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Introduction

Discontinuous systems are used for modelling systems with instantaneous change of external
forces or parameters of the system. They describe electrical circuits with switches, mechanical
devices in which components impact with each other, problems with friction, sliding or squealing,
models in the social and financial sciences, etc. Recently, there appeared many books [6,9,11,
26,37,41] and papers [3,18,34-36,43,44,50] on developing the theory for discontinuous systems
which is analogical to the classical smooth-systems theory such as Poincaré mapping, Melnikov
method, continuation of periodic orbits, bifurcations.

In this thesis, we extend the classical theory on persistence of periodic orbits under small
perturbations to perturbed piecewise-smooth nonlinear dynamical systems (PPSNDS) and hy-
brid systems, specifically hard impact oscillators. In our work, we use the method of Poincaré
mapping (discontinuous, sliding, impact) to find the periodic solution in perturbed systems. We
define corresponding distance function which zeros imply the existence of periodic orbits and
then apply the Lyapunov-Schmidt reduction to find the roots. The results are stated in the
terms of Poincaré-Andronov-Melnikov function to emphasise the analogy with the smooth case.
By this method, we are allowed to study general n-dimensional systems as well as the local
asymptotic properties of the persisting solution such as hyperbolicity, stability and instability.
On the other side, we have to handle some technical difficulties concerning the calculation of
derivatives of the Poincaré mapping. For the simplicity, we always assume that the original
periodic solution or the family of periodic solutions either transversally cross the discontinuity
boundary or slide on it. Of course, the idea of continuation of such a solution is not a new one,
since it was already studied in 2-dimensional space in [3,4]. However, by this time the exten-
sion to higher dimensions was not investigated. Moreover, our results on the local asymptotic
properties are also unique of their type.

The thesis consists of two chapters. In the first one, we study the bifurcation of periodic orbits
in PPSNDS. Subsequently in four sections, we study the following problems: forced periodic
solution from a single periodic solution in discontinuous system, bifurcation of a single periodic
solution from a family of periodic solutions or an isolated periodic solution of autonomous
equation, periodic sliding solution of periodically perturbed discontinuous system. We also
show how the things can be simplified in the special case of the family of periodic orbits or if the
discontinuity boundary is linear. In addition, we study the mentioned asymptotic properties.
The second chapter has only one section in which we investigate the periodically forced impact
systems and the persistence of a periodic solution in them.

By this time, all results newly discovered in the thesis were submitted, accepted or already
published in international mathematical journals [21-25].

Main results

Here we briefly state some of our results from the thesis where they are rigorously proved. We
always assume that e, € R, u € RP, p > 1 are parameters and Q4 := {z € Q | £h(z) > 0},
Qo := {z € Q| h(x) = 0} where h is sufficiently smooth function with the regular value 0 and
Q C R™ is an open set in R™.

1 Periodically forced discontinuous systems

We begin with a nonautonomous perturbation of an autonomous discontinuous equation, i.e.
we consider equation
'i;:fi<x)+€g(mat+avgau)7 eri7 (11)6

with function g T-periodic in ¢. Let us assume



H1) Unperturbed equation (1.1)¢ has a T-periodic solution «(¢) with initial point z, intersect-
ing Qo at x1 = y(t1), 2 =y(t2) and 0 < t1 < ta < T.

H2) Trajectory ~(t) crosses the boundary € transversally at z; and xs.

H3) For the dimension of the null space of the corresponding operator it holds

dlmN(H — X3<T)SQX2(t2)SlX1(t1)) =1.

Here we denoted X (t), Xa(t), X3(t) the matrix solutions satisfying

Xi(t) =Dfr(v(1)X1(t)  Xo(t) =Df_(v(t))Xa(t)  X3(t) = Dfy(v(t)X5(t)
X,(0) =T, Xo(t) =1, Xs(ta) =1,

respectively, and Sy, Sy the saltation matrices [35,42] defined as
(f=(z1) = f+(z1))Dh(z1) s (f+(z2) — f-(z2))Dh(2)

Slzﬂ—i- =1+

Dh(z1)fs+(e1) ? Dh(z2) f—(w2)
Theorem 1.1. Let
X7V XT (41)S1 X5 (t2) S5 X5(T)  ift € [0,81),
AR(t) = § X5 () X5 (t2) S5 X5(T) ift € [ti,ta),

X5 (1) X3(T) ift € [ta, T]

and ¢ € [R(I — A(0))]* be arbitrary and fized. If ag € R, pg € RP are such that
T
/ (9(v(t),t + @0, 0, po), A*(t)¢)dt = 0,
0

T
/0 (Dig(v(t), t + ap, 0, o), A*(t)h)dt # 0

then there exists a neighbourhood U of the point (0, i) in R x RP and a C™'-function a(e, ),
with «(0, po) = g, such that equation (1.1) with o = «a(e, ) possesses a unique T-periodic
piecewise C'-smooth solution for each (e, p) € U.

Nonlinear planar application

Consider the following piecewise nonlinear problem

b (- 1)+ 0wt
3? (y—1)+epsinw ity >0,
j=-x

i=2x+5y+1)+ [2°+ (y+ 1] [~z — (y+ )] + cpa(z + y)

§=—50+ 2y + 1)+ [+ (4 1] o~ (y+ 1) <o

Proposition 1.2. In system (1.2)¢, if p1, po and w satisfy

e /(wA+ B)?+ (wC + D)2

1
< -
Il < 3T R m

where

A =4VZsin (imu) + (32"V2 4 V2) sin (iww) + (32 — 3) sin (27w) ,



B=-5—3" — (\/5 + 3\/562”) cos <%ﬂ'w) + 4+/2 cos <Zﬂ'w> + (5+ 362”) cos (2mw) ,
C = 3> —3—4v2cos <%7TOJ) — (\/5 + 3\/§e2w> cos (ZT&'UJ) +(3- 362”) cos (27w) ,

D=- (\/5 + 3\/562”) sin (%ww) + 4v/2sin (ZTFW) +(5+ 3627T) sin (27w) ,

_ \/é —27
E_%(739—223e )

then 2m-periodic orbit persists for € # 0 small.

Piecewise linear planar application

Consider the system

T=1+¢ep;sinwt
_ - ify >0,
Y= —2x + g coswt

(1.3)c

T = —1+¢epysinwt
. ”1 ify < 0.
Y = —2x + epg coswt

Proposition 1.3. In (1.3), if w > 0 is such that w # km for all k € N and w # —% with
o # 0 then 4-periodic orbit

(t,1 —t?) ift € 0,1],
) =q@2-t,2-1t)?-1) ifte(L3y]
(t—4,1—(t—4)?) iftc[3,4]

persists under perturbations for € # 0 small.

2 Bifurcation from family of periodic orbits in autonomous systems

Now we state the sufficient condition for the bifurcation of a single periodic solution of an
autonomous perturbed discontinuous equation

;t:fi(‘r)+€g(x>€au)7 IEﬁi, (21)6
from a nondegenerate family of periodic orbits of unperturbed equation (2.1)g. Let us assume

H1) Equation (2.1) has a smooth family of T%-periodic solutions {y(5,t)} parametrized by
B €V CRF 0< k< n,with initial points x(3). Furthermore, vectors

dxo() dxo(f3)
op T 9B

are linearly independent whenever 5 € V.

,f+(l'0(ﬁ))

H2) ~(B,t) intersects Qg transversally at z1(8) = y(ﬁ,tf), x2(B) = 'y(ﬁ,tg) and 0 < t”f < t’g <
TP for all B€ V.

H3) The set

Oz (B) Oz (B)
{ 8/81 gy 8ﬁk 7f+(x0(ﬁ))}

spans the null space of the operator (I —Sg)(I — A(3,0)) where

oy @B o)
’ £+ (@o(B))I2
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is the orthogonal projection onto the linear space [f+(zo(8))] and

X3(8,T7)S2(8) X2(8,t5)51(8) X1 (B, t1) X1 (B,8) ift € [0,8)),
A(B,1) = § X3(8,T%)Sa(8) X2(8,15) X5 ' (B, 1) ift e [t?,15),
X3(8,7%) X5 (B,1) if t € [t2, 7]

with matrix solutions X (5,t), X2(5,t), X3(5,t) satisfying

Xl(ﬁyt) = Df-i-(’Y(Bat))Xl(B»t) XQ(ﬂft) = Df*(’Y(ﬁvt))XQ(ﬁvt)
Xl(ﬁvo) :]Ia XQ(ﬁ,t{j):]I,

X3(8,t) = Df+(v(B, 1) X3(8,1)
XS(Bﬂg) =1,

respectively, and saltation matrices

. (Fo(21(8)) — - (21(8)))Dh(a1(8))
SO = T S M @ (B
. (_(22(8)) — f+ (22(8)))Dh(z2(8))

S ) = I S L () o (2(B))

Let {¢1(8),...,¥r(8)} be an orthogonal basis of [R((I — Sz)(I — A(8,0)))]*. Then we have a
result on the sufficient condition for the persistence of a single solution from a bunch of periodic
solutions.

Theorem 2.1. If 5y € V is a simple root of M* for M* given by
MH(B) = (M{'(B), ..., My (B)),
s
M} (B) = /OT (g(v(B,1),0, ), A* (B, t)pi(B)) dt,i = 1,... .k,
i.e. MHO(By) = 0, det DMH0(5y) # 0, then there exist a neighbourhood U of the point (0, o)
(

0
in R x RP and a C"2-function B(e, 1), with B(0, uo) = Bo, such that perturbed equation (2.1).
with (e, ) € U possesses a unique closed trajectory bifurcating from v(Bo,t).

3-dimensional piecewise-linear application

Consider the following problem

T =¢e(z—a") =0
g=b if 2> 0, = —by if2 <0 (2.2).
2= —2a1b1y + (1 — poy?)z 2= —2asboy

with positive constants ai,as,b1,be; n € N and vector u = (u1, p2) of real parameters. Let

mO(ﬁ) = (6170752)7 B = (51752)7 52 > 0 be an initial pOiIlt of ’7([3775)

Proposition 2.2. For u € R? such that pipus <0, (u1, u2) # 0 no periodic orbit persists. For
pipe >0 ife >0 and

1. n is odd, the only persisting periodic trajectory v(Bo,t) of system (2.2)g is determined by
Bo = (Bo1, Boz) with Bo1 = (%ﬁog)l/n, Boz = E”L%” Moreover, this trajectory is stable — it
is a sink — for u1 > 0 and unstable/hyperbolic for p1 <0,



2. n is even, there are exactly two persisting orbits vy, v— given by fo1 = * (%502)1/n,
Bo2 = %;2“1 with corresponding sign in By1. Moreover, if

(a) u1 > 0, then 4 is stable — it is a sink — and y_ is unstable/hyperbolic,
(b) p1 <0, then v4 is unstable/hyperbolic and ~y— is unstable — it is a source.

If e < 0, the above statements remain true with sinks instead of sources and vice versa.

3 Bifurcation from single periodic orbit in autonomous systems
For the case of degenerate family of periodic solutions of unperturbed equation (2.1)g we assume
H1) Equation (2.1)¢ has a unique periodic orbit (¢) of period T with initial point x.

H2) Trajectory ~+(t) crosses the boundary Qg transversally at z1 = ~(t1), 2 = ~(t2) and
O<t1 <tag<T.

Let v(&,t) denote the solution of (2.1)¢ with initial point & and x1(§) = (&, t1(£)), x2(§) =
~v(&,t2(§)) be points close to z1, x5 where (&, t) intersects Qy. Next, x3(£) is the image of £ by
the discontinuous Poincaré mapping and

fr(@3(8)) f+(w0)"
(f+(@3(8)), f+(0))

is the projection onto [f+(x3(€))] in the direction orthogonal to fi(z¢). We denote

S¢ =

X5 (£3(€)) S5 XS (82(£)SSXE (11 () XE(1) L if £ € [0,1(€)),
A& t) = § X5(t3(€))S5 X5 (t2(€) X5 (1) ! if € [t1(€),12(6)),
X5(t3(€)) X5 (8) ! if t € [ta(€), t3(E)]

where Xf(t), Xg(t), Xg(t) are matrix solutions of

X5(t) = DfL(v(&, 1) XS (1) X5
X5(0) =1, X5(t1(6) =1L,

respectively, and

e (- @1(©) — f1(@1(£))Dh(1 ()
S @) e

e (Fa(@a(€) — - (22(€))Dh(ea(e)
o = @ ()] (x2(0))

are saltation matrices taken at general initial point £&. By all this notation we can write the
following result.

Theorem 3.1. Let {t1,...,¢} be an orthogonal basis of [R(I — (I — S%0)A(zo,0))]*. If € is
a simple root of function MY°(&1) where MY (&) = (M{' (&), ..., M} (&)) and

T
ME(6) = + /0 (a(7(), 0, 1), A" (2o, 5)epi)ds

+5 (A7 (20, 0D (T = S A(E, 008 )emrot, A" (0,001 )

N =
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fori=1,...,k with “+” or “=7 sign, i.e., M{*(£)) = 0, det D¢, M}°(£)) # 0 or M"°(£9) =0,
det Dg, M (£9) # 0, then there exists a unique (for each sign) C"-function & (e, p) with € ~ 0
small and p ~ pg such that there is a periodic solution of equation (2.1). with ¢ = +€* # 0
sufficiently small and p close to .

Function & (¢, 1) affects the initial point of the persisting solution which is exactly expressed
in the thesis.

Planar application

Consider the following system

=y +14ex(2— ma’® — uoy?)

j ==z te(z+ye—1?) e
i=aty—1+ @+ -z (-1) (3.1).
+ @+ (= DD/ + (5= 1)/2) o

j=-z+y—1+@*+@y—-1* (- (y-1))
+ @+ (y— 1)) (—z/2+ (y — 1)/4)

with parameters p, po € R.
Proposition 3.2. Let ° = (u, 1) be such that G(u°) # 0 for G given by

68 — 1357 + 3072 L 8- 1om+ 67> 28 — 657 + 1872

G(n) o 3 M1 24

2.

Then equation (3.1). has ezxactly two (zero) periodic solutions orbitally close to

e :{(—cost—l—sint,—l—i—sint—l—cost) ift € [0,7/2],
(cos(t —7m/2) —sin(t — 7/2),1 —sin(t — 7/2) — cos(t — w/2)) ift € [7/2,7]

for e # 0 sufficiently small with G(u°)e > 0 (G(u®)e < 0) and p close to u°.

4 Sliding solution of periodically perturbed systems
Here we consider T-periodically forced autonomous equation
i':fi($)+6gi($,t+a,€,ﬂ), xeﬁiv (41)6

and seek the persisting sliding T-periodic solution, i.e. such a solution that remains on the
boundary for some nonzero time. That means a sliding solution satisfies equation (cf. [27])

&= Fy(z,t +a,e,p) = fo(z) +ego(w,t + a,e, 1) (4.2)c
on )y, where
Fo(x7t7€’u) = (1 _6(I7t’€7/’L))Fi(x7t’E7M) —"_/B(CL"t?E’M)FJF(x?t?E?M)?

F:I:(matasmu’) = f:t(m) + Eg:l:(xyt7€7u)>

B Dh(z)F_(x,t,e, 1)
ﬁ(x,t,&‘,#) = Dh(:r)(Ff(w,t,&M) — F+(x,t,€,,u))'

So we assume

H1) Equation (4.1)g has a T-periodic solution ~(t) with initial point zy € Q4.



H2) ~(t) transversally hits Qg at 1 = v(¢1) and tangentially leaves at x5 = ~y(t2) back to Q.
H3) It holds N'(I — A(0)) = [f+(xo)] where A(t) is given by

)SXl(tl)Xl(t)_l ifte [O,tl),
A(t) = XB(T)XQ(tQ)XQ(t)il ifte [tl, t2),
Xg(T)Xg(t)il ift € [tQ,T}
with saltation matrix

(fo(z1) = f4(z1))Dh(z1)
Dh(z1) f (1)

and fundamental matrix solutions X7 (t), Xo(t), X3(¢) satisfying, respectively,

S=TI+

X1(t) =Dfr () X1 (t)  Xa(t) = Dfo(y(t)) X2(t)  Xs(t) = Df(v(t)) Xs(t)
X1(0) =1, Xo(ty) =1, X;(ts) = L.

Theorem 4.1. Let ¢ € [R(I — A(0))]* be arbitrary and fized and

g+(x7t707/14) if$€Q+,
g(@,t, p) = ‘
go(xvtaoaﬂ) folf S QO.

If ag € R, pg € RP are such that
T
[ 6695+ avuo). 4*(s)uas o
0

T
LA<DWW®%S+ammmAﬂ$¢Ms¢O

then there exists a unique C™2-function a(e,p) for e ~ 0, p ~ po such that (0, puy) = ag
and there is a unique T-periodic solution z(e,u)(t) of equation (4.1). with parameters e, u and
a = ale, ), which solves equation (4.2)c on Qo and is orbitally close to y(t), i.e.

[z (e, 1) (t) = ~(t = ale, p))| = O(e)

for any t € R.

Piecewise linear application

Consider the following three dimensional piecewise linear problem
T =—x+¢ecosp(t + a)
y=y/2—(z—1)+esinpus(t + a) itz>0,
Z=y+(2—1)/2

(4.3).
T=—-x4+u
y=y/2+5 ifz<0
z=y+10

with ¢ sufficiently large, u € R and parameters o € R, g, s > 0, € ~ 0. T-periodic sliding solu-
tion v(t) of unperturbed equation (4.3)¢ hits and leaves the boundary at ¢ and to, respectively.
These times have to be computed numerically, which can be found in the thesis.



Proposition 4.2. Let u # 0, p1 = 2kyw/T, po = 2kew /T for given ki, ko € N. Then for each
k € R where
R={reZ|rm—Xel0,2kym)}

and X\ is such that

K L
COSA = ——, Sin A\ = ———,
VEK?+ 1?2 VEK?+ 12

t1 to
K= / (cos s — 1.98957 sin s)e~*/? cos pasds — / 0.0178 cos pasds
0 t1

T
+ / 107(2.458 cos s — 28.186 sin s)e_s/2 Cos [25ds,
t

2

i1 to
L= / (cos s — 1.98957 sin s)e /% sin pgsds — / 0.0178sin posds
0 t1

T
+ / 107(2.458 cos s — 28.186sin s)e /2 sin pgsds,
to
there exists a unique T-periodic sliding solution xy(g)(t) of system (4.3). with € # 0 sufficiently
small and

_km— A
2

a = ag(e) +O(e)

such that

[zk(e)(t) = 7(t — )| = O(e)
for any t € R. So for each u # 0, ki,ko € N there are at least as many different T-periodic
sliding solutions as the number of elements of R.

5 Periodically forced impact systems

Finally, we investigate a problem of continuation of T-periodic orbit in periodically forced impact
system given by

$(t+) = fa(z(t7)) +ega(a(t™),tie,p) if h(z(t™)) =0, (5.2)c
where Q := {z € Q| h(z) = 0} and Q; := Q\Qp. Let us assume

H1) Unperturbed equation (5.1)¢ has a T-periodic orbit v(¢) with initial point zg € §21, which
is discontinuous at ¢t = ¢; € (0,7") where it satisfies impact condition (5.2)¢.

H2) Solution ~(t) hits and leaves boundary Qq transversally at z; = v(t;) and x2 = y(t]),
respectively, where v(t5) = lim,_,,+ (s).

H3) It holds N(I — A(0)) = [f1(xo)] for A(t) given by

Alt) = Xo(T)SXa(t) X H(t) ift € [0,1),
| Xa(T)X5 () ift € [ty,T]

with impact saltation matrix

(f1(z2) — Dfa(z1) f1(x1))Dh(x1)

S =Dfo(z1) +
) Dh(z:) file)
and fundamental matrix solutions X1 (t), Xo(t) satisfying, respectively,
X1(t) = Dfa(v() X1 (2) Xo(t) = Dfi(y(t) Xa(t)
X1(0) =1, Xo(th) =1

10



Theorem 5.1. Let ¢ € [R(I— A(0))]* be arbitrary and fized. If ag € R, pug € RP are such that
T
/ <gl (’Y(S)’ s+ a, 0, MO)u A* (5)¢>d5 + <X2(T)92(x1a t1 + ap, 0, M0)7 1/J> =0,
0

T
/o (Deg1(v(s), s + @0, 0, o), A*(s))ds + (Xa(T)Dyga(z1,t1 + 0,0, po),¢) # 0

then there exists a unique C™~1-function a(e, ) for e ~ 0 small and p ~ pg such that o(0, pg) =
ag and there is a unique T-periodic solution x.,(t) of equation (5.1). with parameters € # 0
sufficiently small, p close to ug and o = afe, p), which satisfies condition (5.2). and

|zeu(t) = 7(t = ale, )| = O(e).

Pendulum hitting moving obstacle

Consider a mathematical pendulum which impacts an oscillating |
wall. The horizontal distance between the wall and the center of |
the pendulum is § + esin ut where § is a positive constant. We :
denote x the angle and [ the length of the massless cord. !
Then z satisfies the dimensionless equation

T=—-wz

with a given frequency w > 0 and impact condition

VI2— (6 +esinut)?
l

#(tt) = —2(t7) +epcos ut ™

whenever
d+esinput™

l
After transformation into the form of (5.1)., (5.2). we obtain

0.

x(t™) — arcsin

. pcos pu(t + )
V2= (6 +esinpu(t + ))?

w(t) = wo(t) —

5.3)c
O(t) = —wu(t) — EW + 0(52) >3
VE-3
with impact condition
u(tt) = u(t™)
v(tT) = —v(t”) +epcos p(t™ + a) Ve @+ 5zllrlu(t* +a))? (5.4)c

if h(u(t™),v(t”))=0
where

h(u,v) = u — arcsin T

Lemma 5.2. System (5.3)g, (5.4)g possesses a family of periodic orbits v"(t) parametrized by

U< —u, U= arcsin% such that

(ucos wt, —u sin wt) ift €10,t1),

7(t) = § {(w1,01), (uz,v2)} ift =t1,
(wcosw(T —t),usinw(T —t)) ift e (t1,T]

11



where

t1 = lEMCCOSE, (u1,v1) = (ucoswty, —usinwty) = (@, Vu2 — 4?),
w u
T =21y, (u27v2) = (U’la _Ul) = (ﬁa —Vu? — ﬁQ)

Proposition 5.3. Let 0 < w, 0 < p and k € N be such that kw < p < 2kw. Then for each
r € {0,1,---,2k — 1}, there exists a unique 2km/p-periodic solution xy . .(t) of system (5.3)c,
(5.4). with € # 0 sufficiently small and
m(2r+1
a = Oék’r(8) = % + O(E)
such that
2k t) = 7t — )] = O(e)
for any t € R and v = u(k) = @ So there are at least QZke(i,g)me different impact

periodic solutions.

Conclusion

In the thesis, we have studied the bifurcation of a single periodic solution from an isolated peri-
odic solution or a nondegenerate family of periodic orbits in discontinuous autonomous system
under nonautonomous or autonomous perturbation. This was done by the use of a discontin-
uous Poincaré mapping and the construction of the corresponding distance function. Its roots
correspond to periodic solutions in perturbed system and were found using Lyapunov-Schmidt
reduction method. So we stated the sufficient conditions for the persistence of a periodic so-
lution in terms of a Poincaré-Andronov-Melnikov function. Later, we proved analogical results
for periodically forced sliding solution of a discontinuous system and periodically forced solution
of an impact system with the aid of a sliding Poincaré mapping and an impact Poincaré map-
ping, respectively. In addition, we investigated the local asymptotic properties of the persisting
solution such as hyperbolicity, stability and instability.

Due to no restrictions on the dimension of the spatial variable and parameters our results
are original and bring new possibilities for further research. For example, on can weaker one
of our basic assumptions — transversality condition H2) or non-degeneracy condition H3). We
considered the second case for the bifurcation from a single periodic solution under autonomous
perturbation (Section 3 of Chapter I). The first case yields so-called grazing bifurcation (see [9]).
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