
On the combinatorial structure of types of higher
order quantum maps

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences

SSAOS 2025

S
L

O
V

E

N
S

K
Á

A K A D É M
I
A

V
I

E
D

A
C

A
D

E
M

I

A

S
C

IENTIARU
M

S
L
O

V
A

C
A



Introduction

Types of higher
order quantum

maps
≃

Boolean
functions

(type functions)
≃

Posets of
subsets of

system indicesy
y

causal structure ⇐⇒ order structure



Higher order quantum maps

Quantum channel:

A B

More complicated structure:

A1

A2

A3

B1

B2

A1

A2

B1

A3

B2



Higher order quantum maps

Quantum channel:

A B

More complicated structure:

A1

A2

A3

B1

B2

A1

A2

B1

A3

B2



Higher order quantum maps

Quantum superchannels: transform channels to channels

A′ A B B′

: A B 7→ A′ B′

Higher order maps

• recursively built hierarchy of ”transformations between
transformations”

• most general quantum information protocols



Higher order quantum maps

Quantum superchannels: transform channels to channels

A′ A B B′

: A B 7→ A′ B′

Higher order maps

• recursively built hierarchy of ”transformations between
transformations”

• most general quantum information protocols



Higher order quantum maps

Quantum superchannels: transform channels to channels

A′ A B B′

: A B 7→ A′ B′

Higher order maps

• recursively built hierarchy of ”transformations between
transformations”

• most general quantum information protocols



Causal order

Quantum combs: a subclass of HOMs

A1 B1 A2 B2 AN BN

. . .

• circuits with holes

• definite causal order of input and output ”wires”

Indefinite causal order:

• quantum switch: superposition of definite orders

• advantages in information processing

Many different frameworks are being developed for HOM



Causal order

Quantum combs: a subclass of HOMs

A1 B1 A2 B2 AN BN

. . .

• circuits with holes

• definite causal order of input and output ”wires”

Indefinite causal order:

• quantum switch: superposition of definite orders

• advantages in information processing

Many different frameworks are being developed for HOM



Causal order

Quantum combs: a subclass of HOMs

A1 B1 A2 B2 AN BN

. . .

• circuits with holes

• definite causal order of input and output ”wires”

Indefinite causal order:

• quantum switch: superposition of definite orders

• advantages in information processing

Many different frameworks are being developed for HOM



Causal order

Quantum combs: a subclass of HOMs

A1 B1 A2 B2 AN BN

. . .

• circuits with holes

• definite causal order of input and output ”wires”

Indefinite causal order:

• quantum switch: superposition of definite orders

• advantages in information processing

Many different frameworks are being developed for HOM



Causal order

Quantum combs: a subclass of HOMs

A1 B1 A2 B2 AN BN

. . .

• circuits with holes

• definite causal order of input and output ”wires”

Indefinite causal order:

• quantum switch: superposition of definite orders

• advantages in information processing

Many different frameworks are being developed for HOM



Causal order

Quantum combs: a subclass of HOMs

A1 B1 A2 B2 AN BN

. . .

• circuits with holes

• definite causal order of input and output ”wires”

Indefinite causal order:

• quantum switch: superposition of definite orders

• advantages in information processing

Many different frameworks are being developed for HOM



Types of higher order maps

Type theory of higher order maps:

• elementary types ≡ quantum systems (states): A1, A2, . . .

• for types x, y: z = (x → y) ≡ transformations x to y

Equivalently, with the trivial system 1:

• dual: x̄ ≡ (x → 1)

• tensor product: x⊗ y ≡ (x → ȳ)

Any HOM type is a term over elementary types A1, . . . , An:

x = x(A1, . . . , An) = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

Bisio and Perinotti, 2019



Types of higher order maps

Type theory of higher order maps:

• elementary types ≡ quantum systems (states): A1, A2, . . .

• for types x, y: z = (x → y) ≡ transformations x to y

Equivalently, with the trivial system 1:

• dual: x̄ ≡ (x → 1)

• tensor product: x⊗ y ≡ (x → ȳ)

Any HOM type is a term over elementary types A1, . . . , An:

x = x(A1, . . . , An) = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

Bisio and Perinotti, 2019



Types of higher order maps

Type theory of higher order maps:

• elementary types ≡ quantum systems (states): A1, A2, . . .

• for types x, y: z = (x → y) ≡ transformations x to y

Equivalently, with the trivial system 1:

• dual: x̄ ≡ (x → 1)

• tensor product: x⊗ y ≡ (x → ȳ)

Any HOM type is a term over elementary types A1, . . . , An:

x = x(A1, . . . , An) = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

Bisio and Perinotti, 2019



Types of higher order maps

Type theory of higher order maps:

• elementary types ≡ quantum systems (states): A1, A2, . . .

• for types x, y: z = (x → y) ≡ transformations x to y

Equivalently, with the trivial system 1:

• dual: x̄ ≡ (x → 1)

• tensor product: x⊗ y ≡ (x → ȳ)

Any HOM type is a term over elementary types A1, . . . , An:

x = x(A1, . . . , An) = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

Bisio and Perinotti, 2019



Types of higher order maps

Type theory of higher order maps:

• elementary types ≡ quantum systems (states): A1, A2, . . .

• for types x, y: z = (x → y) ≡ transformations x to y

Equivalently, with the trivial system 1:

• dual: x̄ ≡ (x → 1)

• tensor product: x⊗ y ≡ (x → ȳ)

Any HOM type is a term over elementary types A1, . . . , An:

x = x(A1, . . . , An) = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

Bisio and Perinotti, 2019



All HOMs of type x?

A map of type x:

• A1, . . . , An - elementary types

• input indices: i1, . . . , ik
• output indices: j1, . . . , jl

Ai1

Ai2

Aik

Aj1

Ajl

Theorem (Combinatorial description of HOM types)

The set of all HOMs of type x can be described by a unique
Boolean function = type function:

f : {0, 1}n → {0, 1}, f(0 . . . 0) = 1.

Bisio and Perinotti, 2019



All HOMs of type x?

A map of type x:

• A1, . . . , An - elementary types

• input indices: i1, . . . , ik

• output indices: j1, . . . , jl

Ai1

Ai2

Aik

Aj1

Ajl

Theorem (Combinatorial description of HOM types)

The set of all HOMs of type x can be described by a unique
Boolean function = type function:

f : {0, 1}n → {0, 1}, f(0 . . . 0) = 1.

Bisio and Perinotti, 2019



All HOMs of type x?

A map of type x:

• A1, . . . , An - elementary types

• input indices: i1, . . . , ik
• output indices: j1, . . . , jl

Ai1

Ai2

Aik

Aj1

Ajl

Theorem (Combinatorial description of HOM types)

The set of all HOMs of type x can be described by a unique
Boolean function = type function:

f : {0, 1}n → {0, 1}, f(0 . . . 0) = 1.

Bisio and Perinotti, 2019



All HOMs of type x?

A map of type x:

• A1, . . . , An - elementary types

• input indices: i1, . . . , ik
• output indices: j1, . . . , jl

Ai1

Ai2

Aik

Aj1

Ajl

Theorem (Combinatorial description of HOM types)

The set of all HOMs of type x can be described by a unique
Boolean function = type function:

f : {0, 1}n → {0, 1}, f(0 . . . 0) = 1.

Bisio and Perinotti, 2019



The type functions

Set of type functions:

Tn ⊆ Fn := {f : {0, 1}n → {0, 1} | f(0 . . . 0) = 1}

Questions

• Characterize Tn?
• Properties of type funcions ≡ properties of HOMs?



The type functions

Set of type functions:

Tn ⊆ Fn := {f : {0, 1}n → {0, 1} | f(0 . . . 0) = 1}

Questions

• Characterize Tn? (no real answers)

• Properties of type funcions ≡ properties of HOMs?



The type functions

Set of type functions:

Tn ⊆ Fn := {f : {0, 1}n → {0, 1} | f(0 . . . 0) = 1}

Questions

• Characterize Tn? (no real answers)

• Properties of type funcions ≡ properties of HOMs?
(some examples)



Construction of type functions

Types ≡ terms over variables A1, . . . , An:

x = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

We map these terms to elements of the Boolean algebra Fn:

• terms are linear (variables are not repeating)

• each Ai is mapped to a constant 1

• if x 7→ f and y 7→ g, then

x⊗ y 7→ f ⊗ g : f ⊗ g(s1s2) = f(s1)g(s2)

• if x 7→ f then

x̄ 7→ f∗ - complement of f in Fn.



Construction of type functions

Types ≡ terms over variables A1, . . . , An:

x = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

We map these terms to elements of the Boolean algebra Fn:

• terms are linear (variables are not repeating)

• each Ai is mapped to a constant 1

• if x 7→ f and y 7→ g, then

x⊗ y 7→ f ⊗ g : f ⊗ g(s1s2) = f(s1)g(s2)

• if x 7→ f then

x̄ 7→ f∗ - complement of f in Fn.



Construction of type functions

Types ≡ terms over variables A1, . . . , An:

x = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

We map these terms to elements of the Boolean algebra Fn:

• terms are linear (variables are not repeating)

• each Ai is mapped to a constant 1

• if x 7→ f and y 7→ g, then

x⊗ y 7→ f ⊗ g : f ⊗ g(s1s2) = f(s1)g(s2)

• if x 7→ f then

x̄ 7→ f∗ - complement of f in Fn.



Construction of type functions

Types ≡ terms over variables A1, . . . , An:

x = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

We map these terms to elements of the Boolean algebra Fn:

• terms are linear (variables are not repeating)

• each Ai is mapped to a constant 1

• if x 7→ f and y 7→ g, then

x⊗ y 7→ f ⊗ g : f ⊗ g(s1s2) = f(s1)g(s2)

• if x 7→ f then

x̄ 7→ f∗ - complement of f in Fn.



Construction of type functions

Types ≡ terms over variables A1, . . . , An:

x = (Ai1 ⊗ Āi2)⊗ (Ai3 ⊗ (Ai4 ⊗ (Ai5 ⊗ ...))

We map these terms to elements of the Boolean algebra Fn:

• terms are linear (variables are not repeating)

• each Ai is mapped to a constant 1

• if x 7→ f and y 7→ g, then

x⊗ y 7→ f ⊗ g : f ⊗ g(s1s2) = f(s1)g(s2)

• if x 7→ f then

x̄ 7→ f∗ - complement of f in Fn.



Type functions and Möbius transform

What we know:

• T1 = F1

• for n > 1, Tn is not a lattice =⇒ Tn ⊊ Fn

• Important example: for any T ⊆ [n] := {1, . . . , n}:

pT (s1 . . . sn) := Πi∈T (1− si), pT ∈ Tn.

Möbius transform: the unique function f̂ : 2[n] → R such
that

f(s) =
∑
T⊆[n]

f̂(T )pT (s).



Type functions and Möbius transform

What we know:

• T1 = F1

• for n > 1, Tn is not a lattice =⇒ Tn ⊊ Fn

• Important example: for any T ⊆ [n] := {1, . . . , n}:

pT (s1 . . . sn) := Πi∈T (1− si), pT ∈ Tn.

Möbius transform: the unique function f̂ : 2[n] → R such
that

f(s) =
∑
T⊆[n]

f̂(T )pT (s).



Type functions and Möbius transform

What we know:

• T1 = F1

• for n > 1, Tn is not a lattice =⇒ Tn ⊊ Fn

• Important example: for any T ⊆ [n] := {1, . . . , n}:

pT (s1 . . . sn) := Πi∈T (1− si), pT ∈ Tn.

Möbius transform: the unique function f̂ : 2[n] → R such
that

f(s) =
∑
T⊆[n]

f̂(T )pT (s).



Type functions and Möbius transform

What we know:

• T1 = F1

• for n > 1, Tn is not a lattice =⇒ Tn ⊊ Fn

• Important example: for any T ⊆ [n] := {1, . . . , n}:

pT (s1 . . . sn) := Πi∈T (1− si), pT ∈ Tn.

Möbius transform: the unique function f̂ : 2[n] → R such
that

f(s) =
∑
T⊆[n]

f̂(T )pT (s).



The poset related to a type function

We define the poset of subsets of [n]:

Pf := {T ∈ 2[n], f̂(T ) ̸= 0} (ordered by inclusion)

Theorem

Let f ∈ Tn. Then Pf ⊆ 2[n] is a graded poset with even rank
and f is determined by Pf :

f =
∑
T∈Pf

(−1)ρ(T )pT ,

where ρ is the rank function of Pf .

Not all functions of this form are in Tn!



The poset related to a type function

We define the poset of subsets of [n]:

Pf := {T ∈ 2[n], f̂(T ) ̸= 0} (ordered by inclusion)

Theorem

Let f ∈ Tn. Then Pf ⊆ 2[n] is a graded poset with even rank
and f is determined by Pf :

f =
∑
T∈Pf

(−1)ρ(T )pT ,

where ρ is the rank function of Pf .

Not all functions of this form are in Tn!



The poset related to a type function

We define the poset of subsets of [n]:

Pf := {T ∈ 2[n], f̂(T ) ̸= 0} (ordered by inclusion)

Theorem

Let f ∈ Tn. Then Pf ⊆ 2[n] is a graded poset with even rank
and f is determined by Pf :

f =
∑
T∈Pf

(−1)ρ(T )pT ,

where ρ is the rank function of Pf .

Not all functions of this form are in Tn!



Construction of the type posets

Singletons: for T ⊆ [n]
PpT = {T}

Products: for f ∈ Tm, g ∈ Tn,

Pf⊗g = Pf × Pg ⊆ 2[n+m]

Complements: for f ∈ Tn,

Pf∗ = Pf △{∅, [n]} (symmetric difference)

Type postes are constructed from singletons using products
and complements.



Construction of the type posets

Singletons: for T ⊆ [n]
PpT = {T}

Products: for f ∈ Tm, g ∈ Tn,

Pf⊗g = Pf × Pg ⊆ 2[n+m]

Complements: for f ∈ Tn,

Pf∗ = Pf △{∅, [n]} (symmetric difference)

Type postes are constructed from singletons using products
and complements.



Construction of the type posets

Singletons: for T ⊆ [n]
PpT = {T}

Products: for f ∈ Tm, g ∈ Tn,

Pf⊗g = Pf × Pg ⊆ 2[n+m]

Complements: for f ∈ Tn,

Pf∗ = Pf △{∅, [n]} (symmetric difference)

Type postes are constructed from singletons using products
and complements.



Construction of the type posets

Singletons: for T ⊆ [n]
PpT = {T}

Products: for f ∈ Tm, g ∈ Tn,

Pf⊗g = Pf × Pg ⊆ 2[n+m]

Complements: for f ∈ Tn,

Pf∗ = Pf △{∅, [n]} (symmetric difference)

Type postes are constructed from singletons using products
and complements.



A representation of Pf

Hasse diagram with labels:

T ∈ Pf , ℓT := {i ∈ T : i /∈ S for S ⊊ T}

• labels can repeat

• if ℓS ∩ ℓT ̸= ∅, then

ρ(T ) = ρ(S)

• i ∈ [n] is and input

⇐⇒

i ∈ ℓT , ρ(T ) is even

• i ∈ [n] is not a label ≡ free
output

5

64 11

22

3



A representation of Pf

Hasse diagram with labels:

T ∈ Pf , ℓT := {i ∈ T : i /∈ S for S ⊊ T}

• labels can repeat

• if ℓS ∩ ℓT ̸= ∅, then

ρ(T ) = ρ(S)

• i ∈ [n] is and input

⇐⇒

i ∈ ℓT , ρ(T ) is even

• i ∈ [n] is not a label ≡ free
output

5

64 11

22

3



A representation of Pf

Hasse diagram with labels:

T ∈ Pf , ℓT := {i ∈ T : i /∈ S for S ⊊ T}

• labels can repeat

• if ℓS ∩ ℓT ̸= ∅, then

ρ(T ) = ρ(S)

• i ∈ [n] is and input

⇐⇒

i ∈ ℓT , ρ(T ) is even

• i ∈ [n] is not a label ≡ free
output

5

64 11

22

3



A representation of Pf

Hasse diagram with labels:

T ∈ Pf , ℓT := {i ∈ T : i /∈ S for S ⊊ T}

• labels can repeat

• if ℓS ∩ ℓT ̸= ∅, then

ρ(T ) = ρ(S)

• i ∈ [n] is and input

⇐⇒

i ∈ ℓT , ρ(T ) is even

• i ∈ [n] is not a label ≡ free
output

5

64 11

22

3



A representation of Pf

Hasse diagram with labels:

T ∈ Pf , ℓT := {i ∈ T : i /∈ S for S ⊊ T}

• labels can repeat

• if ℓS ∩ ℓT ̸= ∅, then

ρ(T ) = ρ(S)

• i ∈ [n] is and input

⇐⇒

i ∈ ℓT , ρ(T ) is even

• i ∈ [n] is not a label ≡ free
output

5

64 11

22

3



Chains and combs

Theorem

f ∈ Tn corresponds to combs if and only if Pf is a chain (of
even length).

Examples

With n = 2 and n = 4:

1

2

A2 A1 ;

1

2

3

4

A4 A3 A2 A1



Chains and combs

Theorem

f ∈ Tn corresponds to combs if and only if Pf is a chain (of
even length).

Examples

With n = 2 and n = 4:

1

2

A2 A1 ;

1

2

3

4

A4 A3 A2 A1



Further examples

31

42

3

42

1
5

31

42

6



Further examples

31

754257

8668



The restricted type poset

Let P0
f be the subposet consisting of labeled elements and ∅ (if

present in Pf ):

31

754257

8668

Theorem

Let f ∈ Tn, then f is fully determined by P0
f ⊆ 2[n].



No-signaling relations

For a channel Φ,
input index i, output index j:

Φ
Ai

Aj

• No-signaling: (i ̸⇝Φ j)

the input in Ai cannot influence the output in Aj

• No-signaling for a type: (i ̸⇝f j)

(i ̸⇝Φ j) for all Φ of a type with type function f

• Combs are characterized by no-signaling conditions:

i ̸⇝ j1
i ̸⇝ j2

Aj1 Aj2 Ai

. . .



No-signaling relations

For a channel Φ,
input index i, output index j:

Φ
Ai

Aj

• No-signaling: (i ̸⇝Φ j)

the input in Ai cannot influence the output in Aj

• No-signaling for a type: (i ̸⇝f j)

(i ̸⇝Φ j) for all Φ of a type with type function f

• Combs are characterized by no-signaling conditions:

i ̸⇝ j1
i ̸⇝ j2

Aj1 Aj2 Ai

. . .



No-signaling relations

For a channel Φ,
input index i, output index j:

Φ
Ai

Aj

• No-signaling: (i ̸⇝Φ j)

the input in Ai cannot influence the output in Aj

• No-signaling for a type: (i ̸⇝f j)

(i ̸⇝Φ j) for all Φ of a type with type function f

• Combs are characterized by no-signaling conditions:

i ̸⇝ j1
i ̸⇝ j2

Aj1 Aj2 Ai

. . .



No-signaling relations

For a channel Φ,
input index i, output index j:

Φ
Ai

Aj

• No-signaling: (i ̸⇝Φ j)

the input in Ai cannot influence the output in Aj

• No-signaling for a type: (i ̸⇝f j)

(i ̸⇝Φ j) for all Φ of a type with type function f

• Combs are characterized by no-signaling conditions:

i ̸⇝ j1
i ̸⇝ j2

Aj1 Aj2 Ai

. . .



No-signaling in P0
f

Let i ∈ ℓS be an input label.
Then i ̸⇝f j for an output j
iff one of the following holds:

• j is not a label,

• j ∈ ℓT , S ≤ T ,

• j ∈ ℓT , S ∧ T exists and
has even height.

11

597

3 1108

4 2

6

12



No-signaling in P0
f

Let i ∈ ℓS be an input label.
Then i ̸⇝f j for an output j
iff one of the following holds:

• j is not a label,

• j ∈ ℓT , S ≤ T ,

• j ∈ ℓT , S ∧ T exists and
has even height.

11

597

3 1108

4 2

6

12



No-signaling in P0
f

Let i ∈ ℓS be an input label.
Then i ̸⇝f j for an output j
iff one of the following holds:

• j is not a label,

• j ∈ ℓT , S ≤ T ,

• j ∈ ℓT , S ∧ T exists and
has even height.

11

597

3 1108

4 2

6

12



No-signaling in P0
f

Let i ∈ ℓS be an input label.
Then i ̸⇝f j for an output j
iff one of the following holds:

• j is not a label,

• j ∈ ℓT , S ≤ T ,

• j ∈ ℓT , S ∧ T exists and
has even height.

11

597

3 1108

4 2

6

12

signaling!



No-signaling in P0
f

Let i ∈ ℓS be an input label.
Then i ̸⇝f j for an output j
iff one of the following holds:

• j is not a label,

• j ∈ ℓT , S ≤ T ,

• j ∈ ℓT , S ∧ T exists and
has even height.

11

597

3 1108

4 2

6

12

signaling!

Repeated labels - similar conditions with some quantifiers



The normal form of a type function

Theorem

For any f ∈ Tn, there are chains (combs) βab ∈ Tn, a ∈ A,
b ∈ B, with the same inputs and outputs as f , such that

f =
∨
a∈A

∧
b∈B

βab

• infimum of chains - definite causal order

• supremum indicates indefinite causal order

• this form can be obtained from P0
f (by brute force)

Question

Is there a better way to obtain this?



The normal form of a type function

Theorem

For any f ∈ Tn, there are chains (combs) βab ∈ Tn, a ∈ A,
b ∈ B, with the same inputs and outputs as f , such that

f =
∨
a∈A

∧
b∈B

βab

• infimum of chains - definite causal order

• supremum indicates indefinite causal order

• this form can be obtained from P0
f (by brute force)

Question

Is there a better way to obtain this?



The normal form of a type function

Theorem

For any f ∈ Tn, there are chains (combs) βab ∈ Tn, a ∈ A,
b ∈ B, with the same inputs and outputs as f , such that

f =
∨
a∈A

∧
b∈B

βab

• infimum of chains - definite causal order

• supremum indicates indefinite causal order

• this form can be obtained from P0
f (by brute force)

Question

Is there a better way to obtain this?



The normal form of a type function

Theorem

For any f ∈ Tn, there are chains (combs) βab ∈ Tn, a ∈ A,
b ∈ B, with the same inputs and outputs as f , such that

f =
∨
a∈A

∧
b∈B

βab

• infimum of chains - definite causal order

• supremum indicates indefinite causal order

• this form can be obtained from P0
f (by brute force)

Question

Is there a better way to obtain this?



The normal form of a type function

Theorem

For any f ∈ Tn, there are chains (combs) βab ∈ Tn, a ∈ A,
b ∈ B, with the same inputs and outputs as f , such that

f =
∨
a∈A

∧
b∈B

βab

• infimum of chains - definite causal order

• supremum indicates indefinite causal order

• this form can be obtained from P0
f (by brute force)

Question

Is there a better way to obtain this?



References

[1] A. Jenčová, On the structure of higher order quantum maps,
arXiv: 2411.09256

[2] A. Bisio, P. Perinotti, Theoretical framework for Higher-Order
Quantum Theory, Proc. R. Soc. A 475 20180706 (2019)

[3] A. Kissinger, S. Uijlen, A categorical semantics for causal
structure, Logical Methods in Computer Science 15, (2019)

[4] T. Hoffreumon, O. Oreshkov, Projective characterization of
higher-order quantum transformations, arxiv:2206.06206

[5] S. Milz, M. Quintino, Characterising transformations between
quantum objects, ’completeness’ of quantum properties, and
transformations without a fixed causal order, Quantum 8,
1415 (2024)

[6] J. Hefford, M. Wilson, A Profunctorial Semantics for
Quantum Supermaps,Proceedings of the 39th Annual
ACM/IEEE Symposium on Logic in Computer Science. 2024.


