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Abstract

One of the central challenges in actuarial mathematics is the accurate modeling of the
number of claims and the severity of claim amounts. This thesis addresses this challenge
by advancing the recursive approach to the computation of aggregate claim amounts
within the collective risk model, with a particular focus on the Schröter recursive family
of discrete probability distributions.

We investigate the theoretical structure, feasible parameter regions, and estima-
tion techniques of the Schröter recursive family, and propose extensions that enhance
its applicability to modern actuarial problems. Specifically, we introduce a simple
and computationally efficient parameter estimation method for the Schröter family,
suitable for use as initial values in optimization algorithms required for maximum like-
lihood and other complex estimations. Furthermore, we identified new members of the
Schröter family, extended the recursion framework to truncated settings, and proposed
a generalized Schröter Rt(a, b, c) family along with its associated class of distributions.

The study also presents the truncated Schröter recursive algorithm, designed to
model truncated claim amounts more accurately, and validates its performance us-
ing simulated and real-world data. To address the modeling of aggregate approved
claim amounts, we derive an infinite-sum representation combining the zero-truncated
Poisson and shifted exponential distributions and employ saddlepoint approximation
methods following Daniels [27] and Wang and Sobrero [124] to obtain analytical ap-
proximations of the aggregate approved claim distribution.

Additionally, we explore the convolution of truncated and non-truncated Poisson
distributions from the Schröter class and derive the corresponding probability mass
function for Z = K + Ktr, along with its statistical properties and a moment-based
estimation procedure. Simulation results confirm the accuracy and efficiency of the
proposed methods.

In conclusion, this thesis extends the theoretical foundations of the Schröter recur-
sive framework, develops novel computational algorithms for aggregate claim modeling,
and provides practical estimation and approximation tools applicable to actuarial risk
and insurance data analyses.
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Abstrakt

Jednou z hlavných výziev v aktuárskej matematike je presné modelovanie počtu poist-
ných udalostí a závažnosti poistných plnení. Táto dizertačná práca sa touto výzvou za-
oberá prostredníctvom rozšírenia rekurzívneho prístupu k výpočtu súhrnných poistných
plnení v rámci kolektívneho modelu rizika, so zvláštnym zameraním na Schröterovu
rekurzívnu triedu diskrétnych rozdelení pravdepodobnosti.

Skúmame teoretickú štruktúru, možné hodnoty parametrov a metódy odhadu parametrov
v Schröterovej rekurzívnej triede rozdelení a navrhujeme rozšírenia, ktoré zvyšujú jej
uplatniteľnosť pri riešení moderných aktuárskych problémov. Konkrétne predstavu-
jeme jednoduchú a výpočtovo efektívnu metódu odhadu parametrov v Schröterovej
triede, vhodnú na použitie ako počiatočné hodnoty v optimalizačných algoritmoch
potrebných pre metódu maximálnej vierohodnosti a iné zložité odhady. Ďalej iden-
tifikujeme nových členov Schröterovej triedy, rozširujeme rámec rekurzie na useknuté
rozdelenia a navrhujeme zovšeobecnenú Schröterovu triedu Rt(a, b, c) rozdelení.

Štúdia taktiež predstavuje Schröterov rekurzívny algoritmus pre useknuté rozde-
lenia, navrhnutý na presnejšie modelovanie useknutých poistných plnení, a overuje
možnosť jeho aplikovania pomocou simulovaných aj reálnych dát. Na riešenie mod-
elovania agregovaných schválených poistných plnení odvádzame nekonečnú sumárnu
reprezentáciu kombinujúcu Poissonovo rozdelenie useknuté v nule a posunuté expo-
nenciálne rozdelenie, a používame metódy aproximácie pomocou sedlového bodu podľa
Daniels [27] a Wang and Sobrero [124] na získanie analytických aproximácií rozdelenia
agregovaných schválených poistných plnení.

Okrem toho skúmame konvolúciu useknutých a neuseknutých Poissonových rozde-
lení zo Schröterovej triedy a odvodzujeme príslušnú pravdepodobnostnú funkciu pre
Z = K +Ktr, spolu s jej štatistickými vlastnosťami a odhadmi založenými na momen-
toch. Výsledky simulácií potvrdzujú presnosť a efektívnosť navrhovaných metód.

Na záver táto dizertačná práca rozširuje teoretické základy Schröterovho rekurzívneho
rámca, vyvíja nové výpočtové algoritmy pre modelovanie agregovaných poistných plnení
a poskytuje praktické nástroje na odhad a aproximáciu, použiteľné pri analýze ak-
tuárskeho rizika a poisťovacích dát.
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CHAPTER 1

INTRODUCTION AND THEORETICAL FOUNDATIONS OF
THE COLLECTIVE RISK MODEL

In this chapter, we introduce the concept of the collective risk model and its theoretical
foundation. We begin with an overview of the study and the definition of the collective
risk model. Furthermore, we examined the convolution approach and discussed its
significance and limitations in computing aggregate claim amounts.

1.1 Background of the Study
The computation of aggregate claim amounts of a collective risk model plays significant
roles in insurance companies. Recently, the introduction of a new capital requirement
under the Solvency II framework for European Union member states (Baranowska-
Zając [12] and Gisler [47]) has substantially impacted computational methods for ag-
gregate claim amounts in insurance companies. Determining premiums and profits is
a crucial and interesting aspect of the insurance sector. Accurate premium setting and
profit estimation depend on the reliable computation of aggregate claim amounts and
the implementation of effective risk classification procedures.
The profit made by an insurance company depends on the balance between the ag-
gregate claim amounts paid and the premium payments received. The distribution of
aggregate claim amounts plays a crucial role in pricing insurance portfolios, as it en-
ables insurers to assess the likelihood that the total claim amount will exceed or remain
below a certain threshold. This information is essential for determining appropriate
premium levels and estimating potential claims or risk uncertainty.
Consequently, insurers seek accurate estimates of aggregate claims of a collective risk
model for informed decision-making about competitive pricing, setting risk margins,
profit maximization, and ensuring financial reserves for future uncertainties and invest-
ments.

In the collective risk model, the distribution of aggregate claim amounts is derived
by convolving the distributions of the number of claims and the claim severities. How-
ever, one of the key challenges is accurately modeling the aggregate claim amounts
distribution when claim severities are concentrated on nonnegative integers and the
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claim frequency and severities are discrete random variables.
A common method for modeling aggregate claim distributions involves fitting appro-
priate distributions separately to the number of claims and the claim severities. For
instance, Hogg and Klugman [57] discussed the preliminary statistical problem of fit-
ting probability distributions to insurance data on individual losses and examining the
tail behavior, particularly for small and large numbers of losses. Similarly, Packová
and Brebera [84] investigated approaches for selecting probability models that accu-
rately capture insurance losses, as well as their appropriate use in risk management,
and demonstrated the application of these methods to claim amount data in motor
third-party liability insurance. Furthermore, Several studies, such as Gray and Pitts
[49]; Pacáková and Gogola [83]; Jindrová and Pacáková [60]; Dzidzornu and Minkah
[35]; Yousof et al. [132]; Ieosanurak and Moumeesri [59], and Warren [127] have explored
various approaches for fitting distributions to claim amounts data.

Nevertheless, this approach may be limited in certain cases, as it does not always
fully account for the convolution structure that characterizes the distribution of ag-
gregate claim amounts. An alternative is the collective risk model, which models the
aggregate claims as a compound distribution by jointly considering both the number of
claims and the severity of each claim. The compound Poisson and compound negative
binomial distributions are widely used within this framework to model aggregate claim
amounts via the convolution method. Theoretical and practical aspects of these models
have been discussed and explored in several studies, including Johnson et al. [62]; Ben-
ing and Korolev [17]; Goffard et al. [48], and Meraou et al. [77]. Moreover, Wimmer
and Altmann [130] provides numerous examples of these distributions in insurance
applications.

Although the convolution approach is unambiguous from a theoretical perspective,
its practical implementation for computing aggregate claim amounts for a large number
of claims is complex, as it requires the computation of several convolutions of the
conditional distribution of the number of claims and claim severities. This problem
has led to several alternative methods for computing aggregate claim amounts of a
collective risk model. One of these approaches is the recursive method, which assumes
that the distribution of claim amounts is discrete and can compute aggregate claims
recursively as the number of claims increases. It does not involve computing several
convolutions of the conditional distribution of the number of claim events and requires
far less computer time (Sundt and Vernic [115]).

The study of the recursive approach for the computation of aggregate claim amounts
of a collective risk model has a rich foundational history that dates back to the early
work of Stroh [112] and Tilley [121], where the Laplace transform of the aggregate loss
distribution was inverted in a similar approach to the characteristic function inversion
method studied in Mong [79] to derive the recursive model.

Since the 1980s, actuarial research has increasingly focused on recursive methods
for evaluating aggregate claim amount distributions. Building on the probability gen-
erating function (PGF) and recurrence relation originally introduced by Adelson [1],
Panjer [87] advanced the field by employing these tools, together with the inverted
Laplace transform, to develop a recursive model for aggregate claim amounts and to
provide a comprehensive discussion of its applications. Despite its contributions, the
1980 formulation was limited in scope: it applied only to specific count distributions,
most notably the Poisson, and lacked a unified recursive framework across related dis-
tributional families. Moreover, its reliance on Laplace transform inversion introduced
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analytical and numerical challenges, thereby reducing computational efficiency and hin-
dering practical implementation for more complex severity models. These limitations
highlighted the need for a more general and tractable recursive approach. In response,
Panjer [88] addressed this gap by introducing a general recursion for the (a, b, 0) family
of claim number distributions, which encompasses the Poisson, binomial, and nega-
tive binomial cases, while accommodating arbitrary claim amount distributions within
a single, elegant formulation. This breakthrough, now widely known as the Panjer
recursion formula or exact formula, represents a cornerstone result in collective risk
theory.

Although Panjer [88] provided a major breakthrough by deriving a unified recursion
for the (a, b, 0) family, its scope was limited to three count distributions, which include
the Poisson, binomial, and negative binomial, whose probabilities satisfy a simple linear
recursion. While this result offered substantial computational efficiency and elegance,
it excluded a wide range of claim frequency models that do not fall within the (a, b, 0)
structure, such as mixed, overdispersed, or other non-standard distributions that often
arise in practice. Recognizing this limitation, Panjer and Willmot [86] expanded the
recursive approach to a broader class of frequency distributions in which successive
probabilities can be expressed as ratios of polynomials in descending factorial form,
which finds useful applications to the problem of computing the probability of ruin in
a particular mixed Poisson process in Hesselager [54]. This generalization remarkably
expanded the applicability of recursive methods for compound distributions, rendering
them suitable for a more realistic and flexible set of actuarial models.

Furthermore, while Panjer and Willmot [86] work was a big step forward, the result-
ing formulas were without limitation, as it is often cumbersome and lacked the unifying
simplicity of the (a, b, 0) class. Moreover, this framework still excluded many distribu-
tions of practical and theoretical interest and could suffer from numerical inefficiencies
in computation. To address these limitations, Schröter [103] introduced a systematic
family of recursive distributions that generalized the earlier approaches, providing a
more flexible and unified foundation for the application of recursive methods in ag-
gregate claims modeling. Despite its usefulness, it is not free from several challenges.
This study makes a substantial contribution to the literature on the Schröter recursive
method and addresses associated challenges.

In this thesis, we investigate the Schröter family of discrete distributions introduced
by Schröter [103], together with their truncated variants. The study begins with an
examination of the parametric space of this family of distributions. Specifically, the
parametric space problem concerns the identification of restricted regions for the pa-
rameters in the recursive formula proposed by Schröter [103] for finite and infinite cases
of n, the asymptotic properties of the distributions, and the estimation of their param-
eters. Within this context, we analyze the Schröter recursive algorithm and propose
an alternative version based on truncation, designed to facilitate the computation of
aggregate claim amounts when individual claims are subject to truncation.

Beyond this, the thesis develops and analyzes a novel compound distribution based
on the Schröter family, along with its saddlepoint-based formulation, for modeling
aggregate claim approvals in the insurance industry. This involves deriving the distri-
bution of approved claims modeled as a zero-truncated Poisson-Binomial distribution
with shifted exponential severity, establishing closed-form expressions for the prob-
ability mass and density functions, and addressing the computational challenges of
accurate and efficient estimation. To this end, saddlepoint approximation techniques
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are employed, supplemented by simulation-based validation. Additionally, the work
explores the convolution of truncated distributions from the Schröter family and their
potential applications. The thesis is organized into five chapters, each addressing a
distinct component of the study.

Chapter 1 introduces the fundamental concepts underpinning the thesis. It provides
an overview of the collective risk model, the convolution approach, and truncated
distributions, while situating the study within the broader state of the art and outlining
key challenges.

Chapter 2 focuses on recursive approaches, particularly the Panjer and Schröter
recursions, and the associated families of distributions. It also examines recent devel-
opments within this framework, as well as the challenges, with particular emphasis on
the parametric space problem for finite and infinite cases of n and parameter estima-
tion problem for the Schröter family. The contribution of this chapter is based on our
joint work in Agu et al. [4].

Chapter 3 is devoted to the truncated Schröter family and the corresponding
recursive algorithm. It develops both theoretical approaches for deriving the truncated
Schröter recursion and numerical methods for evaluating the efficiency of the proposed
algorithm. This chapter is based on the work of [2].

Chapter 4 investigates the compound distribution infinite-sum representation de-
fined by the zero-truncated Poisson-Binomial with shifted exponential severity for mod-
eling aggregate claim approvals. The analysis incorporates the truncated Poisson distri-
bution from the Schröter family, offering new insights into the mathematical modeling
of aggregate approved claims. This chapter presents results based on the joint work of
Agu and Wald [3].

Chapter 5 examines the convolution of truncated distributions from the Schröter
family, with particular attention to parameter estimation and numerical application
issues, thereby opening new directions for future research. The results of this chapter
is based on the joint work of Agu et al. [5].

1.2 The Concept of the Collective Risk Model and
Progress

In non-life insurance theory, the analysis of claims for damages is conducted using
mathematical models designed to determine the optimal premium that an insurance
company should charge to avoid bankruptcy.

The fundamental theory of the collective risk model originates with Filip Lundberg
(1909–1934), whose work framed the insurer’s surplus as a stochastic process and set
the agenda for ruin-related analysis. Building on this foundation, subsequent syntheses
by Cramér [26] and the later survey of Cramér [25] consolidated the theory from the
viewpoint of random processes, while the broader review of Arfwedson [10] mapped
early strands of development. Within this formative phase, complementary directions
emerged: the supplementary investigations of Lundberg [71], the early numerical im-
plementations of Lundberg [72], and the linkage to homogeneous random processes in
Segerdahl [105]. Concerns with insolvency risk were already visible in Saxon [102],
foreshadowing the more systematic ruin-theoretic treatments to follow.

The 1950s marked a period of structured consolidation and applied extensions. Pro-
grammatic studies, such as Arfwedson [9] and Cramér [26], expanded the stochastic-
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process framing of collective risk. A comprehensive survey in the Skandia Jubilee
volume Cramér [26] synthesized these advances from the perspective of stochastic pro-
cesses. At the same time, practical relevance widened as the collective risk methods
were tentatively applied to sectoral problems, most notably crop insurance by Philipson
[92]. The decade also laid the groundwork for later technical advances. For example,
Prabhu [96] addressed the ruin problem when the time to ruin lacks a closed form,
deriving explicit results for negative and positive drift and extending the analysis to
general additive claim processes.

Progress in the 1960s reflected a parallel deepening of both theory and practice in
collective risk modeling. On the applied side, Kahn [63] offered an accessible treatment
that explicitly linked theory to the practice of stop-loss reinsurance, thereby clarifying
the operational implications of collective risk models. On the theoretical side, Beekman
[14] advanced the understanding of the collective-risk stochastic process itself, refin-
ing aggregation dynamics and deriving auxiliary analytical identities that enriched the
technical literature. These developments built upon the earlier surplus process frame-
work of Lundberg and the mid-century consolidation achieved through the surveys
and contributions of Cramér [26] and Arfwedson [10] and later extended in Cramér
[25]. The combined efforts of Prabhu [96], Kahn [63], and Beekman [14] thus mark a
transition toward more targeted results on ruin probabilities, reinsurance structures,
and computational techniques, establishing the modern foundations of collective risk
theory. A comprehensive synthesis of these advancements and the broader literature
is provided in Philipson [94].

Building on these historical developments, contemporary collective risk models for-
malize claims arriving at an insurance company during a given period as random vari-
ables (Ramasubramanian [98]). These random variables take values on the real line,
representing the monetary amounts of claims, and their distribution captures both the
occurrence and severity of claims. Each random variable is associated with a probabil-
ity distribution function that characterizes the aggregate claim amounts (Djurić [33]).
In actuarial science, this modeling framework is fundamental for analyzing the total
claim liability of an insurer, since it encapsulates the aggregate exposure arising from
all insured policies over a specified horizon.

Within this probabilistic framework, two classical approaches to insurance risk are
distinguished: the individual risk model and the collective risk model (Cramér [23]). In
the individual risk model, the gain or loss on each policy is treated as a random variable,
and the insurer’s total gain or loss is obtained by summing across policies. According
to the central limit theorem, if the number of policies is sufficiently large, this sum
is approximately normally distributed, permitting approximate inference about the
company’s total financial outcome under specified conditions.

In contrast, the collective risk model, pioneered by Lundberg, directs attention away
from individual contracts to the portfolio as a whole. In this setting, both the total
number of claims and their severities are modeled stochastically, with the aggregate
claims over a given period constituting the central object of analysis. This perspective
enables a rigorous treatment of the probability distribution of the total claim amount,
the timing of claims, and the insurer’s probability of insolvency. Mathematically, the
collective risk framework is firmly situated within the broader theory of stochastic
processes, which provides powerful tools for characterizing insurance risk dynamics.
The objective is to achieve a unified framework that not only describes the distribution
of aggregate claims but also delivers practically useful results for premium calculation,
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solvency assessment, and reinsurance design (Cramér [25]).

Definition 1. Let {Xi}∞i=1 denote the claim severities, where the random variables
Xi are independent and identically distributed (i.i.d.) over the non-negative reals with
probability density function (pdf) f(x), x ≥ 0. Let f ∗n denote the n-fold convolution of
f , where n = 0, 1, 2, . . ..

Similarly, let N be a discrete random variable representing the number of claims,
with probability mass function (PMF) pn = Pr(N = n), n = 0, 1, 2, . . .. Assume that
{Xi} and N are stochastically independent. This unique assumption provides significant
mathematical convenience and elegance in the use of the collective risk model. In the
collective risk model, the total claim amount generated by a portfolio of N claims over
a given period is defined as:

S =
N∑
i=1

Xi. (1.1)

The collective claim amount, denoted by S, arises as a compound distribution of
X and N . In particular, if there are no claims (that is, N = 0), then the aggregate
claims amount equals zero. Consequently, the event (S ≤ x) is only meaningful when
there are N = n claims. The moments and analytical properties of S, including its
compound distribution and the models for the distribution of N , have been extensively
discussed and explored in Dickson [31] and Hofmann [56].

When N is taken as a fixed positive integer rather than a random variable, the
collective risk model reduces to the individual risk model, which is particularly relevant
in portfolio analysis. Although several studies, such as Liu and Wang [70] and Blier-
Wong et al. [20], have considered cases where N and Xi are dependent, modeling
such dependence remains challenging because of the high dimensionality of the joint
distribution and the frequent scarcity of reliable data. For this reason, throughout the
present study, we adopt the simplifying assumption that N and Xi are stochastically
independent.

1.2.1 Model Assumptions for the Collective Risk Model
The collective risk model defines the aggregate claim amount as the sum of individual
claim amounts over a random number of claims. The formal assumptions are summa-
rized as follows.

Definition 2 (Model Assumptions). The aggregate claim amount

S = X1 +X2 + ...+Xn,

is subject to the following assumptions:

1. N is a discrete random variable taking values in N0. In particular, N = 0 implies
S = 0.

2. X1, X2, . . . are i.i.d. non-negative random variables with common distribution
FX .
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3. N and (Xi)i≥1 are independent.

Remark 1. • Assumption (2) implies that the claim sizes Xi do not influence one
another. For example, observing a large X1 reveals no information about Xj for
j ≥ 2.

• Xi > 0 holds almost surely for all i ∈ N, ensuring strictly positive claim amounts.

The mathematical foundation of the collective risk model was laid by the pioneer-
ing work of Filip Lundberg in the early 20th century. Lundberg’s framework, later
extended by Cramér [24], introduced the classical ruin theory and provided probabilis-
tic tools to assess an insurer’s solvency under the independence assumption between
N and {Xi}. Since then, the collective risk model has received extensive attention in
actuarial research, stimulating a wide range of methodological extensions and practi-
cal applications. For instance, Déniz and Ojeda [29] proposed a model in which claim
severities follow an Erlang distribution and claim frequencies are governed by a discrete
generalized Lindley distribution. They derived explicit expressions for the aggregate
claim size distribution and validated their approach using two automobile insurance
datasets, demonstrating its competitiveness relative to the compound Poisson and neg-
ative binomial models.

Furthermore, Dickson et al. [32] employed the Bayesian approach to derive predic-
tive aggregate claims distributions within the framework of the collective risk model.
They compared predictive distributions with fitted distributions that ignore parameter
uncertainty and demonstrated that actuarial quantities such as premiums can be sub-
stantially understated when this uncertainty is neglected. Their study also highlighted
situations where the moments of the predictive individual claim distribution do not
exist, and they explored suitable approaches for applying such predictive distributions
to address various insurance problems. The main conclusion of their work indicates
that parameter uncertainty has a considerable impact on the moments and percentiles
of aggregate claims distributions in a collective risk model, with uncertainty in the
claim number distribution being more influential than in the claim severity distribu-
tion whenever the moments of the latter exist. While the objective Bayesian approach
may sometimes yield predictive distributions without finite moments, it has been shown
that suitable modifications can render such distributions practically applicable for in-
surance purposes. Similarly, an extensive review and applications of the collective
model have been explored in the work of Kahn [63] and ? ].

1.3 The Concept of the Convolution Approach
The key challenge in the collective risk model lies in deriving the distribution of the
aggregate claim amount S. One of the earliest and most natural approaches to this
problem is the convolution method, which serves as the mathematical tool for combin-
ing individual claim amounts into the aggregate S. When this convolution is further
mixed over the random claim count N , it yields the standard formulation of the col-
lective risk model.

Parallel to the development of recursive methods, the convolution approach emerged
as a fundamental technique for evaluating aggregate claim distributions. This method
builds on the principle that the distribution of aggregate claims can be obtained by
successively convolving the claim severity distribution with itself, weighted by the claim
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frequency distribution. While conceptually straightforward, direct convolution can be-
come computationally intensive as the number of claims increases; thus, early research
concentrated on efficient formulations.

An early milestone was set by Hovinen [58], who introduced a systematic method
for computing convolutions within the framework of collective risk theory. The work of
Hovinen [58] offered one of the first structured attempts to reduce the computational
burden of repeated convolutions, thereby laying the groundwork for later algorithmic
refinements. This marked an important step from purely theoretical formulations to-
ward methods with practical computational relevance. Building on this, Philipson
[93] established convolution theorems for compound Poisson processes, clarifying the
mathematical structure underlying convolution-based aggregate models. By supplying
explicit convolution identities, the work extended the range of severity distributions
that could be handled analytically, thereby strengthening the applicability of convolu-
tion methods in actuarial modeling.

Taken together, these contributions represent the initial phase of progress in the
convolution approach: from Hovinen’s early algorithmic formulation Hovinen [58] to
the establishment of general convolution theorems Philipson [93]. This progression
highlights the computational challenges and the theoretical richness of convolution
methods, which continue to serve as a baseline against which newer approaches, such as
recursive algorithms and transform-based techniques, are evaluated in modern actuarial
science.

Definition 3 (The Convolution in the Collective Risk Model). Let N denote the num-
ber of claims and X1, X2, . . . , XN be i.i.d. claim amounts with the distribution function
FX .

If N = n is fixed, then the aggregate claim amount is:

S = X1 +X2 + · · ·+Xn,

and its distribution is given by the n-fold convolution of FX :

fS(s | N = n) = f ∗n
X (s),

where convolution is defined as:

(fX ∗ fY )(s) =
∫ s

0

fX(x)fY (s− x) dx.

If N is random, then the distribution of the aggregate claim S is a mixture over all
possible N :

hS(s) =
∞∑
n=0

P (N = n) f ∗n
X (s),

with f ∗0
X (s) = δ(s) (the Dirac mass at zero; no claims).

The general formulation above was further refined by Feller [41], who expressed the
aggregate distribution as:

hS(s) =
∞∑
n=0

P (S ≤ s,N = n),

hS(s) =
∞∑
n=0

Pn f
∗n
X (s),
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where f ∗n
X (s) denotes the n-fold distribution of claim severities, f ∗0

X (s) is defined as 1 for
s ≥ 0 and 0 otherwise, and Pn is the PMF of the claim frequency N . This theoretical
formulation provides a general and rigorous basis for calculating the aggregate claim
distribution of the collective risk model. To make this computation feasible, De Pril
[28] proposed an explicit method for evaluating f ∗n(s) for n = 1, 2, . . . , thereby making
the convolution approach more accessible for numerical applications. The utilization
and conceptual development of convolution methods in the collective risk framework
have also been examined in detail by Kahn [63] and Philipson [94], who discussed their
practical relevance in insurance settings.

The convolution approach has also been extended beyond classical formulations to
more specialized families of claim distributions. For example, Beekman [15] examined
the distribution of aggregate claims for cases in which claim values are equi-spaced and
equi-probable, and further developed convolution-type series for the infinite-time ruin
function, including corresponding approximations and an analysis of their associated
errors. This work demonstrated how convolution methods can be adapted to struc-
tured severity distributions and provided insights into the accuracy of approximation
techniques in ruin-theoretic contexts.

More recently, Pak [85] employed convolution ideas in the context of loss modeling
by expressing the total loss distribution as the convolution of expected and unexpected
components. Specifically, combining normal and exponential distributions to construct
a convolution-based model and evaluating its performance using Danish data on large
fire insurance losses. The findings of Pak [85] indicated that the proposed approach
yields useful information on the distribution of losses and, in some cases, outperforms
existing benchmark models. Together, these contributions highlight the adaptability
of the convolution approach, both for extending classical aggregate claim models and
for incorporating new perspectives in modern loss distribution analysis.

Despite these advances, limitations remain. As Dickson [31] observed, the explicit
form of the n-fold convolution f ∗n

X is not always obtainable for common claim severity
distributions. Even when an explicit form exists, the aggregate distribution requires
computation of an infinite sum, making the convolution method computationally de-
manding as the claim count grows. Thus, although the convolution approach is math-
ematically transparent and theoretically rigorous, its practical implementation can be
computationally complex and time-consuming. This recognition motivated the devel-
opment of alternative approaches, such as recursive algorithms and transform-based
techniques, which are examined in Chapter 2 of this thesis.

1.4 Truncated Distributions
Having established the convolution approach for deriving the distribution of aggregate
claims in the collective risk model, we now turn to truncated distributions. Such dis-
tributions arise naturally in the sciences and play a central role in various applications,
particularly in insurance modeling, where claim amounts and claim counts are often
modified by contractual conditions. For instance, deductibles eliminate claims below
a minimum threshold, policy limits cap the size of large claims, and reporting require-
ments may exclude smaller or unreported claims altogether. Similarly, claim frequency
distributions may be truncated when only positive numbers of claims are admissible, as
in zero-truncated Poisson or related models. These truncated versions of claim severity
and frequency distributions capture more realistic insurance settings and are crucial
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for accurately modeling aggregate risk. Their properties and applications will therefore
be employed extensively in the subsequent Chapters of this thesis.

1.4.1 Review on Truncated Distributions
The concept of truncated distributions has evolved substantially since its early intro-
duction, with milestones marked by contributions in statistics and actuarial science.
One of the earliest formal treatments can be traced to Stevens [111], who introduced
the truncated normal distribution in a biological context and demonstrated how empir-
ical data often deviate from classical assumptions when observations are restricted to a
finite range. Thereafter, Thompson [120] emphasized the applied importance of trun-
cation by modeling insect populations with truncated lognormal distributions, while
also referencing the earlier works by other researchers on truncated models for word
frequencies, accidents, ecology, and bacteriology. These studies further highlighted the
natural occurrence of truncation across different applied domains.

The 1950s brought theoretical refinements. Smith [110] investigated truncated and
sufficient statistics, clarifying the implications of truncation for estimation. Shapiro
[106] analyzed the behavior of sums of independent truncated random variables, thereby
extending the understanding of how truncation shapes aggregation properties. These
theoretical insights were complemented by comprehensive expositions, most notably the
treatment of truncated distributions in Johnson et al. [61], which formalized the theory,
consolidated earlier contributions, and provided extensive applications, establishing a
central reference in probability and statistics. An encyclopedia-style synthesis was later
provided by Lawless [69], who offered an accessible overview with emphasis on actuarial
applications. Additional listings of developments can be found in El-Din et al. [36],
which reflects the breadth of research on truncated distributions across disciplines.

Within the actuarial science domain, truncated distributions garnered substantial
interest due to their natural connection with deductibles, policy limits, and reporting
thresholds. These contractual modifications directly impact claim sizes and, by ex-
tension, the aggregate distribution of claims. Early recognition of this link appears in
Seal [104], who provided a comprehensive discussion of the stochastic theory of risk
and explicitly linked truncated and modified claim size distributions to insurance prac-
tice. Building on this, Gerber [45] explored collective risk theory and demonstrated
how truncation approximates real-world claim amounts subject to policy restrictions.
Later, Klugman et al. [65] incorporated truncated distributions into modern actuarial
models of insurance losses, showing how truncation can be seamlessly embedded into
credibility theory, aggregate claims analysis, and computational examples. Collectively,
these contributions demonstrate that truncation is not merely a mathematical device
but an essential feature reflecting the very structure of insurance contracts. The his-
torical trajectory is clear: initial recognition in applied sciences [111; 120] was followed
by theoretical advances on sufficiency and aggregation [110; 106]. These developments
laid the groundwork for more comprehensive statistical treatments, such as those in
Johnson et al. [61] and Lawless [69]. Building on this foundation, actuarial applications
incorporated truncation as a natural component of contract design, most notably in
the works of Seal [104], Gerber [45], and Klugman et al. [65].

Recent actuarial work has sharpened methodology for modeling loss data affected
by left truncation (deductibles) and right censoring (policy limits). Frees [43] consoli-
dated practical treatment of truncation/censoring and coverage modifications, provid-
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ing accessible derivations and implementation guidance. Complementing this applied
focus, Nadarajah [81] addressed the limitations of long-tailed distributions, which often
lack finite moments, by introducing truncated versions of heavy-tailed families such as
the Student’s t, inverted beta, Fréchet, Lévy, and F distributions. Their truncated
forms possess finite moments of all orders, with explicit expressions derived and real-
data applications illustrating their tractability. In a similar approach, Ahmed et al.
[6] explored predictive actuarial models incorporating the truncated Birnbaum–Saun-
ders distribution, analyzing the effects of inflation, the behavior of risk rates and risk
measures, and reciprocal transformation properties. Ahmed et al. [6] also developed
parameter estimation procedures and demonstrated the empirical usefulness of these
models on real loss data. More recently, Kouadria and Zeghdoudi [66] introduced the
truncated new-XLindley distribution, highlighting monotonic behavior, order statis-
tics, and maximum likelihood estimators (MLEs) for the upper, lower, and doubly
truncated cases, and demonstrated its flexibility through medical data applications.

Methodological innovation in the 2020s has increasingly emphasized robustness,
risk measurement, and model selection under truncation/censoring. Poudyal and
Brazauskas [95] developed robust estimators for truncated and censored severities (e.g.,
Pareto) using trimmed and winsorized moments, supported by asymptotic theory and
applications in insurance data. Extending risk measurement under contractual mod-
ifications, Biswas and Sen [19] proposed nonparametric estimation of spectral risk
measures for left-truncated/right-censored data, deriving asymptotic normality, Edge-
worth expansions, and bootstrap accuracy. In addressing model uncertainty, Zhao
et al. [135] compared common severity families (Fisk, Lognormal, Lomax, Paralogis-
tic, Weibull) across varying truncation/censoring levels, providing guidance on model
selection under deductible/limit structures. From a modeling-innovation perspective,
Gatti and Wüthrich [44] extended the MBBEFD family to include lower-truncated
and right-censored claims, demonstrating how deductible and limit adjustments affect
fitted severities and linking contract structures with flexible severity families. Com-
plementary progress in collective risk modeling has addressed dependence-aware fre-
quency–severity models (e.g., copula-linked compounds), which are directly compatible
with truncated/censored severities; see, for instance, Shi and Zhao [107].1

Taken together, this body of work demonstrates a clear evolution: from the early
recognition of truncation in the applied sciences, through theoretical formalization, to
actuarial adoption and modern methodological refinement. Since 2019, the literature
has shifted focus from fitting truncated/censored severities toward robust inference,
risk measurement, model selection, and flexible severity families under deductible/limit
structures. This ongoing development integrates naturally with collective risk modeling
via convolution and recursive methods, where the severity distribution is modeled in
its truncated or censored form to reflect realistic insurance contracts.

1.4.2 The Zero Truncated and Zero-Modified Distributions
In insurance applications, the company is often interested in the number of events that
have resulted in claims being filed. Once a claim has been reported, the minimum
observed claim count is 1, since the probability of observing zero claims is excluded
Dickson [31]. This motivates the use of zero-truncated distributions, where the prob-

1Although these dependence models do not require truncation, but are routinely paired with trun-
cated/censored severities induced by contract terms.
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ability of zero occurrences is removed. Formally, the zero-truncated PMF is defined
as:

Qn =
Pn

1− P0

, n = 1, 2, . . . , (1.2)

where Pn = Pr(N = n) denotes the original PMF of the claim frequency distribution
and P0 = Pr(N = 0) is the probability of zero claims.

Similarly, in practice, insurance data often exhibit situations where insured indi-
viduals fail to report claims. For example, a policyholder may not submit a small
claim to avoid higher premiums in the next contract period, or minor damages may
simply be ignored. These behaviors inflate the number of observed zero counts beyond
what the assumed frequency distribution predicts. To address this, the zero-modified
distribution is introduced, in which the probability at zero is adjusted by an additional
parameter α ∈ (0, 1) that controls the proportion of excess (or deficit) zeros. The
corresponding PMF is given by:

Qn =
(1− α)Pn

1− P0

, n = 1, 2, . . . , (1.3)

where α represents the probability mass shifted to account for the excess zeros in the
data.

Equations (1.2) and (1.3) provide fundamental tools for constructing models that
simultaneously incorporate zero truncation and zero modification. These formulations
are particularly useful in deriving recursive formulas for aggregate claim distributions
under realistic insurance settings, where under-reporting and structural truncation may
occur.

Several zero-truncated and zero-modified frequency distributions have been pro-
posed and analyzed in the actuarial and statistical literature. Examples include the
zero-truncated and zero-modified Poisson, negative binomial, and Weibull distribu-
tions, among others. Their mathematical properties and practical applications have
been extensively discussed in the work of Zuur et al. [136], Zhang et al. [134], Sitho
et al. [109], Raqab et al. [99], and Monisha et al. [80].

1.5 Final Remarks
In conclusion, this chapter has introduced the fundamental aspects of the collective risk
model, including its underlying assumptions, the convolution approach, and the role
of truncated distributions. We have highlighted the significance of these frameworks
within the collective risk setting and their wide-ranging applications in the insurance
domain. Furthermore, the discussion has emphasized both the strengths and challenges
of the collective risk model and the convolution approach, particularly regarding their
computational complexity and time-consuming nature, and underscored the impor-
tance of recursive methods as a practical alternative.

With this foundation in place, the stage is now set to examine the recursive approach
in greater detail, focusing on the Panjer and Schröter classes of discrete distributions.
Particular attention will be devoted to challenges related to the parametric space in
the infinite-n case and the associated issues of parameter estimation for the Schröter
family of distributions.
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CHAPTER 2

THE RECURSIVE APPROACH IN THE COLLECTIVE RISK
THEORY: THE PANJER AND SCHRÖTER FAMILIES AND

THE PARAMETRIC PROBLEM

In this chapter, we focus on recursive approaches for computing aggregate claim amounts,
with particular attention to the Panjer and Schröter recursions and their associated
families of distributions. We review recent developments and achievements within this
framework, highlighting key challenges, including the parametric space problem for the
infinite-n case in the Schröter family. A new approach to parameter estimation for the
Schröter family is also introduced, based on a moment-matching method. The chapter
concludes with final remarks summarizing the contributions, which draw on results
from our joint work in Agu et al. [4].

2.1 The Recursive Approach
In the collective risk model, fitting a distribution to the claim count presents several
challenges. Typically, claim counts are modeled using the binomial, Poisson, or nega-
tive binomial distributions, with parameters often chosen based on judgment or prior
assumptions. In practice, however, the situation is more complex: for a given insured,
the exposure changes over time, and observations are dominated by claims that have
been incurred but not yet reported. These factors make it challenging to accurately
estimate the distributions of claim counts. Additionally, computing the aggregate loss
distribution can be demanding and time-consuming.

Several approximation and numerical methods have been proposed to address these
difficulties. One well-known technique is the normal power approximation introduced
by Beard et al. [13], which computes the moments of the aggregate claim distribution
from those of the claim count and severity distributions, and then matches them to
a convenient reference distribution. While simple, this method can be inaccurate in
practice. Improved results were reported by Venter [122] using transformed beta and
gamma distributions, though these approximations do not always capture the true
distribution of aggregate claims and can still yield outcomes that may not be reliable.
Other studies, such as Cooley and Tukey [22] and Heckman and Meyers [52], applied
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fast Fourier transform methods to compute aggregate distributions; however, these
approaches remain computationally intensive. Similarly, Meyers [78] discussed Monte
Carlo simulation as a flexible approach; however, this method also suffers from high
computational costs despite its simplicity.

An alternative approach was proposed by Mong [79], who developed a more compu-
tationally efficient method based on inverting the characteristic function of the claim
severity distribution. While promising, this approach requires that the characteristic
function exist in a tractable form, which is often not the case. Mong [79] further em-
ployed a shifted Gamma distribution to approximate claim severities, but the method’s
success depends heavily on the suitability of this approximation and the explicit avail-
ability of the characteristic function. Since the collective risk model is fundamentally
a convolution of the discrete distributions of claim frequency and claim severity, such
methods are inherently constrained by convolution-related difficulties and the deriva-
tion of the characteristic function.

The recursive approach offers a powerful alternative and is widely recognized as an
exact method for computing aggregate claims. Assuming the claim severity distribution
is discrete, recursive formulas enable the computation of aggregate claims with high
precision across a broad range of severities iteratively. Unlike the convolution approach,
recursion avoids repeated convolutions of frequency and severity distributions, thereby
requiring far less computational time. As a result, recursive methods overcome many
of the challenges associated with convolution and other numerical or approximation-
based approaches, establishing themselves as a cornerstone in modern collective risk
modeling.

2.2 The Panjer Recursive Formula
In this section, we examine the Panjer recursive formula, its subsequent extensions,
and the associated families of distributions.

The first step toward recursive computation of aggregate claim distributions was
taken by Panjer [87], who built on the PGF and the recurrence relation introduced
by Adelson [1]. By combining these tools with the inverted Laplace transform, Panjer
derived the recurrence relation

Pn =
1

n

min(n,k)∑
i=1

EiPn−i, (2.1)

where Pn denotes the probability of exactly n aggregate claims, Ei 6= 0 for i = 1, . . . , n,
P0 = exp

(
−
∑k

i=1 θi

)
, and P−n = 0 by definition. While this result provided an

important advancement, its dependence on Laplace inversion limited its computational
practicality. To overcome this difficulty, Panjer [88] introduced the celebrated Panjer
recursion1, which bypasses Laplace inversion and applies directly to discrete severity
distributions. This recursion specifies that the counting distribution {Pn} satisfies the
recursive formula:

Pn =

(
a+

b

n

)
Pn−1, n = 1, 2, . . . , (2.2)

1The main focus of this section
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with the parameters a and b chosen such that Pn ≥ 0 and
∑∞

n=0 Pn = 1, and P−n = 0
for n ≤ 0 . Under this assumption, the aggregate claim distribution h(s) can be
expressed recursively as:

h(s) =
1

1− af0

s∑
i=1

(
a+

bi

s

)
fih(s− i), s = 1, 2, . . . , (2.3)

where h(0) = P0, fi = P (X = i), f0 = 0, and P0 = P (N = 0). The family of count-
ing distributions satisfying this recursion is called the Panjer R0(a, b) class. Panjer
[88] demonstrated that the Poisson, binomial, negative binomial, and geometric dis-
tributions all belong to the R0(a, b) class. A key feature of this class is the freedom
to specify P0, implying that these distributions are not uniquely determined by the
parameters (a, b). Subsequent research has extensively examined the structure and
parameter space of the R0(a, b) class, as reflected in the works of Rolski et al. [101],
Dickson [31], and Yartey [131].

The performance of the Panjer recursion relative to alternatives such as the fast
Fourier transform has been analyzed by Embrechts and Frei [37]. Building on this
line, Fackler [38] provided a unified parameterization linking the Poisson, binomial,
and negative binomial distributions through the recursive formula:

Pn =

(
1 +

λ

α

)−α
λn

n!

n−1∏
i=0

α + i

α + λ
, n = 0, 1, 2, . . . , (2.4)

with parameters α ∈ R and λ > 0. The Panjer coefficients are then a =
(
1 + λ

α

)
and b = (α−1)λ

α+λ
. This characterization shows that the negative binomial arises when

α > 0, the binomial when −a ∈ N with −a > λ, and the Poisson as α→ ±∞. Farooq
[40] further demonstrated that the R0(a, b) class can be embedded in the exponential
family, while Fackler [39] extended the analysis to the Rk(a, b) class using a binomial
series representation.

Although the R0(a, b) class has proven central, its assumption of a fixed positive
mass at zero may not always reflect empirical data. To address this, Sundt and Jewell
[114] extended the recursion to distributions satisfying

Pn =

(
a+

b

n

)
Pn−1, n = 2, 3, . . . , (2.5)

with P1 as the initial value. This class, called R1(a, b), includes the Poisson, binomial,
negative binomial, and logarithmic distributions, with parameter constraints ensuring
feasibility. Sundt and Jewell [114] further generalized equation (2.5) to

Pn =

(
a+

b

n

)
Pn−1, n = t+ 1, t+ 2, . . . , (2.6)

for t ≥ 1, though the recursion requires higher-order convolutions and is computation-
ally demanding.

A broader generalization was introduced by Panjer and Willmot [86], who studied
the recursions of the form:

Pn =

∑k
i=0 ain

i∑k
i=0 bin

i
Pn−1, n = 1, 2, . . . , (2.7)
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for polynomial order k. For k = 1 and k = 2, Panjer and Willmot [86] derived
algorithms for compound distributions, showing that distributions such as Poisson,
binomial, negative binomial, hypergeometric, hyper-Poisson, logarithmic, Waring, and
Pólya–Eggenberger satisfy this form. Subsequent extensions by Willmot and Panjer
[128], Hesselager [54], and Wang and Sobrero [124] expanded applicability to additional
severity distributions and provided more general recursive structures.

Subsequent contributions further enriched the framework. For instance, Hess et al.
[53] introduced the Panjer distribution of order k, denoted Rk(a, b), with recursion

Pn+1 =

(
a+

b

n+ 1

)
Pn, n ≥ k, (2.8)

and the corresponding aggregate recursion is expressed as:

h(s) =
1

1− af0

[
s∑

i=1

(
a+

bi

s

)
fih(s− i) + pkf

k∗
s

]
, s ≥ 1. (2.9)

This class has been shown to yield finite moments of all orders, and its application to
real-life datasets has been investigated in Yartey [131]. Similarly, Sundt [113] developed
the generalized Rk(a, b) class, with nesting properties Rk−1(a, b) ⊆ Rk(a, b) and theo-
retical convolution results, though numerical aspects were limited. Further refinements
by Willmot and Sundt [129] and Vernic [123], among others, explored computational
strategies for these broader classes.

More recent contributions have proposed additional generalizations. Beknazaryan
and Adamic [16] introduced the recursion:

Pn =
Pk(n)

nm
Pn−1, n ≥ 1, (2.10)

where Pk(n) =
∑k

i=0 ain
i is a polynomial of degree k, encompassing Panjer’s original

recursion as the special case k = m = 1. The authors showed that the pmf factor-
izes into products of Poisson, binomial, negative binomial, or geometric distributions.
Applications of Panjer recursion have since extended well beyond insurance, including
to ruin theory Dickson [30], truncated distributions Szűcs [116], and even linguistics
Mačutek and Altmann [75]. In practice, Panjer-type recursion has also been combined
with fast Fourier transform methods, as demonstrated by Nugrahainy and Azizah [82],
who applied it to zero-truncated negative binomial frequency with Burr severities and
used the aggregate distribution to estimate gross premiums. In summary, the Panjer
recursion has evolved from its original R0(a, b) formulation into a broad family of recur-
sive structures encompassing Rk(a, b) and beyond. These extensions demonstrate both
its flexibility and its enduring role as a cornerstone of recursive methods in collective
risk modeling.

2.2.1 The Panjer Class Characterization
First, we consider the R0(a, b) Panjer class, the method, and conditions that result
in the distributions defined in Panjer [88]. From equation (2.2), if n = 1, we have
P1 = (a+ b)P0, which implies that a + b ≥ 0 (positive probability weight), and this
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condition can be made to be strict. In the case where a+ b = 0, we have:

P1 = (a+ b)P0 = 0

P2 = (a+ b)P1 = 0

...
Pn =

(
a+ b

n

)
Pn−1 = 0

This implies that P0 = 1 since
∑N

i=0 Pi = 1; thus, P (N = 0) holds.

Theorem 1 (Panjer Class). The following statements, as studied and presented in
Panjer [88] and further discussed in Hofmann [56], are equivalent for a, b ∈ R with
a+ b > 0:

1. For all n ∈ N:

Pn =

(
a+

b

n

)
Pn−1. (2.11)

2. For all s ∈ [0, 1):

(1− as)G′
N(s) = (a+ b)GN(s), (2.12)

where GN(s) =
∑∞

n=0 Pns
n is the PGF of N .

3. For all n ∈ N, s ∈ [0, 1):

(1− as)G
(n)
N (s) = (na+ b)G

(n−1)
N (s). (2.13)

Proof. Assume equation (2.11) holds. Then P0 > 0 and P1 = (a+b)P0 > 0. We derive:

Pn =

(
a+

b

n

)
Pn−1

=
(n− 1)a+ (a+ b)

n
Pn−1

≥ n− 1

n
aPn−1.

Thus,
Pn ≥ 1

n
P1, ∀n ∈ N.

If a ≥ 1, then

P0 + P1

∞∑
n=1

1

n
≤

∞∑
n=0

Pn = 1,

which is a contradiction since the harmonic series diverges. Hence, a < 1.

(1) =⇒ (2): Define

GN(s) =
∞∑
n=0

Pns
n.
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Differentiating gives

G′
N(s) =

∞∑
n=1

nPns
n−1

=
∞∑
n=1

(
a+

b

n

)
nPn−1s

n−1

=
∞∑
n=1

((n− 1)a+ (a+ b))Pn−1s
n−1.

Re-indexing yields

G′
N(s) = as

∞∑
i=1

iPis
i−1 + (a+ b)

∞∑
i=0

Pis
i.

Hence,
(1− as)G′

N(s) = (a+ b)GN(s).

(2) =⇒ (3): Differentiate (1−as)G′
N(s) = (a+b)GN(s) repeatedly and use induction.

(3) =⇒ (1): Using the fact that Pn = 1
n!
G

(n)
N (0):

Pn =
1

n!
(na+ b)G

(n−1)
N (0)

=

(
a+

b

n

)
Pn−1.

Theorem 1 provides the Panjer characterization of all distributions satisfying the
Panjer first-order probability recursion and differential equation for the PGF. Equiva-
lently, the PGF GN(s) satisfies:

(1− as)G′
N(s) = (a+ b)GN(s), GN(1) = 1.

Thus:

1. There exist a, b ∈ R with a+ b > 0 such that Pn =
(
a+ b

n

)
Pn−1 for all n ∈ N.

2. The claim count N must follow either a Poisson, binomial, or negative binomial
distribution.

In simple terms, within this class (with a+b > 0), the admissible counting distributions
reduce precisely to the Poisson, binomial, and negative binomial families, as established
by Panjer [88].

Theorem 2 (Panjer recursion for the total claim amount). Let a, b ∈ R with a+b > 0.
Suppose the claim count N belongs to the Panjer R0(a, b) class and let X1, X2, . . . be
i.i.d. severities supported on {nh : n ∈ N0} with step size h > 0. Write fi = P (X1 = ih)
(so f0 = P (X1 = 0)) and let

P (S = nh) = h(n), n = 0, 1, 2, . . . .
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Then,

P (S = 0) =

P0, if f0 = 0,

GN(f0), if f0 > 0,
(2.14)

and, for n ≥ 1,

P (S = nh) =
1

1− af0

n∑
i=1

(
a+

i b

n

)
fi P
(
S = (n− i)h

)
. (2.15)

Proof. Let GN(s) =
∑

n≥0 Pns
n be the PGF of N and GX(s) =

∑
i≥0 fis

i the PGF of
X1/h as defined in [56]. For the aggregate claims S, we have

GS(s) = GN

(
GX(s)

)
.

At s = 0:
P (S = 0) = GS(0) = GN

(
GX(0)

)
= GN(f0),

which equals P0 if f0 = 0.
Now, using

(1− as)G′
N(s) = (a+ b)GN(s),

substitute s = GX(u):(
1− aGX(u)

)
G′

N

(
GX(u)

)
= (a+ b)GN

(
GX(u)

)
.

Since GS(u) = GN(GX(u)), differentiation gives

G′
S(u) = G′

N

(
GX(u)

)
G′

X(u).

Substituting yields (
1− aGX(u)

)
G′

S(u) = (a+ b)GS(u).

Extracting coefficients at un, and writingGX(u) =
∑

i≥0 fiu
i, GS(u) =

∑
n≥0 h(n)u

n,
gives:

(1− af0)h(n) =
n∑

i=1

(
a+

i b

n

)
fi h(n− i).

2.

2.2.2 Members of the Panjer R0(a, b) Class
Here, we defined the R0(a, b) class of discrete distributions along with the recursive
relationship that forms the foundation of this class and the conditions under which
they satisfy the Panjer class. The R0(a, b) class has only three members of counting
distributions (Panjer [88]).
Also, it is worth noting that the Panjer class is the same as the Katz family introduced
in Katz [64], which is a family of discrete distributions that satisfy the first-order
recurrence relation defined as:

Pn+1

Pn

= a+
b

1 + n
, n = k, k + 1, .., (2.16)

2This result has also been explored in Hofmann [56]
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and for Panjer class, k = 0. This class has been extended and well discussed in Gurland
and Tripathi [50] and Pestana and Velosa [91].

Let N be a discrete random variable with the PMF Pn. Then, Pn belongs to the
R0(a, b) class if it can be expressed as:

Pn

Pn−1

= a+
b

n
, n = 1, 2, 3, ... (2.17)

which generates the probabilities for all integers n starting from 1 with the parameters
a and b and the initial probability P0. Note that each Pn is expressed in terms of
P0. Therefore, when a and b are fixed, P0 is typically determined to ensure that
the probabilities sum up to 1. However, it is essential to acknowledge that not all
combinations of the parameters a and b can form a probability distribution under the
aforementioned recursive relation, but knowing the nth consecutive probabilities of this
class determines the entire distribution. Equation (2.17) can be written in the following
pattern:

nPn

Pn−1

= an+ b. (2.18)

We show how the parameters a, b, and P0 of the members of the Panjer class R0(a, b)
are derived in the next section.

2.2.3 Recursive Representation of the Panjer Family

2.2.4 The Poisson Distribution
Let Pn be the PMF of the Poisson random variable N such that:

Pn =
λne−λ

n!
, n = 0, 1, 2, .... (2.19)

Then, the probability function at n = 0 is P0 = e−λ and

Pn

Pn−1

=
λne−λ

n!
λn−1e−λ

(n−1)!

=
λ

n
.

Comparing this with equation (2.2), we have that a = 0 and b = λ.

2.2.5 The Binomial Distribution
If the counting distribution Pn is the binomial distribution, then we have that:

Pn =

(
k

n

)
qn(1− q)k−n, k = 0, 1, 2, ...;n = 0, 1, 2, ..., k. (2.20)
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The probability at n = 0 is P0 = (1− q)k. Similarly,

Pn

Pn−1

=

(
k
n

)
qn(1− q)k−n(

k
n−1

)
qn−1(1− q)k−n−1

,

=

k!qn(1−q)k−n

n!(k−n)!

k!qn−1(1−q)(k−(n−1))!

(n−1)!(k−(n−1))!

,

=
k!qn(1− q)k−n

n(n− 1)!(k − n)!
× (n− 1)!(k − n+ 1)(k − n)!

k!qn−1(1− q)k−n+1
,

=
q

n(1− q)
[k + 1− n]

=
q(k + 1)

n(1− q)
− qn

n(1− q)
.

By comparing this with equation (2.2), we have that a = − q
(1−q)

and b = q(k+1)
(1−q)

for
q 6= 1.

2.2.6 The Negative Binomial Distribution
Similarly, if the counting distribution Pn is the negative binomial distribution, then we
have that:

Pn =

(
n+ k − 1

n

)
(1− q)nqk, k > 0, n = 0, 1, 2, .... (2.21)

The probability at n = 0 is P0 = qk. Similarly,

Pn

Pn−1

=

(
n+k−1

n

)
(1− q)nqk(

n+k−2
n−1

)
(1− q)n−1qk

,

=

(
n+k−1

n

)
(1− q)(

n+k−2
n−1

) ,

=
(n+ k − 1)(n+ k − 2)!(1− q)

n(n− 1)!(k − 1)!
× (n− 1)!(k − 1)!

(n+ k − 2)!
,

=
(1− q)

1
+

(1− q)(k − 1)

n
.

If we compare this with equation (2.2), we have that a = (1− q) and b = (1− q)(k− 1)
for q < 1 and for k 6= 1.

2.2.7 The Geometric Distribution: A Special Case
Suppose the counting distribution Pn is the geometric distribution, then we have that:

Pn = (1− q)nq, , n = 0, 1, 2, ... (2.22)

The probability at n = 0 is p0 = q. Additionally, we have that

Pn

Pn−1

=
q(1− q)n

q(1− q)n−1

= (1− q).
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Also, comparing this with equation (2.2), we have that a = (1− q) and b = 0.
The R0(a, b) class offers the capability to virtualize (using equation (2.17)) and

effectively select its members for modeling, especially when a certain number of claims
is present. For instance, when dealing with claim data involving multiple cases, denoted
as i = 0, 1, 2, ... under various insurance policies, say Mi, we can plot the graph of i
against the ratio iMi

Mi−1
and analyze its pattern in alignment with equation (2.17). A

negative slope in the graph (a < 0) corresponds to the binomial distribution, while
a positive slope (a > 0) leads to a negative binomial distribution (with geometric
distribution as a special case). On the other hand, a level line in the graph (a =
0) results in a Poisson distribution. This approach enables us to select a suitable
distribution for modeling based on the observed pattern in the graph.

2.2.8 Members of the Panjer R1(a, b) Class
In the R0(a, b) class, all members have a fixed positive probability at zero. However,
in reality, these members may not appropriately describe the characteristics of some
datasets. For example, the sample data might suggest that the probability at zero ex-
ceeds what is indicated by the distributions in the R0(a, b) class. Hence, an alternative
approach involves assigning a higher initial probability and subsequently generating
the probabilities Pk for k = 2, 3, ldots recursively. This recursive relation forms the
defining characteristic of the R1(a, b) class (Yartey [131]).

Definition 4 (Panjer R1(a, b) class). A counting distribution {Pn}n≥0 belongs to the
Panjer R1(a, b) class if, for some constants a, b ∈ R,

Pn

Pn−1

= a+
b

n
, n = 2, 3, 4, . . . , (2.23)

with P1 > 0 taken as the initial value, and with parameters and initial probabilities
chosen so that Pn ≥ 0 and

∑∞
n=0 Pn = 1.

Remarks. 1) Equation (2.23) “degenerates” at n = 1, so the recursion starts at P1

(contrast with the R0(a, b) class, where the recursion starts at P0). 2) The value of P0

is not determined by equation (2.23) and can be set subject to normalization:
If P0 = 0, the resulting model is a zero-truncated member of R1(a, b).
If P0 ∈ (0, 1) is specified (possibly differing from a base model’s zero probability), the
model is a zero-modified member of R1(a, b).

This formulation is consistent with the extensions in which R1(a, b) starts the
Panjer-type recursion at n = 2 with P1 as the initial probability, thereby offering
flexibility for frequency models that exclude zero counts (zero-truncation) or adjust
the mass at zero (zero-modification).

2.3 The Schröter Recursive Formula
This section is devoted to the study of the Schröter recursive formula and its asso-
ciated family of distributions. We begin by revisiting the parameter characterization
originally introduced in Schröter [103], which provides the foundational framework for
the Schröter family. Building on this, we extend the analysis to explore the para-
metric space and feasible region of the family, offering new insights into its structural
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properties. Finally, we address the problem of parameter estimation by employing a
moment-matching approach, and we present numerical results that illustrate the per-
formance and applicability of the proposed method.

2.3.1 The Schröter Formula
While the Panjer recursive formula effectively solves the computational challenges of
the convolution method, it is limited to a small number of distributions. This limita-
tion led Schröter [103] to introduce Schröter’s second-order recursive formula, which
extends Panjer’s formula and provides a more accurate and broader representation of
the behavior of claim severity and the number of claim distributions. The Schröter’s
second-order recursive formula is:

Pn =

(
a+

b

n

)
Pn−1 +

c

n
Pn−2, n = 1, 2, ..., (2.24)

where a, b, and c are parameters of the Schröter’s recursive formula, and by definition
P−1 = 0. This class degenerates at 0 and can be referred to as the R0(a, b, c) class.

The corresponding recursion formula for equation (2.24) is expressed as:

h(s) =
1

1− af0

s∑
i=1

[(a+
b

s
i)fi +

c

2s
if 2∗

i ]h(s− i), (2.25)

such that f 2∗ is obtained by the convolution formula given as

f 2∗
i =

i∑
k=0

fkfi−k

The Panjer recursion and recursive formulas emerge as special cases of equations (2.24)
and (2.25), respectively, when c = 0. The class of distributions defined by equation
(2.24) encompasses, among others, the convolution of the Poisson distribution with
distributions belonging to the Panjer class (see Schröter [103], pp. 172–173).

Equation (2.24) can be expressed as:

Pn =

(
a+

b

n

)
Pn−1 +

c

n
Pn−2, n = 2, 3, . . . , (2.26)

which we denote as the R1(a, b, c) class of the Schröter family of discrete distributions.
Here, the truncation level begins at 1, and since n > 1, it is unnecessary to consider
the case P−1.

Although Schröter [103] identified a portion of the parametric space for the Schröter
recursive formula, the complete characterization of this space remains unresolved.3
Parameter estimation for this family has also posed challenges.4 In a conference paper,
Szűcs [117] applied numerical estimation by minimizing the Kolmogorov–Smirnov test
statistic, while Szűcs [118] discussed applications of the Schröter class in modeling
claim counts under the collective risk model using various calibration methodologies.

3In this section, we extend this analysis and provide new results on the feasible region for the
parameters of the Schröter family.

4We propose a new, straightforward estimation approach for the Schröter family, the results are
presented in the subsequent section.
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More recently, Agu et al. [4] proposed a simple method for estimating the param-
eters of the Schröter family. Their numerical illustrations showed that the resulting
parameter values can serve as effective initial values for iterative computational al-
gorithms. However, the non-convergence of the associated standard deviations raises
concerns about the unbiasedness of the estimates, suggesting that the method is best
regarded as a source of starting values for optimization procedures.

Despite these developments, both in parameter characterization and estimation,
the full implementation of the Schröter recursion formula continues to rely on the
convolution approach5.

2.3.2 The Schröter Characterization
This section presents the characterization of the Schröter recursive formula as studied
in Schröter [103].

Theorem 3 (Characterization of the Schröter Recursive Formula). Let {Pn}n≥0 be a
counting pmf satisfying the second–order Schröter recursive formula:

Pn =

(
a+

b

n

)
Pn−1 +

c

n
Pn−2, n ≥ 1, P−1 := 0, (2.27)

for constants a < 1, b ∈ R, c ∈ R with P0 > 0. Then the PGF G(s) =
∑

n≥0 Pns
n

satisfies

(1− as)G′
N(s) = (a+ b+ c s)GN(s), s ∈ [0, 1]. (2.28)

The solution is

GN(s) = exp
{
− c

a
(s− 1) + δ ln

( 1− a

1− as

)}
, a 6= 0, δ =

a(a+ b) + c

a2
, (2.29)

GN(s) = exp
{ c
2
(s2 − 1) + b (s− 1)

}
, a = 0. (2.30)

Moreover,

E[N ] =
a+ b+ c

1− a
, Var(N) =

a+ b+ (2− a)c

(1− a)2
. (2.31)

Admissible parameters satisfy

a+ b ≥ 0, a+ b+ c ≥ 0, b > −1, and if c < 0 then a > 0. (2.32)

Finally, N is infinitely divisible (hence compound Poisson) if and only if

(i) a < 0 and δ = 0; (ii) a = 0 and c ≥ 0; (iii) a > 0 and δ ≥ 0. (2.33)
6

5As an alternative, we introduced an efficient Schröter recursive algorithm in Chapter 3 of this
thesis.

6Here, Schröter [103] only explicitly specified the conditions and partial characterization and stated
that this specification does not yield a complete characterization of the parameter space for the
Schröter family, and certain regions of this parametric space do not correspond to discernible dis-
tributions. This implies that the exact parametric space problem for the Schröter family remains
unsolved. Although the complete characterization problem has not been addressed, in Section 2.4.2,
we consider the feasible region, which extends the parametric characterization analysis in Schröter
[103].
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Lemma 1 (Weighted convolution identity). Let X1, . . . , Xn be i.i.d. on N0 with pmf
fi = Pr(X1 = i), and denote by f ∗n

i the n–fold convolution. Then for each n ≥ 1 and
i ≥ 1,

f ∗n
i =

1

n

i∑
r=1

r fr f
∗(n−1)
i−r . (2.34)

Suppose that the counting distribution Pn of N satisfies equation (2.27), Schröter
[103] derived some fundamental properties of such distributions and showed that these
distributions have the PGF defined as

GN(s) = e
−c
a
(s−1)

(
1− a

1− as

)δ

, (2.35)

where δ =
(

a(a+b)+c
a2

)
, the corresponding PMF as:

Pn = e
c
a (1− a)δ

n∑
i=0

(
δ + i− 1

i

)(− c
a

)n−i
ai

(n− i)!
, (2.36)

Equations (2.31), (2.35), and (2.36) are viable under the condition a 6= 0, and they
assume a more intricate form when a = 0. Specific parametric domains corresponding
to a few distinct distributions within this classification have been specified in (Schröter
[103]; page 174).

2.3.3 The Convolution of the Poisson and R0(a, b) Class
Proposition 1. The convolution of Poisson and the members of the R0(a, b) Panjer
class generates certain members of the Schröter R0(a, b, c) class (Schröter [103]; page
172).

If N1 has a Poisson distribution and N2 belongs to the R0(a, b) Panjer class, then
N3 = N1 + N2 belongs to the Schröter class. This result is essential and useful for
deriving even members of the higher-order truncated Schröter class.

2.3.4 Members of the Schröter R0(a, b, c) Class
In this section, we show that all members of the Panjer R0(a, b) class are also included
within the Schröter R0(a, b, c) class.

Let Pn denote the PMF of N . The distribution Pn belongs to the Schröter R0(a, b, c)
class if it can be expressed in the form of equation (2.28).

2.3.5 Examples
Poisson distribution. Let Pn denote the PMF of a Poisson distribution with PGF:

G(s) = eλ(s−1). (2.37)

Thus,
G′(s)

G(s)
= λ. (2.38)

Comparing with equation (2.28), we obtain a = 0, b = λ, and c = 0.
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Binomial distribution. The PGF of the binomial distribution is

G(s) = (q + ps)n. (2.39)

We have:
G′(s)

G(s)
=
np(q + ps)n−1

(q + ps)n
=

np

q + ps
. (2.40)

Thus, a = −p, a+ b = np, c = 0. Hence, b = p(n− 1).

Negative binomial distribution. The PGF of the negative binomial distribution
is

G(s) =
pr

(1− (1− p)s)r
, |s| < 1

p
. (2.41)

Then,
G′(s)

G(s)
=

r(1− p)

1− (1− p)s
=

r − rp

1− (1− p)s
. (2.42)

We deduce that a = (1− p), a+ b = r(1− p), b = (1− p)(r − 1), and c = 0.

Geometric distribution. The PGF of the geometric distribution is

G(s) =
p

1− (1− p)s
. (2.43)

We compute
G′(s)

G(s)
=

1− p

1− (1− p)s
. (2.44)

Thus, a = (1− p), a+ b = 1− p, b = 0, and c = 0.
Other examples of members of the Schröter R0(a, b, c) class can be found in Schröter

[103, page 174].

2.3.6 Other Distributions
Beyond the classical members, several other discrete distributions can also be shown
to belong to the Schröter class. Using results from Wimmer and Altmann [130], we
present two such examples:

(i) The Bartlett distribution. The PMF is

Pn =
n∑

i=0

e−ααn−i

(n− i)!
pqi, n = 1, 2, . . . , α ≥ 0, 0 < p ≤ 1, q = 1− p. (2.45)

The PGF is

G(s) =
peα(s−1)

1− qs
. (2.46)

Then,
G′(s)

G(s)
=
α + q − αqs

1− qs
. (2.47)

Hence, a = 1− p, a+ b = α + 1− p, b = α, and c = −α(1− p).
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(ii) The Binomial-Geometric distribution. The PMF is

Pn = (1− θ)qn
x∑

i=0

(
n

x− i

)(
p
q

)x(
qθ
p

)i
, x = 0, 1, . . . , p 6= 0, n ∈ N0, 0 < p ≤ 1, 0 ≤ θ ≤ 1.

(2.48)
The PGF is

G(s) =
(q + ps)n(1− θ)

1− θs
. (2.49)

We have
G′(s)

G(s)
=

(1− θs)np+ θ(q + ps)

(q + ps)(1− θs)
. (2.50)

If q + ps = 1, this simplifies to
G′(s)

G(s)
=
np− θnps+ θ

1− θs
. (2.51)

Thus, a = θ, a+ b = np+ θ, b = np, and c = −θnp.

2.3.7 Members of the R1(a, b, c) Class
If equation (2.27) is truncated at 1, we can rewrite equation (2.28) as

G′(s)

G(s)
=
a1 + b1 + c1s

1− a1s
. (2.52)

Also, Panjer [87] showed for equation (2.2) that
G′(s)

G(s)
=

a+ b

1− as
. (2.53)

We derive members of the R1(a, b, c) class by extending Proposition 1, namely, by
convolving the truncated Poisson distribution with members of the R1(a, b) class. The
truncated distributions can be obtained using

qn =
pn

1− p0
, (2.54)

where Pn is the pmf of the counting distribution. Using equation (2.54), we can there-
fore derive the pmfs of the R1(a, b) members (Yartey [131]).

Let Gi(s) = E(sni) denote the PGF of ni, and let P (s) = E(snN ) denote the PGF
of nN for i = 1, . . . , N . Then

P (s) = E(Sn1 · · ·SnN ) =
N∏
i=1

Gi(s). (2.55)

If the ni are independent and identically distributed, then

P (s) = [G(s)]N . (2.56)

Now let N1 ∼ Poisson(λ) with PGF G1(s) and N2 be from the R1(a, b) class with
PGF G2(s). Then

N3 = N1 +N2, GN3(s) = G1(s)G2(s). (2.57)

Taking logarithms and differentiating both sides of equation (2.57), it follows that N3

has a counting distribution in the R1(a, b, c) class.
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2.4 The Convolution of Truncated Poisson and Other
Truncated Distributions

Using equation (2.54), the PMFs and PGFs of truncated Poisson, binomial, negative
binomial, and geometric distributions are:

Truncated Poisson distribution.

qn =
λne−λ

n!(1− e−λ)
, n = 0, 1, 2, . . . , (2.58)

G(s) =
eλ(s−1)

1− e−λ
. (2.59)

Truncated binomial distribution.

qn =

(
N

n

)
pnqN−n, q = 1− p, (2.60)

G(s) =
(p+ qs)N

1− qN
. (2.61)

Truncated negative binomial distribution.

qn =

(
N+r−1

n

)
prqn

1− pr
, (2.62)

G(s) =
pr

(1− qs)r(1− pr)
. (2.63)

Truncated geometric distribution.

qn = pqn−1, n = 1, 2, . . . , (2.64)

G(s) =
p

(1− qs)(1− pr)
. (2.65)

2.4.1 Examples
Convolution of Truncated Poisson and Truncated Binomial. Here N1 is trun-
cated Poisson and N2 truncated binomial (illustration of 1). Then,

G′
N3
(s)

GN3(s)
= λ+

Nq

p+ qs
=
Nq + λp+ λqs

p+ qs
. (2.66)

Thus, a = −q, a+ b = Nq+λp, b = q(N +1)+λp, and c = λq. Hence, the convolution
of N1 and N2 is a member of the Schröter R1(a, b, c) class.
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Convolution of truncated Poisson and truncated negative binomial.

G′
N3
(s)

GN3(s)
= λ+

rq

1− qs
=
rq + λ+ λqs

1− qs
. (2.67)

Hence, a = q, a + b = rq + λ, b = q(r − 1) + λ, and c = −λq. Additionally, the
convolution is a member of the Schröter R1(a, b, c) class.

Convolution of truncated Poisson and truncated geometric.

G′
N3
(s)

GN3(s)
= λ+

q

1− qs
=
λ(1− qs) + q

1− qs
. (2.68)

Thus, a = q, a+ b = λ+ q, b = λ, and c = −λq.
Hence, the convolution of truncated Poisson with truncated binomial, truncated

negative binomial, and truncated geometric distributions all belong to the Schröter
R1(a, b, c) class of counting distributions.

2.4.2 The Feasible Region for the Parameters of the Schröter
Recursive Formula for Finite Case

In this section, we extend the parametric characterization in Schröter [103] by inves-
tigating feasible regions for the parameters of the Schröter recursion and then passing
to the limit as n → ∞. We first derive finite-n feasibility regions by constraining the
recursion coefficients, and subsequently establish infinite-n feasibility by employing the
generating-function representation. This section brings new results concerning the fea-
sibility of the Schröter recursive formula, asymptotic behavior, parameter estimation,
and probabilistic practical guidance for modeling and predicting claim counts.

We start from the Schröter’s second–order recursion

Pn =

(
a+

b

n

)
Pn−1 +

c

n
Pn−2, n ≥ 2, P−1 := 0, P0 > 0. (2.69)

A convenient sufficient condition ensuring nonnegativity and bounded growth at a fixed
n is to require

0 ≤ a+
b

n
≤ 1 and 0 ≤ c

n
≤ 1.

This yields explicit half-space constraints in (a, b, c) for each fixed n.

Base cases. For n = 1, equation (2.26) gives P1 = (a+b)P0, so a+b ≥ 0 is necessary
for P1 ≥ 0. For n = 2,

P2 =

(
a+

b

2

)
P1 +

c

2
P0,

and the four bounding planes a + b
2
= 0, a + b

2
= 1, c

2
= 0, c

2
= 1 delineate a feasible

polyhedral slice (see Figure 2.1). Intersecting these half-spaces gives:

a+ b
2
∈ [0, 1] and c

2
∈ [0, 1].

Similarly, for n = 3 (Figure 2.2), we obtain:

a+ b
3
∈ [0, 1] and c

3
∈ [0, 1].
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Finite-n pattern. Continuing in this way, a sufficient pointwise condition for all
finite n is

a+ b
n
∈ [0, 1] and c

n
∈ [0, 1] for each fixed n ∈ N.

The feasible region consists of all points (a, b, c) such that Pn ≥ 0 and
∑∞

n=0 Pn = 1.
Points lying outside this region correspond to parameter values that are not admissible.
The lower boundaries of feasibility are determined by the conditions a+ b

n
= 0, c

n
= 0,

a+ b
n
≥ 0, and c

n
≥ 0, which ensure that the coefficients a+ b

n
and c

n
remain nonnegative

and that the resulting probabilities are greater than or equal to zero. Similarly, the
upper boundaries are defined by a + b

n
= 1, c

n
= 1, a + b

n
≤ 1, and c

n
≤ 1, thereby

constraining the recursion so that the coefficients do not exceed one. This guarantees
that the recursion remains bounded and that the sum of probabilities generated by
the formula does not exceed one. Consequently, points (a, b, c) within the intersection
of these regions yield nonnegative probabilities at each recursive step, while points
outside necessarily violate one of the bounding inequalities. It is important to note,
however, that these conditions, while practically useful, are not sufficient on their own
to guarantee the feasibility of the entire infinite sequence for the Schröter family of
distributions.

2.4.3 Feasibility in the Limit as n → ∞ for the Schröter Re-
cursive Formula

To address the infinite case, we start with the PGF:

GN(s) =
∑
n≥0

Pns
n, s ∈ [0, 1].

By multiplying the recursion by nsn−1 and summing over n ≥ 1 yields the first–order
ordinary differential equation (ODE)

(1− as)G′
N(s) = (a+ b+ c s)GN(s), GN(1) = 1. (2.70)

By solving the ODE, i.e., we solve (2.70) by separation of variables:

G′
N(s)

GN(s)
=

a+ b+ cs

1− as
.

and integrating both sides gives:∫
G′

N(s)

GN(s)
ds =

∫
a+ b+ cs

1− as
ds.

The left-hand side integrates to:

lnGN(s).

For the right-hand side, write

a+ b+ cs

1− as
=

a+ b

1− as
+

cs

1− as
.

The first term is solved as:∫
a+ b

1− as
ds = −a+ b

a
ln(1− as).
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Next, the second term is solved as:∫
cs

1− as
ds.

Let us set u = 1− as, so du = −ads and s = 1−u
a

. Then∫
cs

1− as
ds =

∫
c · 1−u

a

u
·
(
− du

a

)
= − c

a2

∫ (1
u
− 1
)
du.

Thus, ∫
cs

1− as
ds = − c

a2
lnu+

c

a2
u = − c

a2
ln(1− as) +

c

a2
(1− as).

Therefore,

lnGN(s) = −a+ b

a
ln(1− as)− c

a2
ln(1− as) +

c

a2
(1− as) + C,

where C is the constant of integration.
Simplify:

lnGN(s) = −a(a+ b) + c

a2
ln(1− as) +

c

a2
(1− as) + C.

Since GN(1) = 1, we must have lnGN(1) = 0. At s = 1 (boundary condition),

0 = −a(a+ b) + c

a2
ln(1− a) +

c

a2
(1− a) + C.

Thus,
C =

a(a+ b) + c

a2
ln(1− a)− c

a2
(1− a).

Hence,

lnGN(s) = −a(a+ b) + c

a2
ln(1− as) +

c

a2
(1− as) +

a(a+ b) + c

a2
ln(1− a)− c

a2
(1− a).

Exponentiating,

GN(s) = exp

{
− c

a
(s− 1)

}(
1− a

1− as

)δ

, δ =
a(a+ b) + c

a2
, a 6= 0.

Special case a = 0. When a = 0, the ODE (2.70) reduces to:

G′
N(s) = (b+ cs)GN(s).

Integrating,
lnGN(s) = b(s− 1) +

c

2
(s2 − 1).

Thus,
GN(s) = exp

{
b(s− 1) + c

2
(s2 − 1)

}
.

32



Therefore,

GN(s) = exp

{
− c

a
(s− 1)

}(
1− a

1− as

)δ

, δ =
a(a+ b) + c

a2
, a 6= 0, (2.71)

GN(s) = exp
{

c
2
(s2 − 1) + b(s− 1)

}
, a = 0. (2.72)

These equations coincide with (2.71)–(2.72) and are the necessary forms arising from
the recursion. Next, we identify parameter regions where GN is (the product of) known
PGFs, which yields sufficient conditions for full infinite–sequence feasibility.

Theorem 4 (Limit-Feasibility of the Schröter Recursive Formula). Let GN be the PGF
given by equations (2.73) and (2.74), i.e.

GN(s) = exp
{
− c

a
(s− 1)

}(
1−a
1−as

)δ
, δ = a(a+b)+c

a2
, a 6= 0, (2.73)

GN(s) = exp
{

c
2
(s2 − 1) + b(s− 1)

}
, a = 0. (2.74)

If one of the following disjoint parameter conditions holds, then GN is a valid PGF
on [0, 1]; consequently the recursion (equation (2.69)) defines a proper PMF {Pn}n≥0

(that is, Pn ≥ 0 for all n and
∑

n≥0 Pn = 1):

(1) 0 < a < 1, δ ≥ 0, and c ≤ 0.
Then

GN(s) = exp{(−c/a)(s− 1)}︸ ︷︷ ︸
Poisson with mean −c/a

×
(

1−a
1−as

)δ
︸ ︷︷ ︸

Negative–binomial (δ,p=a)

,

a product of PGFs (interpretable as an independent Poisson sum of a negative–
binomial count), and therefore a PGF.

(2) a = 0, b ≥ 0, c ≥ 0.
Writing µ = b+ c

2
≥ 0 and

Ψ(s) =
b

µ
s+

c/2

µ
s2 (when µ > 0),

we have
logGN(s) = b(s− 1) + c

2
(s2 − 1) = µ

(
Ψ(s)− 1

)
,

so GN(s) = exp{µ(Ψ(s) − 1)} is the PGF of a compound Poisson distribution
with rate µ and severity PGF Ψ. (If µ = 0 then GN ≡ 1, the degenerate case.)

(3) a < 0, δ = 0, and −c/a ≥ 0.
If δ = 0, the negative–binomial factor in (2.73) is unity and

GN(s) = exp{(−c/a)(s− 1)},

which is the Poisson PGF with mean −c/a ≥ 0, hence a PGF.
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Proof. The theorem follows directly from the closed forms (2.73)–(2.74) derived by
integrating the ODE (1− as)G′

N(s) = (a+ b+ cs)GN(s) and enforcing GN(1) = 1.

(1) For 0 < a < 1, the factor
(

1−a
1−as

)δ is the PGF of a negative–binomial distribution
with parameters (δ, p = a) provided δ ≥ 0 and p = a ∈ (0, 1). The exponential factor
exp{(−c/a)(s−1)} is the PGF of a Poisson distribution with mean −c/a; the condition
c ≤ 0 ensures −c/a ≥ 0 when a > 0. The product of two PGFs is a PGF (corresponding
to an independent convolution), hence GN is a PGF under these parameter constraints.
(2) With a = 0 we have logGN(s) = b(s−1)+ c

2
(s2−1). Writing this as µ(Ψ(s)−1) with

µ = b+c/2 and Ψ as above exhibits GN as the PGF of a compound Poisson distribution
(Poisson rate µ and severity PGF Ψ). The conditions b ≥ 0, c ≥ 0 guarantee µ ≥ 0
and that Ψ is a convex combination of s and s2, hence a valid severity PGF. If µ = 0
the PGF is identically one, the trivial (degenerate) distribution.
(3) If a < 0 and δ = 0, then the negative–binomial factor equals one and (2.73)
reduces to the Poisson PGF exp{(−c/a)(s − 1)}. The requirement −c/a ≥ 0 ensures
the Poisson mean is nonnegative. Thus GN is a PGF.
In all three cases the normalization GN(1) = 1 is satisfied by construction (the inte-
gration constant in the ODE solution was fixed using that boundary condition), and
coefficients of the power series expansion are nonnegative because each factor is the
PGF of a nonnegative integer-valued law (or their product). Hence the recursion (2.69)
yields a bona fide PMF.

Remark 2 (Scope and implications). Theorem 4 provides explicit and easily verifiable
sufficient conditions guaranteeing that the Schröter recursion generates a proper infinite
sequence {Pn}n≥0. These conditions cover large parameter regions of practical interest
where GN factorizes into well-known PGFs (Poisson, negative-binomial, compound
Poisson). They are not claimed to be necessary; a complete characterization of all
triples (a, b, c) that produce a valid PGF beyond these compound–Poisson factorizations
remains open.

Furthermore, the parameter statements in part (1) are consistent: for 0 < a < 1 the
condition c ≤ 0 is equivalent to −c/a ≥ 0, which is the condition used when interpreting
the exponential term as a Poisson PGF.

Figures 2.1 and 2.2 illustrate the feasible regions in the parameter space (a, b, c)
for the Schröter recursion at n = 2 and n = 3, respectively. Each figure depicts the
intersection of the half-spaces defined by the bounding inequalities

0 ≤ a+ b
n
≤ 1 and 0 ≤ c

n
≤ 1.

In Figure 2.1 (n = 2), the four bounding planes

a+ b
2
= 0, a+ b

2
= 1, c

2
= 0, c

2
= 1

form a polyhedral slice of the feasible set. This region captures all admissible parameter
values for which the recursion produces nonnegative probabilities at the second step.

In Figure 2.2 (n = 3), the analogous bounding planes

a+ b
3
= 0, a+ b

3
= 1, c

3
= 0, c

3
= 1

yield a similar but shifted polyhedral region, now reflecting feasibility constraints at
the third step. Together, these figures demonstrate how the feasible region evolves with
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n, tightening the admissible parameter space as the recursion progresses. While these
conditions guarantee pointwise nonnegativity for fixed n, they do not by themselves
ensure global feasibility for the entire infinite sequence.

2.4.4 Relation to the Finite n Regions and Practical Guidance
The finite–n constraints 0 ≤ a + b

n
≤ 1 and 0 ≤ c

n
≤ 1 are convenient stepwise

sufficient conditions that ensure nonnegativity and boundedness locally in n. Imposing
them uniformly in n forces 0 ≤ a ≤ 1 and c ≥ 0, which primarily intersects case (2).
Cases (1) and (3) show that global feasibility (for the entire sequence) can still hold
even if some stepwise coefficients in equation (2.69) are negative (e.g., c < 0 in (1)),
because feasibility is ultimately determined by the global PGF structure rather than
pointwise coefficient bounds.

Note: Given (a, b, c):

1. If a = 0 and b, c ≥ 0, use equation (2.71): N is compound Poisson with a
two–point severity.

2. If 0 < a < 1, compute δ = a(a+ b) + c

a2
. If δ ≥ 0 and c ≤ 0, use equation (2.69):

N is Poisson(−c/a) plus NB(δ, a).

3. If a < 0 and a(a+ b) + c = 0 with −c/a ≥ 0, then N is Poisson(−c/a).

In all three cases, it should be noted that the full parametric space of the Schröter
recursive formula, beyond the compound–Poisson admissible regions identified in The-
orem 4, may still contain feasible but non–compound–Poisson cases. Characterizing
this entire residual space remains an open problem in general, and thus Theorem 4
settles a substantial portion of the feasibility question while leaving the complete de-
scription unresolved.

2.4.5 Asymptotic and Limiting Behavior of the Schröter Re-
cursive Formula

An important question in the study of the Schröter recursion is the long-run behavior
of the sequence {Pn} as n→ ∞.

While the feasibility analysis identifies parameter regions ensuring that the recur-
sion defines a proper PMF, it is also crucial to understand how the probabilities decay
in the tail. In particular, the asymptotic form reveals whether the recursion produces
light-tailed or heavy-tailed distributions, allowing for comparison with classical discrete
families. The following result characterizes the limiting behavior.

Theorem 5. Let Pn be a claim number distribution satisfying the Schröter recursive
formula for a, b, c ∈ R. For large n, the Schröter recursive formula defines a decreasing
sequence converging to zero, with a tail asymptotically equivalent to that of a geometric
distribution with base a ∈ [0, 1] and constant K ∈ [0, 1].

Proof. Consider the recursion

Pn =

(
a+

b

n

)
Pn−1 +

c

n
Pn−2, n ≥ 2.
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Figure 2.1: The plot of the planes for n = 2
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Figure 2.2: The plot of the planes for n = 3

As n→ ∞, the terms b
n

and c
n

vanish, so their contributions become negligible. Hence,
the recursion reduces to the asymptotic form:

Pn ≈ aPn−1.

Applying this iteratively gives:

Pn−1 = aPn−2,

Pn−2 = aPn−3,

...
P1 = aP0.

Let P0 be a constant K. By successive substitution we obtain

Pn = anK.

Thus, Pn decays geometrically with base a and scale K (see Figure 2.3). For 0 ≤ a < 1,
the sequence decreases monotonically and converges to zero. This behavior aligns with
the geometric distribution’s tail, confirming the claimed asymptotic equivalence.

In summary, as n→ ∞, the probabilities Pn decrease and converge to zero, with a
tail structure analogous to that of the geometric distribution. This provides additional
insight into the long-term stability of the Schröter recursion and clarifies its asymptotic
contribution within the broader family of recursive distributions.
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Figure 2.3: The asymptotic decay of Pn as n→ ∞.

2.4.6 The Parameters Estimation of the Schröter Recursive
Formula

Due to the inherent complexity of the probability mass function defined in equation
(2.36), classical methods for parameter estimation do not yield explicit analytical solu-
tions. For instance, the maximum likelihood method yields a system of equations that
lacks explicit solutions, necessitating numerical techniques for their resolution.
In light of this, Luong and Garrido [74] proposed an estimation method specifically
tailored for recursively defined probability distributions, which is based on minimiz-
ing the quadratic distance. The recursive nature of the formula is treated akin to a
linear regression model. Subsequently, Luong and Doray [73] and Doray and Haziza
[34] further refined and expanded upon this concept. The estimation technique based
on minimizing the quadratic distance exhibits desirable properties subject to certain
conditions. Nonetheless, the computations still require the utilization of numerical
methods and a good knowledge of software, involving operations such as matrix inver-
sion.
Hence, we introduced a simple approach to obtain the parameter estimates for distri-
butions from the Schröter family.

2.4.7 The Parameters Estimate
To obtain the parameters estimate of the Schröter formula, we replaced E(N) and
V ar(N) in equation (2.31) with their sample counterparts and the parameters with
their estimates, we have:

x̄ =
â+ b̂+ ĉ

1− â
, (2.75)
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s2 =
â+ b̂+ (2− â)ĉ

(1− â)2
. (2.76)

LetN represent the sample size, f0, f1, f2, ..., the observed frequencies of values 0, 1, 2, ...,
and k the number for which the sum of three neighboring frequencies fk + fk−1 + fk−2

attains its maximum. We represent the empirical analog of equation (2.27) with the
empirical probabilities P̂k, ˆPk−1, and P̂k (for P̂k =

fk
N

) as:

P̂k =

(
â+

b̂

k

)
ˆPk−1 +

ĉ

k
ˆPk−2, (2.77)

kP̂k =
(
kâ+ b̂

)
ˆPk−1 + ĉ ˆPk−2

=
(
â(k − 1 + 1) + b̂

)
ˆPk−1 + ĉ ˆPk−2

= â(k − 1) ˆPk−1 + (â+ b̂) ˆPk−1 + ĉ ˆPk−2

The system of equations (2.73)-(2.75) is solved to obtain the estimate of the parameters
a, b, and c. From equation (2.73), we have:

x̄(1− â)− ĉ = â+ b̂. (2.78)

Using equation (2.76) in equation (2.75), we have

kP̂k = â(k − 1) ˆPk−1 + [x̄(1− â)− ĉ] ˆPk−1 + ĉ ˆPk−2, (2.79)

kP̂k = â(k − 1− x̄) ˆPk−1 + x̄ ˆPk−1 + ĉ[ ˆPk−2 − ˆPk−1].

ĉ =
kP̂k − â(k − 1− x̄) ˆPk−1 − x̄ ˆPk−1

ˆPk−2 − ˆPk−1

. (2.80)

Combining equations (2.74) and (2.76), we have

s2(1− â)2 = (2− â)ĉ+ x̄(1− â)− ĉ, (2.81)

s2(1− â) = ĉ+ x̄.

By substituting equation (2.78) into equation (2.79) and solving, we have:

s2[ ˆPk−2 − ˆPk−1]− as2[ ˆPk−2 − ˆPk−1] = x̄[ ˆPk−2 − ˆPk−1] + kP̂k − â[k − 1− x̄] ˆPk−1 − x̄Pk−1,
(2.82)

(s2 − x̄)[ ˆPk−2 − ˆPk−1]− kP̂k + x̄ ˆPk−1 = â[s2( ˆPk−2 − ˆPk−1)− (k − 1− x̄) ˆPk−1].

Then,

â =
(s2 − x̄)[ ˆPk−2 − ˆPk−1]− kP̂k + x̄ ˆPk−1

[s2([ ˆPk−2 − ˆPk−1])− (k − 1− x̄]) ˆPk−1

. (2.83)

Using equations (2.76), (2.79), and (2.81), we have that:

ĉ = s2(1− â)− x̄ (2.84)

b̂ = x̄(1− â)− â− ĉ, (2.85)

where â, b̂, and ĉ are the estimates of a, b, and c of the Schröter recursive formula.
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2.4.8 Simulation and Real World Application of the Parame-
ter Estimates

The previous subsections focused on the theoretical characterization, feasibility, asymp-
totic properties, and parameter estimation of the Schröter recursive formula.

To complement these theoretical results, we now turn to empirical evaluation.
In particular, we demonstrate the practical application of the parameter estimation
method by conducting simulation experiments and applying the approach to real-world
car accident claim data. This dual evaluation highlights the statistical properties of
the estimators under controlled conditions and their practical relevance in actuarial
applications.

2.4.9 Simulation Study
To investigate the finite-sample behavior of the parameter estimates, we conducted a
simulation study. We set the initial parameter values as a = 0.6, b = 2.6, and c = −1.1,
and generated 100,000 random numbers, repeating this procedure 10,000 times for each
parameter from the distribution defined in equation (2.36). The resulting samples were
then used to estimate the parameters, and the descriptive statistics of the estimated
values are summarized in Table 2.1. This experiment provides insights into the bias,
variance, and overall stability of the estimation procedure in large samples.

Table 2.1: Estimates of the Parameters
â b̂ ĉ

Mean 0.600 2.601 -1.103
Standard deviation 0.021 0.085 0.212

Minimum 0.525 2.305 -1.897
Maximum 0.678 2.918 -0.346

Nonetheless, the mean from Table 2.1 shows that the estimates of a and b could be
unbiased, but their standard deviation, especially ĉ, appears not to converge to zero.

2.4.10 Car Accident Injuries Applications
We fit the Schröter recursive formula, defined in equation (2.27), to car accident data
from the Olomouc region, Czech Republic, encompassing the period between January
1 and December 31, 2021, and the severity of injuries, including deadly, serious, and
minor cases. This data was obtained from the webpage of the Czech public radio broad-
caster, accessed on October 10, 2022, and can be found at www.irozhlas.cz/nehody. In
Table 2.2, we present the number of days with the corresponding number of injuries
from the data.
where x denotes the number of injuries and f(x) represents number of days with x in-
juries. Using equations (2.81)-(2.83), the model shows a good fit (see Figure 2.4) based
on the Pearson chi-square test pvalue = 0.1677 and we obtained â = 0.451, b̂ = 1.127,
and ĉ = 0.254. Although, other methods may be used to obtain improved results using
our parameters estimate as initial values.
Figure 2.5 illustrates the bar plot representing the fitted Schröter recursive model to

the car accident data based on the parameters estimated.

40



Figure 2.4: Boxplots of parameter estimates for â, b̂, and ĉ

The simulation study confirms that the proposed estimation method yields stable
and reliable estimates for a and b, with sample means close to their true values and
relatively small variability (Table 2.1, Figure 2.4). In contrast, the parameter ĉ shows
higher variability, indicating slower convergence in finite samples, though its mean
remains close to the true value c = −1.1. These results validate the consistency and
robustness of the approach for large samples.

In the real-data application, fitting the Schr”oter recursive model to the car accident
injury dataset produced parameter estimates â = 0.451, b̂ = 1.127, and ĉ = 0.254.
The fitted distribution closely matched the observed frequencies (Figure 2.5), with the
Pearson chi-square test yielding a non-significant result (p-value = 0.1677). Thus, this
result indicates that the model provides an adequate description of the accident data.
Hence, the achieved results indicate that the Schr”oter recursive formula performs well
under simulation and provides a flexible and practically applicable model in actuarial
settings, with potential for further refinement using alternative estimation techniques.

2.5 An Extended Schröter Recursive Formula
The Schröter recursive model has been widely applied in insurance mathematics to de-
scribe the distribution of claim counts within a portfolio over a given period. However,
in practice, the occurrence of claims is rarely determined by the recursion alone. Claim
frequencies are often influenced by external factors, such as changes in policyholder
behavior, macroeconomic conditions, anticipated adjustments in insurance premiums,
regulatory interventions, or even social media dynamics that amplify reporting tenden-
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Table 2.2: Car Accident Injuries
x f(x)

0 40
1 64
2 60
3 55
4 33
5 39
6 29
7 22
8 8
9 7
10 5
12 3

cies.
To capture these real-world complexities, we extend the Schröter recursion by in-

corporating systematic explanatory factors that may affect the likelihood of claims
being filed. This generalization enables the model to more accurately reflect practical
insurance environments and provides a framework for studying finite-period contract
scenarios that explicitly consider additional covariates.

Let Y denote the number of discrete claims, and let Xi, i = 0, 1, . . . , r represent
a finite collection of explanatory factors, assumed mutually independent. We define a
systematic component as

g(η) = β0 + β1X1 + · · ·+ βrXr, (2.86)

where β0, β1, . . . , βr are parameters. The Schröter recursion in equation (2.37) can then
be generalized to:

Pn =

(
a+

b

n

)
Pn−1 +

c

n
Pn−2 + g(η). (2.87)

Here, n denotes the finite number of contract periods under consideration, and g(η)
introduces the contribution of covariates into the recursion.

Since Y is discrete and belongs to the exponential family of distributions, the
systematic component can be linked to the mean of Y through a generalized linear
model (GLM) framework. Let g(u) = XTβ be the canonical link function relating
E[Y ] = u to the linear predictor XTβ, with inverse u = f(XTβ). The canonical form
of the exponential family density is:

f(y; θ,Ψ) = e

(
yθ−b(θ)
a(Ψ)

−c(y;Ψ)
)
, (2.88)

where θ is the natural parameter and Ψ the dispersion parameter.
For example, if Y follows a Poisson distribution with PMF

f(y;λ) = e(y lnλ−λ−ln y!), (2.89)
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Figure 2.5: The graph of the fitted Schröter model to the accident dataset

then y lnλ = yθ and λ = eθ is the Poisson link. Setting θ = XTβ gives

λ = eX
T β. (2.90)

This representation connects the recursion-based model with regression structures,
allowing for the inclusion of explanatory factors in the Schröter framework.

2.6 Numerical Evaluation of the Extended Schröter
Recursive Formula

The previous section introduced an extension of the Schröter recursive formula that
incorporates explanatory factors through a systematic component, thereby linking the
recursion to generalized linear models. In this section, we present the numerical evalu-
ation of the extended model. The goal of this section is twofold: first, to demonstrate
how real-world insurance data can be incorporated into the Schröter recursive frame-
work; and second, to illustrate the role of discretization and parameter estimation in
ensuring the model’s practical applicability.

We apply the methodology to the “InsClaim | EDA | Modeling” dataset consisting of
1341 observations obtained from https://www.kaggle.com/code/ravivarmaodugu/
insclaim-eda-modeling/notebook. For this analysis, we focus only on the claim
observations as the response variable and consider two covariates as explanatory factors:

• body mass index (BMI), denoted by X1,

• blood pressure, denoted by X2.
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2.6.1 Discretization of Continuous Data
In actuarial practice, claim data are often modeled using continuous distributions (see,
e.g., Hogg and Klugman [57], Panjer and Willmot [90]). However, recursive methods
such as the Schröter recursive formula inherently operate on discrete distributions. This
necessitates replacing continuous distributions with discrete analogues that preserve the
key statistical properties of the original data.

Several discretization techniques have been proposed in the literature. In this
study, we adopt the simple yet effective crude rounding method discussed by Pan-
jer and Lutek [89], whereby claim observations are rounded to the nearest integer
values. Although more sophisticated discretization techniques exist, such as flooring,
ceiling, moment-matching, or quantile-based approaches, the crude rounding method
offers several advantages that make it particularly suitable in our setting. First, it
preserves the natural scale and distributional shape of the original claim data without
imposing artificial shifts or distortions. Second, it ensures that the discretized data
remain close to the observed values, which is important for retaining interpretability
when modeling real claims. Third, the recursive formulas we employ, such as equations
(2.49)–(2.51), are highly sensitive to the choice of discretization method: rounding
minimizes approximation error when computing empirical probabilities Pn, Pn−1, and
Pn−2, thereby improving numerical stability in recursion. Finally, given the large sam-
ple size of our dataset, the law of large numbers ensures that rounding yields results
that closely approximate those obtained from more complex discretization schemes, but
with considerably less computational burden. For these reasons, the crude rounding
method provides a suitable, practical, and reliable balance between theoretical rigor,
computational efficiency, and empirical accuracy in the present study.

The histogram of the discretized claims data is presented in Figure 2.6, with an
empirical mean of approximately 1, 325 and a variance of 1, 466.

Figure 2.6: Histogram of the discretized claim observations.

From the discretized dataset, the empirical probabilities Pn, Pn−1, and Pn−2 were
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computed using a moving average method. Specifically, Pn−2 was based on the first
(n − 2) periods, Pn−1 on the first (n − 1) periods, and Pn on the first n periods.
Normalizing such that Pn+Pn−1+Pn−2 = 1, we obtained Pn = 0.3345, Pn−1 = 0.3333,
and Pn−2 = 0.3322.

Using the discretized data and equations (2.81)–(2.83) (with k replaced by n), we
obtained the parameter estimates

â = 0.9999, b̂ = 1375.603, ĉ = −1375.53.

Additionally, we employed the generalized linear model framework with a Poisson
link function for the parameter estimation of the regression component. We obtained
the estimated regression coefficients for the covariates as:

β̂0 = 5.9856, β̂1 = 0.0183, β̂2 = 0.0304.

The extended recursion with covariates is therefore expressed as

qn = ϑ

[(
â+

b̂

n

)
P̂n−1 +

ĉ

n
P̂n−2 + β̂0 + β̂1X1 + β̂2X2

]
, (2.91)

where ϑ is the normalization constant ensuring that qn remains a probability for each
contract period n.

To ensure that qn defines a valid probability in [0, 1], a natural choice of ϑ is obtained
by mapping the linear predictor onto the unit interval via a logistic transformation. In
this case, we set

ϑ =
1

1 +
[ (
â+ b̂

n

)
P̂n−1 +

ĉ
n
P̂n−2 + β̂0 + β̂1X1 + β̂2X2

] ,
so that

qn =

(
â+ b̂

n

)
P̂n−1 +

ĉ
n
P̂n−2 + β̂0 + β̂1X1 + β̂2X2

1 +
(
â+ b̂

n

)
P̂n−1 +

ĉ
n
P̂n−2 + β̂0 + β̂1X1 + β̂2X2

.

This construction guarantees that qn ∈ (0, 1) for all n, ensuring a well-defined proba-
bility of reporting or filing a claim in each contract period.

2.6.2 Numerical Illustration
To illustrate, substituting X1 = 19.5 (BMI) and X2 = 120 (blood pressure) into equa-
tion (2.89) for n = 1, and applying normalization, yields the probability of a claim being
reported as: ϑ = 0.0778 and L =

(
â+ b̂

n

)
P̂n−1+

ĉ
n
P̂n−2+ β̂0+ β̂1X1+ β̂2X2 = 11.8611.

Then,
q1 = 0.9222.

This demonstrates how the extended model can incorporate individual risk fac-
tors into the recursive formula, thereby providing a more realistic assessment of claim
likelihood.

Finally, Figure 2.7 presents the sequence of probabilities qn for n = 1:200. It is
evident that as the contract period n increases, the probability of reporting a claim
grows proportionally, reflecting the accumulation of risk over time.

45



Figure 2.7: Probability sequence qn of reporting a claim as contract periods n increase.
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The extended Schröter recursion with covariates successfully integrates explana-
tory factors into the recursive structure while ensuring probabilistic validity through a
logistic normalization. Applied to the insurance claims dataset, the approach yielded
consistent parameter estimates for the recursive and regression components. For n = 1,
the evaluation yielded a normalized probability of q1 = 0.9222, indicating that the
model can accurately capture the high likelihood of claims when individual risk factors
(BMI and blood pressure) are considered. The probability sequence qn further demon-
strates a monotonic growth with n, reflecting the nature of risk exposure over contract
periods.

This section contributes by bridging classical recursion with modern regression mod-
eling:

1. It establishes a framework that allows recursive claim count models to explicitly
incorporate policyholder characteristics and external factors.

2. It introduces a normalization scheme that guarantees well-defined probabilities
across finite contract periods.

3. It provides an empirical illustration showing that the model not only fits real in-
surance data but also improves interpretability and predictive capacity compared
to the recursion alone.

This extension enhances the Schröter recursive formula from a purely structural model
into a flexible, data-informed tool for actuarial risk assessment and prediction.

2.7 Final Remarks
In summary, this chapter has presented a comprehensive discussion of recursive ap-
proaches in collective risk theory, with a particular focus on the Panjer and Schröter
recursive formulas. Beginning with the Panjer recursion, the chapter highlighted its
importance as an exact and computationally efficient alternative to convolution-based
methods. The analysis then extended to the Schröter recursive formula, a second-order
generalization of the Panjer class, which provides a richer framework for modeling claim
count distributions and the major focus of the chapter.

Several new theoretical and practical results were developed. The feasible re-
gions for the parameters of the Schröter recursion were investigated in both finite-
and infinite-n cases, and the relationship between these regions was established. The
asymptotic behavior of the Schröter recursion as n → ∞ was also examined, showing
that the probabilities decrease geometrically and converge to zero, with a tail behav-
ior equivalent to that of the geometric distribution. This finding not only clarifies
the long-run stability of the recursion but also connects it to a well-known family of
distributions.

The chapter further introduced new results on parameter estimation for the Schröter
family, drawing on our joint work in Agu et al. [4]. A simple moment-matching ap-
proach was proposed, and its performance was evaluated using both simulated and
real-world data, including car accident injury counts. The results confirmed that the
method provides reliable and interpretable parameter estimates, while also highlight-
ing areas where further refinements could improve precision, particularly for certain
parameters.
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Beyond these contributions, the chapter also advanced the field by extending the
Schröter recursion into a more flexible, data-informed model. By embedding the re-
cursion within the GLM framework and applying a logistic normalization scheme, the
extended model was demonstrated to incorporate explanatory factors, such as policy-
holder characteristics and external influences, while ensuring that the resulting proba-
bilities remain valid across finite contract periods. Applied to real insurance datasets,
this approach improved interpretability, predictive accuracy, and practical relevance
compared to the structural recursion alone.

Taken together, the developments presented in this chapter emphasize the central
role of recursion in modern actuarial modeling. They show that recursive formulas
are not only powerful computational devices for aggregate claims but can also serve as
adaptable tools for capturing real-world complexities in insurance data. These insights
provide a strong foundation for the subsequent chapter, where further refinements and
applications of recursive methods will be of interest.
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CHAPTER 3

THE TRUNCATED SCHRÖTER RECURSIVE FORMULA

Historically, before the advent of modern computing, actuaries relied primarily on
estimation and approximation techniques that lacked a rigorous theoretical foundation
for determining aggregate claim amounts. These methods were limited in accuracy and
reliability, making data-driven decision-making in insurance a challenging task.

In risk theory, truncated distributions play vital roles not only in modeling claim
severity but also in modeling the inter-arrival times between successive claims and
excess-of-zero claims. These distributions enable insurers and actuaries to gain a com-
prehensive understanding and accurate estimation of the frequency and severity of
potential losses, making them vital for policy pricing and risk management. Applica-
tions of truncated distributions to modeling insurance problems have been extensively
utilized in Kreer et al. [67], Zhang et al. [133], Hocquard et al. [55], Hamedani et al.
[51], and Ghaddab et al. [46].

Despite the utility of the Schröter recursive formula, it does not fully capture the
dynamics of claim amounts truncated at one and the utilization its recursion algorithm
for computation of aggregate claim amounts still requires the convolution component
which demand extensive computational time.. This practice holds significant practical
relevance in real-world insurance settings. In many cases, insurers are primarily con-
cerned with the number of events that generate claims, rather than the exact amounts.
Once a claim is reported, the minimum observed claim amount is often truncated at
one, effectively implying a zero probability for a claim amount of zero. This reflects typ-
ical policy structures that include deductibles, where insured individuals are responsible
for losses below a certain threshold, and only the excess is reimbursed. Consequently,
minor losses below the deductible are frequently unreported, making one the effective
lower bound for observed claim amounts. This truncation has a substantial impact on
the modeling of risk exposure, influencing both the accuracy of risk assessment and the
determination of premium rates. In risk theory, truncated distributions are essential
for modeling claim severities and inter-arrival times, providing insurers and actuaries
with critical tools to better understand the frequency and magnitude of losses. As
such, accurately modeling the number of claims truncated at one is vital for capturing
the true nature of insurance liabilities.
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3.1 Truncated Schröter Recursive Formula
In this section, our goal is to introduce an alternative, less time-consuming truncated
Schröter recursive algorithm for the computation of aggregate claim amounts. To
achieve this, we first present the truncated Schröter recursive formula and introduce
the corresponding PMF and the maximum likelihood function.

We expressed the truncated Schröter recursive formula as:

Pn =

(
a+

b

n

)
Pn−1 +

c

n
Pn−2, n = 2, 3, .... (3.1)

Equation (3.1) is truncated at 1 and a, b, and c are the parameters.
First, let N be a discrete random variable taking non-negative integer values as

defined in equation (3.1) and using the fact that the PGF is defined as:

GN(s) =
∞∑
n=0

snPn

for s ∈ [0, 1] such that G(s) ≥ 0 and Pn is the recursive probability defined in equation
(3.1) and

∑
Pn = 1.

Thus, the PGF corresponding to equation (3.1) is:

GN(s) = e
−c
a
(s−1)

(
1− a

1− as

)δ

,

where δ =
(

a(a+b)+c
a2

)
for |as| 6= 1 and Schröter [103] derived the truncated PMF

{fn}n=0,1,... in the case a 6= 0 corresponding to equation (2.27) with the general expres-
sion given as:

fn = e
c
a
(1−a)δ

n∑
i=0

(
δ + i− 1

i

) (− c
a

)n−i
ai

(n− i)!
(3.2)

and for a = 0, equation (3.2) becomes more cumbersome. Additionally, for n = 0, the
sum has only the i = 0 term. That is:(

δ − 1

0

)
= 1,

(
− c

a

)0
= 1, (0)! = 1;

hence,
f0 = e

c
a
(1−a)δ.

Using the fact that:
Qn =

fn
1− f0

,

we derived the truncated PMF {Qn}n=1,2,... corresponding to equation (3.1) as:

Qn =
e
c
a (1− a)δ

∑n
i=0

(
δ+i−1

i

)(− c
a

)n−i
ai

(n−i)!

1− e
c
a (1− a)δ

, n = 1, 2, . . . , 0 < a < 1, b, c ∈ R. (3.3)

50



Let
x =

c

a
,

and define

Sn =
n∑

i=0

(
δ + i− 1

i

)
(−x)n−iai

(n− i)!
. (3.4)

Then, the PMF can be written in a simple form as:

Qn =
ex(1− a)δ Sn

1− ex(1− a)δ
.

The Log-likelihood for the truncated Schröter recur-
sive PMF
Let

Qn =
ex(1− a)δ Sn

1− ex(1− a)δ
, x =

c

a
,

where Sn is any known function of n, a, δ, x as defined in equation (3.4) (for example,
the finite sum or hypergeometric representation).

Assume n1, . . . , nk are independent observations from Qn. The likelihood is

L(a, δ, x | n1, . . . , nk) =
k∏

j=1

Qnj
,

so the log-likelihood is

`(a, δ, x | n1, . . . , nk) =
k∑

j=1

logQnj
.

Substituting Qn gives

`(a, δ, x) =
k∑

j=1

{
log
(
ex(1− a)δ

)
+ logSnj

− log
(
1− ex(1− a)δ

)}
=

k∑
j=1

(
x+ δ log(1− a)− log(1− ex(1− a)δ)

)
+

k∑
j=1

logSnj

= k
[
x+ δ log(1− a)− log(1− ex(1− a)δ)

]
+

k∑
j=1

logSnj
.

Equivalently, for a single observation n:

`(1)(a, δ, x | n) = x+ δ log(1− a)− log(1− ex(1− a)δ) + logSn.
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3.1.1 The Truncated Schröter Recursive Algorithm
Let X1, X2, . . . Xn be independent and identitically distributed claim severities over the
non-negative integers with probability density fk = P (Xi = k) for i = 1, 2, . . . n; k =
0, 1, 2, . . . , and fk∗ = P (X1 +X2 + · · ·+Xn = k) denotes the n-fold convolution of fk.

Additionally, let N be a discrete random variable representing the number of claims
with a discrete probability mass function defined as Pn = P (N = n), such that Xi are
stochastically independent of N , and S =

∑N
i=1Xi is the aggregate claim.

For all severity distribution fn, we derived the truncated Schröter recursive algo-
rithm as:

g(s) =
∞∑
n=2

Pnf
n∗(s) (3.5)

where Pn is the truncated Schröter recursive formula defined in equation (3.1).
The Panjer recursion formula is based on the expression:

fn∗(s) =
n

s

s∑
i=1

ifif
n−1
s−i , s = 1, 2, . . . ;n = 1, 2, . . .

(see Schröter [103]; page 164).
Suppose that f 0

n = 1 for all n > 0, We can write that:

f(s) =
1

s

s∑
i=1

ifi. (3.6)

Based on the truncation convention f 0
s−i = 1 for all i. This convention is chosen to

avoid the collapse of the sum to the single i = s term.

g(s) =
∞∑
n=2

[
(a+

b

n
)Pn−1 +

c

n
Pn−2

]
fn∗(s) (3.7)

g(s) = a

∞∑
n=2

Pn−1f
n∗(s) + b

∞∑
n=2

1

n
Pn−1f

n∗(s) + c

∞∑
n=2

1

n
Pn−2f

n∗(s)

g(s) = a
∞∑
n=1

Pnf
n∗(s) + b

∞∑
n=1

1

n
Pnf

n∗(s) + c
∞∑
n=2

1

n
Pn−2f

n∗(s)

g(s) = a
∞∑
n=1

Pn

(
n

s

s∑
i=1

ifif
n−1
s−i

)
+ b

∞∑
n=1

Pn

n

(
n

s

s∑
i=1

ifif
n−1
s−i

)
+ c

∞∑
n=2

Pn−2

n

(
n

s

s∑
i=1

ifif
n−1
s−i

)
(3.8)

We set
(∑s

i=0 fif
n−1
s−i

)
as
∑s

i=0 figs−i since gs−i is computed recursively and as P1 =
0, we avoid any term involving it. This expression facilitates easier and more efficient
computation, avoiding the need for complicated convolutional components.
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We have that

g(s) = a

∞∑
n=0

Pn

(
s∑

i=0

figs−i

)
+ b

∞∑
n=0

Pn

(
i

s

s∑
i=0

figs−i

)
+ c

∞∑
n=1

Pn−1

(
i

s

s∑
i=0

figs−i

)

We can write the first two terms as:

a
s∑

i=0

figs−i

and
s∑

i=0

bi

s
figs−i

From the third term, we re-indexed as follows: n 7→ m = n− 1 and set m = n− 1 =⇒
n = m+ 1 and if n = 1, we have 1 = m+ 1 =⇒ m = 0.

Note that the sum over m = −1 to ∞ is:

c
∞∑

m=−1

Pm

(
i

s

s∑
i=0

figs−i

)

which corresponds to the P−1, which is 0. Thus, we have:

c
∞∑

m=0

Pm

(
i

s

s∑
i=0

figs−i

)
Since m =⇒ n, we write:

c
∞∑
n=0

Pm

(
i

s

s∑
i=0

figs−i

)
Hence,

g(s) = a
s∑

i=0

figs−i +
s∑

i=0

bi

s
figs−i +

s∑
i=0

ci

s
figs−i (3.9)

Applying the weight 1
1−af0

, the truncated Schröter recursive algorithm is expressed as:

g(s) =
1

1− af0

s∑
i=0

[
a+

i

s
(b+ c)

]
figs−i (3.10)

for s 6= 0 and a, b, and c are the parameters. Additionally, f0 = P(S = 0) = 0 and
g(0) = P (N = 0) is the initial probability. If c = 0 in equation (3.10), we obtain the
Panjer recursive algorithm defined in equation (2.3), and if we define fn∗(s) as:

fn∗(s) =
n

ks

s∑
i=1

i fk∗
i f

(n−k)∗
s−i , for k ∈ {1, 2, . . . , n} n > k (3.11)
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in equation (3.7), equation (2.25) becomes a special case of equation (3.10). Equation
(3.10) does not require the evaluation of the convolution component fn∗(s) as in the
Schröter recursive algorithm defined in Schröter [103].

To execute equation (3.10), we treat fi as the claim frequencies per policy. To ensure
numerical stability and convergence of equation (3.10), the parameters a, b, and c were
estimated via maximum likelihood of equation (3.3) using the nlminb() optimizer with
box constraints: 0 < a < 1, b ≥ 0 and c ∈ R. These constraints prevent instability in
the recursion weights and guarantee the validity of the logarithmic expressions in the
likelihood function.

Theoretically, unlike (2.25), the recursion algorithm defined in (3.10) eliminates the
need for any form of convolution.

Additionally, we consider the Negative binomial distribution as the count distribu-
tion for the number of claims (see Section 3.1.3, Table 3.4).

The probability mass function for the Negative binomial distribution is defined as

h(S = s) =

(
s+ r − 1

s

)
(1− p)spr, s = 0, 1, 2, . . . , r > 0, p ∈ [0, 1].

We have that
h(S = 0) =

(
r − 1

0

)
pr.

From (3.9), we define

g(0) = P0 = h(S = 0) = pr. (3.12)

3.1.2 The Numerical Implementation Procedure for the Trun-
cated Schröter Algorithm

The implementation of the truncated Schröter recursive algorithm involves several com-
putational stages designed to estimate the distribution of aggregate claim amounts.
The procedure can be summarized as follows:

1. Data Preparation: Obtain and clean claim count data (from real-world and
simulations). Compute the empirical frequency distribution fi and normalize it
to ensure

∑
fi = 1. Furthermore, the distribution of the data is determined

(see Table 4). The parameters in equation (3.10) are estimated using the MLE
method based on the observed data. The log-likelihood function is constructed
from the truncated probability mass function of the claim counts. Parameter
estimation is carried out using the nlminb() optimizer in R, which is well-suited
for bounded, nonlinear optimization problems. This approach ensures numerical
stability and facilitates the explicit enforcement of parameter constraints that
are critical to the recursive structure of the model. A similar approach is applied
by truncating the corresponding probability mass functions of the Panjer and
Schröter families (see Panjer [88]; Schröter [103]).

2. Initialization: Determine g(0) as in equation (3.12) and initialize a numeric
vector to store g(s) for s = 1, 2, . . . , n.

3. Recursive computation: For each s = 2, . . . , n, compute g(s) using equation
(3.10).
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4. Performance evaluation: Evaluate the sum of g(s) values and record execution
time per iteration to assess computational efficiency.

5. Visualization: Utilize graphical tools (e.g., bar plots, execution time plots) to
display the algorithm’s output and benchmark it against Panjer and standard
Schröter methods.

3.1.3 Numerical Evaluation of the Truncated Schröter Recur-
sive Algorithm

In this section, we examine the run-time computational efficiency of the introduced
truncated Schröter algorithm using the Automobile UK Collision Claims (AutoCol-
lision) data obtained from https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regres-
sionFirst, we began by exploring the descriptive statistics of the dataset, analyzing
average claim severity and average claim counts across various age groups and vehicle
categories to identify patterns and determine how frequently each group files claims.
Particular attention was given to combinations of age groups and vehicle use categories
associated with high claim severity and frequency, as these represent higher risk fac-
tors for insurers and may necessitate adjustments in insurance coverage strategies. To
model the claim count data, we fitted both the Negative Binomial and Generalized
Poisson distributions, selected for their ability to handle overdispersion commonly ob-
served in count data. The choice between these distributions was guided by model
fit, using the Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) to select the model with the lowest values. Furthermore, to implement the
truncated algorithm defined in equation (3.10), we employed the truncated probability
mass function introduced in (3.3) to obtain numerical estimates of the parameters â, b̂,
and ĉ as â = 0.99070, b̂ = 1.29297, and ĉ = 0.29330 using the MLE method.

In this section, we first present the descriptive analysis of the Automobile UK
Collision Claims data and then present the results for the fitted Negative binomial and
generalized Poisson distributions applied to the data.

Table 3.1: Descriptive Statistics
Min. Max. Mean Variance Kurtosis Skewness

Values 5.00 970.00 279.44 58374.38 4.08 1.25

The descriptive statistics offer a comprehensive summary of the dataset’s distribu-
tion and central tendency. The minimum and maximum values define the data range,
while the mean provides a central value around which the data are distributed. The
high variance indicates substantial variability (overdispersion), and the positive skew-
ness and kurtosis indicate a right-skewed distribution with the presence of outliers.

Table 3.2 shows that vehicles used for business purposes exhibit the highest average
claim severity. Although the claim count in this category is relatively low compared to
others, each claim carries a substantial financial impact, indicating that business use
presents a higher risk of costly claims.

Vehicles used for long-distance driving exhibit a moderate average claim severity,
which is substantially lower than that of business use but higher than for short drives
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Table 3.2: Analysis of Average Claim Severity by Vehicle Use
Vehicle Use Average Claim Severity Claim Count

Business 395.21 1075
DriveLong 265.26 2710
DriveShort 231.74 3888
Pleasure 213.20 1269

and pleasure use. The relatively high claim count indicates that long drives are asso-
ciated with frequent incidents, though each claim tends to be less severe than those in
the business category.

Short drives register the highest claim count but a lower average claim severity.
This indicates that while short trips result in more frequent claims, the financial impact
of each is comparatively minor. The high frequency highlights a notable number of
incidents with less severe consequences per occurrence.

Pleasure use is associated with the lowest average claim severity and a relatively
low claim count, indicating that leisure driving poses the least risk. It results in both
fewer claims and lower financial losses, making it the lowest-risk category in terms of
both frequency and severity in the UK Automobile Collision Claims dataset.

Table 3.3: Analysis of Average Claim Severity by Age
Age Average Claim Severity

17–20 391.80
21–24 293.17
25–29 284.84
30–34 279.73
35–39 212.43
40–49 249.99
50–59 251.11
60+ 247.68

Table 3.3 shows that drivers aged 17–20 have the highest average claim severity,
indicating that accidents involving the youngest drivers tend to result in greater finan-
cial losses and represent a substantial risk to insurers. A notable decrease in average
claim severity is observed among drivers aged 21–24, indicating a reduced but still rel-
atively high financial risk as drivers gain minimal experience. The trend of decreasing
claim severity continues in the 25–29 age group, reflecting a further decline in financial
impact as drivers mature and gain experience. This downward trend persists in the
30–34 age group, with a slight reduction in average claim severity compared to the pre-
vious cohort. A substantial drop is observed in the 35–39 age group, indicating a much
lower severity of claims and a correspondingly reduced financial risk. Interestingly, the
40–49 age group sees a modest increase in average claim severity compared to the 35–39
group, though it remains lower than that of drivers under 30, indicating a moderate
financial risk. Claim severity levels for the 50–59 age group are comparable to those of
the 40–49 cohort, pointing to a stable level of financial risk among middle-aged drivers.
Finally, drivers aged 60 and above exhibit slightly lower average claim severity than
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the 50–59 group, indicating a consistent and moderate financial risk, marginally higher
than that of the 35–39 group but lower than the younger cohorts.

Table 3.4: The fitting of Negative Binomial and Generalized Poisson distributions
Negative Binomial Generalized Poisson

Parameters Estimate p̂ = 0.00453, r̂ = 1.25042 θ̂ = 12.78279, λ̂ = 0.95426
N-Loglikelihood −211.9633 −216.1883
AIC 427.9267 436.3767
BIC 430.8581 439.3081

As shown in Table 4, the Negative Binomial distribution yields a higher (i.e., less
negative) log-likelihood and the lowest AIC and BIC values, clearly indicating a su-
perior fit to the AutoCollision claim count data compared to the Generalized Poisson
distribution. These results indicate that the Negative Binomial model is more appro-
priate for capturing the underlying data structure. Both AIC and BIC are essential for
model selection, as they strike a balance between goodness-of-fit and model complex-
ity, thereby mitigating the risk of overfitting, a particularly important consideration in
actuarial modeling.

Beyond information criteria, residual diagnostics further validate this conclusion. A
comparative analysis of the Negative Binomial (see Figure 5) and Generalized Poisson
models (see Figure 6) reveals that the former produces Pearson and deviance residuals
tightly clustered around zero, with minimal dispersion and no extreme outliers. The
histogram of Pearson residuals is approximately symmetric and unimodal. In con-
trast, the Q–Q plot of deviance residuals aligns closely with the theoretical quantile
line, indicating that the model assumptions are well met. In contrast, the Generalized
Poisson model exhibits more dispersed residuals, noticeable outliers, a skewed residual
histogram, and a Q–Q plot that substantially deviates from the reference line, indicat-
ing potential model misspecification. Taken together, these statistical and graphical
diagnostics confirm that the Negative Binomial model provides a more accurate and
reliable representation of the claim count data, establishing it as the preferred modeling
choice for this analysis.

3.1.4 Computation of Aggregate Claim
In this section, we used the estimates of â, b̂, and ĉ for equations (2.3), (2.25), and
(3.10) to compute aggregate claim amounts for each recursive algorithm and their
computational run time using claim count data from the AutoCollision data. Based
on Table 3.5, the performance of the three recursive algorithms is analyzed in terms of
computational run time and the computed aggregate claim amounts.

The truncated Schröter recursion algorithm demonstrates the fastest run time at
0.051093 seconds and yields the highest aggregate claim sum of 0.005483, indicating
that it either captures more aspects of the claim data or incorporates a more com-
prehensive modeling approach (see Figure 3.1). This result implies a probability of
approximately 0.55% that the total claim amount will not exceed 32 units, and con-
versely, a 99.45% probability that it will exceed this threshold.

The Panjer recursion algorithm, with a slightly longer runtime of 0.060898 seconds,
computes an aggregate claim sum of 0.004887. Although still efficient, this result may
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indicate a more conservative or less data-sensitive approach (see Figure 3.2). The corre-
sponding probability that the total claim amount does not exceed 32 is approximately
0.49%, implying a 99.51% chance of exceeding this amount.

The standard Schröter recursion algorithm, which has the longest runtime at 0.173438
seconds, produces an aggregate claim sum of 0.004930. This outcome implies a bal-
ance between sensitivity and comprehensiveness; however, it comes with higher com-
putational demands due to the convolution component involved in the algorithm (see
Figure 3.3). The probability that the total claim amount will not exceed 32 units is
approximately 0.45%. In contrast, the probability that it will exceed 32 units is around
99.55%.

The general interpretation of these results is that the likelihood of the total claim
amount being less than or equal to 32 units is very low, with probabilities ranging
from approximately 0.45% to 0.55%. Consequently, the probability that the total claim
amount will exceed 32 units is extremely high, ranging from 99.45% to 99.55% for the
AutoCollision dataset. These findings indicate that, across all recursion algorithms
evaluated, it is almost certain that total claims will surpass 32 units, underscoring the
high-risk nature of the claims being modeled.

These results provide valuable insights for effective risk management and premium
setting in the insurance sector. The high probability of large aggregate claims indicates
that insurers must prepare for substantial payouts. Understanding this risk landscape
allows insurers to more accurately assess claim distributions and frequencies, leading
to more informed pricing strategies that ensure financial sustainability. Insurers can
utilize these insights to allocate adequate reserves for high-expectation claims, thereby
reducing the risk of insolvency. Moreover, policy designs can incorporate deductibles,
limits, and exclusions that align with the high likelihood of large claims, striking a
balance between customer affordability and insurer profitability. These findings also
support the development of targeted reinsurance strategies, allowing insurers to transfer
a portion of high-risk exposures and minimize the financial impact of large claims.

The observed differences in computational run times and aggregate claim sums
across algorithms are attributable to the inherent complexity and structural differences
of the recursion methods. The truncated Schröter algorithm, with its three-parameter
structure, strikes an efficient balance between model complexity and computational
speed, yielding both fast run times and higher aggregate claims. The Panjer recur-
sion algorithm, while simpler with only two parameters, offers efficient computation
but may not capture as many underlying data features. In contrast, the Schröter re-
cursion algorithm, which incorporates an additional convolution term, requires more
computation time but provides a nuanced perspective on aggregate claim modeling.

3.1.5 Simulation Study
Here, we generate random claim amounts data from the Negative binomial distribution
by setting r = 100 and p = 0.05. We varied the sample size to examine the computa-
tional efficiency and run time of the truncated Schröter, Panjer, and Schröter recursion
algorithms for the aggregate claim. Initially, we generated 5000 random numbers from
the Negative binomial distribution and fit equation (3.3) to the data to obtain the
estimate of the parameters â, b̂, and ĉ as â = 0.9905, b̂ = 18.3096, ĉ = −1.2840, and
compute g(0) = 0.00117 to implement the algorithms. Tables 6, 7, and 8 present the
sample sizes, aggregate claim amounts, and the execution time in seconds for each
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Table 3.5: Aggregate claim for the truncated Schröter, Panjer, and Schröter algorithms
s g(s) Truncated Schröter g(s) Panjer g(s) Schröter

1 711000× 10−3 711000× 10−3 711000× 10−3

2 13488× 10−5 11953× 10−5 11958× 10−5

3 78790× 10−6 69718× 10−6 69763× 10−6

4 18245× 10−6 16054× 10−6 16132× 10−6

5 21313× 10−5 18881× 10−5 18908× 10−5

6 58042× 10−5 51406× 10−5 51450× 10−5

7 32214× 10−5 28454× 10−5 28493× 10−5

8 15979× 10−5 14070× 10−5 14113× 10−5

9 48176× 10−5 42617× 10−5 42727× 10−5

10 11819× 10−4 10454× 10−4 10474× 10−4

11 11254× 10−4 99323× 10−5 99514× 10−5

12 49170× 10−5 43135× 10−5 43306× 10−5

13 46463× 10−5 40787× 10−5 41095× 10−5

14 15944× 10−4 14065× 10−4 14119× 10−4

15 13782× 10−4 12090× 10−4 12149× 10−4

16 74915× 10−5 65005× 10−5 65502× 10−5

17 65619× 10−5 57003× 10−5 57681× 10−5

18 18092× 10−4 15882× 10−4 15999× 10−4

19 16315× 10−4 14191× 10−4 14324× 10−4

20 95516× 10−5 81572× 10−5 82706× 10−5

21 11549× 10−4 99748× 10−5 10108× 10−4

22 36393× 10−4 31961× 10−4 32173× 10−4

23 30416× 10−4 26473× 10−4 26719× 10−4

24 17428× 10−4 14879× 10−4 15094× 10−4

25 15023× 10−4 12823× 10−4 13062× 10−4

26 35570× 10−4 30989× 10−4 31358× 10−4

27 27630× 10−4 23653× 10−4 24074× 10−4

28 17519× 10−4 14558× 10−4 14920× 10−4

29 18952× 10−4 15950× 10−4 16353× 10−4

30 30447× 10−4 26076× 10−4 26676× 10−4

31 27511× 10−4 23012× 10−4 23706× 10−4

32 22584× 10−4 18434× 10−4 19048× 10−4

Sum of probabilities 0.005483 0.004887 0.004553
Execution time (s) 0.051093 0.060898 0.173438
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recursion algorithm.
Figure 3.4 illustrates the execution times of the truncated Schröter recursion, Pan-

jer recursion, and Schröter recursion algorithms for varying values of n, highlighting
significant differences in computational efficiency as the sample size increases. The
truncated Schröter recursion algorithm consistently demonstrates the lowest execution
times across all values of n, starting at 0.0006919 s for n = 20 and increasing to
1.5046701 s for n = 5000 (see Figure 3.4).

Table 3.6: Efficiency of the truncated Schröter algorithm on simulated claim data
Recursion Algorithm Sample (n) sum of g(s) Execution time (s)
The truncated Schröter algorithm 20 2.7080348 0.0006919

50 1.5211150 0.0036724
100 1.1730166 0.0188396
150 1.1747598 0.0335643
200 1.1296751 0.0586591
300 0.9208012 0.1158113
600 0.8504156 0.3374069
1500 0.6127028 0.8211629
2000 0.5397614 1.0198436
3000 0.4756758 1.2040498
4000 0.4180231 1.4369745
5000 0.3979199 1.5046701

Table 3.7: Efficiency of the Panjer algorithm on simulated claim data
Recursion Algorithm Sample (n) sum of g(s) Execution time (s)
The Panjer algorithm 20 0.0075441 0.0014127

50 0.0074026 0.0047266
100 0.0074002 0.0212255
150 0.0074619 0.0378468
200 0.0074672 0.0692441
300 0.0072761 0.1391730
600 0.0073219 0.4021811
1500 0.0073130 1.0212069
2000 0.0072111 1.0606146
3000 0.0072833 1.3638492
4000 0.0072209 1.6406126
5000 0.0072351 1.7650454
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Figure 3.1: The Execution Time Plot of the Truncated Schröter Recursive Algorithm
for Each Iteration.

61



Figure 3.2: The Execution Time Plot of the Panjer Recursive Algorithm for Each
Iteration.
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Table 3.8: Efficiency of the Schröter algorithm on simulated claim data
Recursion Algorithm Sample (n) sum of g(s) Execution time (s)
The Schröter algorithm 20 0.0062785 0.0028598

50 0.0063757 0.0195415
100 0.0064331 0.0765483
150 0.0064909 0.1735694
200 0.0065073 0.2585254
300 0.0063946 0.6078202
600 0.0064442 1.8534706
1500 0.0064868 4.6577935
2000 0.0064729 5.4729755
3000 0.0065035 6.8906786
4000 0.0064749 8.0277340
5000 0.0064949 8.7507973

Figure 3.3: The Execution Time Plot of the Schröter Recursive Algorithm for Each
Iteration.
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Figure 3.4: Visual Representation of the Execution Time of the Truncated Schröter,
Panjer, and Schröter recursive Algorithms.
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Discussion
The performance, presented in Tables 3.5–3.8 and Figures 3.1–3.4, demonstrates that
the proposed algorithm is both highly efficient and scalable, capable of handling larger
datasets with minimal computational burden. Among the benchmarked methods, the
Panjer recursive algorithm exhibits increasing execution times as n grows, beginning
at 0.0014127 s for n = 20 and rising to 1.7650454 s for n = 5000. Although reason-
ably efficient, it shows lower scalability compared to the truncated Schröter recursion
algorithm (see Figure 3.4).

In contrast, the standard Schröter recursive algorithm, which incorporates a con-
volution component f n∗

i , displays substantially higher execution times, starting at
0.0028598 s for n = 20 and escalating sharply to 8.7507973 s for n = 5000 (see Fig-
ure 3.4). This steep increase reflects poor scalability and reduced efficiency, particularly
for larger sample sizes, making it the least optimal option among the three algorithms.

Thus, in general, the truncated Schröter recursion algorithm emerges as the most ef-
ficient and scalable approach, consistently outperforming both the Panjer and standard
Schröter algorithms. While the latter may offer greater modeling flexibility, its com-
putational complexity limits practical applicability. In contrast, the truncated version
achieves superior balance by combining computational speed with reliable accuracy.

The consistency of execution times was also assessed by repeating each sample
size across five independent runs. The negligible variation observed indicates that the
algorithms are stable and reproducible, though minor fluctuations may still arise from
the operational state of the computing system.

More broadly, this section investigated the computation of aggregate claim amounts
using multiple recursive algorithms, with particular emphasis on the newly introduced
truncated Schröter recursion. The central objective was to enhance both the accuracy
and computational efficiency of aggregate claim estimation, a cornerstone of effective
risk management and premium setting in the insurance industry.

When applied to the AutoCollision dataset, the truncated Schröter algorithm con-
sistently delivered the fastest execution times and the highest aggregate claim sums,
reflecting both computational efficiency and modeling comprehensiveness. For model-
ing claim count data, the Negative Binomial distribution was preferred over the Gen-
eralized Poisson distribution, owing to its capacity to accommodate overdispersion, as
confirmed by AIC and BIC selection criteria.

Simulation studies further validated the advantages of the truncated Schröter algo-
rithm across varying sample sizes. It consistently outperformed the Panjer and stan-
dard Schröter algorithms in terms of execution time and scalability, while effectively
capturing data variability for refined analysis. These findings highlight the importance
of selecting suitable counting distributions and recursive methods when modeling ag-
gregate claims.

In conclusion, the truncated Schröter recursion algorithm proves to be a robust
and reliable tool for estimating aggregate claim amounts, striking an effective balance
between computational speed and modeling accuracy. Its adoption can substantially
improve risk assessment and premium pricing strategies, ultimately benefiting both
insurers and policyholders. Future research may focus on enhancing the algorithm
further, for example by incorporating machine learning techniques to optimize param-
eter estimation based on evolving claim patterns, or by applying it to other insurance
domains beyond automobile claims to assess its generalizability and identify domain-
specific refinements.
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3.1.6 Generalized Schröter Recursive Formula
This section presents a new result on a more general class of the Schröter recursive
formula and shows how it determines counting distributions.

We define the generalized Schröter recursive formula as

Pn =
t∑

i=1

[(
ai +

bi
n

)
Pn−i +

ci
n
Pn−i−1

]
, n = 1, 2, 3, . . . , (3.13)

for some t, where t is an integer. Furthermore, by definition, P−1 = 0 and P0 > 0. If
ci = 0, we obtain the generalized class of the Panjer formula defined in Sundt [113],
and for t = i = 1, we have the classical Schröter recursive formula as a special case.
We will refer to this class as the Rt(a, b, c) class of Schröter’s family. The generalized
class has 3t parameters.

Let G(s) be a probability generating function (PGF) defined as

G(s) =
∞∑
n=0

Pns
n, (3.14)

where Pn denotes the PMF of the Rt(a, b, c) class. Differentiating,

G
′
(s) =

∞∑
n=1

nPns
n−1. (3.15)

Substituting the recurrence relation into G′(s) gives

G
′
(s) =

∞∑
n=1

nsn−1

[
t∑

i=1

((
ai +

bi
n

)
Pn−i +

ci
n
Pn−i−1

)]
. (3.16)

Rearranging summations,

G
′
(s) =

t∑
i=1

[
∞∑
n=i

((nai + bi)Pn−i + ciPn−i−1)

]
sn−1. (3.17)

Changing indices of summation yields

G
′
(s) =

t∑
i=1

[
ai

∞∑
n=0

(n+ i)sn+i−1Pn + bi

∞∑
n=0

sn+i−1Pn + ci

∞∑
n=0

sn+i−1Pn−1

]
. (3.18)

This becomes

G
′
(s) =

t∑
i=1

[
ais

i

∞∑
n=0

nsn−1Pn + (iai + bi)s
i−1

∞∑
n=0

snPn + cis
i

∞∑
n=0

sn−1Pn−1

]
. (3.19)

Recognizing the series as G(s) and G′(s), we obtain

G
′
(s) =

t∑
i=1

[
ais

iG
′
(s) + (iai + bi)s

i−1G(s) + cis
iG(s)

]
. (3.20)
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Hence,

G
′
(s)

G(s)
=

∑t
i=1(iai + bi + sci)s

i−1

1−
∑t

i=1 ais
i

(3.21)

Equation (3.21) determines the counting distributions of the Rt(a, b, c) class. In
particular, if a distribution with PMF P (N = n) satisfies (3.21), then it belongs to the
Rt(a, b, c) family, and the parameters (ai, bi, ci) can be uniquely determined.

Theorem 6 (Characterization of the Rt(a, b, c) Class). Let (Pn)n≥0 be a PMF with
P0 > 0 and PGF

G(s) =
∞∑
n=0

Pns
n,

analytic in a neighborhood of s = 0. Fix an integer t ≥ 1. Then the following are
equivalent:

1. The sequence (Pn) satisfies the generalized Schröter recurrence

Pn =
t∑

i=1

[(
ai +

bi
n

)
Pn−i +

ci
n
Pn−i−1

]
, n ≥ 1,

with P−1 = 0, for some real parameters ai, bi, ci (i = 1, . . . , t).

2. The PGF G(s) satisfies the differential identity

G′(s)

G(s)
=

∑t
i=1(iai + bi + sci) s

i−1

1−
∑t

i=1 ais
i

.

Moreover, the parameters ai, bi, ci are uniquely determined by the rational function on
the right-hand side of (2).

Proof. We prove both directions.

(i) ⇒ (ii). This has already been derived in the steps leading to equation (3.21).
Assuming the recurrence holds, substitution into the PGF derivative G′(s) yields (2).

(ii) ⇒ (i). Assume the PGF identity (2) holds. Multiplying through gives(
1−

t∑
i=1

ais
i

)
G′(s) =

(
t∑

i=1

(iai + bi)s
i−1 +

t∑
i=1

cis
i

)
G(s).

Expanding both sides in power series, the coefficient of sn−1 on the left-hand side is

nPn −
t∑

i=1

ai(n− i)Pn−i, n ≥ 1.

The coefficient on the right-hand side is

t∑
i=1

(iai + bi)Pn−i +
t∑

i=1

ciPn−i−1.
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Equating coefficients yields

nPn =
t∑

i=1

(nai + bi)Pn−i +
t∑

i=1

ciPn−i−1.

Dividing by n gives

Pn =
t∑

i=1

[(
ai +

bi
n

)
Pn−i +

ci
n
Pn−i−1

]
, n ≥ 1,

which is exactly the recurrence. Thus, (i) holds.

Uniqueness. The rational form in (2) determines the ai from the denominator, and
then bi, ci from the numerator. Thus, the parameters are uniquely determined.

3.1.7 Properties of the Members of the Schröter Rt(a, b, c) Class
of Distributions

This section examines the properties of the members of the more general class of the
Schröter formula defined in equation (3.21).

Let Pn be the PMF of the random discrete variable N in Rt(a, b, c). From equation
(3.21), we can write that µ = E(N) = G

′
(1). Hence,

µ =

∑t
i=1(iai + bi + ci)

1−
∑t

i=1 ai
. (3.22)

Using the fact that G′(s) =
∑∞

n=0 ns
n−1Pn and G”(1) =

∑∞
n=0 n(n− 1)Pn = E(n(n−

1)) = E(n2)−E(n), we have that σ = V ar(N) = G”(1)+G′(1)− [G′(1)]2. By applying
the quotient rule of differentiation to equation (3.21), we have

σ =
[1−

∑t
i=1 ai][

∑t
i=1(iai + bi + ci)(i− 1) +

∑t
i=1(iai + bi + sci)ci] +D

[1−
∑t

i=1 ai]
2

+ E (3.23)

whereD =
∑t

i=1(iai+bi+ci)
∑t

i=1 iai and E =
[1−

∑t
i=1 ai][

∑t
i=1(iai+bi+ci)]−[

∑t
i=1(iai+bi+ci)]

2

[1−
∑t

i=1 ai]
2 .

These results generalized the proposition 2 of the Schröter [103] results (see Schröter
[103]; page 167).

3.2 Final Remarks
This chapter establishes a rigorous and computationally efficient framework for esti-
mating aggregate claims under truncation at one, directly motivated by real policy
structures (deductibles and unreported small losses). From the truncated Schröter re-
currence, we derive the PGF, the associated PMF, and a closed-form log-likelihood,
which together enable constrained maximum likelihood estimation of (a, b, c) with nu-
merically stable implementation. We then introduce a truncated Schröter recursive
algorithm that eliminates convolution, resulting in a simple weighted update for g(s)
that retains Panjer and the classical Schröter recursive formulas as special cases. The
implementation workflow is end-to-end. It starts by initialization via g(0) from the
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chosen count model (i.e., Negative Binomial), estimates (a, b, c) by MLE under box
constraints, and computes the aggregate distribution by the new recursive algorithm.

Empirically, the AutoCollision application shows that the truncated Schröter method
achieves the fastest runtimes and yields the largest aggregate-probability mass over the
tail range examined, while model selection for claim counts favors the Negative Bino-
mial over the Generalized Poisson by AIC/BIC and residual diagnostics. A simulation
study confirms scalability: execution times for the truncated Schröter recursive algo-
rithm grow slowly with sample size and remain substantially lower than those of Panjer
algorithm and the classical Schröter algorithm, which relies on convolution. Finally, we
generalize the Schröter recursive formula to the Rt(a, b, c) family, characterize its count-
ing distributions via PGF differential identity, and provide closed-form expressions for
the mean and variance. Collectively, these results provide a robust, truncation-aware
approach that enhances modeling accuracy and operational speed for aggregate claim
estimation.
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CHAPTER 4

RESULTS ON INFINITE-SUM REPRESENTATION OF
AGGREGATE APPROVED CLAIM AMOUNT DISTRIBUTION:

ZERO-TRUNCATED POISSON AND SHIFTED
EXPONENTIAL DISTRIBUTIONS

In this chapter, we study the distribution of aggregate approved claim amounts when
the claim frequency follows a zero-truncated Poisson (ZTP) distribution and the claim
severity follows a shifted exponential (SE) distribution. This combination captures two
essential features of insurance contracts: the exclusion of zero frequencies, since only
positive numbers of approved claims are meaningful, and the presence of deductibles,
which shift claim severities away from zero. The resulting compound ZTP-SE model
reflects practical realities of insurance data and provides a more realistic basis for ac-
tuarial modeling of aggregate approved claims. A central contribution of this chapter
is the derivation of an infinite-sum representation for the aggregate distribution, which
facilitates theoretical analysis and efficient numerical evaluation. The study also shows
that the derived approved claim distribution is a member of the Panjer and Schröter
families. To complement this, the chapter employs saddlepoint approximation tech-
niques to obtain accurate and computationally efficient approximations for the density
and distribution functions of the aggregate model. The results presented in this chapter
is based on my joint work with Agu and Wald [3]

4.1 Motivation
The motivation for this chapter arises from the limitations of traditional compound
models in reflecting the operational structure of insurance data. Classical formulations
often assume that severities can take values arbitrarily close to zero, yet in practice, de-
ductibles ensure that insurer payouts begin only above a positive threshold. Standard
exponential severities, therefore, misrepresent observed claims, whereas the shifted ex-
ponential distribution provides a natural correction by incorporating the deductible
directly into the model. Likewise, frequency distributions such as the Poisson allocate
positive mass at zero, which is inconsistent with datasets of approved claims that nec-
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essarily involve at least one claim. The zero-truncated Poisson distribution eliminates
this inconsistency while retaining the tractability of the Poisson law.

Although these modeling adjustments improve realism, the convolution of ZTP fre-
quencies with SE severities does not yield closed-form aggregate distributions. Direct
numerical evaluation becomes computationally expensive as the number of claims in-
creases. Previous studies, including recursive approaches examined in Chapter 3, have
demonstrated the value of recursive methods for compound models; however, such
approaches are not always optimal in the presence of truncation and shifting. To ad-
dress this, this study derives an infinite-sum representation for the ZTP–SE compound
distribution, which provides a precise theoretical foundation for further analysis.

Beyond exact representations, efficient approximations are necessary for practical
actuarial applications. Saddlepoint approximation methods, introduced by Daniels
[27] and further developed by Reid [100] and Wang [125], have been widely recognized
for their accuracy in approximating the distributions of sums of random variables.
Their relevance to actuarial and reliability contexts has been highlighted in recent
studies Alhejaili and AlGhamedi [8]; Tang and Reid [119]; Meng et al. [76]; Butler [21].
By combining an exact infinite-sum representation with saddlepoint approximations,
this chapter develops a framework that is theoretically rigorous and computationally
feasible for evaluating the distribution of aggregate approved claim amounts.

The main aim of this chapter is to construct and analyze the compound ZTP-SE
model, derive its infinite-sum representation, and integrate saddlepoint methods to
provide efficient and accurate approximations. In doing so, the chapter advances the
recursive framework established in Chapter 3 toward a more practically motivated ac-
tuarial modeling setting that aligns with deductible-inclusive and truncation-adjusted
insurance data.

4.1.1 Model Setup
This section establishes the probabilistic framework for modeling aggregate approved
claim amounts. We specify the claim frequency distribution using the ZTP law to en-
sure that only positive claim counts are considered, and we model claim severities with
the SE distribution to capture the effect of deductibles. The aggregate approved claim
amount is then formulated as a compound sum of SE severities, with the counting
variable derived from the truncated claim frequency. This setup provides the founda-
tion for deriving exact distributional properties, moment-based characterizations, and
saddlepoint approximations in subsequent sections.

Let N denote the total number of claims made by policyholders within a fixed
period. We assume that N follows the ZTP distribution with parameter λ > 0, so that
N ∈ {1, 2, 3, . . . }. The PMF of N is defined as:

P (N = n) =
λne−λ

n!(1− e−λ)
, n = 1, 2, 3, . . . (4.1)

and its corresponding MGF is expressed as:

MN(t) =
eλ(e

t−1) − 1

1− e−λ
(4.2)

Out of the N total claims, let L denote the number of approved claims in a fixed
time, where L ≤ N . We assume that L ≥ 1 almost surely.
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Consequently, the number of non-approved claims is N − L. The random variable
L may depend on a probabilistic approval process, which is specified separately. The
distribution of N − L can thus be derived from the joint or conditional distribution of
L given N .

Let T1, T2, . . . , TL denote the claim amounts paid out by the insurance company for
the L approved claims.

We assume that Tj ∼ SE(θ, β) for j = 1, 2, . . . , L, all Tj are independent and
identically distributed (IID), and the severities Tj are stochastically independent of N .

The SE distribution incorporates a deductible threshold parameter θ > 0 and scale
parameter β > 0. Its probability density function (PDF) is expressed as:

fT (t) = βe−β(t−θ), t > θ (4.3)

The aggregate amount paid out by the insurance company in the fixed time period
is defined as:

X =
L∑

j=1

Tj = T1 + T2 + · · ·+ TL (4.4)

which reflects the number of approved claims via L and the amount of each claim
through Tj.

Thus, X represents the total approved payout, which depends on the number of
approved claims (L) and the amounts paid for each of those claims (T1, . . . , TL).

The random variable X is a compound sum where the counting variable L is derived
from the zero-truncated claim count N , and the summands follow the SE distribution.
This formulation allows for the realistic modeling of deductible thresholds through the
SE distribution, the exclusion of zero-claim cases via the ZTP assumption on N , and
the derivation of the distribution of approved claims L and the unapproved claim count
N − L.

In the following sections, we introduce the distribution of approved claims, along
with its corresponding mean, variance, moment generating function (MGF), and cu-
mulant generating function (CGF), as well as the distribution of unapproved claims.
We then develop the PMF and CGF of X and its related properties, and derive the
saddlepoint approximation to its density and cumulative distribution functions.

4.1.2 The distribution of approved claims
This section presents the probabilistic framework for modeling the number of approved
claims out of the total reported claims. Since not every reported claim results in pay-
ment, only those that exceed the deductible and meet policy conditions are approved.

Therefore, it is necessary to derive the distribution of approved claims separately.
We model the approval process as a thinning mechanism applied to the ZTP claim
frequency, which naturally leads to a compound structure. This formulation enables
us to determine the distribution of approved and unapproved claims, along with their
corresponding generating functions and moments.

In insurance practice, not all reported claims result in payment; only those that
exceed a specified deductible and meet the contract conditions are approved for com-
pensation. Consequently, it is essential to model the distribution of approved claims
separately from the total reported claims.

Let each reported claim have an independent probability q = P(T > θ) of being
approved, with T ∼ SE(θ, β).
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Conditional distribution. Given that N = n ∼ ZTP(λ), the approved claim count
L | N = n ∼ Bin(n, q) with the PMF defined in equation (4.5), and the marginal
distribution of L becomes a compound distribution that integrates the effects of claim
frequency and approval mechanism, and L ∈ {1, 2, 3, . . .}, where we are only interested
in positive approvals. So, the PMF of L | N = n is:

P (L = l | N = n) =

(
n

l

)
ql(1− q)n−l, l = 0, 1, 2, . . . , n, q ∈ [0, 1]. (4.5)

This forms the conditional distribution of L.

Mixture over the ZTP frequency (unconditional given N ≥ 1). The marginal
distribution of L (still allowing L = 0) is derived by marginalizing over N :

P (L = l) =
∞∑
n=l

P (L = l | N = n)P (N = n)

=
∞∑
n=l

(
n

l

)
ql(1− q)n−l e−λλn

n! (1− e−λ)

=
e−λ

1− e−λ

(qλ)l

l!

∞∑
n=l

(
(1− q)λ

)n−l

(n− l)!
.

Letting m = n− l gives

P (L = l) =
e−λ

1− e−λ

(qλ)l

l!

∞∑
m=0

(
(1− q)λ

)m
m!

=
e−λ

1− e−λ

(qλ)l

l!
e(1−q)λ =

e−qλ(qλ)l

l! (1− e−λ)
,

valid for all l = 0, 1, 2, . . . . In particular, the positive-l probabilities are

P (L = l) =
e−qλ(qλ)l

l! (1− e−λ)
, l = 1, 2, . . . , (4.6)

and there remains nonzero mass at zero approvals unless q = 1:

P (L = 0) =
e−qλ − e−λ

1− e−λ
.

Restriction to positive approvals (L ≥ 1). Because we are only considering
episodes with at least one approved claim, we condition on L ≥ 1. From equation
(4.6),

P (L ≥ 1) =
∞∑
l=1

P (L = l) =
1− e−qλ

1− e−λ
.

Therefore, for l = 1, 2, . . . ,

P (L = l | L ≥ 1) =
e−qλ(qλ)l

l!
(
1− e−qλ

) (4.7)

which is the zero-truncated Poisson distribution with parameter qλ. We will refer to
equation (4.7) as the zero-truncated Poisson-Binomial (ZTPB) distribution, induced
by thinning a (zero-truncated) Poisson frequency with approval probability q.
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Furthermore, it can be easily shown that the ZTPB belongs to the Panjer recursive
family of discrete distributions with parameters a = 0 and b = qλ; indeed, for l ≥ 2,

P (L = l | L ≥ 1)

P (L = l − 1 | L ≥ 1)
=
qλ

l
.

(We note P (L = 0 | L ≥ 1) = 0, so the standard Panjer recursion needs the usual
adjustment for zero-truncation; the ratio above holds for l ≥ 2.) Additionally, one
can show that the convolution of equation (4.7) with the Panjer class belongs to the
Schröter family, as studied in Chapter 3.

The plot of the ZTPB for varying parameter values is shown in Figure 1. Similarly,
the distribution of an unapproved claim is simply the distribution of U = N − L.

4.1.3 The Distribution of Unapproved Claims
The distribution of an unapproved claim is simply the distribution of U = N − L.
Given that N = n, U | N = n ∼ Bin(n, 1 − q), where 1 − q is the probability of the
claim not being approved.

Unconditional given N ≥ 1. By the same mixture argument as above,

P (U = u) =
e−(1−q)λ

(
(1− q)λ

)u
u! (1− e−λ)

, u = 0, 1, 2, . . . .

If one also focuses on strictly positive unapproved counts (U ≥ 1), then

P (U = u | U ≥ 1) =
e−(1−q)λ

(
(1− q)λ

)u
u!
(
1− e−(1−q)λ

) , u = 1, 2, . . . . (4.8)

Equation (4.8) is the ZTPB distribution of an unapproved claim in this positive-u
sense.

4.1.4 The Moments of the approved claim count
Since N = n, L | N = n ∼ Bin(n, q); so, by definition, the conditional moments are:

E(L | N = n) = nq, Var(L | N = n) = nq(1− q).

Using the fact that
E(L) = EN

[
E(L | N)

]
,

and that L | N = n ∼ Binomial(n, q), we have

E(L | N = n) = nq.

Therefore,
E(L) = EN [E(L | N)] = EN [qN ] = q E(N) =

qλ

1− e−λ
,

since
E(N) =

λ

1− e−λ
for N ∼ ZTP(λ).
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Furthermore, using the law of total variance,

Var(L) = E
[
Var(L | N)

]
+Var

(
E[L | N ]

)
= E

[
Nq(1− q)

]
+Var(qN)

= q(1− q)E(N) + q2 Var(N).

For N ∼ ZTP(λ) it holds that

E(N) =
λ

1− e−λ
, Var(N) =

λ

1− e−λ
− λ2e−λ

(1− e−λ)2
.

Hence,

Var(L) = q(1− q)
λ

1− e−λ
+ q2

(
λ

1− e−λ
− λ2e−λ

(1− e−λ)2

)
=

qλ

1− e−λ
− q2λ2e−λ

(1− e−λ)2
.

If, as in this chapter, we restrict to positive approvals (L ≥ 1), then L | L ≥ 1 ∼
ZTP(qλ), and its mean and variance are

E(L | L ≥ 1) =
qλ

1− e−qλ
, Var(L | L ≥ 1) =

qλ

1− e−qλ
− (qλ)2e−qλ

(1− e−qλ)2
.

4.1.5 The MGF of the approved claim count
Let ML(t) = E(etL). Using (4.5),

ML(t) =
∞∑
n=1

P (N = n)E
(
etL | N = n

)
=

∞∑
n=1

λne−λ

n!(1− e−λ)

(
1− q + qet

)n
.

By the exponential series,

ML(t) =
e−λ

1− e−λ

(
eλ(1−q+qet) − 1

)
=

eλq(e
t−1) − e−λ

1− e−λ
,

which satisfies ML(0) = 1.
If we condition on positive approvals (L ≥ 1), then

ML|L≥1(t) =
eqλ(e

t−1) − e−qλ

1− e−qλ
.

4.1.6 The PGF of the approved claim count
Let GL(s) = E(sL). As above,

GL(s) =
∞∑
n=1

(1− q + qs)n
λne−λ

n!(1− e−λ)
=

e−λ

1− e−λ

(
eλ(1−q+qs) − 1

)
=

eλq(s−1) − e−λ

1− e−λ
.

Under L ≥ 1,

GL|L≥1(s) =
eqλ(s−1) − e−qλ

1− e−qλ
.
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4.1.7 Approval probability from the SE
Let the payment approvals depend on the claim amounts exceeding the deductible
threshold parameter θ, and T ∼ SE(θ, β). Writing the deductible threshold as θ0 > θ,
using equation (4.3), we evaluate:

q = P (T > θ0) =

∫ ∞

θ0

fT (t) dt = e−β(θ0−θ), θ0 > θ.

For θ0 = θ, we obtain q = 1, which implies that all claims are approved. Hence,
q = P (Tj > θ0) is the probability of approval.

This section introduces the distribution of approved claims, showing that it follows
the ZTPB distribution. The section derived the PMF of ZTPB, mean, variance, and
generating functions, and also described the distribution of unapproved claims. This
foundation is significant for the next subsection, where we extend the analysis to the
aggregate amount of approved claims and derive its distributional properties using
CGFs and saddlepoint approximations.

4.1.8 The aggregate approved claim amounts distribution
Having established the distribution of the number of approved claims in the previous
subsection, we now turn to the distribution of the corresponding aggregate approved
claim amounts. This section develops the probabilistic formulation of the total amount
paid, considering only approved claims. By conditioning on the number of approvals
and using the SE distribution for claim severities, we derive the density of the aggre-
gate approved claims through compounding. This characterization not only highlights
the role of the approval mechanism but also provides the analytical foundation for
understanding how deductibles, approval probabilities, and claim arrival rates jointly
shape the aggregate distribution.

The distribution of aggregate approved claim amounts
Let X denote the aggregate approved claim amount. Conditional on L = l approved
claims, we write

X | L = l =
l∑

j=1

Tj,

where each Tj ∼ SE(θ, β). Recall that the shifted exponential distribution can be
expressed as

Tj = θ + Yj, Yj ∼ Exp(β),
where θ > 0 is the deductible threshold and β > 0 is the rate parameter.

Substituting, we have

X | L = l =
l∑

j=1

Tj =
l∑

j=1

(θ + Yj) = lθ +
l∑

j=1

Yj.

Let

Sl =
l∑

j=1

Yj.
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Since the Yj’s are independent and exponentially distributed, Sl follows a gamma dis-
tribution:

Sl ∼ Gamma(l, β),

with shape parameter l and rate parameter β. Therefore, the conditional distribution
of X | L = l is a shifted gamma:

X | L = l ∼ lθ + Gamma(l, β).

4.1.9 The unconditional PDF of the aggregate approved claim
amounts

We start with the conditional distribution of X given L = l:

X | L = l ∼ lθ + Gamma(l, β),

so its conditional PDF is

fX|L=l(x) =
βl(x− lθ)l−1e−β(x−lθ)

Γ(l)
1{x ≥ lθ}, l = 1, 2, . . . (4.9)

Because we are only considering positive approvals (L ≥ 1), the approved-count
PMF is the zero-truncated Poisson with parameter qλ:

P (L = l) =
(λq)le−qλ

l!
(
1− e−qλ

) , l = 1, 2, 3, . . .

The unconditional PDF of X is then obtained by mixing over L:

fX(x) =
∞∑
l=1

P (L = l) fX|L=l(x)

=
∞∑
l=1

[
βl(x− lθ)l−1e−β(x−lθ)

Γ(l)
· (λq)le−qλ

l!
(
1− e−qλ

)]1{x ≥ lθ}.

Equivalently, since only terms with l ≤ bx/θc contribute,

fX(x) =
e−qλ

1− e−qλ

bx/θc∑
l=1

(λq)l

l!

βl(x− lθ)l−1e−β(x−lθ)

Γ(l)
, x ≥ θ (4.10)

with parameters λ, β, θ > 0 and q ∈ [0, 1]. The summation accounts for all possible
numbers of approved claims L, treating it as a latent count variable.

The term βl(x−lθ)l−1e−β(x−lθ)

Γ(l)
represents the conditional gamma density of the aggre-

gate claim amount given L = l, and the term (λq)le−qλ

l! (1−e−qλ)
is the probability of exactly l

approved claims under the ZTPB/ZTP(qλ) model. Summing over l = 1, 2, . . . produces
the unconditional PDF of the aggregate approved claim amount X.

Remark. If one does not condition on positive approvals (i.e., allows L = 0), then
there is an additional point mass at x = 0 of size Pr(L = 0 | N ≥ 1) = e−qλ−e−λ

1−e−λ ; the
continuous part for x > 0 is given by the same series with the mixing PMF e−qλ(qλ)l

l! (1−e−λ)
.
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Figure 4.1: PMF for various values of λ and q.
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Figure 1 illustrates how the PMF of the number of approved claims L varies with
different values of the claim frequency parameter λ and the approval probability q. For
smaller λ values (e.g., λ = 1.8), the distribution is heavily right-skewed, with most of
its mass concentrated at L = 1–3, and the probability declines sharply as L increases.
As λ increases (e.g., λ = 3.5 or λ = 6.5), the PMF shifts rightward and becomes
more dispersed, resulting in a higher probability of larger numbers of approved claims.
Similarly, larger q values (e.g., q = 0.95) increase the likelihood of approving more
claims, flattening the distribution compared to smaller q values (e.g., q = 0.4), which
produce shorter right tails. This figure shows that higher claim arrival rates and higher
approval probabilities lead to larger expected numbers of approved claims and heavier
right tails in the PMF.

Figure 4.2: The plot corresponding to equation (4.11) for different parameter values.

Figure 2 presents the PDF of the aggregate approved claim amounts X for different
parameter combinations. When λ and q are small (e.g., λ = 1.5, q = 0.6, β = 1.2,
θ = 0.5; blue curve), the density is sharply peaked near the deductible threshold θ,
indicating that small aggregate claim amounts dominate, and the right tail decays
rapidly. For moderate parameter values (e.g., λ = 2.7, q = 0.8, β = 1.3, θ = 0.3;
red curve), the peak shifts slightly rightward and flattens, reflecting a greater spread
in possible aggregate amounts. For larger λ and q (e.g., λ = 6, q = 0.9, β = 2.8,
θ = 0.2; green curve), the distribution becomes more dispersed and unimodal with its
peak further away from θ, showing higher probability for larger aggregate claims. This
means that higher claim arrival rates (λ) and approval probabilities (q) lead to broader
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distributions with heavier right tails, while β and θ influence the concentration and
location of the density around smaller claim amounts.

As illustrated in Figure 2, the PDF of the aggregate approved claim amount is not
smooth at the lower boundary. This behavior is a structural feature of the ZTP-SE
compound model. Since each approved claim must exceed the deductible theta, the
aggregate distribution has support starting at x = θ. For L = 1, the conditional
distribution θ + Exp(β) induces a positive jump at x = θ of size βP (L = 1), while for
L ≥ 2 the shifted-gamma components enter at x = lθ with density initially zero but
positive slope, producing visible kinks at multiples of θ. The apparent peak near the
origin is therefore a reflection of the theoretical structure of the model.

4.1.10 The parameter estimation via the expectation-maximization
(EM) approach

Having derived the distribution of the aggregate approved claim amounts, we now turn
to the problem of parameter estimation. Direct maximization of the likelihood asso-
ciated with equation (4.11) is analytically intractable because of the summation over
the latent claim count inside the log-likelihood. To address this, we apply the expec-
tation–maximization (EM) algorithm, which is well-suited for models involving latent
variables and missing data. The EM framework provides numerical stability, reliable
convergence, and ease of implementation, making it widely applicable in statistics and
related fields. This section formulates the observed-data likelihood, derives the E- and
M-steps for the key parameters, and establishes update rules for λ, q, β, and θ.

From equation (4.11), we maximize the observed-data log-likelihood, summing over
all observations and marginalizing over the latent count l, since direct maximization is
cumbersome due to the summation inside the logarithm. We write

L(λ, q, β, θ) =
n∑

i=1

log

[
∞∑
l=1

PL(l;λ, q) fX|L(Xi | l; β, θ)

]
,

where PL(l;λ, q) is defined in equation (4.6) and fX|L(x | l; β, θ) in equation (4.10).

Posterior weights. We define the posterior weight for observation Xi and count l:
Wil = P

(
L = l | Xi;λ, q, β, θ

)
.

By Bayes’ rule,

Wil =
fX|L(Xi | l; β, θ)PL(l;λ, q)

∞∑
k=1

fX|L(Xi | k; β, θ)PL(k;λ, q)

. (4.11)

The numerator is the joint density of (Xi, L) = (Xi, l),
fX|L(Xi | l)︸ ︷︷ ︸
equation (4.10)

PL(l;λ, q)︸ ︷︷ ︸
equation (4.6)

,

and the denominator is the marginal fX(Xi) =
∑

k≥1 fX|L(Xi | k)PL(k;λ, q). For
numerical work, we truncate the infinite sum at a large M :

Wil =
fX|L(Xi | l; β, θ)PL(l;λ, q)

M∑
k=1

fX|L(Xi | k; β, θ)PL(k;λ, q)

.
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(Recall fX|L(Xi | l) carries the indicator 1{Xi ≥ lθ}.)

Expected complete-data log-likelihood. The EM Q-function is

ψ(λ, q, β, θ) =
n∑

i=1

M∑
l=1

Wi,l

{
logPL(l;λ, q) + log fX|L(Xi | l; β, θ)

}
.

With the (positive-approvals) mixing law PL(l;λ, q) =
(qλ)le−qλ

l! (1− e−qλ)
(eq. (4.6)) and the

shifted-gamma density (eq. (4.10)),

ψ(λ, q, β, θ) =
∑
i,l

Wi,l

[
l log(qλ)− qλ− log l!− log

(
1− e−qλ

)
+ l log β + (l − 1) log

(
Xi − lθ

)
− β(Xi − lθ)− log Γ(l)

]
.

Define the summaries

S1 =
∑
i,l

Wi,l l, Sy =
∑
i,l

Wi,l (Xi − lθ),
∑
l

Wi,l = 1 ⇒
∑
i,l

Wi,l = n.

Update for β.

ψ(β) =
∑
i,l

Wi,l

[
l log β − β(Xi − lθ)

]
,

∂ψ

∂β
=
S1

β
− Sy = 0 ⇒ βnew =

S1

Sy

.

Since ∂2ψ/∂β2 = −S1/β
2 < 0, the update is the unique maximizer.

Update for θ (implicit). With yi,l = Xi − lθ,

∂ψ

∂θ
=
∑
i,l

Wi,l

[
− l(l − 1)

yi,l
+ β l

]
= 0 ⇒ β S1 =

∑
i,l

Wi,l
l(l − 1)

Xi − lθ
.

This defines θnew implicitly (solve numerically on {θ : Xi > lθ}). Moreover,

∂2ψ

∂θ2
= −

∑
i,l

Wi,l
l2(l − 1)

(Xi − lθ)2
< 0,

so the solution is the unique maximizer on the feasible domain.

Updates for q and λ. The (λ, q)-part of ψ is

ψλ,q =
∑
i,l

Wi,l

[
l log(qλ)− qλ− log(1− e−qλ)

]
.

Partial derivatives (holding the other parameter fixed):

∂ψλ,q

∂q
=
S1

q
− nλ− n

λe−qλ

1− e−qλ
,

∂ψλ,q

∂λ
=
S1

λ
− nq − n

qe−qλ

1− e−qλ
.
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It is convenient to reparametrize by µ := qλ. Then

ψµ =
∑
i,l

Wi,l

[
l log µ− log l!

]
− nµ − n log(1− e−µ) + const,

so
∂ψµ

∂µ
=
S1

µ
− n− n e−µ

1− e−µ
= 0 ⇐⇒ S1

µ
=

n

1− e−µ
,

with
∂2ψµ

∂µ2
= −S1

µ2
− n e−µ

(1− e−µ)2
< 0,

so the root is unique and ψµ is strictly concave. Solve this scalar equation for µnew

(e.g., Newton or uniroot), then recover (λ, q) using the chosen identifiability link (e.g.,
q = e−β(θ0−θ) from the shifted-exponential approval with known θ0, hence λ = µ/q).

Substitution of explicit forms. Using equation (4.6)

PL(l;λ, q) =
(qλ)le−qλ

l! (1− e−qλ)
,

and equation (4.10) for fX|L, the weight (4.11) becomes

Wil =

(qλ)le−qλ

l! (1− e−qλ)

βl(Xi − lθ)l−1e−β(Xi−lθ)

Γ(l)
1{Xi ≥ lθ}

M∑
k=1

(qλ)ke−qλ

k! (1− e−qλ)

βk(Xi − kθ)k−1e−β(Xi−kθ)

Γ(k)
1{Xi ≥ kθ}

,

which is the expression used in the EM implementation.

4.1.11 Theoretical properties of the aggregate approved claim
amounts

This section develops the theoretical foundations of the aggregate approved claim
amounts by deriving their MGF, CGF, and related higher-order derivatives. These
properties are crucial for understanding the distributional behavior of the compound
model, particularly in the context of saddlepoint approximation, where accurate char-
acterizations of moments and cumulants are vital. Leveraging the independence of
individual claim severities and the structure of the ZTPB frequency distribution, the
section establishes closed-form expressions that facilitate analytical insights and nu-
merical implementations.

Since Tj ∼ SE(θ, β), the MFG is given as:

MT (t) =
βeθt

θ − t
, t < θ. (4.12)

Similarly, L ∼ ZTPB(l, q) with the MGF (ML(t) = E(eLt)) defined in equation (4.8).
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4.1.12 MGF of the aggregate approved claim count
Let X =

∑L
j=1 Tj be the aggregate approved claim amounts. To derive the MGF, we

start as:
MX(t) = E

[
etX
]
.

Since L is a random variable representing the number of approved claims, we apply
the law of total expectation:

MX(t) = E
[
etX
]
= EL

[
E
(
etX | L

)]
,

where EL[·] denotes expectation over the distribution of L.
Conditional MGF given L = l. That is, if L = l, then

X | L = l =
l∑

j=1

Tj.

with T1, ..., Tl i.i.d. Thus, the conditional MGF of X given L = l is

MX|L=l(t) = E
[
etX | L = l

]
= E

[
et

∑l
j=1 Tj

]
.

Using independence of Tj and since T1, . . . , Tl are independent and identically dis-
tributed (i.i.d.), we can factorize the expectation as:

et
∑l

j=1 Tj =
l∏

j=1

etTj ⇒ E
[
et

∑l
j=1 Tj

]
= E

[
l∏

j=1

etTj

]
=

l∏
j=1

E
[
etTj
]
.

Let us express this via the MGF of T and by definition, the MGF of each Tj is:

MT (t) = E
[
etTj
]
.

Hence,

MX|L=l(t) =
l∏

j=1

MT (t) = [MT (t)]
l .

Using the law of total expectation again, the unconditional MGF of X is:

MX(t) = EL

[
MX|L(t)

]
= EL

[
(MT (t))

L
]
.

This indicates that the MGF of the aggregate claim amount X can be expressed
as the expectation of the L-th power of the MGF of the individual claim severity T .
That is:

MX(t) = E
[
(MT (t))

L
]
.

MX(t) = E
[
(MT (t))

L
]
= EL [MT (t)] .

where MT (t) is defined in equation (4.8). This form enables us to easily derive the
CGF of X based on its identity and subsequently derive saddlepoint approximations.

Unconditional MGF via the PGF of L. Using the fact that

MX(t) = EL

[
(MT (t))

L
]
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Equivalently,
MX(t) = GL(MT (t))

where GL(s) = E(sL) is the PGF of L.
However, we are interested in positive approvals only; hence, we evaluate the PGF

of L and denote it as GX(s) = E(XL) and recall X =
∑L

j=1 Tj.
We already know that:

MX(t) = E
[
etX
]
= E

[
(MT (t))

L
]
,

where MT (t) = E[etTj ] is the MGF of a single claim severity Tj.
Now, let GL(s) denote the PGF of L as already stated:

GL(s) = E[sL].

By setting s =MT (t), we immediately obtain:

MX(t) = E
[
(MT (t))

L
]
= GL

(
MT (t)

)
.

For L ∼ ZTPB(λq), the PGF is:

GL(s) =
eλ(1−q+qs) − 1

1− e−qλ
.

Substituting s =MT (t) and using Tj ∼ SE(θ, β) with MGF:

MT (t) =
βeθt

θ − t
, t < β,

we obtain the MGF of X:

MX(t) =
e
λ

[
1−q+q

(
βeθt

θ−t

)]
− 1

1− e−qλ
. (4.13)

Finally, the cumulant generating function (CGF) of X is simply

KX(t) = log

eλ
[
1−q+q

(
βeθt

θ−t

)]
− 1

1− e−qλ

 . (4.14)

We define K ′
X(t0) = x, and we will call this the saddlepoint equation such that

K
′
X(t0) could be solved numerically to obtain t0 estimate.

The estimate of the saddlepoint t0 is simply the root where the CGF’s slope matches
the median of the observation.
Subsequently, t0 is defined as the saddlepoint satisfying K

′
X(t0) = x and will t0 the

introduced saddpoint estimator.
Let

A(t) = λ (1− q + qg(t))

where g(t) = βeθt

θ−t
and S(t) = eA(t) so S(t) > 0 and B = 1− e−qλ

g′(t) =
βeθt [θ(θ − t) + 1]

(θ − t)2
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g”(t) =
βeθt [θ2(θ − t)2 + 2θ(θ − t) + 2]

(θ − t)3

g′′′(t) =
βeθt [θ2(θ − t)3 + 3θ2(θ − t)2 + 6θ(θ − t) + 6]

(θ − t)4

A′(t) = qλg′(t)

A′′(t) = qλg”(t)

A′′′(t) = qλg′′′(t)

.
Hence,

K
′

X(t0) =
S(t0)A

′(t0)

S(t0)− 1
= x (4.15)

Similarly,

K”
X(t0) =

S(t0)
[
(S(t0)− 1)A”(t0)− (A′(t0))

2]
(S(t0)− 1)2

and

K
′′′

X (t0) =
S(t0)

[
(S(t0)− 1)3A

′′′
(t0) + (S(t0)− 1)(e2A(t0) −D

]
(S(t0)− 1)4

, where
D = 4S(t0) + 1)A

′
(t0)A

′′
(t0) + (S(t0) + 1)(A

′
(t0))

3

Notes. (i) Domain: all formulas hold for t < β. (ii) If one were to work with the
untruncated mixing law (allowing L = 0), replace qλ(g(t)− 1) by λ(1− q+ q g(t)) and

c by 1, reproducing MX(t) =
eλ(1−q+qg(t)) − 1

1− e−λ
.

4.1.13 The saddlepoint approximation
In this section, we employed two saddlepoint approximation techniques for our model-
ing problem, specifically for estimating the saddlepoint of equation (4.16): the classical
method proposed by Daniels [27] and its extended form introduced by Wang [125],
which builds upon the foundational work of Daniels. Considering both methods allows
for a comprehensive comparison and ensures robustness in our approximation results.

4.1.14 The Daniels [27] approximation approach
Let

ω = sign(t0)
√
2 (t0x−KX(t0)).

Then, the CDF of X is approximated by

P (X ≤ x) ≈ Φ(ω) =
1√
2π

∫ ω

−∞
e−z2/2 dz, (4.16)

where Φ(ω) is the standard normal CDF.
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Using the error function, we can also write

P (X ≤ x) ≈ Φ(ω) =
1

2

[
1 + erf

(
ω√
2

)]
.

The corresponding PDF is

fX(x) ≈
d

dx
Φ(ω) = φ(ω)

dω

dx
,

where φ(ω) is the standard normal PDF.
From the definition of ω and using Φ′(ω) = φ(ω), we have

dω

dx
=

1

2ω

(
2t0 + 2x

dt0
dx

− 2K ′
X(t0)

dt0
dx

)
.

By the saddlepoint equation K ′
X(t0) = x, it follows that x−K ′

X(t0) = 0, hence

dω

dx
=
t0
ω
.

Therefore, the approximate PDF is

fX(x) ≈ φ(ω)
dω

dx
=

1√
2π
e−ω2/2 t0

ω
. (4.17)

4.1.15 The Wang [125] second-order correction approximation
approach

Let
u = t0

√
K ′′

X(t0).

Then, the Wang [125] second-order corrected CDF approximation is

P (X ≤ x) = FX(x) ≈ Φ(ω) + φ(ω)

(
1

ω
− 1

u

)
, (4.18)

where
ω = sign(t0)

√
2 (t0x−KX(t0)),

and Φ(·) and φ(·) are the standard normal CDF and PDF, respectively.
We also have

φ(ω) =
1√
2π
e−ω2/2, φ′(ω) = −ωφ(ω). (4.19)

Differentiating the CDF to obtain the PDF gives

fX(x) =
dFX

dx

=
dΦ(ω)

dx
+

d

dx

[
φ(ω)

(
1

ω
− 1

u

)]
. (4.20)

The first term is
dΦ(ω)

dx
= φ(ω)

dω

dx
= φ(ω)

t0
ω
. (4.21)
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For the second term, let
A(ω) =

1

ω
− 1

u
.

Then,

d

dx

[
φ(ω)A(ω)

]
= φ′(ω)

dω

dx
A(ω) + φ(ω)

dA

dx

=

[
−ωφ(ω)t0

ω

]
A(ω) + φ(ω)

(
− t0
ω3

+
1

u2
du

dx

)
= −t0φ(ω)A(ω) + φ(ω)

(
− t0
ω3

+
1

u2
du

dx

)
.

Adding the contributions, the exact PDF is

fX(x) = φ(ω)
t0
ω

− t0φ(ω)A(ω) + φ(ω)

(
− t0
ω3

+
1

u2
du

dx

)
= φ(ω)

[
t0
u
− t0
ω3

+
1

u2
du

dx

]
. (4.22)

Since
u = t0

√
K ′′

X(t0),

differentiating and using dt0
dx

= 1
K′′

X(t0)
(from K ′

X(t0) = x) gives

du

dx
=

1√
K ′′

X(t0)
+

t0K
′′′
X(t0)

2(K ′′
X(t0))

3/2
. (4.23)

If the curvature variation is small, we may approximate du
dx

≈ 0. Then, equation
(4.22) simplifies to

fX(x) ≈ t0 φ(ω)

(
1

u
− 1

ω3

)
. (4.24)

Equations (4.19) and (4.22) present the saddlepoint approximate PDFs derived
using the two respective approaches.

4.2 Numerical results
This section presents simulation studies and real-life numerical evaluations of our
model, the saddlepoint approximation, and the utilization of the EM approach for the
parameter estimations, assessing the fitness of the derived PDFs. For the real-life ap-
plication, we utilize the ”PAID” variable, representing the insurance payout amount in
USD, from the AutoClaims dataset with a mean of 1853.035 and a variance of 7006129,
indicating overdispersed data. This data contains 6,773 observations. These include
4,191 males (aged 50–97 years) and 2,582 females (aged 50–95 years). The data was
obtained in R using the commands: library(insuranceData), data(AutoClaims),
and print(AutoClaims). This dataset represents closed claim experience from a large
Midwestern U.S. property and casualty insurer for private passenger automobile in-
surance. The dependent variable ”PAID” corresponds to the actual payout (in USD)
made by the insurer for claims that were approved and closed within the reporting
calendar year.
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4.2.1 Saddlepoint estimation via Monte Carlo simulation with
ZTPB count and SE

Since the saddlepoint equation K ′
X(t0) = x has no closed-form solution, we estimate t0

numerically using simulated data from the compound model. We generate observations
of

X =
L∑

j=1

Tj, Tj = θ + Yj, Yj ∼ Exp(θ),

where the approved-claim count L follows the ZTPB distribution with parameters
(q, λ).

We solve K ′
X(t0) = x numerically for t0, taking x as the sample median of X.

We implemented a direct Monte Carlo simulation of the compound model in R.
The discrete component L (ZTPB) is sampled via a thin-and-truncate approach that is
marginally equivalent to a zero-truncated Poisson with rate λq: we draw from rpois()
with mean λq and reject zeros. Severities are generated with rexp() and shifted by
θ; aggregation uses sum(), repetition uses replicate(), and the nonlinear root t0 is
obtained with uniroot(). Bootstrap resampling (via sample()) provides variability
and bias estimates for t0.

4.2.2 Simulation procedure
• Draw an approved claim count L ∼ ZTPB(q, λ) (implemented as ZTP with mean
λq).

• Conditional on L, generate i.i.d. severities Tj = θ + Yj with Yj ∼ Exp(θ) (i.e.,
rexp() plus a constant shift θ).

• Compute the compound sum X =
∑L

j=1 Tj.

• Repeat steps 1–3 to obtain n i.i.d. samples of X.

• Set x = median(X1, . . . , Xl) and solve K ′
X(t0) = x for t0 using uniroot().

• Assess uncertainty of the estimate of t0 via bootstrap: resample {Xi} with re-
placement, recompute x and t0, and summarize the bootstrap distribution (mean,
SD, bias).

For the sensitivity analysis, a small perturbations of 0.1 and 0.4 were applied to the
parameters λ, q, θ, and β, which are reasonable as these values avoid entering regions
where the formula, such as the saddlepoint equation, may break down. The objective
of these analyses is to assess how close t0 is to the true value of the statistic based on
X, and how much t0 varies across repeated simulations.

From Table 4.1 and Figure 4.3, the bootstrap bias of t0 decreases from 0.0013
at n = 500 to near zero at n = 70,000, while the bootstrap SD drops from 0.0111 to
0.0007, confirming the asymptotic unbiasedness and increasing stability of the estimate
of t0. The SD curve declines sharply with n, and the bias approaches zero, indicating
consistency.

Figure 4.4 shows the sensitivity of t0 to parameter perturbations. The (β + 0.1)
produces the largest upward shift across all n, followed by the (θ+0.1), both remaining
stable as n increases. The (λ+0.1) lies just below the baseline (t0 from X), indicating
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Figure 4.3: Bootstrap SD and bias of the saddlepoint t0 vs. sample size (n) as shown
in Table 4.1

Table 4.1: Simulation results for estimating t0 using the parameter values: λ = 0.8,
q = 0.65, θ = 2.5, and β = 1.2, with perturbation of parameters: λ + 0.1, q + 0.1,
θ + 0.1, and β + 0.1.

n t0(from X) t0(bootstrap) SD(bootstrap) Bias(bootstrap) t0(λ+ 0.1) t0(q + 0.1) t0(θ + 0.1) t0(β + 0.1)
500 0.9946 0.9959 0.0111 0.0013 0.9825 0.8818 1.0115 1.0681
2000 0.9802 0.9806 0.0057 0.0005 0.9683 0.8660 0.9974 1.0530
5000 0.9816 0.9814 0.0033 −1.193× 10−4 0.9697 0.8676 0.9987 1.0554
10000 0.9817 0.9818 0.0023 9.351× 10−5 0.9698 0.8677 0.9988 1.0555
20000 0.9780 0.9783 0.0015 0.0002 0.9663 0.8637 0.9952 1.0519
30000 0.9776 0.9778 0.0012 0.0002 0.9659 0.8633 0.9949 1.0516
40000 0.9780 0.9781 0.0010 8.372× 10−5 0.9663 0.8637 0.9952 1.0519
50000 0.9777 0.9778 0.0009 0.0001 0.9659 0.8633 0.9949 1.0516
60000 0.9771 0.9770 0.0007 −1.011× 10−5 0.9653 0.8627 0.9943 1.0510
70000 0.9771 0.9771 0.0007 3.643× 10−6 0.9654 0.8627 0.9944 1.0511
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Figure 4.4: Sensitivity of parameter perturbations to t0, as shown in Table 4.1

90



low positive sensitivity. In contrast, the (q + 0.1) shows the largest negative shift,
starting near 0.88 and stabilizing around 0.86. The sensitivity ranking is β > θ > λ
(positive) and q (negative).

Figure 4.5: Bootstrap SD and bias of the saddlepoint t0 vs. sample size (n) as shown
in Table 4.2

From Table 4.2 and Figure 4.5, the bootstrap bias of t0 fluctuates slightly around
zero, showing no upward or downward trend, while the bootstrap SD steadily decreases,
indicating improved estimator stability with larger samples. Figure 4.6 shows the
sensitivity of t0 to parameter perturbations. The (β+0.4) produces the largest upward
shift, followed by the (θ+0.4), both remaining stable across n. The (λ+0.4) lies slightly
below the blue baseline (t0 from X), indicating low positive sensitivity. The (q + 0.4)
yields the strongest negative shift, consistently lowest across all n. The sensitivity
ranking is β > θ > λ (positive) and q (negative). This result is consistent with the
inference from Table 4.1, Figures 4.3 and 4.4.

4.2.3 Efficiency of our saddlepoint approximation estimate (t0)
In this section, we compare the efficiency of our numerical estimator with that de-
rived in Alhejaili and Alghamedi [7]. While Alhejaili and Alghamedi [7] derived the
saddlepoint estimator in their study, they focused on approximating the cumulative
distribution function based on the saddlepoint method. They observed that their ap-
proximation technique performs excellently in terms of accuracy and computational
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Figure 4.6: Sensitivity of parameter perturbations to t0, as shown in Table 4.2

Table 4.2: Simulation results for estimating t0 using the parameter values: λ = 5.8,
q = 0.8, θ = 3.5, and β = 2.7 with perturbation of parameters: λ+0.4, q+0.4, θ+0.4,
and β + 0.4.

n t0(from X) t0(bootstrap) SD(bootstrap) Bias(bootstrap) t0(λ+ 0.4) t0(q + 0.4) t0(θ + 0.4) t0(β + 0.4)
500 2.5314 2.5317 0.0064 0.0003 2.5178 2.4714 2.6120 2.8084
2000 2.5401 2.5420 0.0073 0.0019 2.5265 2.4819 2.6217 2.8163
5000 2.5431 2.5430 0.0059 0.0009 2.5295 2.4854 2.6246 2.8189
10000 2.5471 2.5488 0.0054 0.0017 2.5335 2.4901 2.6286 2.8224
20000 2.5482 2.5497 0.0047 0.0015 2.5346 2.4914 2.6298 2.8235
30000 2.5504 2.5509 0.0042 0.0005 2.5368 2.4930 2.6319 2.8254
40000 2.5567 2.5553 0.0035 -0.0014 2.5431 2.5013 2.6382 2.8311
50000 2.5553 2.5544 0.0035 -0.0009 2.5417 2.4997 2.6368 2.8298
60000 2.5516 2.5518 0.0036 0.0002 2.5380 2.4954 2.6332 2.8265
70000 2.5527 2.5527 0.0034 8.621× 10−5 2.5391 2.4967 2.6342 2.8274
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efficiency through simulation studies. However, the authors did not report the effi-
ciency in their estimate of the derived saddlepoint estimator. Thus, the inefficiencies
of their estimator observed here are empirical findings specific to the estimation task
and parameter configuration used in this study.

Figure 4.7: Comparison of metrics vs. sample size under the parameter settings λ = 0.8,
q = 0.65, θ = 2.5, and β = 1.2

The results in Table 4.3 and Figure 4.7 show that our saddlepoint estimator t0
achieves consistently low SD (≈ 0.18) and very low MSE (≈ 0.038) across all sample
sizes, indicating high stability and accuracy. In contrast, the Alhejaili and Alghamedi
[7] estimator (t̂0) exhibits much larger variability (SD ≈ 1.8) and a much higher MSE
(≈ 3.55), with little improvement as n increases. This confirms that our introduced
saddlepoint estimator shows considerable efficiency, accuracy, and robustness.

The results in Table 4 and Figure 8 show that our saddlepoint estimator t0 maintains
consistently low standard deviation (≈ 0.121) and low MSE (≈ 0.015) across all sample
sizes, indicating high accuracy and stability. In contrast, the Alhejaili and Alghamedi
[7] estimator t̂0 exhibits extremely large variability (SD ≈ 1560) and much higher
MSE (≈ 25,900), with no notable improvement as n increases. This confirms the clear
superiority and robustness of our introduced estimator.
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Table 4.3: Comparative analysis of the efficiency of our saddlepoint estimator (t0) and
the one (t̂0) derived in Alhejaili and Alghamedi [7] using the parameter values: λ = 0.8,
q = 0.65, θ = 2.5, and β = 1.2.

n t0 SDt0 MSEt0 t̂0 SDt̂0
MSEt̂0

500 0.9740 0.1698 0.0329 32.8352 1.7109 3.2107
2000 0.9770 0.1770 0.0361 32.8003 1.7774 3.4602
5000 0.9782 0.1802 0.0369 32.7872 1.7991 3.5316
10000 0.9767 0.1812 0.0374 32.8041 1.8051 3.5716
20000 0.9766 0.1817 0.0377 32.8057 1.8093 3.5947
30000 0.9750 0.1813 0.0376 32.8123 1.8068 3.5861
40000 0.9750 0.1816 0.0377 32.8126 1.8087 3.5943
50000 0.9759 0.1810 0.0375 32.8139 1.8040 3.5745
60000 0.9763 0.1805 0.0372 32.8086 1.7992 3.5525
70000 0.9764 0.1805 0.0372 32.8075 1.7980 3.5498

Figure 4.8: Comparison of metrics vs. sample size under the parameter settings λ = 5.8,
q = 0.8, θ = 3.5, and β = 2.7.
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Table 4.4: Comparative analysis of the efficiency of our saddlepoint estimator (t0) and
the one (t̂0) derived in Alhejaili and AlGhamedi (2024) using the parameter values:
λ = 5.8, q = 0.8, θ = 3.5, and β = 2.7.

n t0 SDt0 MSEt0 t̂0 SDt̂0
MSEt̂0

500 2.5587 0.1185 0.0149 21990.62 1532.25 25193
2000 2.5462 0.1210 0.0152 22143.49 1576.48 25699
5000 2.5537 0.1211 0.0153 22051.41 1563.69 25802
10000 2.5485 0.1218 0.0153 22115.67 1572.30 25743
20000 2.5492 0.1210 0.0151 22106.72 1562.55 25445
30000 2.5545 0.1211 0.0154 22042.20 1562.80 25874
40000 2.5561 0.1210 0.0154 22021.69 1562.06 25997
50000 2.5568 0.1209 0.0154 22013.78 1559.93 25989
60000 2.5562 0.1209 0.0154 22021.64 1559.64 25920
70000 2.5569 0.1205 0.0153 22012.13 1553.80 25784

4.2.4 The real-life data application
This section presents the real-life numerical evaluation of our introduced model and
assesses the fitness of the saddlepoint PDFs obtained when the model is derived using
the approaches of Daniels [27] and Wang [125]. First, we applied the EM algorithm to
obtain initial parameter estimates, yielding λ̂ = 0.0409, q̂ = 0.9999, β̂ = 0.0006, and
θ̂ = 4.7499. These values served as starting points for a refinement step based on maxi-
mum likelihood estimation (MLE) under the saddlepoint approximation framework. In
this step, the saddlepoint-based likelihood function was numerically maximized with
respect to all parameters using the observed “PAID” data, and the resulting sad-
dlepoint loglikelihood (LL), Akaike Information Criteria (AIC), Bayesian Information
Criteria (BIC), and Kolmogorov–Smirnov (KS) statistics were computed to assess the
goodness-of-fit for each derivation of the model.

These statistical criteria were used to determine which derivation of our model
provided the best fit to the data. Furthermore, the adequacy of each fitted PDF was
visually evaluated by comparing its corresponding CDF to the empirical CDF (ECDF)
of the “PAID” data. Table 4.5 presents a comparative analysis between the Daniels-
derived and Wang-derived versions of our model.

The results in Table 4.5 indicate that our introduced model, derived using the
Daniels [27] approach, provides a considerably better fit to the “PAID” data than
when derived using the Wang [125] approach. Specifically, the Daniels-based version of
our model achieves a less negative log likelihood and substantially lower AIC and BIC
values, indicating a superior fit and greater parsimony. Furthermore, the KS statistic
for the Daniels-based derivation is considerably smaller than that for the Wang-based
derivation, indicating that the Daniels version of our model more closely matches the
empirical distribution of the observed claim amounts data under consideration.

Figure 4.9 (Daniels approach) and Figure 4.10 (Wang approach) visually compare
the ECDF of the ”PAID” data with the CDFs fitted using each version of our model. In
Figure 9, corresponding to the Daniels-derived model, the fitted CDF closely follows the
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Figure 4.9: The fitting of the distribution derived from the Daniels [27] approach

Table 4.5: Comparative analysis of the fitted saddlepoint PDFs of our proposed model
when derived using the Daniels [27] and Wang [125] approaches, applied to the ”PAID”
data

Saddlepoint PDF derived from
Daniels [27] approach Wang [125] approach

Saddlepoint LL −5853 −4919
AIC 1171 9846
BIC 1174 9873
KS Statistic 0.0812 0.5671
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Figure 4.10: The fitting of the distribution derived from the Wang [125] approach
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ECDF across the full range of the data, accurately capturing the central distribution
and tail behavior of approved claims. By contrast, Figure 10, representing the Wang-
derived model, exhibits more pronounced deviations from the ECDF, particularly in the
upper tail, where it underestimates the cumulative probability associated with larger
claim amounts. These results indicate that the Daniels-derived version of our model
provides a more accurate representation of the underlying claim distribution. This
considerable accuracy enhances the reliability of risk assessment, reserve estimation,
and premium pricing, while reducing the likelihood of underestimating extreme claim
sizes. This version of our model could be suitable for practical applications in the
insurance sector, where precision in modelling approved claim amounts directly impacts
financial stability and decision-making.

4.3 Final Remarks
The classical compound distributions often misalign with approved-claims datasets.
For instance, Poisson frequencies place positive mass at zero, while real datasets of
approved claims exclude zero counts, and the classical exponential severities allow ar-
bitrary values close to zero, whereas deductibles shift payouts above a positive thresh-
old. These mismatches make theoretical and computational efficiency challenging for
the aggregate distribution, particularly when truncation and shifting render closed
forms inapplicable and make direct numerical convolution computationally expensive.
Practitioners, therefore, need a model that naturally incorporates zero truncation and
deductibles, ensures theoretical representations for the aggregate law, and supports
fast, accurate approximation and estimation at scale.

This chapter presents a practically motivated compound distribution for aggregate
approved claims, combining a ZTP frequency with SE severities, which aligns with
zero truncation in counts and deductible-induced shifts in severities. It establishes
the approved-claims count L as follows a ZTPB distribution, derives its PMF, PGF,
and moments, and shows that this count model belongs to the Panjer family and,
by convolution, to the Schröter family. Additionally, the chapter derives an infinite-
series representation for the aggregate approved-claims density, which permits exact
evaluation via a tractable summation, and develops closed-form expressions for the
aggregate moments and CGF through the composition MX(t) = GL(MT (t)) with the
associated KX(t) = logMX(t) and higher derivatives needed for asymptotic analysis.

For efficient inference and evaluation, the chapter constructs saddlepoint approxi-
mations based on the classical Daniels and Wang approaches for the CDF and PDF of
the aggregate, with explicit working formulas for the saddlepoint t0, curvature K ′′

X(t0),
and related quantities. It introduces an EM estimation method for λ, q, β, and θ of the
model. This yields closed-form updates for β and q, a concave objective in β and θ,
and a single implicit equation for λ, resulting in a stable and scalable computational
pipeline that integrates exact series evaluation, saddlepoint solvers, and EM iterations.
Monte Carlo experiments with bootstrap demonstrate that the proposed saddlepoint
estimator t0 is consistent, with rapidly decreasing bias and SD as sample size increases,
and a clear sensitivity ordering in which β and θ exert substantial positive influence,
λ a smaller one, and q a negative one. Further comparison demonstrates orders-of-
magnitude efficiency gains (lower SD and MSE) of the proposed t0 estimator over a
recent alternative across the sample sizes. Furthermore, an empirical application to
the AutoClaims “PAID” data indicates that the Daniels-based saddlepoint model de-
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livers the best overall fit in terms of log-likelihood, AIC, BIC, and KS statistics, closely
tracking the empirical distribution, including the tails, and underscoring the practical
value of the introduced model for actuarial risk measurement, reserving, and pricing
under approval and deductible mechanisms.
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CHAPTER 5

EXPLORING TRUNCATED DISTRIBUTIONS FROM THE
SCHRÖTER FAMILY OF DISCRETE DISTRIBUTIONS

Building on the results of Chapter 4, which highlighted the limitations of classical
compound distributions and developed a ZTP–SE–based model with efficient inference
tools. This chapter extends this line of inquiry by focusing on the broader Schröter
family of discrete distributions. In particular, it explores the truncated versions of
these distributions and their convolutions, offering new insights into aggregate claims
modeling and parameter estimation under a truncation mechanism.

5.0.1 Motivation
Within the insurance and risk management system, claim data are frequently subject
to truncation, whereby only claims above a certain threshold are observed. This situ-
ation arises naturally due to policy deductibles, minimum reporting requirements, or
regulatory constraints. Truncation alters both the observed claim counts and severi-
ties, leading to distortions in aggregate claim distributions if not adequately incorpo-
rated into the modeling framework. Classical techniques, such as the Panjer recursive
method, have long been used for aggregate claim analysis; however, these methods are
typically developed under non-truncated settings, thereby limiting their relevance in
real-world applications where truncation is unavoidable.

The Schröter family of discrete distributions offers a natural extension to the Pan-
jer class, providing convolution-based recursions that accommodate zero-inflated and
truncated distributions. Despite its theoretical promise, relatively little attention has
been given to studying the convolution of truncated members of the Schröter family
and addressing the estimation challenges associated with them. This gap narrows the
actuarial toolkit available for handling aggregate claims in situations where truncation
plays a central role.

Addressing this methodological gap forms the core motivation of this chapter.
Specifically, the aim is to explore the convolution of truncated distributions within
the Schröter framework, to rigorously establish their probabilistic properties, and to
develop practical parameter estimation strategies. By combining theoretical analysis
with simulation-based validation, this work seeks to demonstrate the effectiveness of
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truncated Schröter distributions in representing aggregate claims under truncation.
Ultimately, the chapter contributes both to actuarial theory by extending the class of
convolution-based models and to practice by providing computationally feasible tools
for real-life claim modeling.

Several studies underscore the importance of truncated probability distributions
as more flexible alternatives to their classical counterparts. Unlike standard distri-
butions, truncated models allow flexible support. That is, their support can be ad-
justed in accordance with the natural range of the dataset, thereby improving their
empirical fit and broadening their applications. For example, Prodhani and Shanker
[97] introduced the truncated Sujatha distribution and demonstrated its applicability
in engineering and medical sciences. By examining its statistical properties through
moment-based measures and reliability features, and by validating its performance on
two real datasets, they showed that the truncated Sujatha distribution outperforms
classical alternatives, including the truncated exponential, truncated Lindley, and ex-
ponential models.

Similarly, Singh et al. [108] highlighted the relevance of the truncated Lindley distri-
bution in modeling the strength data of aircraft window glass. Truncated exponential
and normal distributions, first examined by Bain and Weeks [11] and further detailed
in Johnson et al. [61], have also been widely applied across fields, particularly in model-
ing truncated lifetime data. More recently, Feng [42] introduced the GEM distribution,
providing a comprehensive theoretical framework covering stochastic dynamics, sam-
pling formulas, and the asymptotic behavior of homozygosity. In another development,
KRISHNAKUMARI and George [68] constructed a left-truncated distribution based
on an Esscher-transformed Laplace distribution with heavy tails, establishing its reli-
ability properties and illustrating its usefulness with failure-time data.

Within the insurance domain, truncated models have proven especially relevant.
Gatti and Wüthrich [44] emphasized that claim amounts are often lower-truncated
and right-censored due to deductibles and policy limits. Conventional models struggle
in such contexts. Revisiting the MBBEFD family of distributions, originally introduced
by Bernegger [18] for reinsurance pricing, they demonstrated that this family flexibly
accommodates both unimodal skewed and monotonically decreasing densities, thus
providing a powerful framework for modeling truncated and censored claims. They
further examined how changes in deductibles or policy limits influence model choice
and performance.

Beyond insurance, truncated count data have attracted growing attention across
diverse fields such as agriculture, engineering, public health, sociology, psychology,
and epidemiology. A particularly challenging case is the modeling of zero-truncated
counts with inflated frequency at one. In this regard, Wani and Ahmad [126] proposed
a one-inflated zero-truncated Poisson distribution, conceptualized as a two-part pro-
cess. They derived key properties, including generating functions and moments, and
developed maximum likelihood estimation procedures. Their analysis, supported by
simulation studies and real data applications, demonstrated both the robustness and
empirical relevance of the proposed model. Furthermore, the statistical significance
of the one-inflation parameter was established using likelihood ratio, Wald, and Rao’s
score tests.

Taken together, this body of literature demonstrates the flexibility and practical
importance of truncated models in applied probability and actuarial science. However,
a clear research gap remains in systematically extending the Schröter family to trun-
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cated settings and developing associated estimation techniques. This chapter addresses
this gap, thereby advancing the theoretical foundations of truncated distributions while
providing practically relevant tools for insurance and related fields.

5.1 The convolution of truncated Poisson and Pois-
son distributions from the Schröter Family

Building on the motivation outlined in the previous subsection, this section develops a
new convolutional framework within the Schröter family of distributions. Specifically,
we focus on the convolution of a Poisson-distributed random variable with a truncated
Poisson-distributed random variable. Such a formulation not only extends the the-
oretical scope of the Schröter family but also provides a practically relevant model
for aggregate claims where truncation naturally arises due to deductibles or reporting
thresholds.

We begin by formally defining the distributional setup, where the Poisson and
truncated Poisson random variables are assumed to be mutually independent. Under
this assumption, the convolution is derived, and its key probabilistic characteristics are
established. In particular, we obtain closed-form expressions for the PGF, the mean,
and the variance. These results form the foundation for understanding the behavior
of the proposed distribution and serve as essential tools for subsequent parameter
estimation and simulation.

By embedding the truncated Poisson structure within the Schröter framework, this
construction demonstrates how truncation can be systematically incorporated into re-
cursive models of aggregate claims, thereby addressing a methodological gap in the
statistical literature.

5.1.1 The convolution of Poisson and truncated Poisson dis-
tributions

The Poisson distribution has been shown to be a member of the Panjer and Schröter
family of distributions as studied in [88] and Schröter [103].

Let K and Ktr be two independent random variables and P (K = k) be the PMF
of the Poisson distribution.

Similarly, let

P (Ktr = k) =
P (K = k)

1− P (K < 1)
(5.1)

be the PMF of the Poisson random variable truncated at zero and

Z = K +Ktr (5.2)

be the convolution of the Poisson and truncated Poisson random variables.

5.1.2 Derivation of the PMF of Z = K +Ktr

Recall that K and Ktr are independent random variables and

K ∼ Poisson(λ1)
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such that

P (K = i) =
e−λ1λi1
i!

, i = 0, 1, 2, . . . , (5.3)

and Ktr is the Poisson(λ2) distribution truncated at zero (so its support is {1, 2, . . . }).
The PMF of the truncated Poisson is:

P (Ktr = j) =
PPois(λ2)(j)

1− PPois(λ2)(0)
=

e−λ2λj2
j! (1− e−λ2)

, j = 1, 2, . . . (5.4)

because 1− P (K < 1) = 1− P (K = 0) = 1− e−λ2 .
Recall that we defined

Z = K +Ktr.

We derive P (Z = k) for integer k.

Support. Since K ≥ 0 and Ktr ≥ 1, we have Z ≥ 1. Hence P (Z = 0) = 0 and we
consider k = 1, 2, . . ..

Convolution. Using independence and the discrete convolution formula,

P (Z = k) =
k∑

i=0

P (K = i)P (Ktr = k − i). (5.5)

However, P (Ktr = k − i) > 0 only when k − i ≥ 1, i.e. i ≤ k − 1. Therefore, the sum
reduces to

P (Z = k) =
k−1∑
i=0

P (K = i)P (Ktr = k − i), k ≥ 1. (5.6)

Substitution. Substituting the Poisson and truncated-Poisson PMFs defined in equa-
tions (5.3) and (5.4), we have:

P (Z = k) =
k−1∑
i=0

(
e−λ1λi1
i!

)(
e−λ2λ k−i

2

(k − i)! (1− e−λ2)

)

=
e−(λ1+λ2)

1− e−λ2

k−1∑
i=0

λi1 λ
k−i
2

i! (k − i)!
.

Combine factorials and use the binomial identity. Notice that:

λi1λ
k−i
2

i! (k − i)!
=

1

k!

(
k

i

)
λi1λ

k−i
2 , (5.7)

because
(
k
i

)
=

k!

i!(k − i)!
.
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Thus,

k−1∑
i=0

λi1λ
k−i
2

i! (k − i)!
=

1

k!

k−1∑
i=0

(
k

i

)
λi1λ

k−i
2 . (5.8)

Applying the binomial theorem to the full sum
∑k

i=0

(
k
i

)
λi1λ

k−i
2 = (λ1 + λ2)

k. The sum
from i = 0 to k − 1 therefore equals the full sum minus the i = k term:

k−1∑
i=0

(
k

i

)
λi1λ

k−i
2 = (λ1 + λ2)

k −
(
k

k

)
λk1λ

0
2 = (λ1 + λ2)

k − λk1. (5.9)

Substituting back, for k = 1, 2, . . .,

P (Z = k) =
e−(λ1+λ2)

k! (1− e−λ2)

[
(λ1 + λ2)

k − λk1

]
, k = 1, 2, . . . , (5.10)

such that
∞∑
k=1

P (Z = k) =
e−(λ1+λ2)

1− e−λ2

∞∑
k=1

(λ1 + λ2)
k − λk1

k!

=
e−(λ1+λ2)

1− e−λ2

[
(eλ1+λ2 − 1)− (eλ1 − 1)

]
=
e−(λ1+λ2)

(
eλ1+λ2 − eλ1

)
1− e−λ2

=
1− e−λ2

1− e−λ2
= 1;

thus, the distribution is a PMF.
Therefore the PMF of Z = K +Ktr is

P (Z = k) =
e−(λ1+λ2)

k! (1− e−λ2)

[
(λ1 + λ2)

k − λk1

]
, k = 1, 2, . . . ‘

and P (Z = 0) = 0.

5.1.3 The PGF of Z
Let

X ∼ Pois(λ1), Y ∼ Pois(λ2),

and define the ZTP random variable:

Ŷ
d
= Y | (Y ≥ 1). (5.11)

Assume X and Y (hence X and Ŷ ) are independent. We study the PGF of

Z
d
= X + Ŷ . (5.12)
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1. PGF of the Poisson components. The PGF of X is

GX(s) = E[sX ] = eλ1(s−1). (5.13)

The PGF of Y (untruncated Poisson) is

GY (s) = E[sY ] = eλ2(s−1), (5.14)

and P (Y = 0) = e−λ2 .

2. PGF of the ZTP Ŷ . By definition of conditional PGF (conditioning on the
event Y ≥ 1),

GŶ (s) = E[sŶ ] = E
[
sY | Y ≥ 1

]
=
E[sY 1{Y≥1}]

P (Y ≥ 1)
=
E[sY ]− P (Y = 0) · s0

1− P (Y = 0)
. (5.15)

Since s0 = 1 and P (Y = 0) = e−λ2 , this becomes

GŶ (s) =
GY (s)− e−λ2

1− e−λ2
=
eλ2(s−1) − e−λ2

1− e−λ2
. (5.16)

3. PGF of Z = X + Ŷ . Independence implies the PGF of the sum is the product of
PGFs:

GZ(s) = GX(s)GŶ (s)

= eλ1(s−1) e
λ2(s−1) − e−λ2

1− e−λ2

=
e((λ1+λ2)(s−1)) − e(λ1(s−1)−λ2)

1− e−λ2
.

(We may keep the factorized form GZ(s) = eλ1(s−1) e
λ2(s−1) − e−λ2

1− e−λ2
for differentiation

convenience.)

5.1.4 The mean and variance of Z via the PGF approach
First derivative and the mean E[Z]. Recall that for a PGF G(s), we have G′(1) =
E[Z].

Let us differentiate GZ(s) = A(s)B(s) by setting A(s) = eλ1(s−1) and B(s) =
eλ2(s−1) − e−λ2

1− e−λ2
.

We present the derivatives as:

A′(s) = λ1e
λ1(s−1) = λ1A(s), B′(s) =

λ2e
λ2(s−1)

1− e−λ2
.

Thus, using the product rule,

G′
Z(s) = A′(s)B(s) + A(s)B′(s),

and evaluate at s = 1.
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Note A(1) = 1, B(1) = 1; therefore,

G′
Z(1) = A′(1)B(1) + A(1)B′(1)

= λ1 · 1 + 1 · λ2
1− e−λ2

E[Z] = G′
Z(1) = λ1 +

λ2
1− e−λ2

. (5.17)

As a direct check, we have:
E[Z] = E[X]+E[Ŷ ] = λ1+E[Y | Y ≥ 1] andE[Y | Y ≥ 1] =

E[Y ]− 0 · P (Y = 0)

1− P (Y = 0)
=

λ2
1− e−λ2

Thus, the same result follows.

The Second derivative and Var(Z). Recall that G′′(1) = E[Z(Z − 1)] and there-
fore,

Var(Z) = G′′
Z(1) +G′

Z(1)−
(
G′

Z(1)
)2
. (5.18)

Let us differentiate again using

A′′(s) = λ21e
λ1(s−1) = λ21A(s) and B′′(s) =

λ22e
λ2(s−1)

1− e−λ2
, applying the product rule

(twice) gives:

G′′
Z(s) = A′′(s)B(s) + 2A′(s)B′(s) + A(s)B′′(s). (5.19)

By evaluating at s = 1 and using the fact that A(1) = B(1) = 1, A′(1) = λ1, A′′(1) =

λ21, B′(1) =
λ2

1− e−λ2
and B′′(1) =

λ22
1− e−λ2

:

G′′
Z(1) = λ21 · 1 + 2λ1 ·

λ2
1− e−λ2

+ 1 · λ22
1− e−λ2

= λ21 +
2λ1λ2 + λ22
1− e−λ2

.

Now, let us compute the variance and by definition, we have that:

G′′
Z(1) +G′

Z(1)−
(
G′

Z(1)
)2 (5.20)

Var(Z) = G′′
Z(1) +G′

Z(1)−
(
G′

Z(1)
)2

=

[
λ21 +

2λ1λ2 + λ22
1− e−λ2

]
+

[
λ1 +

λ2
1− e−λ2

]
−
[
λ1 +

λ2
1− e−λ2

]2
.

106



By expanding and simplifying, the λ21 terms cancel and the cross terms 2λ1λ2/(1−e−λ2)
cancel, leaving

Var(Z) = λ1 +

(
λ22 + λ2
1− e−λ2

− λ22
(1− e−λ2)2

)
= λ1 +

(λ22 + λ2)(1− e−λ2)− λ22
(1− e−λ2)2

= λ1 +
λ2 − (λ2 + λ22)e

−λ2

(1− e−λ2)2

= λ1 +
λ2
[
1− (1 + λ2)e

−λ2
]

(1− e−λ2)2
.

Hence,

Var(Z) = λ1 +
λ2
[
1− (1 + λ2)e

−λ2
]

(1− e−λ2)2
. (5.21)

We can easily notice that λ2 is small, the truncation has a strong effect; that is,
the E[Ŷ ] and Var(Ŷ ) are inflated compared to the untruncated Poisson moments.
Additionally, if there were no truncation (i.e. formally P (Y = 0) = 0), the formulae
reduce to those of a sum of independent Poisson(λ1) and Poisson(λ2) variables (so
E[Z] = λ1 + λ2 and Var(Z) = λ1 + λ2).

5.2 The Parameter Estimation
This section addresses estimation of the parameters λ1 and λ2 for the distribution

P (Z = k) =
e−(λ1+λ2)

k! (1− e−λ2)

[
(λ1 + λ2)

k − λk1

]
, k = 1, 2, . . .

A direct maximum likelihood approach is natural, but because the PMF is nonlinear
in λ1, λ2, the score equations do not admit closed form solutions, and numerical maxi-
mization may be unstable for small samples. Hence, we present a practical method-of-
moments procedure that uses the mean, variance, and the ratio P (Z = 2)/P (Z = 1).

Preliminaries and notation. Throughout this chapter, we set

y =
1

1− e−λ2
⇐⇒ 1− e−λ2 =

1

y
, e−λ2 = 1− 1

y
=
y − 1

y
.

Observe that y > 1 for all λ2 > 0, and as λ2 → ∞, y → 1.
From the PGF derivations, we have the closed-form moments

E[Z] = λ1 + λ2y, (5.22)

Var(Z) = λ1 +
λ2
[
1− (1 + λ2)e

−λ2
]

(1− e−λ2)2
. (5.23)

Let us define auxiliary quantities K and L and Introduce

K = Var(Z)− E[Z], L = E[Z]− P (Z = 2)

P (Z = 1)
.
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We will express K and L in terms of λ2 and y and hence eliminate λ1.
We simplified K = Var(Z)− E[Z] by starting from equations (5.22) and (5.23):

K =

[
λ1 +

λ2
[
1− (1 + λ2)e

−λ2
]

(1− e−λ2)2

]
− [λ1 + λ2y]

= λ2

[
1− (1 + λ2)e

−λ2

(1− e−λ2)2
− y

]
.

Now, by substituting 1− e−λ2 = 1/y and e−λ2 = (y − 1)/y, we have:

1− (1 + λ2)e
−λ2

(1− e−λ2)2
=
(
1− (1 + λ2)

y−1
y

)
y2

=
(
1− (1 + λ2)

y − 1

y

)
y2 =

(y − (1 + λ2)(y − 1)

y

)
y2

=
(
y − (1 + λ2)(y − 1)

)
y.

Therefore,
K = λ2

[(
y − (1 + λ2)(y − 1)

)
y − y

]
= λ2

[
y2 − (1 + λ2)y(y − 1)− y

]
= λ2

[
y(y − 1)− (1 + λ2)y(y − 1)

]
= λ2

[
− λ2 y(y − 1)

]
= −λ22 y(y − 1).

Hence,

K = Var(Z)− E[Z] = −λ22 y(y − 1) < 0. (5.24)

Next, we compute the ratio P (Z = 2)/P (Z = 1) and simplify L, using the PMF,

P (Z = 1) =
e−(λ1+λ2)

1− e−λ2
λ2

P (Z = 2) =
e−(λ1+λ2)

2(1− e−λ2)

[
(λ1 + λ2)

2 − λ21
]
=

e−(λ1+λ2)

2(1− e−λ2)
λ2(2λ1 + λ2). (5.25)

Now, divide to obtain the ratio P (Z=2)
P (Z=1)

and we have:

P (Z = 2)

P (Z = 1)
=
λ2(2λ1 + λ2)/(2(1− e−λ2))

λ2/(1− e−λ2)
=

2λ1 + λ2
2

= λ1 +
λ2
2
. (5.26)

Hence,

L = E[Z]− P (Z = 2)

P (Z = 1)
=
(
λ1 + λ2y

)
−
(
λ1 +

λ2

2

)
= λ2

(
y − 1

2

)
.

So

L = λ2

(
y − 1

2

)
. (5.27)
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Next, we defined the scale-free ratio as v = K/L2 and solve for y as:

v =
K

L2
=

−λ22y(y − 1)

λ22(y − 1
2
)2

= − y(y − 1)

(y − 1
2
)2
.

Thus, v ∈ (−1, 0) for admissible y > 1.
We solve the equation:

− y(y − 1)

(y − 1
2
)2

= v. (5.28)

We multiply both sides by (y − 1
2
)2 and rearrange, we have that:

−(y2 − y) = v (y − 1
2
)2 =⇒ (1 + v)(y2 − y) +

v

4
= 0.

This expression is quadratic in y. We have that:

(1 + v) y2 − (1 + v) y +
v

4
= 0. (5.29)

By applying the quadratic formula. The discriminant simplifies as:

∆ = (1 + v)2 − 4(1 + v)
v

4
= (1 + v)

[
(1 + v)− v

]
= 1 + v.

We write 1 + v = (
√

(1 + v))2 and we have that:

y =
1

2

1 + v

1 + v
+

1 + v(√
(1 + v)

)2
 .

Hence, we have:

y =
(1 + v)±

√
1 + v

2(1 + v)
=

1

2

(
1± 1√

1 + v

)
.

Here, we consider only the positive root (i.e., the one > 1):

y =
1

2

(
1 +

1√
1 + v

)
. (5.30)

Next, we recover λ2 from y by using the fact that y = 1/(1− e−λ2), we have:

1− 1

y
= e−λ2 =⇒ λ2 = − log

(
1− 1

y

)
.

The recovery of λ1: Note that once λ2 (hence y) is known, λ1 follows from the mean
or from the ratio P2/P1:

λ1 = E[Z]− λ2y or λ1 =
P (Z = 2)

P (Z = 1)
− λ2

2
.
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5.2.1 Sample (method-of-moments) estimators
Given an i.i.d. sample Z1, . . . , Zn from the model, the sample summaries are computed
as:

Z =
1

n

n∑
i=1

Zi, s2 =
1

n

n∑
i=1

(Zi − Z)2,

and the empirical one- and two-count sample probabilities are computed as:

p̂1 =
1

n

n∑
i=1

1{Zi = 1}, p̂2 =
1

n

n∑
i=1

1{Zi = 2}.

These form the sample analogues:

K̂ = s2 − Z, L̂ = Z − p̂2
p̂1
, v̂ =

K̂

L̂2
.

Next, we proceed as in the population case:

ŷ =
1

2

(
1 +

1√
1 + v̂

)
, λ̂2 = − log

(
1− 1

ŷ

)
, λ̂1 = Z − λ̂2 ŷ.

Remark: It is worth noting that our approach for the parameter estimation requires
p̂1 > 0 (otherwise p̂2/p̂1 is undefined) and v̂ ∈ (−1, 0). If these conditions are not
met, the introduced method-of-moments estimator above is not applicable. Thus, an
alternative estimation approach may be necessary.

Furthermore, the choice of population vs. sample variance denominator (here we
used n for s2) is consistent with other parts of our results. Although using the unbiased
sample variance with a denominator n− 1 is possible, it requires adapting the moment
equations accordingly.

The parameter estimates here could serve as starting values for numerical optimiza-
tion of the log-likelihood to obtain asymptotically efficient estimates.

5.2.2 Numerical Applications
This section presents the numerical applications of the convolution of the truncated
Poisson and Poisson distributions, as defined in equation (5.10). The focus is on
evaluating the performance of the proposed parameter estimation approach through
simulation studies.

5.3 Simulation Study

5.3.1 Simulation Procedure for the Probability Mass Function
To simulate from P (Z = k), probabilities are first constructed for k = 1, . . . , kmax using
the log formulation

log
(
P (Z = k)

)
to prevent numerical underflow and improve stability when computing very small prob-
abilities involving factorials and exponentials. The probabilities are then normalized
and the sample Z is generated. From the simulated data, the method of moments
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estimates for the parameters λ1 and λ2 are obtained by computing the sample mean,
variance, and empirical probabilities for Z = 1 and Z = 2, and solving the resulting
moment equations. Theoretical moments are derived from the truncated distribution
structure to allow comparison with the empirical estimates.

To examine the effectiveness and accuracy of the proposed moment-based parameter
estimation method outlined in Section 3.2, we conducted a simulation experiment. The
goal was to determine how well the procedure recovers the true parameter values under
controlled conditions. We began by setting the true parameter values as:

λ1 = 1.5 and λ2 = 2.0.

Using these parameters, we generated a synthetic dataset consisting of 100,000 random
observations from the proposed probability mass function and repeated the procedure
10,000 times. This large sample size ensures statistical stability, allowing for meaningful
inference. The generated data were then used to estimate the model parameters based
on the moment-based approach described in Section 5.2.

After applying the estimation procedure, we obtained the theoretical and empirical
means and variance for the generated data as 3.813 and 3.814, and 3.089 and 3.096,
respectively. The estimated values for the parameters were:

λ̂1 = 1.44 and λ̂2 = 2.07.

Although the proposed approach is computationally appealing, its effectiveness is
highly sensitive to the structure of the moment equations and the stability of the
solution. The simulation findings underscore the importance of integrating constraint-
aware mechanisms in moment-based procedures to ensure valid and interpretable esti-
mates.

The parameter estimates obtained based on the simulated data indicate that the
estimated values of the parameters are close to the true generating initial values. This
demonstrates that the employed moment-based approach for the parameter estimates
provides a consistent and accurate recovery of the parameters when applied to large
sample sizes. Table 5.1 presents the descriptive statistics of the replicated estimates.
From the table, the means of λ1 and λ2 confirm the unbiasedness of the estimation
procedure. Additionally, the relatively small standard deviations for λ1 and λ2 indicate
stable estimation across the 10,000 replications, while the minimum and maximum
values show the natural variability of the estimates under repeated sampling.

Table 5.1: The Descriptive Statistics of the Estimates
λ̂1 λ̂2

Mean 1.50141 1.99771
Standard Deviation 0.06566 0.08271
Minimum 1.21361 1.65037
Maximum 1.77657 2.34789

Figure 5.1 further illustrates the distribution of the estimates through the boxplots,
indicating that both λ1 and λ2 are tightly centered around their true values with
symmetric distributions and only a small proportion of mild outliers, suggesting the
efficiency and robustness of the estimator.
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Furthermore, Figure 5.2 compares the observed and expected frequencies under the
fitted PMF using the simulated data. The close alignment between the bars demon-
strates a good fit of the introduced PMF to the generated data, indicating that the
model is capable of capturing the underlying distributional characteristics of the data.
These results provide significant empirical evidence that the introduced PMF, combined
with the moment-based estimation approach, performs well in accurately estimating
parameters and reproducing the distributional features of the data under repeated
large-sample-size simulation scenarios.

Figure 5.1: Boxplots of the Estimates

5.4 Final Remarks
This chapter advances the agenda opened in Chapter 4 by moving from a single
ZTP–SE model to the broader Schröter family under truncation, with a focus on convo-
lution structures that arise in aggregate claims. The work delivers three main outcomes
that align with the stated aim of developing theory and practical inference for truncated
Schröter distributions.

First, we construct the convolution of a Poisson and a zero–truncated Poisson
random variable within the Schröter framework and derive a closed–form PMF for the
sum. Using the PGF approach, we establish concise expressions for the mean and
variance, prove normalization and support, and show explicitly how truncation inflates
the moments relative to the untruncated case. This provides a rigorous and reusable
building block for aggregate claims subject to deductibles and reporting thresholds.

Second, we develop a practical method–of–moments estimator tailored to the trun-
cated setting. The approach introduces the quantities K = Var(Z) − E[Z] and L =
E[Z]−P (Z = 2)/P (Z = 1), leading to a scale–free ratio v = K/L2 ∈ (−1, 0), and yields
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Figure 5.2: The Graph of the Fitted PMF model to the Simulated Data
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closed–form recovery of the auxiliary parameter y, the truncation intensity λ2, and sub-
sequently λ1. We state the feasibility conditions, provide sample analogues, and note
the usefulness of the resulting estimates as stable starting values for likelihood–based
refinement. This directly addresses the practical difficulty of solving nonlinear score
equations in the truncated Schröter setting.

Finally, a large–scale simulation study based on a numerically stable log–PMF
sampling routine confirms that the proposed estimators are accurate and stable for
realistic sample sizes. Descriptive summaries and graphical diagnostics (boxplots and
fitted–PMF comparisons) indicate a tight concentration around the true parameters
and a good fidelity of the fitted distribution to the generated data. These findings
demonstrate that the model captures significant distributional features induced by
truncation and is therefore well-suited for actuarial applications where deductibles and
reporting limits are intrinsic.

Together, these results extend the Schröter family to a practically important trun-
cated regime, providing closed–form moment identities and a computationally light
estimation scheme, and provide evidence of performance under simulation. The chap-
ter provides theoretical clarity and implementable tools for modeling aggregate claims
under truncation. In practice, the proposed framework can be embedded in convolu-
tion–based recursions for portfolio risk, used to stress–test deductible strategies, and
serve as a gateway to richer generalizations (such as other truncated Schröter mem-
bers). As such, this chapter strengthens the actuarial toolkit and creates a coherent
bridge from the model in Chapter 4 to general truncation–aware compound models in
subsequent chapters.
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THESIS SUMMARY

In this thesis, we explored the recursive approach for computing aggregate claim
amounts in the collective risk model, focusing specifically on the Schröter recursive
family of discrete distributions and their associated theoretical and practical chal-
lenges. These challenges include identifying the feasible region of the parameters of
the Schröter family, parameter estimation, derivation of new members of the family,
development of truncated versions, modeling of approved claim amounts, and the con-
volution of truncated and non-truncated members of the Schröter family of discrete
distributions.

First, we presented the background and theoretical foundation of the collective
risk model and advanced the recursive approach by examining the Panjer and Schröter
recursion techniques for computing aggregate claim amounts when the number of claims
is large. We examined the characterization of the Panjer family of discrete distributions
through the R0(a, b) and R1(a, b) classes and analyzed the Schröter recursive approach
and its characterization. The study further explored the convolution of Poisson and
R0(a, b) classes, introduced members of the Schröter R0(a, b, c) and R1(a, b, c) families,
and presented new results on the derivation of an additional Schröter distribution family
member. Furthermore, we investigated the feasible regions of parameters for both finite
and infinite cases, proposed a novel parameter estimation method, and extended the
Schröter model to a regression framework suitable for real-life insurance applications.
Theoretical developments were validated using both simulated and empirical data.

Subsequently, we addressed the problem of capturing truncated claim amounts by
introducing the truncated Schröter recursive formula and its corresponding recursion
algorithm. The numerical evaluation of this new algorithm was conducted using sim-
ulated and real-world datasets. Moreover, we presented results on the generalized
Schröter Rt(a, b, c) family and derived the associated class of distributions.

We then investigated the distribution of aggregate approved claim amounts within
the collective risk model. In particular, we derived the infinite-sum representation of
the distribution by combining the zero-truncated Poisson and shifted exponential distri-
butions. We also examined the distribution of unapproved claim amounts, derived the
approval probability, and explored the mathematical properties of both the approved
and aggregate approved claim amount distributions. To approximate the distribution
of aggregate approved claim amounts, we employed the saddlepoint approximation
methods proposed by Daniels [27] and Wang and Sobrero [124]. The proposed model
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was further illustrated using simulation studies and real-life data.
Given the research gap in systematically extending the Schröter family of discrete

distributions to truncated settings and developing associated estimation methods, we
explored the convolution of truncated Poisson and standard Poisson distributions from
the Schröter class. We derived the PMF of Z = K+Ktr, examined its statistical prop-
erties, and applied the method of moments for parameter estimation. The performance
of the proposed estimation method was validated through simulation experiments.

In conclusion, this thesis includes material from the following papers and conference
book of abstract:

1. Agu, F. I., Mačutek, J., & Szűcs, G. (2023). A Simple Estimation of Parameters
for Discrete Distributions from the Schröter Family. Statistika: Statistics &
Economy Journal, 103(2).

2. Agu, F. I., & Mačutek, J. (2024). Some Extensions of the Schröter Distribution
Family. PROBASTAT 2024, 6.

3. Agu, F. I. (2025). The Truncated Schröter Recursive Algorithm for Computation
of Aggregate Claim Amounts. Statistics in Transition New Series, (Accepted for
publication in vol 26 No 4/2025- December issue 2025).

4. Agu, F. I. (2025). The Schröter Recursive Formula: The Parameters Feasi-
ble Region, Asymptotic Analysis, and Its Systematic Structure for Explanatory
Number of Claim Amount Variables. (Manuscript submitted for publication).
Scandinavian Actuarial Journal.

5. Agu, F. I., Mačutek, J., & Szűcs, G. (2025). Exploring Truncated Distributions
from the Schröter Family of Discrete Distributions. (Manuscript in preparation).

6. Agu, F. I., & Wald, H. (2025). Modeling Insurance Claim Data: An Infinite-
Sum Representation of Aggregate Approved Claim Amount Distribution and the
Saddlepoint Model. (Manuscript in preparation).
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