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Abstract—For a pair of quantum channels with the same
input space, we show that the possibility of approximation of
one channel by post-processings of the other channel can be
characterized by comparing the success probabilities for the two
ensembles obtained as outputs for any ensemble on the input
space coupled with an ancilla. This provides an operational
interpretation to a natural extension of Le Cam’s deficiency
to quantum channels. In particular, we obtain a version of the
randomization criterion for quantum statistical experiments. The
proofs are based on some properties of the diamond norm and
its dual, which are of independent interest.

I. INTRODUCTION

The theory of comparison of statistical experiments started
in the work of Blackwell [1], who introduced a natural order-
ing of experiments in terms of the risks of optimal decision
rules. This ordering was extended by Le Cam [2] into a
deficiency measure on statistical experiments, expressing how
well an experiment S can be approximated by randomizations
of another experiment T . Le Cam’s randomization criterion
shows that deficiency also gives the maximal loss in the
average payoffs of decision procedures, experienced when the
experiment S is replaced by T . For an account on comparison
of statistical experiments, see e.g. [3, 4].

An extension of Blackwell’s results for quantum experi-
ments was first obtained by Shmaya [5] in the framework of
quantum information structures. In [6], a theory of comparison
for both classical and quantum experiments is developed in
terms of statistical morphisms. In both works, either additional
entanglement or composition of the experiment with a com-
plete set of states is required. Quantum versions of Le Cam’s
randomization criterion were studied in [7, 8]. In particular,
Matsumoto in [8] introduced a natural generalization of classi-
cal decision problems to quantum ones and proved a quantum
randomization criterion in this setting. The main drawback
of this approach is the lack of operational interpretation for
quantum decision problems.

Comparison of channels can be obtained as an extension
of the theory of comparison of experiments. A natural idea
is the following: given two channels with the same input
space, compare the two experiments emerging as outputs for
a single input experiment. If the output experiment of the
channel 	 is always more informative than the output of the
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channel �, we say that 	 is less noisy than �. An ordering of
classical channels was first introduced in the work by Shannon
[9], where a coding/decoding criterion was applied. Similar
orderings were studied in e.g. [10, 11]. For some more recent
works see e.g. [12, 13].

In the quantum setting, it is possible to use a stronger
ordering, namely to consider experiments on the input space
coupled with an ancilla. As it turns out, for quantum channels,
	 is less noisy in this stronger sense if and only if � is
a post-processing of 	. In fact, it is enough to compare
guessing probabilities for ensembles of states. This remarkable
result was first obtained by Chefles in [14], based on [5]. It
was extended and refined in [6], in particular it was proved
that no entanglement in the input ensemble is needed. Some
applications were already found in [13, 15–17].

The aim of the present work is to establish an approximate
version of these results, which may be called the randomiza-
tion criterion for quantum channels. More precisely, we study
an extension of Le Cam’s deficiency for quantum channels,
based on the diamond norm. Such definitions appear naturally
in quantum information theory, for example the approximate
(anti)degradable channels, [18]. We show that deficiency can
be characterized by comparing success probabilities for output
ensembles, with respect to the success probability of the
input ensemble. These results are then applied to statistical
experiments and a quantum randomization criterion is proved
in terms of success probabilities.

The diamond norm appears as a distinguishability norm for
quantum channels [19]. As it was observed in [20], this norm
can be defined using the order structure given by the cone of
completely positive maps. We also show that the dual norm
on positive elements can be expressed as the optimal success
probability for a certain ensemble. These properties provide
a convenient framework for proving our results and are of
independent interest.

II. NOTATIONS AND PRELIMINARIES

If not stated otherwise, the full proofs can be found in [21].
Throughout the paper, all Hilbert spaces are finite dimen-

sional. If H is a Hilbert space, we fix an orthonormal basis
fjeii; i = 1; : : : ;dim(H)g in H. We will denote the algebra of
linear operators on H by B(H), the set of positive operators
by B(H)+ and the real vector space of self-adjoint elements
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by Bh(H). The set of states, or density operators, on H will
be denoted by S(H) := f� 2 B(H)+; Tr� = 1g.

Let L(H;K) denote the real vector space of Hermitian
linear maps B(H)! B(K). The set L(H;K)+ of completely
positive maps forms a closed convex cone in L(H;K) which is
pointed and generating. With this cone, L(H;K) becomes an
ordered vector space. We will denote the corresponding order
by �. An element of L(H;K)+ that preserves trace is usually
called a channel. We will denote the set of all channels by
C(H;K).

For � 2 L(H;H), we define

s(�) =
X
i;j

hei; �(jeiihej j)eji:

It is easy to see that s defines a linear functional L(H;H)! R

and for all � 2 L(H;K),  2 L(K;H), s( � �) = s(� �  ).
We now identify the dual space of L(H;K) with L(K;H),

where duality is given by

h ; �i = s( � �); � 2 L(H;K);  2 L(K;H):

Note that the tracelike property of s implies that we have
h�;  i = h ; �i and

h�; � �  i = h� � �;  i = h � �; �i:

The dual cone of positive functionals satisfies

(L(H;K)+)� := f 2 L(K;H); h ; �i � 0;8� 2 L(H;K)+g

= L(K;H)+;

so that the cone of completely positive maps is self-dual.

Remark 1. Let us denote

XH :=
X
i;j

jeiihej j 
 jeiihej j 2 B(H
H)+:

The Choi representation C : � 7! (� 
 idH)(XH) provides
an order isomorphism of L(H;K) onto Bh(K 
H) with the
cone of positive operators B(K
H)+. Note also that for any
� 2 L(H;H), s(�) = TrC(�)XH, so that

h ; �i = s( � �) = Tr [C( � �)XH] = Tr [C(�)C( �)]:

It is of course possible to use the Choi representation with this
duality, but for our purposes it is mostly more convenient to
work with the spaces of mappings.

III. THE DIAMOND NORM AND ITS DUAL

The diamond norm in L(H;K) is defined by

k�k� = sup
�2S(H
H)

k(�
 id)(�)k1; (1)

where k�k1 denotes the trace norm in B(K
H). It was proved
in [20] that this norm is obtained from the set of channels and
the order structure in L(H;K). Namely, for � 2 L(H;K),

k�k� = inf
�2C(H;K)

inff� > 0;��� � � � ��g: (2)

It was also shown that the dual norm in L(K;H), which we
will denote by k � k�, is similarly obtained from the set of
erasure channels f�� : B(K) 3 A 7! Tr [A]�; � 2 S(H)g:

k k� = inf
�2S(H)

inff� > 0;���� �  � ���g: (3)

We list some useful properties of these norms.

Proposition 1. (i) If � 2 L(H;K)+, then

k�k� = sup
�2S(H)

Tr [�(�)]; k�k� = sup
�2C(K;H)

h�; �i:

(ii) If �;  2 C(H;K), then

k��  k� = 2 sup

�0;k
k��1

h
; ��  i

(iii) If � 2 C(K;K0) and � 2 C(H0;H), then the maps � 7!
� � � and � 7! � � � are contractions with respect to
both k � k� and k � k�.

An important property of the dual norm is its relation to
success probabilities for ensembles of quantum states. Let
E = f�i; �ig

k
i=1 be and ensemble on H, here �i 2 S(H) and

�1; : : : ; �k are prior probabilities. In the setting of multiple
hypothesis testing, the task is to guess which one is the true
state. Any procedure to obtain such a guess can be identified
with some POVM M = fM1; : : : ;Mkg, Mi 2 B(H)+,P

iMi = I . Here Tr�iMj is interpreted as the probability
that �j is chosen while the true state is �i, so that the average
success probability for the procedure M is

P
i �iTrMi�i. One

can show that the maximum probability of a successful guess
for this ensemble has the form Psucc(E) = k�Ek

�, where
�E 2 L(Cn;K) is the map A 7!

P
iAii�i�i. More generally,

we have

Proposition 2. Let 
 2 L(K;H)+. Then there is an (equiprob-
able) ensemble E
 on H
K such that

k
k� = dim(K)Tr [
(I)]Psucc(E
):

Moreover, for any � 2 L(H;H0)+, we have

E��
 = (�
 id)(E
):

IV. THE MAIN RESULT

Let � 2 C(H;K) and 	 2 C(H;K0). Similarly to Le
Cam’s deficiency for statistical experiments, we may define
the deficiency of � with respect to 	 by

�(�;	) = inf
�2C(K0;K)

k�� � �	k�:

Since C(K0;K) is convex and compact, the infimum is attained,
in particular, �(�;	) = 0 if and only if � = � �	 for some
� 2 C(K0;K). In this case, we write � � 	 We also define
Le Cam distance by

�(�;	) = maxf�(�;	); �(	;�)g:

This defines a preorder on the set of channels with the same
input space. The following data processing inequalities for �
are obvious consequences of their definition and Proposition
1 (iii).
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Proposition 3. Let �1;�2;�, 	1;	2;	 be channels with the
same input space.

(i) If �1 � �2, then �(�1;	) � �(�2;	).
(ii) If 	1 � 	2, then �(�;	1) � �(�;	2).

Let now �(�;	) = 0. Then for any ensemble E on the
tensor product H 
 H0 with an ancillary Hilbert space H0,
we have

Psucc((�
 idH0)(E)) � Psucc((	
 idH0)(E)): (4)

The converse was proved in [6, 14]. Our aim is to prove an
�-version of this result.

Theorem 1. Let � 2 C(H;K), 	 2 C(H;K0), � � 0. Then
�(�;	) � � if and only for any finite dimensional Hilbert
space K0 and any ensemble E on H
K0,

Psucc((�
 idK0)(E)) � Psucc((	
 idK0)(E)) +
�

2
Psucc(E)

Moreover, one can restrict to K0 = K and equiprobable
ensembles with k = dim(K)2 elements.

Proof. Assume that � 2 C(K0;K) is a channel such that

k�� � �	k� � �:

Then for any 
 2 L(K0;H)+ and � 2 C(K;K0), we have by
positivity and Proposition 1 (ii), (iii) that

h
; � � �i � h
; � � � �	i+ jh
; � � (�� � �	)ij

� h
; � � � �	i+
1

2
k
k�k� � (� �	� �)k�

� h
; � � � �	i+
1

2
�k
k�

From this, we obtain by Proposition 1 (i) and properties of s
that

k� � 
k� = sup
�2C(K;K0)

h�;� � 
i = sup
�2C(K;K0)

h
; � � �i

� sup
�2C(K;K0)

h
; � � � �	i+
1

2
�k
k�

= sup
�2C(K;K0)

h� � �;	 � 
i+
1

2
�k
k�

� k	 � 
k� +
1

2
�k
k�:

Hence we have proved that �(�;	) � � implies

k� � 
k� � k	 � 
k� +
1

2
�k
k�; 8
 2 L(K0;H)+: (5)

Since by (1) we have k�k� = k� 
 idK0k� for any K0, we
also have �(�
 idK0 ;	
 idK0) � �. Hence we obtain

k(�
 idK0) � 
k
� � k(	
 idK0) � 
k

� +
�

2
k
k� (6)

for all 
 2 L(K1;H
K0) and any K1. If E is any ensemble
on H
K0, then

Psucc((�
 id)(E)) = k�(�
id)(E)k
� = k(�
 id) � �Ek

�

and similarly for 	. Putting 
 = �E in (6) implies the desired
inequality.

For the converse, note that by Proposition 1 (ii), we have

�(�;	) = 2 min
�2C(K0;K)

8><
>: max


2L(K;H)+;
k
k��1

h
;�� � �	i

9>=
>;

Since the sets C(K0;K) and f
 2 L(K;H)+; k
k� � 1g are
both convex and compact and the map (�; 
) 7! h
;����	i
is linear in both variables, we may apply the minimax theorem,
see e.g. [3]. It follows that

�(�;	) = 2max



min
�
h
;�� � �	i

= 2max



fh
;�i � k	 � 
k�g

� 2max



fk� � 
k� � k	 � 
k�g :

Proposition 2 and the assumption now imply that the last
expression is less that �.

In the case � = 0, we obtain a stronger condition. Similar
results were proved in [6].

Theorem 2. Let � 2 C(H;K), 	 2 C(H;K0) and let � 2
C(K0;K) be a surjective channel. Then �(�;	) = 0 if and
only if for any ensemble E on H
K0,

Psucc((�
 �)(E)) � Psucc((	
 �)(E)):

In particular, by choosing � as a classical-to-quantum chan-
nel of the form A 7!

P
iAii�i for a set of states f�ig

that spans B(K), we see that for � = 0 we may restrict to
ensembles of separable states.

V. THE RANDOMIZATION CRITERION FOR QUANTUM
EXPERIMENTS

A quantum statistical experiment is a pair T = (H; f��; � 2
�g), where �� 2 S(H) for all � 2 � and � is an arbitrary
set of parameters. Any experiment can be viewed as the set of
possible states of some physical system, determined by some
prior information on the true state. Note that this definition
contains also classical statistical experiments on finite sample
spaces, which can be identified with diagonal density matrices.

Based on the outcome of a measurement on the system,
a decision j is chosen from a (finite) set D of decisions.
This procedure, or a decision rule, is represented by a POVM
fMj ; j 2 Dg on H. The performance of a decision rule is
assessed by a payoff function, which in our case is a map
g : � �D ! R+, representing the payoff obtained if j 2 D
is chosen while the true state is ��. The average payoff of the
decision rule M at � 2 � is computed as

PT (�;M; g) =
X
j2D

g�;jTr ��Mj :

The next theorem is the celebrated Le Cam’s randomization
criterion for classical statistical experiments. Note that our
setting contains only experiments on finite sample spaces, but
the theorem holds in a much more general case.
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Theorem 3. [2] Let T and S be classical statistical experi-
ments. Then the following are equivalent.

(i) Tor any decision space (D; g) and any decision rule M
for S, there is some decision rule N for T such that

sup
�2�

�
PS(�;M; g)� PT (�;N; g)� �max

d
jg(�; d)j

�
� 0:

(ii) There is some channel � such that

sup
�

k�� � �(��)k1 � 2�

Remark 2. One can show that the condition (i) of the above
theorem is equivalent to

Psucc(f�j ;
X
�2�0

�j���g) � Psucc(f�j ;
X
�2�0

�j���g)+�Psucc(E)

for any ensemble of the form E = f�j ;
P

�2�0
�j�je�ihe�jg

and any finite subset �0 � �.
As it was proved in [22], Theorem 3 does not hold for

quantum experiments. The quantum randomization criterion
proved in [8] is based on an extension of the classical decision
spaces to quantum ones, but an operational interpretation of
the quantum decision problems is not clear. The aim of the
present section is to apply Theorem 1 to prove a quantum ran-
domization criterion, formulated in terms of optimal guessing
probabilities of some ensembles. In view of Remark 2, this
gives a quantum extension of Le Cam’s theorem. In the case
� = 0, a similar result was obtained in [6].

Theorem 4. Let S = (K; f��; � 2 �g) and T =
(H; f��; � 2 �g) be quantum statistical experiments and let
� � 0. Then the following are equivalent.

(i) There is some � 2 C(H;K) such that

sup
�2�

k�� � �(��)k1 � 2�

(ii) Let f�1; : : : ; �ng be any finite subset of � and let E =
f�i; �ig

k
i=1 be any ensemble on Cn 
 K, consisting of

block-diagonal states �i =
Pn

j=1 je
n
j ihe

n
j j 
 � ji , � ji 2

B(K)+,
P

j Tr �
j
i = 1. Then

Psucc(f�i;

nX
j=1

��j 
 � ji g) �

� Psucc(f�i;

nX
j=1

��j 
 � ji g) + �Psucc(E)

Moreover, in (ii) we may restrict to equiprobable ensembles
with k = dim(K)2.

Proof. Let f�1; : : : ; �ng � � and let �S 2 L(Cn;K) be given
by A 7!

Pn

j=1Ajj��j . It is easy to see that �S is a channel.
Moreover, by [21, Lemma 2], we have for any � 2 C(H;K),

k�S � � � �T k� = max
j

k��j � �(��j )k1;

where �T is defined analogically. By Theorem 1, the restric-
tion of (i) to f�1; : : : ; �ng is equivalent to

Psucc((�S 
 id)(E)) � Psucc((�T 
 id)(E)) + �Psucc(E)

for any ensemble E on Cn
K. It is now clear that (i) implies
(ii). Since for any state � 2 S(Cn 
K),

(�S 
 id)(�) =
X
j

��j 
 � j = (�S 
 id)(�)

(�T 
 id)(�) =
X
j

��j 
 � j = (�T 
 id)(�)

where � =
P

j je
n
j ihe

n
j j
 �

j is a block diagonal state, we see
that (ii) implies that

inf
�2C(H;K)

sup
�2�0

k�� � �(��)k1 � 2�

for any finite subset �0 � �. Let P� denote the set of
probability measures over � with finite support, then we
clearly have

sup
p2P�

min
�2C(H;K)

X
�2�

p(�)k�� � �(��)k1 � 2�:

Now we use the minimax theorem once more. For this, note
that P� is a convex set, C(H;K) is compact and convex, the
map (p; �) 7!

P
�2� p(�)k�� � �(��)k1 is linear in p and

continuous and convex in �. The minimax theorem can be
applied and we obtain

sup
p2P�

min
�2C(H;K)

X
�2�

p(�)k�� � �(��)k1

= min
�2C(H;K)

sup
p2P�

X
�2�

p(�)k�� � �(��)k1

= min
�2C(H;K)

sup
�2�

k�� � �(��)k1:

Hence (ii) implies (i).

We will say that an experiment S0 = (K; f��; � 2 �0g)
is complete if the set f��; � 2 �0g spans B(H). If �0 is a
finite set, then �S0 is a surjective channel in C(Cj�0j;K). By
an application of Theorem 2 we obtain

Corollary 1. Let S = (K; f��; � 2 �g) and T =
(H; f��; � 2 �g) be quantum statistical experiments. Let
S0 = (K; f�1; : : : ; �Ng) be a complete experiment. Then
�� = �(��) for some �(H;K) if and only if for any
f�1; : : : ; �ng � � and any collection f�i

j;lg, i = 1; : : : ; k,
j = 1; : : : ; N , l = 1; : : : ; n of nonnegative numbers such thatP

j;l �
i
j;l = 1 for all i, we have

Psucc(f1=k;
X
j;l

�i
j;l��l
�jg) � Psucc(f1=k;

X
j;l

�i
j;l��l
�jg):

Corollary 2. Let � 2 C(H;K), 	 2 C(H;K0) and let
T0 = (H; f�H1 ; : : : ; �

H
Mg), S0 = (K; f�K1 ; : : : ; �

K
Ng) be com-

plete experiments. Then �(�;	) = 0 if and only if

Psucc((�
 idK0)(E)) � Psucc((	
 idK0)(E))

holds for all ensembles of states of the form

E = f�i;
X
j;l

�i
j;l�

H
l 
 �Kj g:
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VI. CONCLUDING REMARKS

We proved a version of the randomization criterion for
quantum channels and applied it to obtain a randomization
criterion for quantum statistical experiments. The deficiency
�(�;	) in some special cases already appeared in quantum
information theory and our results can be further used to
obtain an operational definition e.g. for the approximately
(anti)degradable channels [18], similarly as it was done for
antidegradable channels in [15]. Another possible application
is to �-private and �-correctable channels [23].

We used some properties of the diamond norm and its dual
that can be obtained solely from the order structure given by
completely positive maps and the trace preserving condition.
This suggests the possibility to apply similar methods to
more general situations. For example, one may assume some
structure in the channels, obtaining similar results for more
specific quantum protocols, such as quantum combs, [24]. It is
also possible to define deficiency in terms of pre-processings.
In the special case of POVMs regarded as a special kind of
channels, this leads to an approximate version of the ordering
of POVMs by cleanness, [25]. More generally, the processing
can consist of a combination of pre- and post-processing,
also allowing some correlations between input and output
systems, either classical or quantum. This would be closer
to the original definition by Shannon, [9]. It seems that all
these situations can be treated within the suggested framework.
Another challenging problem is the extension of these results
to infinite dimensional Hilbert spaces. Some partial results in
this direction were obtained in [26]. Although the methods
used in [20] rely on finite dimensions, it seems plausible that
the useful properties of the norms can be extended also to this
case. All these problems are left for future work.
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