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1 Introduction

Our thesis is a contribution to the present knowledge of the dynamics of numerical pro-
cedures applied to continuous dynamical system (DS). The emphasis has been made
on two topics discussed in two independent chapters.

In the first chapter we explored parameterized Lipschitzian and Carathéodorian
semi-linear differential inclusions in Banach spaces with exponentially dichotomous
linear parts. Under additional assumptions, we proved the existence and uniqueness
of quasibounded solutions. Then the analogy of the stable and unstable sets corre-
sponding to these quasibounded solutions were defined and it turned out that they
are the graphs of suitable multifunctions. We also introduced and studied solutions
corresponding to more general weighted selector spaces. We discussed hierarchy like
in [3] and a special type of their independence. Chapter 1 was concluded with present-
ing some criteria on the existence of hyperbolic exponential dichotomy on R. These
sufficient conditions were derived for constant matrices on a finite dimensional Cn, for
a class of infinite matrices on complex `p spaces and finally for some non-autonomous
periodic ODE’s also on `p.

After that, Chapter 2 was devoted to the precise analytical derivation of the nu-
merical/discretized Poincaré map Pm of an ordinary differential equation possessing
a periodic orbit. We have been motivated by papers [33, 64], where numerical tools
were used for computing the Poincaré map. Our goal was to give a precise analyti-
cal meaning of Pm and to establish error bounds for the difference |P − Pm| and its
various differentials. Our approach used the method of a moving orthonormal sys-
tem (introduced rigorously in [32] and then applied successfully in [6, 8, 59]) and the
Newton–Kantorovich type theorem (cf. [37,47,67]). In the end of Chapter 2 we applied
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the previously established properties of Pm. In Section 2.4 under the nondegeneracy
of γ we detected a third interesting curve specially related to the discrete dynamics.
Namely the set of those points which are invariant in a proper sense under the action
of Pm. We also gave a short remark about the spectral property of this curve.

In this overview at first we briefly define the main notions needed to be able to state
the new results of the thesis. Second, we state these theorems and add some comments
to them. Rigorous proofs of the foregoing statements and even more can be found in
the thesis.

2 Prerequisites for results in Chapter 1

We suppose that X is a real Banach space with a norm | · | and we denote by X1 the
closed unit ball in X. Further, by B(X) let us designate the Banach space of bounded
and linear operators L : X → X.

Measure theory: We say that an interval I ⊂ R of arbitrary type is positive if |I| >
0 for its (Lebesgue) measure (the case +∞ is also involved). Let us have a positive
interval I . The function f : I → X is strongly measurable (s. m.) if the range f(I) is
separable and f is (Borel) measurable (f is measurable if the pre-image f−1(B) is a
Borel set for all Borel sets B ⊂ X). Further f is simple if it has only finitely many
values and is strongly measurable. A function f : I × X → X has a Carathéodory
property if, on one hand, f(t, ·) : X → X is continuous for all fixed t ∈ I and, on the
other hand, f(·, x) : I → X is s. m. for all fixed x ∈ X. We denote the set of these
functions by CAR(I,X). We suppose that the reader has been acquainted with the
theory of Lebesgue integrals. The brief definition of Bochner integrals using Lebesgue
integrals is the following one: a s. m. function f : I → X is Bochner integrable (or
simply integrable) if the norm function |f | : I → R defined as |f |(t) := |f(t)| is Lebesgue
integrable. The function f is called locally integrable if it is s. m. on I and integrable over
compact subintervals of I.

For an integrable simple function f =
∑k

j=1 αjχIj , where αj ∈ R, Ij ⊂ I are measur-
able and χIj is the characteristic function of the set Ij, we define the Bochner integral
as
∫
I
fdt :=

∑k
j=1 aj|Ij|. For an arbitrary integrable function one can find simple in-

tegrable functions fn such that f = limn→∞ fn, |fn(t)| ≤ |f(t)| (see [11, Appendix E]).
Then the well-known Lebesgue’s Dominated Convergence Theorem for real-valued
functions implies the well-definiteness of

∫
I
fdt := limn→∞

∫
I
fndt.

Solution concepts, selectors: Let J, I, J ⊂ I are positive intervals andM is a topo-
logical (mainly metric) space. Let f : I × X ×M → X satisfies f(·, ·, y) ∈ CAR(I,X)

for all y ∈ M. A continuous function λ : J → X is said to be a solution of the ODE
ẋ = f(t, x, y) at the parameter value y ∈M if the function f(·, λ(·), y) : J → X is locally
integrable and λ(t) − λ(s) =

∫ t
s
f(τ, λ(τ), y)dτ holds for all s, t ∈ J. In addition we say
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that λ satisfies the initial condition x(t0) = x0 for some fixed values t0 ∈ I, x0 ∈ X if
t0 ∈ J and λ(t0) = x0.

For a positive J let us define selector spaces H(J) := {h : J → X : h is s. m. and
|h|J,∞ <∞}with |h|J,∞ = supt∈J |h(t)|. Then H(J) endowed with the norm | · |J,∞ turns
into a Banach space. For simplicity we introduce also H := H(R), | · |∞ := | · |R,∞,
H±τ := H(R±τ ), | · |±τ := | · |R±τ ,∞, where R+

τ := [τ,∞) and R−τ := (−∞, τ ] for τ ∈ R. We
will refer to the elements of H(J) as selectors.

Consider positive intervals J, I such that J ⊂ I. A continuous λ : J → X is called a
solution of the inflated differential equation (IDE) ẋ ∈ f(t, x,X1) corresponding to the
selector h ∈ H(J)1 if λ is a solution of ẋ = F (t, x, h(t)). In addition we say that λ satisfies
the initial condition x(t0) = x0 for t0 ∈ I, x0 ∈ X if we have t0 ∈ J and λ(t0) = x0.

Exponential dichotomy and quasiboundedness: We say that the equation ẋ =

A(t)x possesses an exponential dichotomy on the positive interval I and for a locally
integrable A : I → B(X) if there are constants K ≥ 1, α < β, α, β ∈ R and a projection
P ∈ B(X) (means that P 2 = P ) such that

∣∣∣Φ(t, 0) ◦ P+ ◦
(
Φ(0, s)

)−1∣∣∣
B(X)

≤ Keα(t−s),

for t ≥ s, t, s ∈ I and
∣∣∣Φ(t, 0) ◦ P− ◦

(
Φ(0, s)

)−1∣∣∣
B(X)

≤ Keβ(t−s), t ≤ s, t, s ∈ I, where

P+ := P and P− := IX − P+ and Φ is the evolution operator of ẋ = A(t)x (that is the
operator solution of Ẏ = A(t)Y, Y (s) = IX , Y (·) ∈ B(X)). We denote by Eα,β(I) the set
of all locally integrable A : R → L(X) for which ẋ = A(t)x possesses an exponential
dichotomy on I. Furthermore we introduce notations P±(t) := Φ(t, 0)◦P±◦

(
Φ(0, t))−1,

P±t := P±(t)(X).

We say that the interval I is unbounded to the left if I is one of the interval types
(−∞, a), (−∞, a], R and similarly we use the term “unbounded to the right”. Assume
that I is unbounded to the left (resp. to the right). Let g : I → X be an arbitrary
function and γ ∈ R. We say that g is γ−-quasibounded (resp. γ+-quasibounded; we use
the abbreviation q. b.) if ‖g‖−τ,γ <∞ (resp. ‖g‖+τ,γ <∞) for some τ ∈ I , where ‖g‖−τ,γ :=

supt∈R−τ |g(t)|e−γt, (resp. ‖g‖+τ,γ := supt∈R+
τ
|g(t)|e−γt). In the peculiar I = R case we say

that g is γ-q. b. if ‖g‖γ := supt∈R |g(t)|e−γt <∞.

3 New results in Chapter 1

We always assume that A ∈ Eα,β(R), α < β. With an elementary transformation
(Lemma 1.17 of the thesis) we were able to prove the following generalization of [12,
Theorem 3].

Theorem 1 (Theorem 1.18 of the thesis). Assume that we have functions f : R × X →
X, g : R×X ×X1 → X and a constant γ ∈ (α, β) such that

(i) Smoothness: f(·, x), g(·, x, u) : R → X are s. m. for all x ∈ X, u ∈ X1 and f(t, ·) :

X → X, g(t, ·, ·) : X ×X1 → X are continuous for all t ∈ R,
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(ii) Quasiboundedness: ‖f(t, 0)‖γ <∞, ‖g(t, 0, 0)‖γ <∞,

(iii) Lipschitz condition: there are constants L1, L2, L3 such that |f(t, x1) − f(t, x2)| ≤
L1|x1 − x2| and

|g(t, x1, u1)− g(t, x2, u2)| ≤ L2|x1 − x2|+ L3e
γt|u1 − u2| (L)

are valid for all t ∈ R, x1, x2 ∈ X, u1, u2 ∈ X1,

(iv) K(L1 + L2)κα−γ,β−γ < 1.

Then for every h ∈ H1 there exists a unique γ-q. b. solution Γγ(·, h) : R → X of the problem
ẋ ∈ A(t)x + f(t, x) + g(t, x,X1) corresponding to the selector h. In addition the mapping
Γγ : R× H1 → X is continuous and Lipschitz in the second variable.

In a setting of Theorem 1 we put down an important set of initial positions of the
quasibounded solutions Sγτ,ε := {Γ(τ, h) : h ∈ Hε}, ε ∈ [0, 1], τ ∈ R. Let us introduce
Hε := {h ∈ H : |h|∞ ≤ ε}, and H±τ,ε := {h : R±τ → X is s. m. and |h|±τ ≤ ε}, where
τ ∈ R, ε ∈ [0, 1]. Note that Hε,H

±
τ,ε are complete metric spaces with corresponding

metrics derived naturally from norms | · |∞, | · |±τ .
Denote by λ(·, t0, x0, h) the unique solution of ẋ = A(t)x + f(t, x) + g(t, x, h(t)),

x(t0) = x0 for a triple (t0, x0, h) ∈ R×X ×H1 or (t0, x0, h
±) ∈ R×X ×H±τ,1 (for a formal

ambiguity in this notation, see the discussion around the equation (1.16) in the thesis).
For arbitrary functions f : Df → X, g : Dg → X we write f ⊂ g if Df ⊂ Dg and

g|Df = f.

Now we define the following sets (these are the analogous of the stable and unstable
set from the hyperbolic setting)

M s,γ
τ,ε := {ξ ∈ X : ∃h+ ∈ H+

τ,ε, ∃h ∈ Hε, h
+ ⊂ h such that

lim
t→∞
‖λ(t, τ, ξ, h+)− Γγ(t, h)‖e−γt = 0},

Mu,γ
τ,ε := {ξ ∈ X : ∃h− ∈ H−τ,ε, ∃h ∈ Hε, h

− ⊂ h such that

lim
t→−∞

‖λ(t, τ, ξ, h−)− Γγ(t, h)‖e−γt = 0}.

We can state the following generalization of [12, Theorem 4].

Theorem 2 (Theorem 1.19 of the thesis). Suppose all the assumptions of Theorem 1 and fix
τ ∈ R, ε ∈ [0, 1]. Then there are Lipschitz continuous functions ws,γ : P+

τ × H+
τ,ε → P−τ ,
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wu,γ : P−τ × H−τ,ε → P+
τ such that

M s,γ
τ,ε = {ξ ∈ X : ∃h+ ∈ H+

τ,ε : ‖λ(·, τ, ξ, h+)‖+τ,γ <∞}

= {ξ+ + ws,γ(ξ+, h) : ξ+ ∈ P+
τ , h ∈ H+

τ,ε},

Mu,γ
τ,ε = {ξ ∈ X : ∃h− ∈ H−τ,ε : ‖λ(·, τ, ξ, h−)‖−τ,γ <∞}

= {ξ− + wu,γ(ξ−, h), : ξ− ∈ P−τ , h ∈ H−τ,ε}.

Exact Lipschitz constants were found in the thesis.

These two theorems are novelty mainly because we replaced the hyperbolic as-
sumption A ∈ Eα,β(R), α < 0 < β by a general one A ∈ Eα,β(R), α < β. We might note
that the stated results are definitely not shockingly new, rather a systematic and sur-
prisingly easy generalization of the previously known theory. One might be curious
about the necessity of the condition (L). It was possible to avoid it by introducing new
selector spaces. We do not explain the details here, one should go through the detailed
Remarks 1.8, 1.9 of the thesis.

Section 1.2 of the thesis is concluded by the answers of the two interesting questions

Q1: Under which conditions are we able to prove the independence of Γγ on γ?

Q2: What relations should we expect between various stable/unstable-like sets if the
linear part possesses exponential dichotomy on R corresponding to more then
one, properly linked projection?

A partial answer to question Q1:

Theorem 3 (Theorem 1.20 of the thesis). Let us have α < α1 < β1 < β and functions
f : R×X → X, g : R×X ×X1 → X such that

(i) Smoothness: f(·, x), g(·, x, u) : R → X are s. m. for all x ∈ X, u ∈ X1 and f(t, ·) :

X → X, g(t, ·, ·) : X ×X1 → X are continuous for all t ∈ R,

(ii) Upper bound: there are constants M1,M2 ≥ 0 such that

|f(t, 0)| ≤M1η(t), |g(t, 0, 0)| ≤M2η(t), t ∈ R,

where η(t) := min{eα1t, eβ1t},

(iii) Lipschitz condition: there are constants L1, L2, L3 ≥ 0 such that

|f(t, x1)− f(t, x2)| ≤ L1|x1 − x2|,

|g(t, x1, u1)− g(t, x1, u2)| ≤ L2|x1 − x2|+ L3η(t)|u1 − u2|

are valid for all t ∈ R, x1, x2 ∈ X, u1, u2 ∈ X1,
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(iv) for a constant θ := max
{
κα−α1,β−α1 , κα−β1,β−β1

}
we have K(L1 + L2)θ < 1.

Then Γγ from Theorem 1 is well-defined for γ ∈ [α1, β1] and independent from γ – that is
Γγ1 = Γγ2 for all γ1, γ2 ∈ [α1, β1].

Focusing now on the question Q2 let us have for i = 1, · · · , n, n ≥ 2 projections
Pi ∈ B(X) (that is P 2

i = Pi) and Ki ≥ 1, αi, βi, γi ∈ R. Suppose that αi < γi < βi,

i = 1, · · · , n and βi ≤ αi+1, i = 1, · · · , n− 1. Set P+
i := Pi, P

−
i := I− Pi and assume the

following hierarchy of the projector ranges

P+
i (X) ⊂ P+

i+1(X), P−i (X) ⊃ P−i+1(X), i = 1, · · · , n− 1. (H)

Further, suppose A ∈ Eαi,βi(R) = Eαi,βi(R;Pi, Ki) that is
∣∣Φ(t, 0)P+

i Φ(0, s)
∣∣ ≤ Kie

αi(t−s)

for t ≥ s and
∣∣Φ(t, 0)P−i Φ(0, s)

∣∣ ≤ Kie
βi(t−s) for t ≤ s. Introduce moreover η∗(t) :=

mini=1,··· ,n{eγit} and θ∗ := maxi=1,··· ,n{καi−γi,βi−γi}. Under these assumptions we can
state the following result.

Theorem 4 (Theorem 1.21 of the thesis). Let f : R ×X → X, g : R ×X ×X1 → X are
such that

(i) Smoothness: f(·, x), g(·, x, u) : R → X are s. m. for all x ∈ X, u ∈ X1 and f(t, ·) :

X → X, g(t, ·, ·) : X ×X1 → X are continuous for all t ∈ R,

(ii) Upper bound: there is a constants M ≥ 0 such that |f(t, 0)| ≤ Mη∗(t), |g(t, 0, 0)| ≤
Mη∗(t), for t ∈ R,

(iii) Lipschitz condition: there are constants L1, L2, L3 such that

|f(t, x1)− f(t, x2)| ≤ L1|x1 − x2|

|g(t, x1, u1)− g(t, x1, u2)| ≤ L2|x1 − x2|+ L3η
∗(t)|u1 − u2|

are valid for all t ∈ R, x1, x2 ∈ X, u1, u2 ∈ X1,

(iv) we have K(L1 + L2)θ
∗ < 1.

Then Γγi ,M
s,γi
τ,ε ,M

u,γi
τ,ε from Theorems 1 and 2 concerning the IDE ẋ ∈ A(t)x + f(t, x) +

g(t, x,X1) are well-defined and the following inherited (from (H)) hierarchy is valid

M s,γi
τ,ε ⊂M s,γi+1

τ,ε , Mu,γi
τ,ε ⊃Mu,γi+1

τ,ε , i = 1, · · · , n− 1.

As far as we see question Q1 has not been investigated yet. The hierarchy of inte-
gral manifolds for non-autonomous systems without inflation and with a bit restrictive
f(t, 0) = 0 was brilliantly presented in [3, 4]. The previously developed theory made
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the proofs of Theorems 3 and 4 very easy, in fact they are only the consequences of
Theorems 1 and 2 in an adequate framework.

Chapter 1 was finished by some comments about hyperbolic exponential dichoto-
my on complex spaces. For the finite dimensional case the proper use of Neumann’s
Inversion Lemma (c.f. Lemma 1.22 of the thesis) yields

Theorem 5 (Theorem 1.23 of the thesis). Consider an n × n complex valued matrix A =

(aij)
n
i,j=1. Fix λ ∈ C, suppose aii 6= λ, i = 1, · · · , n and set d := max1≤i≤n {|λ− aii|−1} ,

Aλ := λI− A. Then the following statements hold
1. If η1 := max1≤i≤n

{∑n
j=1,j 6=i

|aji|
|λ−ajj |

}
< 1, then Aλ is invertible and ‖A−1λ ‖1 ≤ d

1−η1 .

2. If η∞ := max1≤i≤n

{∑n
j=1,j 6=i |aij |
|λ−aii|

}
< 1, then Aλ is invertible and ‖A−1λ ‖∞ ≤ d

1−η∞ .

3. If τp :=
∑n

i=1

(
∑n
j=1,j 6=i |aij |q)

p/q

|λ−aii|p < 1, for some p > 1, where 1
p

+ 1
q

= 1, then Aλ is
invertible and ‖A−1λ ‖p ≤ d

1− p
√
τp

.

A nearly straightforward consequence was the following theorem on the infinite
dimensional `p spaces.

Theorem 6 (Theorem 1.24 of the thesis). Consider an infinite matrix A defined formally as
(Ax)i :=

∑j+s
j=i−s aijxj, i ∈ Z and s ∈ N for a bounded sequence {aij}|i−j|≤si,j∈Z . Suppose λ ∈ C

and ω := infi∈Z |λ− aii| > 0 then the following statements hold
1. If η1 := supi∈Z

∑j=i+s
j=i−s,j 6=i

|aji|
|λ−ajj | < 1, then Aλ is invertible in `1 and ‖A−1λ ‖1 ≤ (ω(1−

η1))
−1.
2. If η∞ := supi∈Z

∑i+s
j=i−s,j 6=i

|aij |
|λ−aii| < 1, then Aλ is invertible in `∞ and ‖A−1λ ‖∞ ≤

(ω(1− η∞))−1.

3. If τp := supi∈Z
∑i+s

k=i−s
(
∑k+s
j=k−s,j 6=k |akj |

q)
p/q

|λ−akk|p
< 1, for some p ∈ (1,∞), where 1

p
+ 1

q
= 1,

then Aλ is invertible in `p and ‖A−1λ ‖p ≤
(
ω(1− p

√
τp)
)−1

.

These results have some obvious consequences on the spectrum of the operator A
and also on the type of hyperbolicity, see Remarks 1.10 and 1.11 of the thesis.

Finally, we applied these achievements to the ODE’s ẋ = A(t)x and ẍ = A(t)x

with T -periodic A(·). The state space was set again on the infinite `p spaces. We do not
present further details and the results here, interested reader should consult Subsection
1.3.3 of the thesis. The main point of the examinations was the combination of the well-
known equivalent characterizations of the hyperbolic exponential dichotomy (c.f. [15])
with the above stated Theorem 6.

4 Prerequisites for results in Chapter 2

The main ODE, numerical schemes, the moving orthonormal system and some use-
ful notations: Let us have f ∈ C3(RN), N ∈ N \ {1} such that ϕ : R × RN → RN is
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the global flow of ẋ = f(x). For a numerical scheme ψ : [0, h0] × RN → RN , h0 ∈ (0, 1)

suppose for some p ∈ N that ψ(h, x) = ϕ(h, x) + Υ(h, x)hp+1. Assume again ψ,Υ ∈
C3([0, h0] × RN ,RN). Some technical reasons cause that we are forced to assume also
p ≥ 2 (see Remark 2.2 for more details).

Let γ(s) := ϕ(s, ξ0) be a 1-periodic solution for fixed ξ0 ∈ RN . Then there is a system
{ei(s)}N−1i=1 of vectors in RN for any s ∈ R such that

ei ∈ C3(R,RN), ei(s+ 1) = ei(s),

〈ei(s), ej(s)〉 = δij, 〈ei(s), f(γ(s))〉 = 0,

where i, j ∈ {1, · · · , N−1}, δij is a Kronecker’s delta and 〈·, ·〉 is the standard Euclidean
scalar product. Introduce an N × (N − 1) matrix E(s) = [e1, · · · , eN−1] (i-th column is
ei, i = 1, · · · , N−1). Let us set also a tubular coordinate function ξ(s, c) := γ(s)+E(s)c

for s ∈ R, c ∈ RN−1. For standard euclidian norm |c|2 :=
√
〈c, c〉 note that |E(s)c|2 =

|c|2, c ∈ RN−1. For δ > 0 introduce the notation Bδ
N−1 :=

{
c ∈ RN−1 : |c|2 < δ

}
. Using

the implicit function theorem finite number of times we get that there is a δtr > 0 such
that ξ : [0, 1) × Bδtr

N−1 → RN is a C3–transformation, in other words ξ|
[0,1)×Bδtr

N−1
is a C3–

diffeomorphism between its domain and range (cf. the moving orthonormal system
along γ in [32, Chapter VI.I., p. 214-219]) . For values h ∈ [0, h0], s ∈ R, c ∈ RN−1,

∆ ∈ [0, h0], X := (x1, x2, · · · , xm−1) ∈ RN(m−1), xi ∈ RN , m ∈ N, m ≥ 4, define the
following useful functions

Fm(h, s, c,X,∆) :=(Gm(h, s, c,X), Hm(h, s, c,X,∆)),

Gm(h, s, c,X) :=
(
ψ(h, ξ(s, c))− x1, ψ(h, x1)− x2, ψ(h, x2)− x3,

· · · , ψ(h, xm−2)− xm−1
)
,

Hm(h, s, c,X,∆) :=
〈
ψ
(
∆, xm−1

)
− γ(s), f(γ(s))

〉
.

X̄m :=X̄m(h, s, c) :=
(
x̄1, x̄2, · · · , x̄m−1

)
,

x̄j :=x̄j(h, s, c) := ϕ(jh, ξ(s, c)), j = 1, 2, · · · ,m− 1.

We mean by | · | the standard maximum norm |v| := max{|vi| : i = 1, · · · , l} for v ∈
Rl, l ∈ N. Notation | · | is used also for linear operators A : Rl1 → Rl2 defined as |A| :=
maxv∈Rl1 ,|v|=1 |Av|. An open ball in a Banach space X will be denoted as B(x, %) :=

{y ∈ X : |y − x| < %} for any x ∈ X and % > 0.

The main tool of the chapter: It is the following specially designed lemma which
follows the idea of the Newton–Kantorovich numerical method.

Lemma 7 (Lemma 2.1 of the thesis). Let us have Banach spaces X, Y, Z and open nonempty
sets U ⊂ X, V ⊂ Y. Let ȳ : U → V be any function such that B(ȳ(x), %) ⊂ V for every
x ∈ U and for some % > 0. Let us have a function F ∈ Cr(U × V, Z) for r ≥ 1. Suppose that
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DyF (x, ȳ(x))−1 ∈ B(Z, Y ), |F (x, ȳ(x))| ≤ α, |DyF (x, ȳ(x))−1| ≤ β for every x ∈ U and for
some α, β > 0. Let |DyF (x, y1) − DyF (x, y2)| ≤ l|y1 − y2|, x ∈ U, y1, y2 ∈ B(ȳ(x), %) hold
for some l ≥ 0. For constants α, β, l, % finally suppose βl% < 1, αβ < %(1−βl%). Then there is
a unique function y : U → V such that |y(x)− ȳ(x)|Y ≤ % and F (x, y(x)) = 0 for all x ∈ U.
Moreover |y(x)− ȳ(x)| < % and DyF (x, y(x))−1 ∈ B(Z, Y ) for all x ∈ U with an estimation
|DyF (x, y(x))−1| ≤ β

1−βl% . We get also y ∈ Cr(U, V ) if we additionally assume the continuity
of ȳ.

Global Poincaré map for the continuous DS: In the above described context the
following assertion.

Lemma 8 (Lemma 2.2 in thesis, named as Poincaré’s time return map). There is an
ε? ∈ (0, 1/2) such that for every ε ∈ (0, ε?] there is δre = δre(ε) ∈ (0, δtr] and a C3–function
τ : R × Bδre(ε)

N−1 → (1 − ε, 1 + ε) such that for t ∈ (1 − ε, 1 + ε), s ∈ R and c ∈ B
δre(ε)
N−1 we

have z(t, s, c) = 0 for z(t, s, c) := 〈ϕ(t, ξ(s, c)) − γ(s), f(γ(s))〉 if and only if t = τ(s, c). In
addition τ(s+ 1, ·) = τ(s, ·), s ∈ R.

Now the usual Poincaré map is defined as P(s, c) := ϕ(τ(s, c), ξ(s, c)). Further for
admissible values of (h, s, c) let us introduce ∆̄m := ∆̄m(h, s, c) := τ(s, c)− (m− 1)h.

5 New results in Chapter 2

We will not state the precise form of the key theorem about the numerical Poincaré
map, because it needs quite a lot of preparatory technicalities. In order to give some
insights we assert below its weaker, more indefinite variant.

Theorem 9 (weakened form of Theorem 2.3 of the thesis). For C > 0 large enough,
|h − 1/m|, |c| small enough, any s ∈ R and for any m large enough there exists a unique pair
(Xm,∆m) = (Xm(h, s, c),∆m(h, s, c)) such that

F (Xm,∆m) = Fm(h, s, c,Xm(h, s, c),∆m(h, s, c)) = 0

and |Xm − X̄m| < C/mp, |∆m − ∆̄m| < C/mp. Moreover Xm,∆m are C3–smooth in their
arguments and 1-periodic in s.

The proof of Theorem 9 is nothing else then an application of Lemma 7 in a suitable
framework. A lot of work was done in the thesis in order to specify the exact sufficient
merits of quantities C, |h − 1/m|, |c|,m. The whole Chapter 2 can be characterized as
an “expedition” among various constants. Having at hand the theorem above we can
define a natural approximation of P as

Pm(h, s, c) := ψ
(
∆m(h, s, c), xm−1m (h, s, c)

)
9



which we call the numerical (or dicretized) Poincaré map.
In Section 2.3 we dealt with various bounds for the term |Dv [P − Pm]| , where

v ∈ {h, s, c} and Dv denotes the partial differentiation with respect to variable v. After
a lengthy computational part we obtained |Dh[P(s, c)− Pm(h, s, c)]| ≤ κh/m

p−1, and
|Dv[P(s, c)− Pm(h, s, c)]| ≤ κv/m

p, for v ∈ {s, c}, m large enough (κv for v ∈ {h, s, c}
were properly described constants). For details see Theorem 2.5 and Remark 2.3 of the
thesis. Let us mention that the main idea was to improve Lemma 7. Namely, using the
notations of Lemma 7 an estimation for |y′(x) − ȳ′(x)| was given under additional as-
sumptions. After these tasks we gave some results regarding to the second derivatives
(cf. the end, p. 69 - 73, of Section 2.3 of the thesis).

In Section 2.4 of the thesis we showed an application of the preceding theory. We
proved there the slightly stronger version of the following theorem.

Theorem 10 (weakened form of Theorem 2.7 of the thesis). Suppose the non-degeneracy
of γ, that is: 1 is a simple eigenvalue of ϕ′x(1, ξ0). Then for every m large enough there is a
function (h, s)→ ζm(h, s) such that Pm(h, s, ζm(h, s)) = ξ(s, ζm(h, s)) is valid, where s ∈ R
and |h− 1/m| is small enough. In addition ζm is C3-smooth and 1-periodic in s.

Moreover the uniqueness of ζm was also shown in an adequate sense. The proof was
again an application of Lemma 7. Let us mention that the curve s ∈ R→ ξ(s, ζm(h, s))

for fixed h is invariant under Pm(h, ξ−1(·)) (see Remark 2.4 of the thesis).
In the end of Chapter 2 we stated and proved (with our methods) an already known

result about the curve of the m-periodic points for the discrete dynamics (cf. [21] and
Theorem 2.8 of the thesis). The whole thesis was finished by a contribution on the
spectrum of the established curves (see Remark 2.5 of the thesis).
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6 Summary

In the first part of the thesis we have considered a differential inclusion ẋ ∈ A(t)x +

f(t, x) + g(t, x,X1) in a Banach space X with a general exponential dichotomy, where
X1 is the closed unit ball of X. We assumed that the right-hand side is strongly mea-
surable in the time variable and Lipschitz continuous in the others. We proved the ex-
istence and uniqueness of quasibounded solutions corresponding to suitable selectors.
Analogues of stable and unstable manifolds were introduced and a graph characteri-
zation was given. We showed some deeper properties of these multivalued manifolds
concerning their hierarchy and independence on a special parameter. These kinds of
inclusions model among others the effect of roundoff error in the numerical analysis
of dynamical systems. The first chapter was closed with various sufficient criteria for
hyperbolic exponential dichotomy.

The next chapter was devoted to the analytical study of the relationship between
the Poincaré map and its one step discretization. Error estimates were established de-
pending basically on the right-hand side function of the investigated ODE and the
given numerical scheme. Our basic tool in this chapter was a parametric version of
the Newton–Kantorovich method. Applying these results, in the neighborhood of a
non-degenerate periodic solution a new type of step-dependent, closed curve was de-
tected for the discrete dynamics. The discretized Poincaré map is a preparatory stage
for further investigation of bifurcations of discrete dynamics near periodic solutions.

Key words: multivalued analysis, integral manifolds, exponential dichotomy, hier-
archy, Poincaré map, discrete dynamics
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