
Characterizations of sufficient quantum channels

Anna Jenčová
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Classical sufficiency

• A statistical model: a family

{Pθ, θ ∈ Θ}

of probability distributions on a sample space (X ,Ω)

• A statistic: measurable map T : (X ,Ω)→ (Y ,Σ)

• T is sufficient if the conditional probability does not depend
on θ:

Pθ(X |T ) = P(X |T ), ∀θ ∈ Θ

In this case, the transformed vector Y = T (X ) contains all
information about the parameter

R.A. Fisher, Philos. T. Roy. Soc. A, 222 (1922).



Quantum sufficiency

• Let S ⊂ S(H) be a set of quantum states (density operators
on a Hilbert space H)

• Let T : B(H)→ B(K) be a quantum channel

T : S 7→ T (S) ⊂ S(K)

• T is sufficient (or also reversible) with respect to S if there is
some

R : B(K)→ B(H) recovery channel

such that
R ◦ T (ρ) = ρ ∀ρ ∈ S



Sufficient subalgebras

We assume dim(H) <∞, S contains a faithful state.

• Let A ⊆ B(H) be a *-subalgebra, TA : B(H)→ A the trace
preserving conditional expectation

TA : ρ 7→ ρ|A

• If TA is sufficient, then A is a sufficient subalgebra

• The recovery channel R satisfies

R(ρ) = R(ρ|A) = ρ, ρ ∈ S



Minimal sufficient subalgebra

Let IS be the set of all unital cp maps Φ on B(H), such that

Φ∗(ρ) = ρ, ρ ∈ S

• IS is a closed convex semigroup of unital cp maps.

• By the mean ergodic theorem, there is a (faithful) conditional
expectation E ∈ IS such that

Φ ∈ IS if and only if Φ ◦ E = E ◦ Φ = E .

• The range of E ,

FS := E (B(H)) = {X ∈ B(H),Φ(X ) = X ,∀Φ ∈ IS}

• In particular, FS is a subalgebra in B(H).

Kümmerer and Nagel, Ann. Sci. Math, 41 (1979), 151-159



Minimal sufficient subalgebra

• Since E ∈ IS , we have

ρ = E ∗(ρ) = E ∗(ρ|FS ), ρ ∈ S,

that is, E ∗ is a recovery channel for the channel TFS :

=⇒ FS is a sufficient subalgebra

• A subalgebra A ⊆ B(H) is sufficient if and only if FS ⊆ A
• FS is minimal sufficient

A. Luczak, Int. J. Theor. Phys, 53 (2014)



Minimal sufficient subalgebra

Let ω ∈ S be a faithful state.

• Since E is a conditional expectation and E ∗(ω) = ω,

ωitFSω−it ⊆ FS , t ∈ R

• The algebra FS is generated by the Radon-Nikodym cocycles

ρitω−it , t ∈ R, ρ ∈ S

• A subalgebra A is sufficient if and only if

ρitω−it ∈ A, t ∈ R, ρ ∈ S

• By analytic continuation

ρzω−z ∈ A, z ∈ C, ρ ∈ S



Factorization of states in S

There is a decomposition H =
⊕

j HL
j ⊗HR

j such that

FS =
⊕
j

B(HL
j )⊗ IHR

j
,

E ∗(σ) =
⊕
j

TrHR
j

[PjσPj ]⊗ ωR
j , ωR

j ∈ S(HR
j )

Pj = H → HL
j ⊗HR

j is the projection. Since ρ = E ∗(ρ) for ρ ∈ S,

ρ =
⊕

pj(ρ)ρLj ⊗ ωR
j , ρ ∈ S,

where pj(ρ) = Tr [ρPj ], ρ
L
j ∈ S(HL

j ).

M. Koashi and N. Imoto, Phys. Rev. A, 66 (2002)
P. Hayden, R. Jozsa, D. Petz, A. Winter, Commun. Math. Phys. 246 (2004)



Sufficient channels

Let T : B(H)→ B(K) be a channel, suppose there exists a
recovery channel R : B(K)→ B(H). Then R ◦ T (ρ) = ρ for
ρ ∈ S, so that

T ∗ ◦ R∗ ∈ IS

T is sufficient with respect to S if and only if there is some unital
cp map β such that

T ∗ ◦ β = E (β = R∗ ◦ E )



Sufficient channels

Let T (S) = {T (ρ), ρ ∈ S}. Assume T (ω) is faithful. The
following are equivalent.

• T is sufficient with respect to S
• T ∗|FT (S)

is a homomorphism and for A ∈ FT (S),

T ∗(T (ω)itAT (ω)−it) = ωitT ∗(A)ω−it , t ∈ R

• T ∗(T (ρ)itT (ω)−it) = ρitω−it , t ∈ R, ρ ∈ S
• T ∗(T (ρ)zT (ω)−z) = ρzω−z , z ∈ C, ρ ∈ S
• T ∗(T (ρ)pT (ω)−p) = ρpω−p for some p ∈ (0, 1)



Sufficient channels - factorization

T is sufficient with respect to S if and only if there is a
decomposition

K =
⊕
j

KL
j ⊗KR

j

such that
T =

⊕
j

Uj ⊗ Tj

for some unitary channels Uj : B(HL
j )→ B(KL

j ) and some

channels Tj : B(HR
j )→ B(KR

j )



The dual map

Let T : B(H)→ B(K) be a channel, ω ∈ S(H) a faithful state.

• The dual map of T with respect to ω is the channel
Tω : B(K)→ B(H), defined by

Tω(B) = ω1/2T ∗(T (ω)−1/2BT (ω)−1/2)ω1/2

• Alternatively, T ∗ω is the adjoint of T ∗:

〈A,T ∗(B)〉ω = 〈T ∗ω(A),B〉T (ω), A ∈ B(H),B ∈ B(K)

with respect to the inner product

〈A,B〉ω = TrA†ω1/2Bω1/2

D. Petz, Quart. J. Math. Oxford, 35 (1984)



The dual map as a recovery channel

T ∗ ◦ T ∗ω is a unital cp map on B(H), preserving a faithful state,

Tω ◦ T (ω) = ω.

Again by mean ergodic theorem, there exists a conditional
expectation F on B(H), F ∗(ω) = ω, with range

F (B(H)) = {A,T ∗ ◦ T ∗ω(A) = A}

and this satisfies
T ∗ ◦ T ∗ω ◦ F = F .



The dual map as a recovery channel

Let ω be a faithful state, E be a conditional expectation,
E ∗(ω) = ω. The following are equivalent.

• There exists some unital cp map β such that T ∗ ◦ β = E .

• F ◦ E = E ◦ F = E (E ⊆ F )

• T ∗ ◦ T ∗ω ◦ E = E

• Tω = Tρ for all faithful states ρ such that E ∗(ρ) = ρ.

• T is sufficient for SE = {E ∗(ρ), ρ ∈ S(H)}.

Moreover, β ◦ E = T ∗ω ◦ E .

Corollary

If T is sufficient with respect to S, then Tω is a recovery channel.



A Radon-Nikodym derivative

Let ρ, ω ∈ S(H), ω faithful. We define a Radon-Nikodym
derivative

d(ρ, ω) = ω−1/2ρω−1/2

Alternatively: 〈d(ρ, ω),A〉ω = Tr ρA, A ∈ B(H).

Properties:

• d(ρ, ω) ≥ 0

• log ‖d(ρ, ω)‖ = Dmax(ρ, ω) (max relative entropy)

• note that the sandwiched Rényi relative entropy is

D̃α(ρ, ω) =
α

α− 1
log ‖d(ρ, ω)‖α,ω

where
‖A‖αα,ω = Tr |ω

1
2αAω

1
2α |α



Sufficiency characterization

Let T be a channel, it is easy to see that

T ∗ω(d(ρ, ω)) = d(T (ρ),T (ω))

and

Tω ◦ T (ρ) = ρ ⇐⇒ T ∗(d(T (ρ),T (ω))) = d(ρ, ω)

T is sufficient

• iff the last equality holds for all ρ ∈ S
• iff d(ρ, ω) is in the fixed points domain of T ∗ ◦ T ∗ω .



Operator convex functions

• f : [0,∞)→ R,

f (λA + (1− λ)B) ≤ λf (A) + (1− λ)f (B)

for all 0 ≤ A,B ∈ B(H), dim(H) <∞, λ ∈ (0, 1).

• Integral representation of operator convex functions:

f (x) = f (0) + ax + bx2 +

∫
(0,∞)

(
x

1 + t
− x

x + t
)dµf (t)

a ∈ R, b ≥ 0, µf is a measure on (0,∞) such that∫
(1 + t)−2dµf (t) <∞



Generalized divergences

• Let H̃ ≡ B(H) with inner product

〈A,B〉 = TrA†B

• Relative modular operator: ρ, ω ∈ S(H), ω faithful

∆ρ,ω(A) = ρAω−1, A ∈ H̃

a positive operator on H̃
• Generalized divergence: for f operator convex,

Df (ρ, ω) = 〈ω1/2, f (∆ρ,ω)ω1/2〉

D. Petz, Rep. Math. Phys., 21 (1986)



Generalized divergences - examples

• relative entropy: f (x) = x log(x)

D(ρ, ω) = Tr ρ(log ρ− logω)

• α-divergence: fα(x) = 1− xα, α ∈ (0, 1)

Dα(ρ, ω) = 1− Tr ραω1−α

• ϕt(x) = − x
x+t , t ∈ (0, 1)

Dt(ρ, ω) = −Trω1/2(Lρ + tRω)−1(ρω1/2)

• quadratic divergence: ϕ0(x) = x2

D0(ρ, ω) = Tr ρ2ω−1



Monotonicity

Theorem

Let T : B(H)→ B(K) be a channel, f operator convex. Then

Df (ρ, ω) ≥ Df (T (ρ),T (ω))

• define V : K̃ → H̃ by

V : AT (ω)1/2 7→ T ∗(A)ω1/2, A ∈ B(K)

• By Kadison-Schwarz inequality T ∗(A)†T ∗(A) ≤ T ∗(A†A),
V is a contraction and

V ∗∆ρ,ωV ≤ ∆T (ρ),T (ω)



Monotonicity

• By operator Jensen inequality, for an operator monotone
function g such that g(0) ≥ 0:

g(∆T (ρ),T (ω)) ≥ g(V ∗∆ρ,ωV ) ≥ V ∗g(∆ρ,ω)V

• Dα is monotone, α ∈ (0, 1) (put g(x) = 1− fα(x) = xα)

• Dt is monotone, t ∈ (0,∞) (put g(x) = −ϕt(x) = x
x+1)

• D0 is monotone by the generalized Kadison-Schwarz inequality

T (ρ)T (ω)−1T (ρ) ≤ T (ρω−1ρ)

• By the integral representation,

Df (ρ, ω) = D0(ρ, ω) +

∫
(0,∞)

(
1

1 + t
+ Dt(ρ, ω))dµf (t)



Equality in the monotonicity

Assume that
D(T (ρ),T (ω)) = D(ρ, ω)

Then Dt(T (ρ),T (ω)) = Dt(ρ, ω) for all t ∈ supp(µf ), so that

V ∗(∆ρ,ω + t)−1ω1/2 = (∆T (ρ),T (ω) + t)−1T (ω)1/2, t ∈ supp(µf )

If |supp(µf )| ≥ dim(H)2 + dim(K)2, we get

h(∆ρ,ω)ω1/2 = Vh(∆T (ρ),T (ω))T (ω)1/2

for (bounded continuous) functions h : [0,∞)→ C.



Equality in the monotonicity

Put h(x) = x is , s ∈ R =⇒

T ∗(T (ρ)isT (ω)−is) = ρisω−is , s ∈ R

Theorem

Let f be an operator convex function such that
|supp(µf )| ≥ dim(H)2 + dim(K)2. Then T is sufficient with
respect to S if and only if

Df (T (ρ),T (ω)) = Df (ρ, ω), ρ ∈ S



Examples and counterexamples

• Equality implies sufficiency:

D, Dα, α ∈ (0, 1)

• Equality does not imply sufficiency

D0, Dt , t ∈ (0,∞) (f (x) = x2, f (x) =
1

x + t
)



Strong subadditivity of entropy

Let ρABC ∈ S(HA ⊗HB ⊗HC ), then

S(ρABC ) + S(ρB) ≤ S(ρAB) + S(ρBC ),

where
S(ρ) = −Tr ρ log(ρ).

Equivalently,

D(ρAB , ρA ⊗ ρB) ≤ D(ρABC , ρA ⊗ ρBC )



Equality in SSA and Markov property

Suppose
S(ρABC ) + S(ρB) = S(ρAB) + S(ρBC )

Then

• Tr C is sufficient with respect to {ρABC , ρA ⊗ ρBC}
• ρABC = TρA⊗ρBC (ρAB)

• There is a decomposition HB =
⊕

nHL
Bn ⊗HR

Bn such that

ρABC =
⊕
n

λnρ
L
ABn ⊗ ρRBCn

where ρLABn ∈ S(HA ⊗HL
Bn), ρRBCn ∈ S(HR

Bn ⊗HC ).

P. Hayden, R. Jozsa, D. Petz, A. Winter, Commun. Math. Phys. 246 (2004)



Quantum hypothesis testing

Let ρ, ω ∈ S(H). Consider the problem of testing the hypothesis
H0 = ρ against the alternative H1 = ω.

• tests: 0 ≤ M ≤ I , where

TrMσ = probability of rejecting H0 if the state is σ

• error probabilities

α(M) = TrMρ, β(M) = Tr (I −M)ω

• Minimum Bayes error probability: λ ∈ (0, 1),

Πλ = min
0≤M≤I

λα(M) + (1−λ)β(M) =
1

2
(1−‖λρ− (1−λ)ω‖1)



Monotonicity

Let T be a channel, H ′0 = T (ρ), H ′1 = T (ω).

• error probabilities: 0 ≤ N ≤ I ,

α′(N) = TrT ∗(N)ρ, β′(N) = Tr (1− T ∗(N))ω

• the minimum Bayes error probability cannot be smaller:

Π′λ = min
0≤N≤I

λα(T ∗(N)) + (1− λ)β(T ∗(N)) ≥ Πλ

• equivalently,

‖T (ρ)− tT (ω)‖1 ≤ ‖ρ− tω‖1, t ∈ R



Equality and sufficiency

In the classical case (ρ and ω commute), T is sufficient with
respect to {ρ, ω} if and only

‖T (ρ)− tT (ω)‖1 = ‖ρ− tω‖1, t ∈ R

Some further cases when this equivalence holds:

• T (ρ) and T (ω) commute

• dim(H) = dim(K) = 2

• T ∗ commutes with the modular groups:

ωitT ∗(A)ω−it = T ∗(T (ω)itAT (ω)−it), A ∈ B(K), t ∈ R



Equality and sufficiency

Theorem

T is sufficient with respect to S if and only if

‖T (σ)− tT (ω)‖1 = ‖σ − tω‖1, t ∈ R

holds for all σ ∈ S̃ = {ωisρω−is , s ∈ R, ρ ∈ S}.



i.i.d. sequences and quantum Chernoff distance

Take n copies, Hn
0 = ρ⊗n, Hn

1 = ω⊗n,

Πλ,n =
1

2
(1− ‖λρ⊗n − (1− λ)ω⊗n‖1)

Quantum Chernoff distance:

− lim
n

1

n
log(Πλ,n) = − log

(
inf

0≤s≤1
Tr ρsω1−s

)
=: C (ρ, ω)

Monotonicity: if T is a channel,

C (ρ, ω) ≥ C (T (ρ),T (ω))

K.M.R. Audenaert, M. Nussbaum, A. Szkola, F. Verstraete, Comm. Math.
Phys. 279 (2008)



Conditions for sufficiency

Theorem

The following are equivalent.

• ‖T (σ)⊗n− tT (ω)⊗n‖1 = ‖ρ⊗n− tω⊗n‖1, t ∈ R, ρ ∈ S, n ∈ N
• C (ρ, ω) = C (T (ρ),T (ω)), ρ ∈ co(S) (or ρ ∈ S if all elements

in S are faithful)

• T is sufficient with respect to S.



Multiple hypothesis testing

An ensemble {λi , ρi}ni=1, 0 ≤ λi ,
∑

i λi = 1, ρi ∈ S(H)

Assume ρ = ρi with prior probability λi , i = 1, . . . , n.

• test: M1, . . . ,Mn, Mi ≥ 0,
∑

i Mi = I

TrMiρ is the probability that we choose ρi

• Optimal success probability:

P({λi , ρi}) = max
Mi≥0,

∑
Mi=I

∑
i

λiTr ρMi



Approximate sufficiency and multiple hypothesis testing

Let S = {ρ1, . . . , ρn}, T : B(H)→ B(K) a channel, ε ≥ 0. The
following are equivalent.

• For any ensemble { 1
d2 , σ

j}d2

j=1, where d = dim(K) and

σj =
n∑

i=1

|i〉〈i | ⊗ σji , σ
j
i ∈ B(K)+, j = 1, . . . , d2,

we have

P({ 1

d2
,
∑
i

ρi⊗σji }j) ≤ P({ 1

d2
,
∑
i

T (ρi )⊗σji }j)+
ε

2
P({ 1

d2
, σj}j)

• T is ε-sufficient with respect to S: there is some channel Rε
such that

max
i
‖ρi − Rε ◦ T (ρi )‖1 ≤ ε

A. Jenčová, arxiv:1404.3900


