2.20.32, 2.20.39.2

Tausworthe,R.C. 2.25.2

Taylor, S.J. 2.8, 2.8.10

Temlyakov,V.N. 3.15.2

Tenenbaum,G. 1.2, 1.8.26, 2.20.3, 2.20.6,
2.20.24.1

Teuffel, E. 2.13.12

Tezuka, S. Preface, 1.12

Thomas,A. 2.18.3

Thoro,D.E. 2.22.18

Thue,A. 2.17.8, 2.26.2

Tichy,R.F. Quotations of [DT] + Preface,
1.8.9, 1.8.10, 1.8.12, 1.8.22, 1.8.23, 1.8.30,
1.8.31, 1.10.3, 1.10.7, 1.11.2, 1.11.16,
1.12, 2.5.1, 2.6.3, 2.6.8, 2.6.17, 2.9.1,
2.9.3, 2.9.11, 2.12.31, 2.21.1, 2.24.5,
2.24.6, 2.24.7, 2.26.7, 3.2.1, 3.2.2, 3.4.1,
3.5.2, 3.6.1, 3.9.1, 3.10, 3.12.1, 3.13.1,
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3.13.2, 3.15.1, 3.18.1, 3.18.2, 3.19.3,
3.21.4, 4.3

Tijdeman,R. 2.17.1

Timan,A.F. 2.8.12

Timofeev,N.M. 2.20.5

Titchmarsh, E.C. 4.1.4.6

Tjan,M.M. 2.20.11, 2.20.13

Toffin,P. 2.9.13, 2.19.5

Tolev, I.D. 3.6.1

Too,Y.–H. 2.19.7, 2.19.11

Topuzoǧlu,A. 2.2.8, 2.25.8

Tóth, J.T. 1.8.13, 1.8.23, 2.1.5.1, 2.3.22,
2.17.10, 2.19.16, 2.19.18, 2.20.15, 2.20.16,
2.20.17, 2.22.2, 2.22.3, 2.22.5.1, 2.22.6,
2.22.7, 2.22.8, 3.7.7, 3.21.1

Totik,V. 2.14.2

Toulmin,G.H. 1.10.11, 2.12.3

Tripathi, A. 2.8.1

Tsuji,M. 1.8.4, 1.10.10, 2.2.17, 2.2.18,
2.12.1, 2.12.31

Tsz Ho Chan 3.7.2.1

Tuffin,B. 3.18.3

Tuljaganov, S.T. 2.20.5

Turán, P. 1.9, 1.9.0.8, 1.10.1, 1.10.7, 1.11.2,
1.11.8, 1.11.10, 1.11.15, 1.11.17, 2.6.26,
2.12.31, 2.14.2, 2.17.11, 2.23.7.1, 2.26.7,
3.13.6, 3.14.3.2, 3.15.1, 4.1.4

Turnwald,G. 1.10.6, 1.10.7, 2.9.1, 2.9.3,
2.12.31, 3.5.2

U

Urban,R. 2.17.10.1

Usol’cev, L.P. (Usol’tsev) 2.17.11, 2.19.14

Uspensky, J.V. 2.17.8

V

Vaaler, J.D. 1.9, 1.11.2, 1.11.2.1

Vâjâitu,M. 2.19.6, 2.23.7.1

van Aardenne – Ehrenfest, T. 1.9, 1.10.11

van de Lune, J. 2.8.1, 2.12.1

Vanden Eynden,C. 2.6.23, 2.6.24, 3.3.2

van der Corput, J.G. 1.4, 1.7, 1.7.0.1, 1.7.0.2,
1.9, 1.11.2, 1.11.3, 2.1.6, 2.2.1, 2.2.6,
2.2.9, 2.2.9.1, 2.2.12, 2.3.8, 2.6.5, 2.6.13,
2.7.3, 2.11.1, 2.11.2, 2.11.2.1, 2.11.3,
2.11.4, 2.11.5, 2.11.6, 2.11.7, 2.11.7.1,
2.14.1, 2.17.11,

van der Poorten,A.J. 2.17.8, 2.26.4

Vangel,M. 1.8.21, 2.25

van Lint, J.H. 2.8.1

Vardi, I. 2.20.30

Vaughan,R. 2.2.3

Veech,W.A. 2.8.1

Vijayaraghavan,T. 2.17.1, 2.17.4, 2.17.5,
2.17.6, 2.17.8, 2.18.2

Vincent,A. 2.17.8

Vinogradov, I.M. 2.1.6, 2.14.1, 2.19.1, 2.19.2,
2.19.3, 2.19.4, 2.19.17, 4.1.4.2

Vo, S. 1.8.21, 2.25

Vojvoda,M. 3.3.1

Volčič, A. 2.1.1

Volkmann,B. 1.8.24, 2.18.3, 2.18.5, 2.18.6,
2.18.9

Volterra, V. 1.12

Voronin, S.M. 3.7.11, 3.15.1

W

Wagner,G. 2.18.6

Wagstaff, S.S. 2.20.39.1

Wahba,G 1.11.12

Walfisz,A. 2.22.12

Walsh, J.L. 1.11.3, 2.1.1, 3.14.1

Walsh, L. 3.17

Wang,Y. 1.12, 2.11.2, 2.20.11, 3.4.1, 3.7.6,
3.14.3, 3.15.1, 3.15.3, 3.15.4, 3.15.5,
3.16.1, 3.16.2, 3.16.3, 3.18.1, 3.18.2

Waring, E. 2.17.1

Warnock,T.T. 1.11.4

Wasilowski,G.W. 1.11.3

Washington, L.C. 2.12.22, 2.12.22.1

Weber,M. 2.14.1

Wegenkittl, S. 2.25.5, 2.25.8

Weller,G. 3.18.3
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Weil, A. 2.20.31, 2.20.32

Weisstein, E.W. 2.17

Weyl, H. 1.3, 1.4, 1.5, 1.9, 1.7, 1.8.1, 1.8.3,
1.8.4, 1.8.5, 1.8.22, 1.8.24, 1.9.0.2, 1.11.1,
1.11.1.1, 1.11.1.2, 1.11.1.3, 2.1.1, 2.1.2,
2.1.4, 2.3.2, 2.3.12, 2.6.35, 2.8, 2.8.1,
2.12.1, 2.12.2, 2.14.1, 2.17, 2.17.8, 3.1.1,
3.4.1

Whiteman,A.L. 3.7.2

Whitney,R.E. 2.19.8

Wiener,M.J. 3.7.2

Wiener, N. 2.1.4, 3.11

Wills, J.M. 1.11.9

Winkler, R. 1.7, 1.8.10, 1.8.12, 1.8.22, 1.8.30,
2.5.1, 2.5.2, 2.5.3

Wintner,A. 2.12.1, 2.19.8, 2.20.3, 2.20.4

Winterhof, A. 2.25.9, 2.25.10.1, 3.7.2.1

Wodzak,M.A. 2.19.12

Wolke,D. 2.19.2

Wooley, T.D.

Woźniakowski, H. 1.11.3, 1.11.4

Wright, E.M. 2.3.23, 2.19.15

X

Xing,C.-P. (Xing, Ch.) 1.8.18, 1.8.18.3,
3.19, 3.19.1, 3.19.2, 3.19.7

Xu,G.S. 3.15.1

Z

Zaharescu,A. 1.8.29, 2.19.6, 2.23.7.1

Zaimi, T. 2.17.7

Zame,A. 2.17.6

Zaremba, S.K. 1.9, 1.9.0.4, 1.11.3, 2.11.5,
3.4.5, 3.15.1, 3.15.2, 3.18.4, 4.1.4

Zeckendorf, E. 2.9.11, 2.9.12, 2.18.21

Zhabitskaya, E.
Quoted in: 2.23.7.2

Zhai,W. 2.19.2

Zhang,R.X. 3.15.1

Zhang,W. 2.3.20, 2.20.35, 2.20.36

Zhu,Y. 1.11.2, 1.11.2.4

Zhuravlev,V.G. 2.8.1

Zinterhof, P. 1.10.2, 3.15.1

Zsilinszky, L. 2.19.18
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Subject index

A

abc-polynomial 2.14.2

A–discrepancyA–DN 1.8.2, 1.10.5, 1.10.6,
1.10.7, 1.11.3(IV), 1.11.3(VIb), 2.6.3,
2.7.2, 2.8.11, 2.12.31(IV), 3.4.3

A–u.d. 2.2.17, 2.12.1, 2.12.31

Abel discrepancy Dr 1.10.8, 1.11.15, 2.8.1,
3.4.1

Abel star discrepancy D∗
r 1.10.8

absolutely normal number, see normal num-
ber

absolutely abnormal number 3.21.2

algebraic number 2.8.1, 2.12.24, 2.17.7,
2.17.8, 3.4.1, 3.5.2, 3.6.4, 3.6.5, 3.6.6,
3.6.7, 3.10.4

algebraic number field 2.9.14, 3.5.3, 3.10.2,
3.15.1, 3.15.3

almost–arithmetical progression 2.2.7, 1.2

almost periodic function, see function

almost u.d. sequence, see sequence

arcsine measure 2.14.2

arithmetical function, see function

arithmetic means 1.8.3, 2.3.15

asymptotic distribution function (abbrevi-
ated a.d.f.) 1.8.1, 1.8.8, 1.8.12, 1.8.23,
1.10.1, 1.10.2, 1.11.3, 1.12, 2.1.4, 2.1.7,
2.2.11, 2.2.15, 2.2.21, 2.3.3, 2.3.4, 2.3.7,
2.3.8, 2.3.13, 2.3.14, 2.3.23, 2.3.24, 2.3.25,
2.3.30, 2.4.3, 2.4.4, 2.5.4, 2.6.19, 2.10.4,
2.10.5, 2.10.6, 2.13.1, 2.13.4, 2.13.9,
2.14.4, 2.15.5, 2.15.7, 2.16.4, 2.17.6,
2.18.16, 2.18.17, 2.19.14, 2.20.2, 2.20.3,
2.20.4, 2.20.5, 2.20.6, 2.20.8, 2.20.9,
2.20.11, 2.20.13, 2.20.14, 2.20.18, 2.20.19,
2.20.31, 2.20.32, 2.20.35, 2.20.36, 2.20.39,
2.22.13, 2.22.17, 2.23.7, 2.24.7, 3.2.5,
3.2.8, 3.7.8, 3.7.9, 3.12.1

Abel 1.8.6

Gaussian 1.8.24(VII), 2.18.22, 2.20.7

generalized p. 1 – 32

strong 1.8.1

S–a.d.f 1.8.2

A–a.d.f. 1.8.3, 1.8.4, 2.2.16, 2.2.18

with respect to a summation method
1.8.2

matrix 1.8.3

singular 2.20.11

symmetric 2.20.5, 2.20.11(IX)

weighted 1.8.4

logarithmically 1.8.4

zeta 1.8.7

autocorrelation 2.25.2, 3.4.6

function 2.15.1(III)

B

badly approximate 3.4.1(III)

badly distributed 1.8.10

Beatty sequence 2.16.1

Bell’s inequality 1.12

Benford’s law 2.12.1(VI), 2.12.26, 2.12.27,
2.24.4

Berry – Esseen inequality 1.9(V)

binary sequences 1.8.22, 2.26, 2.26.6, 2.26.8

Champernowne 2.26.1

Thue – Morse 2.26.2

Rudin – Shapiro 2.26.3

block sequences Preface, 1.8.1(II), 1.8.15,
1.8.23, 1.8.26, 2.3.10, 2.3.14, 2.6.19,
2.12.28, 2.14.5, 2.15.5, 2.19.14, 2.19.16,
2.20.24, 2.20.35, 2.21.1, 2.22.1, 2.22.2,

7 – 1
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2.22.11, 2.22.13, 2.23.1, 2.23.4, 2.23.5,
2.23.6, 3.6.3

Xn = (xn,1, . . . , xn,Nn) 1.8.23

Xn =
(
n
1
, n
2
, . . . , n

n

)
1.8.23, 2.22.13

Xn =
(
1
n
, 2
n
, . . . , n

n

)
1.8.23, 2.22.15

An =
(

1
qn
, a2
qn
, . . . ,

aφ(qn)

qn

)
1.8.23, 2.23.1,

2.23.6

Xn =
(

1
xn
, 2
xn
, . . . , xn

xn

)
1.8.23, 2.22.1

Xn =
(
x1
xn
, x2
xn
, . . . , xn

xn

)
1.8.23, 2.21.1,

2.22.6, 2.22.7, 2.22.8

X
(k)
n =

(
k
√

n
1
, k
√

n
2
, . . . , k

√
n
n

)
2.15.5

An = (neγ
1
n , neγ

2
n , . . . , neγ

n
n ) 2.17.11

An = (
∑n
i=0 aiθ

i ; ai ∈ {−1, 1}) 2.14.5

Aq =
(
K(q,1)
2
√
q
, K(q,2)

2
√
q
, . . . , K(q,q−1)

2
√
q

)
2.20.31

An = (f(d) mod 1)d|n,d>0 2.20.24

Ap = (θp,1, θp,a2 , . . . , θp,ap−1) 2.20.32(
1

2N
, 3
2N
, . . . , 2N−1

2N

)
2.22.15

Xn =
(
n
1
, n
2
, . . . , n

J(n)

)
2.22.12

An =
(
i
n

)
0<i<n,i2≡−1 (mod n)

2.23.5

Ax =
(
d−1( mod c)

c

)
0<c≤x,0<d≤x,

gcd(c,d)=1

2.20.38

α–refinement 2.24.8

α–maximal refinement 2.24.9

Bohr (or Fourier – Bohr) spectrum Bsp(xn)
2.4.4, 3.11

Boltzmann equation 1.12

bounded remainder set 2.9.1(IV)

C

Chebyshev quadrature 1.12

class number 2.20.39

Coulomb gas 1.12

coefficient

Fourier – Bohr 3.11

conjecture 1.11.2.5, 1.11.2.6, 2.18.1(III)

sin2 θ 2.20.32

Montgomery – Odlyzko 2.20.26

completely dense sequences 1.8.13

φ(n)
φ(n−1)

3.7.6

σ(n)
n
, n
φ(n)

, σ(n)
φ(n)

3.7.7

completely u.d. sequences 1.8.12, 1.8.21,
2.2.1, 2.18.15, 3.1.2, 3.2.4, 3.3.1, 3.6.2,
3.6.3, 3.8.3, 3.10, 3.10.1

compound sequence 2.22.1, 2.23.1

congruential generators

linear 2.25.1

linear feedback shift register 2.25.2

GFSR 2.25.3

quadratic 2.25.5

inverse 2.25.8

constant

Euler–Mascheroni List of symbols,
2.22.13,

constant type 2.8.1 Notes (i), 3.13.6

continued fraction expansion 1.8.24(VII),
1.8.28(III), 2.8.1, 2.8.2, 2.8.8, 2.9.13,
2.12.27, 2.17.4, 2.17.8, 2.18.22, 2.20.37,
2.23.7, 2.24.5, 2.24.6, 2.26.2, 2.26.7,
2.26.8, 3.4.5, 3.5.2, 3.7.2, 3.15.1, 3.15.2,
3.19.4

Champernowne’s type 2.18.22

regular Hurwitzian 2.12.27

coprime integers 1.8.28, 2.8.7, 2.8, 2.9.5,
2.14.2, 2.17.4, 2.18.14, 2.19.6, 2.20.15,
2.20.17, 2.20.20, 2.20.35, 2.20.36, 2.20.37,
2.22.4, 2.22.5, 2.23.3, 3.7.3, 3.13.2, 3.17,
3.18.1, 3.18.2, 3.18.3

crude search 1.11.17(I)

c.u.d. Preface, 2.3.11, 2.6.12

D

Dedekind sum 2.20.30, 3.7.1

dense sequence 1.8.1(IV), 1.8.23(VI),
1.10.11, 1.11.17, 2.3.15, 2.3.16, 2.3.17,
2.3.18, 2.3.22, 2.3.26, 2.3.27, 2.3.28,
2.6.1(III), 2.6.23, 2.6.24, 2.6.25, 2.6.28,
2.6.29, 2.6.30, 2.6.31, 2.6.32, 2.6.33,
2.6.34, 2.6.35, 2.6.36, 2.6.37, 2.7.1, 2.8.3,
2.8.4, 2.8.5(III), 2.8.6, 2.8.13, 2.8.18,
2.12.8, 2.12.16, 2.12.17, 2.12.20, 2.12.30,
2.12.32, 2.12.33, 2.12.34, 2.13.4, 2.13.5,
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2.13.6, 2.14.5, 2.14.8, 2.14.9, 2.15.7, 2.17,
2.17.1, 2.17.4, 2.17.7, 2.17.10, 2.19.15,
2.19.18, 2.20.9, 2.20.10, 2.20.11(VI),
2.20.15, 2.20.16, 2.20.17, 2.20.18, 2.20.19,
2.22.2, 2.22.3, 2.22.4, 2.22.5, 2.22.18,
3.3.2, 3.4.4, 3.7.6, 3.7.7, 3.7.11, 3.9.4,
3.13.5

relatively 1.8.14

density

(lower, upper) asymptotic 1.2, 1.5, 1.8.8,
1.8.23, 1.8.26, 2.2.1, 2.5.2, 2.9.7,
2.12.1, 2.12.2, 2.12.26, 2.13.9, 2.20.4,
2.20.6, 2.20.20, 2.20.24, 2.22.1, 2.22.2,
2.22.6

of a distribution 1.6, 1.8.24, 1.11.3,
2.3.24, 2.3.29, 2.3.30, 2.12.1, 2.20.26,
2.20.32, 2.22.17, 3.2.6, 3.2.7

derived set 2.17.8

diaphony 1.10.2, 1.11.5, 2.11.2, 3.18.3

Dickson polynomial 2.26.6

digital net 3.19, 3.19.1, 3.19.2

digital sequence 3.19.2

digital translation net 3.19.1

discrepancy 1.9

A–DN , see A–discrepancy

A–D∗
N , see star discrepancy A–D∗

N

DN , see extremal discrepancy

DN (θ) of {nθ}, see extremal discrepancy

DN (·, g) with respect to d.f., see ex-
tremal discrepancy

D∗
N , see star discrepancy

D∗
N (·, g), see star discrepancy

Dr, see Abel discrepancy

D∗
r , see Abel star discrepancy

D(g) of a d.f. 1.10.1, 1.10.10

DP
N , see partition discrepancy

D
(ψ)
N , see ψ–discrepancy

D
(q)
N 1.10.6, 1.11.3

DX
N relative to X 1.11.3, 1.11.6, 1.11.8,
1.11.14

DC
N relative to cubes 1.11.7

D
B(r)
N relative to balls 1.11.8

DK
N relative to kernel K 1.11.12

IN , see isotropic discrepancy

L2 1.8.9, 1.8.27, 1.9, 1.10.1, 1.11.4,
1.10.2, 1.10.3, 1.11.3, 1.11.4, 3.18.4

D
(2)
N (·, g) with respect to a d.f. 1.10.1,
1.10.10, 1.11.4, 1.10.9

D
(2)
N (·, H) with respect to a set H of
d.f.’s 1.10.9

relative to counting function 1.11.11

D
(p)
N weighted Lp 1.10.6

LN , see logarithmic discrepancy

Pα(L) for lattice rule L 3.17(II)

PN , see polynomial discrepancy

PN (xn, γk), see Hlawka discrepancy

φ∞(N), see non–uniformity

SN , see spherical–cap discrepancy

WS
(2)
N , see Wiener discrepancy of statis-
tical independence

discrete Fourier transform 2.26

dispersion 1.8.16, 1.10.11, 1.11.17

distribution

Abel 1.8.2, 1.8.6

completely u.d. 1.8.12

empirical 1.3, 1.11

Gauss 1.8.24

g–completely 1.8.12

g 1.8.1

H∞ 1.8.5

(λ, λ′) 1.8.11

just 1.9(0)

logarithmic 1.8.4

maldistribution 1.8.10

matrix 1.8.2, 1.8.3

s(N)–u.d. 1.8.12

weighted 1.8.2, 1.8.4

well 1.5, 2.8.1(XIV)

with respect to summation method 1.8.2

zeta 2.19.8

distribution function (d.f.) 1.6, 1.7, 1.8.1,
1.8.2, 1.8.3, 1.8.8, 1.8.9, 1.8.10, 1.8.11,
1.8.23, 1.8.24, 1.10.2, 1.10.9, 1.10.10,
1.11, 1.11.3, 1.11.11, 2.1.4, 2.2.21,
2.2.22,2.3.3, 2.3.4, 2.3.8, 2.3.10, 2.3.13,
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2.3.15, 2.3.19, 2.3.20, 2.3.21, 2.3.25,
2.6.19, 2.12.1, 2.12.2, 2.12.4, 2.12.16,
2.12.29, 2.13.1, 2.14.2, 2.17.1, 2.17.6,
2.18.3, 2.19.14, 2.19.19, 2.20.12, 2.22.6,
2.22.7, 2.22.8, 2.22.11, 2.23.3, 3.2.2, 3.2.7,
3.2.8, 3.7.3, 3.10.6, 3.11, 3.13.1, 3.13.2,
3.13.3, 3.13.5, 4.1, 4.2

absolutely continuous 1.6

A–d.f. 1.8.3(III)

asymptotic 1.8.1; see also asymptotic d.f.

discrete 1.6

face d.f. 1.11, 3.2.8, 4.1

lower and upper d.f. 1.7, 2.6.18, 2.12.1,
2.12.16

matrix 2.2.19

normal 2.19.14

one–jump 1.8.10, 2.2.22, 2.12.2, 2.22.10,
3.13.5 2.22.10, 3.13.5

of a sequence 1.7

singular 1.6, 2.20.11, 2.23.7, 2.24.8

continuous 1.6

mutually 2.24.8

spectral 3.11

step 1.3, 1.8.23, 2.6.18, 2.19.14, 3.13.5,
4.1.4.10, 4.1.4.12

multi–dimensional 1.11, 4.1, 4.1.4.15

dominating characteristic root of recurring
sequence 2.24.5, 2.24.6

double sequence 1.5

E

e 3.10.2

equilibrium measure 2.14.2

Euler product decomposition 3.6.4

exponential sequences 2.17, 3.10(
3
2

)n
2.17.1

en 2.17.2

πn 2.17.3(
p
q

)n
2.17.4

θn 2.17.5, 2.17.7, 2.17.8

ξθn, θun 2.17.6

αλnf(n) 2.17.9

an

bm
2.17.10

An = (neγ
1
n , neγ

2
n , . . . , neγ

n
n ) 2.17.11(

αλn+1, . . . , αλn+s
)
3.10.1, 3.10.2

(α1λ
n
1 , . . . , αsλ

n
s ) 3.10.3

(αqn, αnqn) 3.10.5(
pj(cN

p − np)1/q, j = 1, . . . , s
)
3.10.7

expansion

Fourier-Walsh 1.11.3

expansion of numbers 2.9.10, 2.10.5

Cantor expansion 2.11.4, 2.8.16

continued fraction 2.26.8

Ostrowski 2.8.1, 2.9.13, 3.5.2

Zeckendorf 2.9.11, 2.18.21, 2.9.12, 2.11.7

extremal discrepancy DN 1.8.9, 1.8.12,
1.8.15, 1.8.18, 1.8.19, 1.8.22, 1.8.31, 1.9,
1.10.1, 1.10.3, 1.10.4, 1.10.8, 1.10.11,
1.11.2, 1.11.4, 1.11.6, 1.11.7, 1.11.9,
1.11.13, 1.11.16, 1.11.17

extremal discrepancy DN (θ) of {nθ} 2.8.1,
1.11.9

DN (·, g) with respect to d.f. 1.10.1

F

face sequence 1.11, 1.11.4

Farey fractions 2.20.30, 3.7.1, 2.23.4

Fibonacci numbers 2.12.21, 2.9.12

generalized 2.18.21, 3.16.3

finite type 2.8.1(ii), 2.9.3, 2.9.11, 2.10.1,
3.4.1(V), 3.13.6

first digit problem, see Benford’s law

fractional part 3.2.4

function

additive 2.20, 2.20.1, 2.20.2, 2.20.3, 2.20.4

additive strongly 2.20

additive completely 2.20

almost equicontinuous 2.5.3

almost periodic 2.3.11, 2.4.2, 2.4.4

arithmetical 2.10.6, 2.20, 2.20.3, 2.20.6,
2.20.8, 2.20.17, 3.6.2, 2.17.9

autocorrelation 2.15.1(III)
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characteristic of a d.f. 1.6, 2.20.39, 2.10.4,
2.10.5, 2.20.3, 2.20.4, 2.20.39, 3.7.9

Carmichael 3.7.6.1

Chrestenson wh(x) 1.11.5 Notes

counting 1.2, 1.8.24, 1.8.27, 1.8.28,
1.8.29

generalized 1.11.11

multi–dimensional 1.11

distribution, see distribution function

Euler φ List of symbols, 1.8.23, 2.20.9,
2.20.11, 2.20.16.1, 2.20.16.2, 2.20.35,
2.23.1, 3.7.6, 3.7.6.1

Haar normalized 3.14.1(II)

integer part 2.16

multiplicative 2.20, 3.7.7

multiplicative strongly 2.20

multiplicative completely 2.20

of class H 2.12.31

periodic 2.3.11

q–additive 2.10

radical inverse γq(n) 2.11.2, 3.18.1

singular 2.20.11

sum–of–digits sq(n) 2.9

sum of divisors σ 3.7.6

universal exponent λ(n) 2.20.10

Walsh wh(x) 1.11.3, 1.11.5, 2.1.1, 3.14.1

G

g-completely distributed sequence 1.8.12

g-distributed sequence 1.8.1

Gauss sum 3.7.4

Gauss distribution 1.8.24(VII)

Gaussian integer 2.9.14, 3.5.3, 3.6.9

Gaussian unitary ensemble (GUE) matrices
2.20.26

general construction principle 3.19.1

generalized a.d.f. p. 1 – 32

generalized u.d. p. 1 – 32

generator matrix 3.19.1

generators

Blum – Blum – Shub 2.25.7

compound cubic 2.25.11

compound inverse congruential 2.25.9

discrete exponential 2.25.6

explicit inverse 2.25.10

GFSR 2.25.3

inverse congruential 2.25.8

linear congruential (LCG) 2.25.1

Naor – Reingold 2.25.6

power 2.25.7

quadratic congruential 2.25.5

recursive matrix 2.25.4

RSA 2.25.7

shift register 2.25.2

golden ratio 2.8.1(IX)

good lattice points (g.l.p.) 1.8.19, 3.15.1

xn =
(
ng1
N
, . . . , ngs

N

)
3.15.1

xn =
(
ng1,p
p

, . . . ,
ngs,p
p

)
3.15.1

xn =
(
n
p
, ng
p
, . . . , ng

s−1

p

)
3.15.1

3.15.3, 3.15.4 and similar ones

xn =
(
n
p
, n

2

p
, . . . , n

s

p

)
3.15.5

xn =
(
n
p2
, n

2

p2
, . . . , n

s

p2

)
3.15.5

xn,k =
(
k
p
, nk
p
, . . . , n

s−1k
p

)
3.15.5

xn =
(

n
Fm

,
nFm−1

Fm

)
3.16.1

3.16.2, 3.16.3

growth exponent 2.18.9

H

Halton sequence 3.18.1

Hammersley sequence 3.18.2

Hardy field 2.6.35, 2.6.36, 2.13.5

Hardy’s logarithmico–exponential functions
2.6.35

hereditary property 2.2.1

Hlawka discrepancy PN (xn, γk) 1.10.4

homogenously u.d. sequence 1.8.25

H∞-u.d. 1.8.5

I
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identification of two d.f.’s 1.6, 1.11

independence

statistical 1.8.9, 1.10.3

inequality

Erdős-Turán 1.9.0.8, 1.10.1, 1.10.7,
1.10.8, 1.11.2, 1.11.8, 2.14.2, 2.17.11,
2.23.7.1, 2.26.7, 4.1.4

Erdős-Turán-Koksma 1.9(IV), 1.10.8,
1.11.2.1, 1.11.2, 1.11.10, 1.11.15

LeVeque 1.9.0.7

infinite type 2.8.1(ii)

integer part sequences 2.16

α[θn] 2.16.1

[αn]γn 2.16.2

α[βn]2 2.16.3

[αn][βn]γ 2.16.4

[α1n][α2n] . . . [αkn]γ 2.16.5

α1n[α2n . . . [αk−1n[αkn]] . . . ] 2.16.6

θ[nc] 2.16.7

[nc](logn)α 2.16.8

((a1[b1n
v1 ] + c1)

u1 , . . . , (as[bsn
vs ] + cs)

us)
3.9.1

3.2.1, 3.2.4, 3.13.1, 3.13.2

irrational numbers 3.8.3, 3.9.2, 3.9.4

irregularities of distribution 1.9, 1.11.2,
1.11.8, 1.11.13

isotropic discrepancy IN 1.11.9, 3.4.1

iterated sequences 2.7

f (n)(x) 2.7.1

T
(n)
y (x) 2.7.3

J

Jordan arc 2.14.2

Jordan (non–)measurable 1.8.28(V),
1.11.3(Vc), 2.1.1, 2.5.1

K

Koksma classification 2.8.1

Kronecker sequence 3.4.1

Kloosterman sum 3.7.2 2.20.31,2.20.32

Kolmogorov – Smirnov statistic test 1.11.2

L

lattice rule 1.8.20, 3.17

rank 3.17

invariants 3.17

figure of merit 3.17

node set 1.8.20, 3.17

Legendre symbol 2.26.6

Lehmer sequence 2.22.5, 2.18; p. 2 – 195

L2 discrepancy criterion 2.1.3, 2.1.5

lemma

van der Corput 2.17.11

limit law 1.8.1

limiting distribution 1.8.1

linearly independent

over Q 3.4.1, 3.13.3, 3.12.1

logarithmic

discrepancy LN 1.10.7, 2.12.12, 2.12.31,
2.15.3

means 1.5(V), 1.8.4, 1.10.7, 2.12.1(V),
2.12.12, 2.12.31, 2.19.8(II), 2.19.9

potential 1.10.10

logarithmic sequences 2.12

logn 2.12.1

log(k) n 2.12.2

log2(2n− 1) 2.12.3

1 + (−1)

[√[√
log2 n

]]{√[√
log2 n

]}
2.12.4

n log(k) n 2.12.5

n2 log log n 2.12.6

α logτ n 2.12.7

α logτ n 2.12.8

logτ (αm+ βn) 2.12.9

nσg(logn) 2.12.10

n2 logn 2.12.11

αnσ logτ n 2.12.12

αnk logτ n 2.12.13

αn logτ n 2.12.14

αn2 logτ n 2.12.15
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log(n logn) 2.12.16

log1+γ n cos(2πnα) 2.12.18

n logn cos(2πnα) 2.12.19

nβ(logγ n) cos(2πnα) 2.12.20

logFn 2.12.21

logb Fn 2.12.22

ec log
τ n 2.12.23

logn! 2.12.25

log10 n! 2.12.26

log |xn|, xn+2 = an+2xn+1 + bn+2xn
2.24.4

log pn(θ), log qn(θ) 2.12.27

[nc](logn)α 2.16.8(
log
(
n
0

)
, log

(
n
1

)
, . . . , log

(
n
n

))
2.12.28

1+(−1)[log log n]

2
2.12.29

1
n

∑n
i=2

1+(−1)[log log i]

2
2.12.30

αn+ β logn 2.12.31

f(logn) 2.12.32

logq sn 2.12.34

αnβ logγ n logδ(logn) 2.12.17

(logn) cos(nα) 2.13.5

cos(n+ logn) 2.13.7

3.13.1, 3.13.3, 3.13.4

logarithmically weighted a.d.f. 1.8.4

low discrepancy sequence 1.8.15

M

Mahler classification 3.10.2

maldistributed sequence 1.8.10

matrix discr. A–DN , see A–discrepancy

matrix u.d. sequence 1.8.30

measure density 1.5

Mendel’s laws 1.12

mixing of terms of sequences 2.3.13

modulus of continuity 1.9.0.5, 1.11.3(III)

moment problem 2.2.21

Monte Carlo method 1.11.3(VI)

N

non–uniformity φ∞(N) 1.11.13, 1.11.14,
2.12.16

normal number 1.8.24, 2.4.2, 2.18, 2.18.1,
2.18.3, 2.18.4, 2.18.5, 2.18.6, 2.18.7,
2.18.8, 2.18.9, 2.18.10, 2.18.12, 2.18.13,
2.18.14, 2.18.15, 2.18.18, 2.18.19, 2.18.20,
2.18.21, 3.2.4

absolutely 1.8.24, 2.18, 2.18.1

Bernoulli 1.8.24(V)

continued fraction 1.8.24(V), 2.18.22

jointly 1.8.24(V)

Markov 1.8.24(V)

matrix 1.8.24(V)

simply 1.8.24

α∗ = 0.B∗
1B

∗
2 . . . 2.18.5

x =
∏∞
n=1

(
1 + εn

Pn

)
2.18.6

α = 0.[f(1)][f(2)] . . . 2.18.7

α = 0.f(2)f(3)f(5)f(11) . . . 2.18.8

α = 0.[|f(a1)|][|f(a2)|][|f(a3)|] . . . 2.18.9
α
q−1

2.18.12

α =
∑∞
n=1 p

−nq−p
n

2.18.13

α =
∑∞
n=0 p

−λnq−µn 2.18.14

α =
∑∞
n=1

[q{f(n)}]
qn

2.18.15

normal in the real base 1.8.24(IV)

normal k–tuple 1.8.24(V)

normal order 2.3.23

number–theoretic sequences

additive 2.20.1, 2.20.2, 2.20.3, 2.20.4,
2.20.7

σ(n)
n

2.20.9
n

λ(n)
2.20.10

φ(n)
n

2.20.11
n

π(n)
2.20.12

σf (an)

f(an)
, f(an)
ϕc
f
(an)

,
σf (an)

ϕc
f
(an)

2.20.16

σ(an)ϕ(an)

a2n
2.20.17

log p
ordp(n)

logn
2.20.18

log 2H(n)
logn

, log 2 h(n)
logn

2.20.19

ω(n)θ 2.20.21

Ω(n)θ 2.20.22

ωE(n)θ,ΩE(n)θ 2.20.23
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αγ(n) 2.20.25
bγ(n)
2π

log bγ(n)
2πeα

2.20.28

xn = an∗+bn
m

, xn =
ap∗n+bpn

m
2.20.34

πh(−n)
2
√
n

2.20.39

number

continued fraction normal, see normal
number

normal, see normal number

pseudorandom 1.8.22

P.V. 2.17.8

quasirandom 1.8.15

random 1.8.21

Salem 2.17.7

nth root

O

open problems 1.8.15, 1.8.27, 1.9(VII),
1.11.2.5, 1.11.2.6, 1.11.3(VI), 2.2.2,
2.2.21, 2.3.24, 2.3.25(I), 2.3.25(II), 2.5,
2.5.2, 2.6.35, 2.8.5, 2.8.12, 2.9.1(II),
2.11.2(VII), 2.13.9, 2.14.8, 2.15.1, 2.17.1,
2.17.2, 2.17.3, 2.17.4, 2.17.4, 2.17.8(II),
2.18.1, 2.20.9(II), 2.20.12, 2.20.32(Notes),
2.20.35, 2.22.10, 2.24.2, 2.24.10, 2.26.8,
3.4.3, 3.7.2(VIII), 3.13.5, 3.21.5(II)

Ostrowski expansion 2.8.1, 2.9.13

P

ψ–discrepancy D
(ψ)
N 1.10.1

partition discrepancy DP
N 1.11.14

periodic Bernoulli polynomials 2.1.1

π 3.10.2

Poincaré set 2.2.1

Polaczek polynomial 2.14.2

polynomial

Fourier 3.15.1

polynomial discrepancy PN 1.10.4, 1.11.16

polynomial sequences

p(n) 2.14.1
argzn
2π

2.14.2

ϕ1, ϕ2, . . . , ϕn 2.14.3

An = (xn,1, xn,2, . . . , xn,n) 2.14.4
q(n)

pk
2.14.6

P (n) = γ1n
α1 + · · ·+ γqn

αq 2.14.7

f(P (n)) 2.14.8

sin(P (n)), cos(P (n), tan(P (n)) 2.14.9

(λ1p1(n)− η1, λ2p2(n)− η2) 3.8.1

(p(n+ 1), . . . , p(n+ s)) 3.8.3

power sequences 2.15

αnσ 2.15.1

(αm+ βn)σ 2.15.2

αn+ βnσ 2.15.3

α
√
n 2.15.4(

k
√

n
1
, k
√

n
2
, . . . , k

√
n
n

)
2.15.5

(cNp − np)1/q 2.15.6

({(an+ b)α + nλ}+ {(an+ b)α − nλ})/2
2.15.7

((a1[b1n
v1 ] + c1)

u1 , . . . , (as[bsn
vs ] + cs)

us)
3.9.1(

θ1n
s, θ2n

s−1, . . . , θsn
)
3.9.2

(α1n
τ1 , . . . , αsn

τs) 3.9.3

(α
√
n, βn) 3.9.4

prime numbers involving sequences

pnθ 2.19.1

pαn 2.19.2

θp
3/2
n 2.19.3

q(pn) 2.19.4

qc(pn) 2.19.5

(log pn)
σ 2.19.7

xn =
∑k−1
i=0 ci log pn+i 2.19.8

αpn + β log pn 2.19.9

s(pn)θ 2.19.10

αf(pn) 2.19.11

f(pn) 2.19.12

pm
pn

, pm+1
pn+1

, p
(2)
m

p
(2)
n

2.19.15

pαm

p
β
n
,
ppmm
p
pn
n

,
pαm
m

p
αn
n

2.19.18

pn
n

mod 1 2.19.19

xn = (pα1
n , . . . , pαs

n ) 3.6.1

xn =
(
f(n+ 1)qn+1, . . . , f(n+ s)qn+s

)
3.6.2

xn
2π

(log p1, log p2, . . . , log ps) 3.6.4
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xn = (n
√
p1, . . . , n

√
ps) 3.6.5

x
p
=
(
x1
p
, . . . , xs

p

)
3.6.10(

a
p
, aζ
p
, . . . , aζ

s−1

p

)
3.6.11

xn =
(
pj(cN

p − np)1/q, j = 1, . . . , s
)

3.10.7

xn =
(
n
p2
, n

2

p2
, . . . , n

s

p2

)
3.15.5

n
p
gp 3.15.1

2.19.14, 2.19.16, 2.19.17, 3.6.3, 3.6.8

pseudorandom numbers (PRN) 1.8.12,
1.8.21, 1.8.22, 2.8.1(XI), 2.25, 2.25.2,
2.25.3, 2.25.5, 2.25.8, 2.26, 3.11, 3.11.1,
3.11.2, 3.20.1

P.V. numbers 2.17.8

Q

quasi–Monte Carlo method Preface, 1.8.20,
1.11.3(VI), 1.11.17, 1.12, 3.6.6, 3.6.7

quasirandom numbers (QRN) 1.8.15

quasirandom search 1.11.17(I)

R

radical inverse function 2.11.2

random numbers 1.8.21, 1.8.22, 2.26

ratio sequences 1.8.23, 2.22.2, 2.22.6, 2.22.7,
2.22.8, 2.19.16; p. 1 – 33

rational sequences 2.22.1, 2.22.4, 2.22.18
pn+1
qn

2.22.14{
y0
m

}
,
{
y1
m

}
, . . . ,

{ yN−1

m

}
2.22.16(

1
q
, a2
q
, . . . ,

aφ(q)

q

)
2.23.2

3.6.8, 3.15.1

recurrent set 2.2.1

recurring sequence

rn+s = as−1rn+s−1 + · · ·+ a1rn+1 + a0rn
2.24.1

xn = log10 |rn| 2.24.3, 2.24.4
xn = logb rn 2.24.5
logb r1
logb rN

, logb r2
logb rN

, . . . , logb rN
logb rN

2.24.6

reduced polynomial 2.17.8(XII)

Riemann integrable functions 2.1.1

Riemann zeta function 2.20.25, 2.20.26,
2.20.27, 2.20.28, 2.20.29, 3.7.11, 3.7.10

Roth’s phenomenon, see irregularities of dis-
tribution

S

Sato-Tate measure 2.20.32, 2.20.39.2

set of distribution functions Preface

series

Fourier 2.3.11, 2.26.3, 3.15.1

Walsh 3.19.4

sequence

Abel g–distributed 1.8.6

almost constant 2.5.2(I), 2.5.3

almost periodic 2.4.2, 2.20.1, 2.26.4

almost u.d. 1.5, 2.3.14, 2.5.1, 2.8.1(XIII),
2.9.14, 2.19.8, 2.23.6, 3.5.3

mod ∆ 1.5

eutaxic 1.8.27

badly distributed 1.8.10(II)

binary, see binary sequences

block, see block sequences

Cauchy 1.8.8

Champernowne 2.26.1

completely dense, see completely dense
sequences

completely u.d., see completely u.d. se-
quences

double 1.5

D–sequence 2.20.20

DR–sequence 2.11.1(II)

equi-distributed 1.4

f–invariant distributed 2.5.4

φ–convergent 1.8.3

Faure 3.19.2(II)

generalized u.d. p. 1 – 32

g-completely distributed 1.8.12

g-distributed 1.8.1

Halton Preface, 3.18.1

permuted (scrambled) 3.18.3

Hammersley 1.8.15, 3.18.2
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Hartmann u.d. 1.8.33

h–u.d. 1.5

H∞-u.d. 1.8.5

homogenously u.d. 1.8.25

iterated 2.7

Kronecker 3.4.1

(λ, λ′)-distributed 1.8.11

Lehmer 2.18, 2.22.5

Lp good universal 1.8.34

low discrepancy 1.8.15

low dispersion 1.8.16

logarithmically weighted 1.8.4

maldistributed 1.8.10

matrix distributed 1.8.3

Niederreiter 3.19.3

Niederreiter – Xing 3.19.7

of blocks 1.8.15, 1.8.23, 1.8.24, 1.8.26,
1.8.28, 2.3.9, 2.3.14, 2.6.28, 2.12.28,
2.14.4, 2.17.11, 2.19.6, 2.19.16, 2.20.7,
2.20.31, 2.20.32, 2.20.35, 2.20.36,
2.20.38, 2.22.1, 2.22.6, 2.22.7, 2.22.9,
2.22.10, 2.22.11, 2.22.12, 2.22.17,
2.23.1, 2.23.3, 2.23.6, 2.24.8, 2.24.9,
3.3.1, 3.6.10, 3.6.11, 3.7.2, 3.7.3, 3.7.4,
3.7.5

paperfolding 2.26.4

period–doubling 2.26.5

Poissonian 1.8.29

P -rational 2.22.18

pseudorandom 1.8.22

quasirandom 1.8.15

random 1.8.21

ratio 2.22.2

rational 2.22.1

reduced rational 2.23.1

recurring 2.24.1

strange 2.24.10

relatively dense universal 1.8.14

Roth 3.18.2

Rudin – Shapiro 2.26.3

scrambling 2.5.5

s(N)-u.d. 1.8.12

of sets 1.8.23

Sobol’ 3.19.5

statistically convergent 1.8.8

statistically independent 1.8.9, 1.10.3,
2.4.3

strong Benford 2.12.26(V)

sum–of–digits 2.9, 3.5

(t,m, s)–net 1.8.17

(t, s)–sequence 1.8.18

Thue – Morse 2.26.2

triangular array 1.8.23

uniformly distributed (u.d.) 1.4

u.d. mod ∆ 1.5

u.d. in R 1.5

uniformly quick (u.q.) 1.8.28

almost 1.8.28

van der Corput γq(n), Preface, 2.11.1

(γq(n), γq(n+ s)), 3.18.1.3

(γq(n), γq(n+ 1), γq(n+ 2), 3.18.1.4

(γq(n), γq(n + 1), γq(n + 2), γq(n + 3),
3.18.1.5

van der Corput – Halton, cf. Halton se-
quence

weak Benford 2.12.26(V), 2.19.8(II)

weighted g–distributed 1.8.4

well distributed 1.5

well distributed of integers 2.8.1

Zaremba 2.11.5

two–dimensional 3.18.4

shift–net 3.19.1

signed Borel measure 1.10.10

simply normal number, see normal number

singular d.f. 2.20.11

signed Borel measure 1.10.10

spectral test 1.11.18

spectrum

dispersion 2.8.1

Fourier – Bohr 2.3.11, 2.4.4, 2.9.10, 3.11,
3.11.1, 3.11.2

Markov (Markoff) 1.8.10, 1.8.23, 2.8.1,
2.12.2, 3.6.11, 3.13.3
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of a sequence 2.4.1, 2.4.2, 2.4.4, 2.9.11,
2.10.3, 2.16.3, 2.20.1

Wiener 3.11

spherical–cap discrepancy SN 1.11.10

square–root spiral 2.13.12

star discrepancy D∗
N 1.8.15, 1.8.24, 1.9,

1.11.2, 1.11.3, 1.11.4, 1.11.5, 1.11.6

star discrepancy D∗
N (·, g) with respect to

a d.f. 1.10.1, 1.11.4

star discrepancy A–D∗
N 1.10.5

step distribution function 1.2, 1.8.23

subsequence 2.4

subdivision 1.5

summation formula

Euler 4.1.4

Euler-McLaurin 4.1.4

Sonin 4.1.4

summation method 1.8.2

Abel 1.10.8

matrix 1.8.3

sum–of–digits sequences 2.9, 3.5

sq(n)θ 2.9.1

sq([nα])θ 2.9.2

s
(d)
q (n)θ 2.9.3∑m
j=1 αj(sqj (n))

2 2.9.5

α1sq(n)+α2sq([n
√
2]+α3sq([n

√
3])) 2.9.6

α1sq(h1n) + α2sq(h2n) 2.9.7

α1sq(n) + α2ω(n) 2.9.8

sQ(n)θ 2.9.10

sG(n)θ 2.9.11

σα(n)θ 2.9.13

sq(n)γ + σα(n)θ 2.9.13

sq(zn)θ 2.9.14

(arg zn, {sq(zn)θ}) 3.5.3
σα(n)θ 3.5.2

xn = (sq1(n)θ1, . . . , sqs(n)θs) 3.5.1

T

theorem

Cauchy – Stolz (Cesàro) 4.1.4, 4.1.4.19

Erdős – Kac 2.20.7

Erdős – Turán 1.9.0.8, 1.10.1, 1.10.7,
1.10.8, 1.11.2, 1.11.8, 2.14.2, 2.17.11,
2.23.7.1, 2.26.7, 4.1.4

Erdős – Turán – Koksma 1.9(IV), 1.10.8,
1.11.2.1, 1.11.2, 1.11.10, 1.11.15

Erdős – Wintner 2.20.3, 2.20.4

Fejér 2.2.10, generalized 2.6.1

Helly

first 4.1.4.12

second (Helly – Bray) 4.1.4.13

multi–dimensional 4.1.4.15

Koksma 1.9.0.3

Koksma – Hlawka 1.11.3.1

Kubilius – Shapiro 2.20.7

Müntz 1.10.4

Lebesgue on dominant convergence
4.1.4.16

LeVeque 1.9.0.7, 1.11.2.3

mean value

first 4.1.4.17

second 4.1.4.18

Niederreiter 1.11.3, 2.2.8

Schmidt 1.9.0.6

Roth 1.11.2.7, 1.11.4.1, 1.11.4.2

Sándor 2.8.1.1

Schmidt 2.14.2

Szegő 2.14.2

van der Corput 2.2.1

Weyl 1.9.0.2, 1.11.1.3

Wiener – Schoenberg 2.1.4

transform

Fourier 2.20.26, 2.26

transcendence measure 3.10.1, 3.10.2,
2.8.1(V)

transcendental number 3.10.1, 3.10.2, 3.10.2

three–gaps theorem 2.8.1(VII), 2.8.19

triangular array p. 1 – 32

trigonometric sequences

sinn 2.13.1

nθ + sin 2π
√
n 2.13.2

n2θ + sin 2π
√
n 2.13.3
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n cos(n cosnα) 2.13.4

logn cosnα 2.13.5

(cosn)n 2.13.6

cos(n+ logn) 2.13.7
√
n+ sinn 2.13.8

Brn cos(nx− α) 2.13.9∫ n
1

(∫ x
0

sin y
y

dy
)

dx√
x
2.13.10

√
n+ sin 1

n
2.13.11

(cos 2πnω1, cos 2πnω2) 3.12.1

type of numbers 2.8.1 Notes (i),(ii), 3.13.6

U

uniformly

distributed (u.d.) 1.4

maldistributed (u.m.) 3.13.3

distributed mod ∆ 1.5

distributed with respect to I 1.5

distributed with respect to R 1.5

H∞ 1.8.5

h–u.d. 1.5

quick (u.q.) 1.8.28

u.d.p. 2.5.1

V

van der Corput

difference theorem 2.2.1, 3.11
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in base q 2.11.2

generalized 2.11.3
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Vitali 1.11.3(II), 1.11.3.1
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Walsh’s functions 2.1.1

weak limit 1.11

weighted
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u.d. 2.6.3

discrepancy 1.8.2, 1.10.7, 2.6.3,
2.12.31(IV)

extremal 1.10.6, 2.6.3(II), 2.7.2,
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Lp 1.10.6, 1.11.3(VIb), 2.6.3, 3.4.3

star 1.10.6, 1.10.7

well distributed (w.d.) sequence 1.5

Weyl’s criterion 2.1.2

Weyl’s limit relation Preface, 2.1.1

Wiener discrepancy of statistical indepen-
dence WS

(2)
N 1.10.3, 1.11.4

Wiener spectrum 3.11

Z

Zaremba conjecture 3.15.2

Zeckendorf expansion 2.9.11, 2.18.21, 2.9.12,
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