# On the combinatorial structure of types of higher order quantum maps

Anna Jenčová

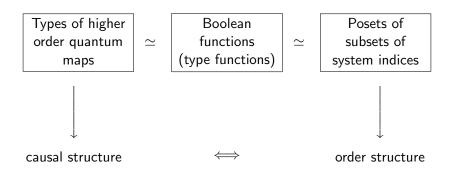
Mathematical Institute, Slovak Academy of Sciences

**SSAOS 2025** 





#### Introduction



Quantum channel:

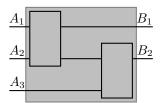


## Quantum channel:

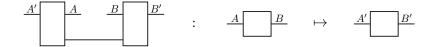


### More complicated structure:

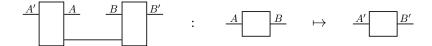




Quantum superchannels: transform channels to channels



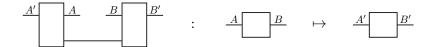
Quantum superchannels: transform channels to channels



#### Higher order maps

 recursively built hierarchy of "transformations between transformations"

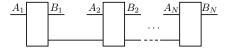
Quantum superchannels: transform channels to channels



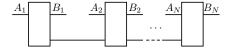
#### Higher order maps

- recursively built hierarchy of "transformations between transformations"
- most general quantum information protocols

Quantum combs: a subclass of HOMs

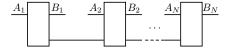


Quantum combs: a subclass of HOMs



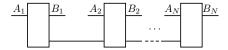
circuits with holes

Quantum combs: a subclass of HOMs



- circuits with holes
- definite causal order of input and output "wires"

Quantum combs: a subclass of HOMs

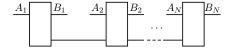


- circuits with holes
- definite causal order of input and output "wires"

#### Indefinite causal order:

quantum switch: superposition of definite orders

Quantum combs: a subclass of HOMs

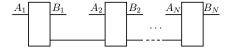


- circuits with holes
- definite causal order of input and output "wires"

#### Indefinite causal order:

- quantum switch: superposition of definite orders
- advantages in information processing

Quantum combs: a subclass of HOMs



- circuits with holes
- definite causal order of input and output "wires"

#### Indefinite causal order:

- quantum switch: superposition of definite orders
- advantages in information processing

Many different frameworks are being developed for HOM

Type theory of higher order maps:

• elementary types  $\equiv$  quantum systems (states):  $A_1, A_2, \dots$ 

#### Type theory of higher order maps:

- elementary types  $\equiv$  quantum systems (states):  $A_1, A_2, \dots$
- for types x, y:  $z = (x \rightarrow y) \equiv \text{transformations } x \text{ to } y$

#### Type theory of higher order maps:

- elementary types  $\equiv$  quantum systems (states):  $A_1, A_2, \dots$
- for types x, y:  $z = (x \rightarrow y) \equiv \text{transformations } x \text{ to } y$

#### Equivalently, with the trivial system 1:

• dual:  $\bar{x} \equiv (x \rightarrow 1)$ 

#### Type theory of higher order maps:

- elementary types  $\equiv$  quantum systems (states):  $A_1, A_2, \dots$
- for types x, y:  $z = (x \rightarrow y) \equiv \text{transformations } x \text{ to } y$

#### Equivalently, with the trivial system 1:

- dual:  $\bar{x} \equiv (x \rightarrow 1)$
- tensor product:  $x \otimes y \equiv \overline{(x \to \bar{y})}$

### Type theory of higher order maps:

- elementary types  $\equiv$  quantum systems (states):  $A_1, A_2, \dots$
- for types x, y:  $z = (x \rightarrow y) \equiv \text{transformations } x \text{ to } y$

#### Equivalently, with the trivial system 1:

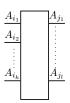
- dual:  $\bar{x} \equiv (x \rightarrow 1)$
- tensor product:  $x \otimes y \equiv \overline{(x \to \bar{y})}$

## Any HOM type is a term over elementary types $A_1, \ldots, A_n$ :

$$x = x(A_1, \dots, A_n) = \overline{(A_{i_1} \otimes \overline{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \dots)})}$$

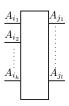
### A map of type x:

ullet  $A_1,\ldots,A_n$  - elementary types



### A map of type x:

- $A_1, \ldots, A_n$  elementary types
- input indices:  $i_1, \dots, i_k$



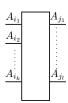
## A map of type x:

- $A_1, \ldots, A_n$  elementary types
- input indices:  $i_1, \ldots, i_k$
- output indices:  $j_1, \ldots, j_l$



### A map of type x:

- $A_1, \ldots, A_n$  elementary types
- input indices:  $i_1, \ldots, i_k$
- output indices:  $j_1, \ldots, j_l$



## Theorem (Combinatorial description of HOM types)

The set of all HOMs of type x can be described by a unique Boolean function = type function:

$$f: \{0,1\}^n \to \{0,1\}, \quad f(0...0) = 1.$$

Bisio and Perinotti, 2019

## The type functions

Set of type functions:

$$\mathcal{T}_n \subseteq \mathcal{F}_n := \{ f : \{0,1\}^n \to \{0,1\} \mid f(0...0) = 1 \}$$

#### Questions

- Characterize  $\mathcal{T}_n$ ?
- Properties of type functions 
   ≡ properties of HOMs?

## The type functions

Set of type functions:

$$\mathcal{T}_n \subseteq \mathcal{F}_n := \{ f : \{0,1\}^n \to \{0,1\} \mid f(0...0) = 1 \}$$

#### Questions

- Characterize  $\mathcal{T}_n$ ? (no real answers)
- Properties of type functions 
   ≡ properties of HOMs?

## The type functions

Set of type functions:

$$\mathcal{T}_n \subseteq \mathcal{F}_n := \{ f : \{0,1\}^n \to \{0,1\} \mid f(0...0) = 1 \}$$

## Questions

- Characterize  $\mathcal{T}_n$ ? (no real answers)
- Properties of type funcions 
   ≡ properties of HOMs?
   (some examples)

Types  $\equiv$  terms over variables  $A_1, \ldots, A_n$ :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \ldots)})}$$

Types  $\equiv$  terms over variables  $A_1, \ldots, A_n$ :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \ldots)})}$$

We map these terms to elements of the Boolean algebra  $\mathcal{F}_n$ :

• terms are linear (variables are not repeating)

Types  $\equiv$  terms over variables  $A_1, \ldots, A_n$ :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \ldots)})}$$

We map these terms to elements of the Boolean algebra  $\mathcal{F}_n$ :

- terms are linear (variables are not repeating)
- ullet each  $A_i$  is mapped to a constant 1

Types  $\equiv$  terms over variables  $A_1, \ldots, A_n$ :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \ldots)})}$$

We map these terms to elements of the Boolean algebra  $\mathcal{F}_n$ :

- terms are linear (variables are not repeating)
- ullet each  $A_i$  is mapped to a constant 1
- if  $x \mapsto f$  and  $y \mapsto g$ , then

$$x \otimes y \mapsto f \otimes g:$$
  $f \otimes g(s^1s^2) = f(s^1)g(s^2)$ 

Types  $\equiv$  terms over variables  $A_1, \ldots, A_n$ :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes ...)})}$$

We map these terms to elements of the Boolean algebra  $\mathcal{F}_n$ :

- terms are linear (variables are not repeating)
- ullet each  $A_i$  is mapped to a constant 1
- if  $x \mapsto f$  and  $y \mapsto g$ , then

$$x \otimes y \mapsto f \otimes g: \qquad f \otimes g(s^1 s^2) = f(s^1)g(s^2)$$

• if  $x \mapsto f$  then

$$\bar{x} \mapsto f^*$$
 - complement of  $f$  in  $\mathcal{F}_n$ .

What we know:

•  $\mathcal{T}_1 = \mathcal{F}_1$ 

#### What we know:

- $\mathcal{T}_1 = \mathcal{F}_1$
- for n>1,  $\mathcal{T}_n$  is not a lattice  $\implies \mathcal{T}_n \subsetneq \mathcal{F}_n$

#### What we know:

- $\mathcal{T}_1 = \mathcal{F}_1$
- for n > 1,  $\mathcal{T}_n$  is not a lattice  $\implies \mathcal{T}_n \subsetneq \mathcal{F}_n$
- Important example: for any  $T \subseteq [n] := \{1, \dots, n\}$ :

$$p_T(s_1 \dots s_n) := \prod_{i \in T} (1 - s_i), \quad p_T \in \mathcal{T}_n.$$

#### What we know:

- $\mathcal{T}_1 = \mathcal{F}_1$
- for n>1,  $\mathcal{T}_n$  is not a lattice  $\implies \mathcal{T}_n \subsetneq \mathcal{F}_n$
- Important example: for any  $T \subseteq [n] := \{1, \dots, n\}$ :

$$p_T(s_1 \dots s_n) := \prod_{i \in T} (1 - s_i), \quad p_T \in \mathcal{T}_n.$$

Möbius transform: the unique function  $\hat{f}:2^{[n]} \to \mathbb{R}$  such that

$$f(s) = \sum_{T \subseteq [n]} \hat{f}(T) p_T(s).$$

# The poset related to a type function

We define the poset of subsets of [n]:

$$\mathcal{P}_f := \{T \in 2^{[n]}, \ \hat{f}(T) \neq 0\}$$
 (ordered by inclusion)

# The poset related to a type function

We define the poset of subsets of [n]:

$$\mathcal{P}_f := \{T \in 2^{[n]}, \ \hat{f}(T) \neq 0\}$$
 (ordered by inclusion)

#### Theorem

Let  $f \in \mathcal{T}_n$ . Then  $\mathcal{P}_f \subseteq 2^{[n]}$  is a graded poset with even rank and f is determined by  $\mathcal{P}_f$ :

$$f = \sum_{T \in \mathcal{P}_f} (-1)^{\rho(T)} p_T,$$

where  $\rho$  is the rank function of  $\mathcal{P}_f$ .

### The poset related to a type function

We define the poset of subsets of [n]:

$$\mathcal{P}_f := \{T \in 2^{[n]}, \ \hat{f}(T) \neq 0\}$$
 (ordered by inclusion)

#### Theorem

Let  $f \in \mathcal{T}_n$ . Then  $\mathcal{P}_f \subseteq 2^{[n]}$  is a graded poset with even rank and f is determined by  $\mathcal{P}_f$ :

$$f = \sum_{T \in \mathcal{P}_f} (-1)^{\rho(T)} p_T,$$

where  $\rho$  is the rank function of  $\mathcal{P}_f$ .

Not all functions of this form are in  $\mathcal{T}_n!$ 

Singletons: for 
$$T \subseteq [n]$$
 
$$\mathcal{P}_{p_T} = \{T\}$$

Singletons: for 
$$T\subseteq [n]$$
 
$$\mathcal{P}_{p_T}=\{T\}$$
 Products: for  $f\in\mathcal{T}_m,\ g\in\mathcal{T}_n,$  
$$\mathcal{P}_{f\otimes g}=\mathcal{P}_f\times\mathcal{P}_g\subseteq 2^{[n+m]}$$

Singletons: for  $T \subseteq [n]$ 

$$\mathcal{P}_{p_T} = \{T\}$$

Products: for  $f \in \mathcal{T}_m$ ,  $g \in \mathcal{T}_n$ ,

$$\mathcal{P}_{f\otimes g} = \mathcal{P}_f \times \mathcal{P}_g \subseteq 2^{[n+m]}$$

Complements: for  $f \in \mathcal{T}_n$ ,

$$\mathcal{P}_{f^*} = \mathcal{P}_f \triangle \{\emptyset, [n]\}$$
 (symmetric difference)

Singletons: for 
$$T \subseteq [n]$$

$$\mathcal{P}_{p_T} = \{T\}$$

Products: for  $f \in \mathcal{T}_m$ ,  $g \in \mathcal{T}_n$ ,

$$\mathcal{P}_{f\otimes g} = \mathcal{P}_f \times \mathcal{P}_g \subseteq 2^{[n+m]}$$

Complements: for  $f \in \mathcal{T}_n$ ,

$$\mathcal{P}_{f^*} = \mathcal{P}_f \triangle \{\emptyset, [n]\}$$
 (symmetric difference)

Type postes are constructed from singletons using products and complements.

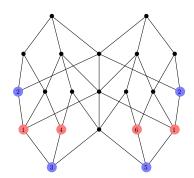
Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{i \in T : i \notin S \text{ for } S \subsetneq T\}$$

Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{i \in T : i \notin S \text{ for } S \subsetneq T\}$$

• labels can repeat

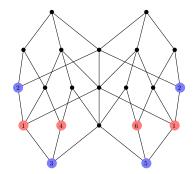


Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{i \in T : i \notin S \text{ for } S \subsetneq T\}$$

- labels can repeat
- if  $\ell_S \cap \ell_T \neq \emptyset$ , then

$$\rho(T) = \rho(S)$$

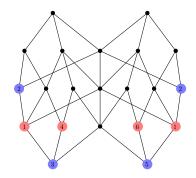


Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{i \in T : i \notin S \text{ for } S \subsetneq T\}$$

- labels can repeat
- if  $\ell_S \cap \ell_T \neq \emptyset$ , then  $\rho(T) = \rho(S)$
- $\bullet \ i \in [n] \ \text{is and input} \\ \Longleftrightarrow \\$

 $i \in \ell_T$ ,  $\rho(T)$  is even



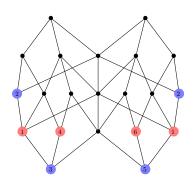
Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{ i \in T \colon i \notin S \text{ for } S \subsetneq T \}$$

- labels can repeat
- if  $\ell_S \cap \ell_T \neq \emptyset$ , then ho(T) = 
  ho(S)
- $i \in [n]$  is and input

$$i \in \ell_T$$
,  $\rho(T)$  is even

•  $i \in [n]$  is not a label  $\equiv$  free output



#### Chains and combs

#### **Theorem**

 $f \in \mathcal{T}_n$  corresponds to combs if and only if  $\mathcal{P}_f$  is a chain (of even length).

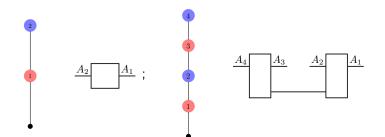
#### Chains and combs

#### **Theorem**

 $f \in \mathcal{T}_n$  corresponds to combs if and only if  $\mathcal{P}_f$  is a chain (of even length).

#### **Examples**

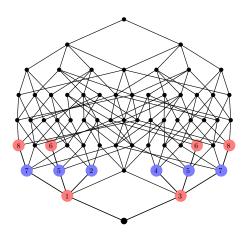
With n=2 and n=4:



### Further examples

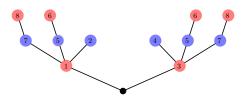


### Further examples



### The restricted type poset

Let  $\mathcal{P}_f^0$  be the subposet consisting of labeled elements and  $\emptyset$  (if present in  $\mathcal{P}_f$ ):



#### Theorem

Let  $f \in \mathcal{T}_n$ , then f is fully determined by  $\mathcal{P}_f^0 \subseteq 2^{[n]}$ .

For a channel  $\Phi$ , input index i, output index j:



For a channel  $\Phi$ , input index i, output index j:



• No-signaling:  $(i \not \sim_\Phi j)$  the input in  $A_i$  cannot influence the output in  $A_j$ 

For a channel  $\Phi$ , input index i, output index j:

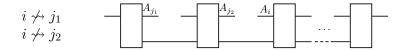


- No-signaling:  $(i \not \sim_{\Phi} j)$ the input in  $A_i$  cannot influence the output in  $A_j$
- No-signaling for a type:  $(i \not \sim_f j)$   $(i \not \sim_\Phi j)$  for all  $\Phi$  of a type with type function f

For a channel  $\Phi$ , input index i, output index j:

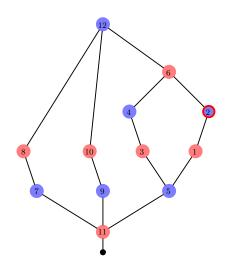


- No-signaling:  $(i \not \sim_{\Phi} j)$ the input in  $A_i$  cannot influence the output in  $A_j$
- No-signaling for a type:  $(i \not \sim_f j)$   $(i \not \sim_\Phi j)$  for all  $\Phi$  of a type with type function f
- Combs are characterized by no-signaling conditions:



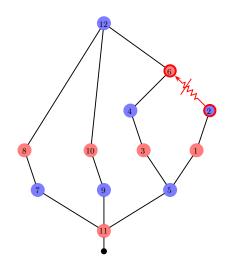
Let  $i \in \ell_S$  be an input label. Then  $i \not \leadsto_f j$  for an output j iff one of the following holds:

• j is not a label,



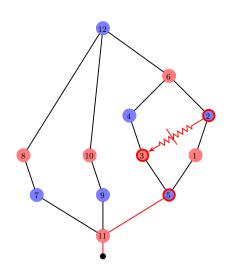
Let  $i \in \ell_S$  be an input label. Then  $i \not \rightsquigarrow_f j$  for an output j iff one of the following holds:

- j is not a label,
- $j \in \ell_T$ ,  $S \leq T$ ,



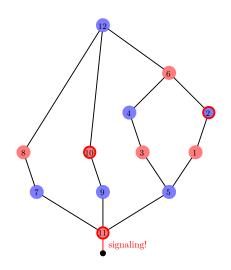
Let  $i \in \ell_S$  be an input label. Then  $i \not \leadsto_f j$  for an output j iff one of the following holds:

- j is not a label,
- $j \in \ell_T$ ,  $S \leq T$ ,
- $j \in \ell_T$ ,  $S \wedge T$  exists and has even height.



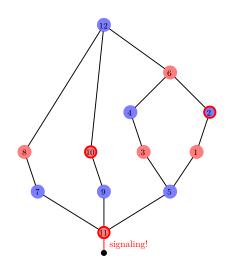
Let  $i \in \ell_S$  be an input label. Then  $i \not \leadsto_f j$  for an output j iff one of the following holds:

- j is not a label,
- $j \in \ell_T$ ,  $S \leq T$ ,
- $j \in \ell_T$ ,  $S \wedge T$  exists and has even height.



Let  $i \in \ell_S$  be an input label. Then  $i \not \leadsto_f j$  for an output j iff one of the following holds:

- j is not a label,
- $j \in \ell_T$ ,  $S \leq T$ ,
- $j \in \ell_T$ ,  $S \wedge T$  exists and has even height.



Repeated labels - similar conditions with some quantifiers

#### Theorem

For any  $f \in \mathcal{T}_n$ , there are chains (combs)  $\beta_{ab} \in \mathcal{T}_n$ ,  $a \in A$ ,  $b \in B$ , with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

#### Theorem

For any  $f \in \mathcal{T}_n$ , there are chains (combs)  $\beta_{ab} \in \mathcal{T}_n$ ,  $a \in A$ ,  $b \in B$ , with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

• infimum of chains - definite causal order

#### Theorem

For any  $f \in \mathcal{T}_n$ , there are chains (combs)  $\beta_{ab} \in \mathcal{T}_n$ ,  $a \in A$ ,  $b \in B$ , with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

- infimum of chains definite causal order
- supremum indicates indefinite causal order

#### Theorem

For any  $f \in \mathcal{T}_n$ , there are chains (combs)  $\beta_{ab} \in \mathcal{T}_n$ ,  $a \in A$ ,  $b \in B$ , with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

- infimum of chains definite causal order
- supremum indicates indefinite causal order
- this form can be obtained from  $\mathcal{P}_f^0$  (by brute force)

#### Theorem

For any  $f \in \mathcal{T}_n$ , there are chains (combs)  $\beta_{ab} \in \mathcal{T}_n$ ,  $a \in A$ ,  $b \in B$ , with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

- infimum of chains definite causal order
- supremum indicates indefinite causal order
- this form can be obtained from  $\mathcal{P}_f^0$  (by brute force)

#### Question

Is there a better way to obtain this?

#### References

- [1] A. Jenčová, On the structure of higher order quantum maps, arXiv: 2411.09256
- [2] A. Bisio, P. Perinotti, Theoretical framework for Higher-Order Quantum Theory, Proc. R. Soc. A 475 20180706 (2019)
- [3] A. Kissinger, S. Uijlen, A categorical semantics for causal structure, Logical Methods in Computer Science 15, (2019)
- [4] T. Hoffreumon, O. Oreshkov, Projective characterization of higher-order quantum transformations, arxiv:2206.06206
- [5] S. Milz, M. Quintino, Characterising transformations between quantum objects, 'completeness' of quantum properties, and transformations without a fixed causal order, Quantum 8, 1415 (2024)
- [6] J. Hefford, M. Wilson, A Profunctorial Semantics for Quantum Supermaps, Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science. 2024.