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Classical sufficiency

e A statistical model: a family
{Pg, = @}

of probability distributions on a sample space (X, Q)
e A statistic: measurable map T : (X,Q) — (Y, X)
e T is sufficient if the conditional probability does not depend

on 0:
Po(X|T) = P(X|T), Vo € ©

In this case, the transformed vector Y = T(X) contains all
information about the parameter

R.A. Fisher, Philos. T. Roy. Soc. A, 222 (1922).



Quantum sufficiency

e Let S C S(H) be a set of quantum states (density operators
on a Hilbert space H)

o Let T: B(H) — B(K) be a quantum channel
T:S8+— T(S)cC SK)

e T is sufficient (or also reversible) with respect to S if there is

some
R: B(K) — B(H) recovery channel

such that
RoT(p)=p VpeS



Sufficient subalgebras

We assume dim(#) < oo, S contains a faithful state.

e Let A C B(H) be a *-subalgebra, T4 : B(H) — A the trace
preserving conditional expectation

Ta:prrpla

o If T4 is sufficient, then A is a sufficient subalgebra
e The recovery channel R satisfies

R(p) = R(pla)=p, p€S



Minimal sufficient subalgebra

Let Zs be the set of all unital cp maps ® on B(H), such that

®*(p)=p, peS

e s is a closed convex semigroup of unital cp maps.

e By the mean ergodic theorem, there is a (faithful) conditional
expectation E € Zg such that

®ecTZs ifandonlyif PoE=Eod=E.
e The range of E,
Fs:=E(B(H)) ={X € B(H),®(X) = X,Vb € Zs}
e In particular, Fs is a subalgebra in B(H).

Kimmerer and Nagel, Ann. Sci. Math, 41 (1979), 151-159



Minimal sufficient subalgebra

e Since E € Zg, we have
p=Ep)=E(plrs), pe€S,
that is, E* is a recovery channel for the channel Tz:
= Fg is a sufficient subalgebra

e A subalgebra A C B(H) is sufficient if and only if Fs C A

e Fs is minimal sufficient

A. Luczak, Int. J. Theor. Phys, 53 (2014)



Minimal sufficient subalgebra

Let w € S be a faithful state.

e Since E is a conditional expectation and E*(w) = w,

Wt Fsw™ ™ C Fs, teR
e The algebra Fgs is generated by the Radon-Nikodym cocycles
ptw™® teR, peS
e A subalgebra A is sufficient if and only if
ptw e A, teR, peS
e By analytic continuation

pPw?eA zeC, peS



Factorization of states in S
There is a decomposition H = @j HJL ® ’HJ’R such that
Fs = EB B(M]) ® by,

E*(o :@TrHR[Pjan]Q@wJR, wf € S(HF)
- J
J

Pi=H — HJ-L ® ”HJR is the projection. Since p = E*(p) for p € S,
p=rilp)rfewf,  peS,

where p;(p) = Tr[pP}], p} € S(’HJL)

M. Koashi and N. Imoto, Phys. Rev. A, 66 (2002)
P. Hayden, R. Jozsa, D. Petz, A. Winter, Commun. Math. Phys. 246 (2004)



Sufficient channels

Let T : B(H) — B(K) be a channel, suppose there exists a
recovery channel R : B(K) — B(#). Then Ro T(p) = p for
p €S, so that

T*oR* €Zs

T is sufficient with respect to § if and only if there is some unital
cp map [ such that

T*oB=E (B=R*0E)



Sufficient channels

Let T(S) ={T(p), p € S}. Assume T(w) is faithful. The
following are equivalent.

e T is sufficient with respect to &

T*|;T(S) is a homomorphism and for A € .7:7(3).

TH(T(w) AT (W)™ ") = W T*(A)w™™, teR

T(T(p)tT(w)™ ) = pltw™® tcR, peS
T (T(p)T(w)*) =p*w ™ z€C, peS
T*(T(p)PT(w)~P) = pPwP for some p € (0,1)



Sufficient channels - factorization

T is sufficient with respect to § if and only if there is a
decomposition
K=K oKk;
J

such that
T=PueT
J

for some unitary channels U; : B(HJ-L) — B(ICJ-L) and some
channels Tj : B(H[) — B(KF)



The dual map

Let T: B(H) — B(K) be a channel, w € S(H) a faithful state.

e The dual map of T with respect to w is the channel
T, : B(K) — B(H), defined by

Tu(B) = w2 T*(T(w) V?BT (w) 1/?)w!/?
o Alternatively, T} is the adjoint of T™:
(A, T*(B))w = (T5(A), B)T(w), A€ B(H),B e B(K)
with respect to the inner product

(A, B),, = Tr Afw!/2B,1/2

D. Petz, Quart. J. Math. Oxford, 35 (1984)



The dual map as a recovery channel

T*o T} is a unital cp map on B(H), preserving a faithful state,

Too T(w) =w.

Again by mean ergodic theorem, there exists a conditional
expectation F on B(H), F*(w) = w, with range
F(B(H)) ={A, T" o T;(A) = A}

and this satisfies
T oT,oF =F.



The dual map as a recovery channel

Let w be a faithful state, E be a conditional expectation,
E*(w) = w. The following are equivalent.

e There exists some unital cp map 3 such that T*o 8 = E.
e FoE=EoF=E (ECF)

e T*oTso0E=E

e T, = T, for all faithful states p such that E*(p) = p.

T is sufficient for Sg = {E*(p),p € S(H)}.

Moreover, o E = T} o E.
Corollary

If T is sufficient with respect to S, then T, is a recovery channel.



A Radon-Nikodym derivative

Let p,w € S(H), w faithful. We define a Radon-Nikodym
derivative

d(p,w) = w VPpw /2
Alternatively: (d(p,w),A), = TrpA, A€ B(H).
Properties:

o d(p,w) >0
e log||d(p,w)|| = Dmax(p,w) (max relative entropy)

e note that the sandwiched Rényi relative entropy is

~ o

Doz(pvw) = a—1 |Og Hd(p7w)||04,w

where ) )
AN = Tr s Awss |



Sufficiency characterization

Let T be a channel, it is easy to see that
T5(d(p,w)) = d(T(p), T(w))
and
TooT(p)=p < T (d(T(p), T(w))) = d(p,w)

T is sufficient

o iff the last equality holds for all p € S
e iff d(p,w) is in the fixed points domain of T* o TJ.



Operator convex functions

e f:[0,00) = R,
f(AM+ (1 —X)B) < Af(A)+ (1 - N)f(B)

forall 0 < A, B € B(H), dim(H) < oo, X € (0,1).

e Integral representation of operator convex functions:

f(x)_f(0)+ax+bX2+/ ( x X )dpe(t)

(0,00) 1+t_X+t

aceR, b>0, uris a measure on (0,00) such that
(1 + t)"2dus(t) < oo



Generalized divergences

o Let H = B(#) with inner product
(A,B) =TrA'B
e Relative modular operator: p,w € S(H), w faithful
A, u(A) =pAwt, AcH

a positive operator on

e Generalized divergence: for f operator convex,

Df(p,W) = <w1/2¢ f(Ap,w)w1/2>

D. Petz, Rep. Math. Phys., 21 (1986)



Generalized divergences - examples

e relative entropy: f(x) = xlog(x)
D(p,w) = Tr p(log p — log w)
e a-divergence: f,(x) =1—x% a € (0,1)
Do(p,w) =1 — Trpwl™®
o pe(x) = 75 t€(0,1)
Di(p,w) = —=Trw?(L, + tR.) " (pw'?)

e quadratic divergence: ¢g(x) = x>

Do(p,w) = Tr p?w™?



Monotonicity

Theorem
Let T : B(H) — B(K) be a channel, f operator convex. Then

Df(p,w) = De(T(p), T(w))

o define V : K — # by
VAT (w)Y2 = T*(A)WwY?,  Ae B(K)

e By Kadison-Schwarz inequality T*(A)T T*(A) < T*(ATA),
V is a contraction and

V*Ap,w V< AT(p), T(w)



Monotonicity

e By operator Jensen inequality, for an operator monotone
function g such that g(0) > 0:

g(AT(p),Tw)) = 8(V'ApwV) > Vig(Apw)V

D,, is monotone, a € (0,1) (put g(x) =1 — fo(x) = x¥)

D¢ is monotone, t € (0,00) (put g(x) = —pr(x) = Z7)

Dy is monotone by the generalized Kadison-Schwarz inequality

T(p)T(w) ' T(p) < T(pw'p)

By the integral representation,

Dy(p,w) = Dolp,w) + /(0 )(11+t + Dylp,))due(t)



Equality in the monotonicity

Assume that
D(T(p), T(w)) = D(p,w)
Then D¢(T(p), T(w)) = Dt(p,w) for all t € supp(pr), so that

V*(Apw + t)flcul/2 = (A7(p),T(w) T+ 1.“)71 T(w)1/2, t € supp(pr)
If [supp(ur)| > dim(#H)? + dim(K)?, we get
h(Ap,w)Wl/z = \/l7(AT(/J)7T(fJJ))T(w)l/2

for (bounded continuous) functions h : [0,00) — C.



Equality in the monotonicity

Put h(x) = x"*, sc R =

T*(T(p)ls T(w)_is) — pisw—is’ seR

Theorem

Let f be an operator convex function such that
|supp(er)| > dim(H)2 + dim(K)2. Then T is sufficient with
respect to S if and only if

Df(T(p)7 T(w)) = Df(pvw)a peES



Examples and counterexamples

e Equality implies sufficiency:
D, Dy,a € (0,1)

e Equality does not imply sufficiency

D, Dt,tE(0,00) (f(X):X2’ f(X):x—l-t



Strong subadditivity of entropy

Let pagc € S(HA RHE ® Hc), then

S(pasc) + S(ps) < S(pas) + S(psc);

where
S(p) = —Trplog(p).
Equivalently,

D(pag;pa® pg) < D(paBc: pa ® pBc)



Equality in SSA and Markov property

Suppose
S(pasc) + S(pe) = S(pag) + S(psc)

Then

o Tr ¢ is sufficient with respect to {pagc, pa ® pec}

* pasc = Tppopsc(PAB)
o There is a decomposition Hg = @, Hk, @ HE such that

pasc = EP Anpagn © PBca
n
h L S(H HE R S(HE @ H
where pap, € S(Ha® Hg,) Ppc, € S(Hp, ® Hc).

P. Hayden, R. Jozsa, D. Petz, A. Winter, Commun. Math. Phys. 246 (2004)



Quantum hypothesis testing

Let p,w € S(H). Consider the problem of testing the hypothesis
Ho = p against the alternative H; = w.

o tests: 0 < M <[, where
Tr Mo = probability of rejecting Hp if the state is o
e error probabilities
a(M) = Tr Mp, B(M) =Tr(l — Mw

e Minimum Bayes error probability: A € (0, 1),

My = min Aa(M)+(1-A)5(M) = %(1 — A= (1= N)wl1)



Monotonicity

Let T be a channel, Hy = T(p), H; = T(w).
e error probabilities: 0 < N </,
o' (N) =Tr T*(N)p, B'(N)=Tr(1— T*(N))w
e the minimum Bayes error probability cannot be smaller:

M= omin Aa(T7(N)) + (1= A)B(T(N)) = Ty

e equivalently,

IT(p) = tT (W)l < [lp—twls,  teR



Equality and sufficiency

In the classical case (p and w commute), T is sufficient with
respect to {p,w} if and only

IT(p) = tT (W)l = llp - twlls, teR

Some further cases when this equivalence holds:

e T(p) and T(w) commute
e dim(H) = dim(K) =2
e T* commutes with the modular groups:

WITH (AW ™ = T(T(w)"AT(@) "), A€B(K).teR



Equality and sufficiency

Theorem

T is sufficient with respect to S if and only if
[T(0) = tT (W)l = llo —tw]l1, teR

holds for all o € § = {w*pw™", s e R, p e S}.



i.i.d. sequences and quantum Chernoff distance
Take n copies, HJ = p®", H' = w®",
1 ®n ®n
Man =51 =A™ = (1 = A)w™[|1)
Quantum Chernoff distance:
im — log(M,n) = —log OS|r;Sl rpw =: C(p,w

Monotonicity: if T is a channel,

C(p,w) = C(T(p), T(w))

K.M.R. Audenaert, M. Nussbaum, A. Szkola, F. Verstraete, Comm. Math.
Phys. 279 (2008)



Conditions for sufficiency

Theorem
The following are equivalent.

o [T()®"—tT(w)®"[lr = [[p®" —tw® |1, teR, pES, nEN

e C(p,w)=C(T(p), T(w)), p € co(S) (or p €S if all elements
in S are faithful)

e T is sufficient with respect to S.



Multiple hypothesis testing

An ensemble {\j, pi}_1, 0 < X;, Y. Ai=1, pi € S(H)
Assume p = p; with prior probability A\;, i=1,...,n.

e test: My,..., M, M; >0, >, M;=1
Tr M;p is the probability that we choose p;

e Optimal success probability:

P({Xi,pi}) = PR T > AT pM;



Approximate sufficiency and multiple hypothesis testing

Let S={p1,...,pn}, T : B(H) — B(K) a channel, ¢ > 0. The
following are equivalent.

e For any ensemble {d2,a } _1, where d = dim(K) and

we have

s X pioolh) < Pl 30 To)sell b 5P

e T is e-sufficient with respect to S: there is some channel R
such that
max [|p; — Re o T(pi)ll1 < €

A. Jencova, arxiv:1404.3900



