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Introduction

Types of higher
order quantum

maps
≃

Boolean
functions

(type functions)
≃

Posets of
subsets of

system indicesy
y

causal structure ⇐⇒ order structure
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Higher order maps

• recursively built hierarchy of ”transformations between
transformations”

• most general quantum information protocols
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• quantum switch: superposition of definite orders
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Types of higher order maps

Type theory of higher order maps:

• elementary types ≡ quantum systems (states): A1, A2, . . .

• for types x, y: z = (x → y) ≡ transformations x to y

Equivalently, with the trivial system 1:

• dual: x̄ ≡ (x → 1)

• tensor product: x⊗ y ≡ (x → ȳ)

Any HOM type is a term over elementary types A1, . . . , An:

x = x(A1, . . . , An) = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

Bisio and Perinotti, 2019
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All HOMs of type x?

A map of type x:

• A1, . . . , An - elementary types

• input indices: i1, . . . , ik
• output indices: j1, . . . , jl

Ai1
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Theorem (Combinatorial description of HOM types)

The set of all HOMs of type x can be described by a unique
Boolean function = type function:

f : {0, 1}n → {0, 1}, f(0 . . . 0) = 1.
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• Properties of type funcions ≡ properties of HOMs?
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Construction of type functions

Types ≡ terms over variables A1, . . . , An:

x = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

We map these terms to elements of the Boolean algebra Fn:

• terms are linear (variables are not repeating)

• each Ai is mapped to a constant 1

• if x 7→ f and y 7→ g, then

x⊗ y 7→ f ⊗ g : f ⊗ g(s1s2) = f(s1)g(s2)

• if x 7→ f then

x̄ 7→ f∗ - complement of f in Fn.
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x = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

We map these terms to elements of the Boolean algebra Fn:

• terms are linear (variables are not repeating)

• each Ai is mapped to a constant 1

• if x 7→ f and y 7→ g, then

x⊗ y 7→ f ⊗ g : f ⊗ g(s1s2) = f(s1)g(s2)

• if x 7→ f then

x̄ 7→ f∗ - complement of f in Fn.



Construction of type functions

Types ≡ terms over variables A1, . . . , An:
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Type functions and Möbius transform

What we know:

• T1 = F1

• for n > 1, Tn is not a lattice =⇒ Tn ⊊ Fn

• Important example: for any T ⊆ [n] := {1, . . . , n}:

pT (s1 . . . sn) := Πi∈T (1− si), pT ∈ Tn.

Möbius transform: the unique function f̂ : 2[n] → R such
that

f(s) =
∑
T⊆[n]

f̂(T )pT (s).
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The poset related to a type function

We define the poset of subsets of [n]:

Pf := {T ∈ 2[n], f̂(T ) ̸= 0} (ordered by inclusion)

Theorem

Let f ∈ Tn. Then Pf ⊆ 2[n] is a graded poset with even rank
and f is determined by Pf :

f =
∑
T∈Pf

(−1)ρ(T )pT ,

where ρ is the rank function of Pf .

Not all functions of this form are in Tn!
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Construction of the type posets

Singletons: for T ⊆ [n]
PpT = {T}

Products: for f ∈ Tm, g ∈ Tn,

Pf⊗g = Pf × Pg ⊆ 2[n+m]

Complements: for f ∈ Tn,

Pf∗ = Pf △{∅, [n]} (symmetric difference)

Type postes are constructed from singletons using products
and complements.
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A representation of Pf

Hasse diagram with labels:

T ∈ Pf , ℓT := {i ∈ T : i /∈ S for S ⊊ T}

• labels can repeat

• if ℓS ∩ ℓT ̸= ∅, then

ρ(T ) = ρ(S)

• i ∈ [n] is and input

⇐⇒

i ∈ ℓT , ρ(T ) is even

• i ∈ [n] is not a label ≡ free
output
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Chains and combs

Theorem

f ∈ Tn corresponds to combs if and only if Pf is a chain (of
even length).

Examples

With n = 2 and n = 4:
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Further examples
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Further examples
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The restricted type poset

Let P0
f be the subposet consisting of labeled elements and ∅ (if

present in Pf ):

31

754257

8668

Theorem

Let f ∈ Tn, then f is fully determined by P0
f ⊆ 2[n].



No-signaling relations

For a channel Φ,
input index i, output index j:

Φ
Ai

Aj

• No-signaling: (i ̸⇝Φ j)

the input in Ai cannot influence the output in Aj

• No-signaling for a type: (i ̸⇝f j)

(i ̸⇝Φ j) for all Φ of a type with type function f

• Combs are characterized by no-signaling conditions:

i ̸⇝ j1
i ̸⇝ j2

Aj1 Aj2 Ai

. . .
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No-signaling in P0
f

Let i ∈ ℓS be an input label.
Then i ̸⇝f j for an output j
iff one of the following holds:

• j is not a label,

• j ∈ ℓT , S ≤ T ,

• j ∈ ℓT , S ∧ T exists and
has even height.

11
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3 1108
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Repeated labels - similar conditions with some quantifiers



The normal form of a type function

Theorem

For any f ∈ Tn, there are chains (combs) βab ∈ Tn, a ∈ A,
b ∈ B, with the same inputs and outputs as f , such that

f =
∨
a∈A

∧
b∈B

βab

• infimum of chains - definite causal order

• supremum indicates indefinite causal order

• this form can be obtained from P0
f (by brute force)

Question

Is there a better way to obtain this?
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