On the combinatorial structure of types of higher order quantum maps

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences

SSAOS 2025

Introduction

Quantum channel:

Quantum channel:

More complicated structure:

Quantum superchannels: transform channels to channels

Quantum superchannels: transform channels to channels

Higher order maps

 recursively built hierarchy of "transformations between transformations"

Quantum superchannels: transform channels to channels

Higher order maps

- recursively built hierarchy of "transformations between transformations"
- most general quantum information protocols

Quantum combs: a subclass of HOMs

Quantum combs: a subclass of HOMs

circuits with holes

Quantum combs: a subclass of HOMs

- circuits with holes
- definite causal order of input and output "wires"

Quantum combs: a subclass of HOMs

- circuits with holes
- definite causal order of input and output "wires"

Indefinite causal order:

quantum switch: superposition of definite orders

Quantum combs: a subclass of HOMs

- circuits with holes
- definite causal order of input and output "wires"

Indefinite causal order:

- quantum switch: superposition of definite orders
- advantages in information processing

Quantum combs: a subclass of HOMs

- circuits with holes
- definite causal order of input and output "wires"

Indefinite causal order:

- quantum switch: superposition of definite orders
- advantages in information processing

Many different frameworks are being developed for HOM

Type theory of higher order maps:

• elementary types \equiv quantum systems (states): A_1, A_2, \dots

Type theory of higher order maps:

- elementary types \equiv quantum systems (states): A_1, A_2, \dots
- for types x, y: $z = (x \rightarrow y) \equiv \text{transformations } x \text{ to } y$

Type theory of higher order maps:

- elementary types \equiv quantum systems (states): A_1, A_2, \dots
- for types x, y: $z = (x \rightarrow y) \equiv \text{transformations } x \text{ to } y$

Equivalently, with the trivial system 1:

• dual: $\bar{x} \equiv (x \rightarrow 1)$

Type theory of higher order maps:

- elementary types \equiv quantum systems (states): A_1, A_2, \dots
- for types x, y: $z = (x \rightarrow y) \equiv \text{transformations } x \text{ to } y$

Equivalently, with the trivial system 1:

- dual: $\bar{x} \equiv (x \rightarrow 1)$
- tensor product: $x \otimes y \equiv \overline{(x \to \bar{y})}$

Type theory of higher order maps:

- elementary types \equiv quantum systems (states): A_1, A_2, \dots
- for types x, y: $z = (x \rightarrow y) \equiv \text{transformations } x \text{ to } y$

Equivalently, with the trivial system 1:

- dual: $\bar{x} \equiv (x \rightarrow 1)$
- tensor product: $x \otimes y \equiv \overline{(x \to \bar{y})}$

Any HOM type is a term over elementary types A_1, \ldots, A_n :

$$x = x(A_1, \dots, A_n) = \overline{(A_{i_1} \otimes \overline{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \dots)})}$$

A map of type x:

ullet A_1,\ldots,A_n - elementary types

A map of type x:

- A_1, \ldots, A_n elementary types
- input indices: i_1, \dots, i_k

A map of type x:

- A_1, \ldots, A_n elementary types
- input indices: i_1, \ldots, i_k
- output indices: j_1, \ldots, j_l

A map of type x:

- A_1, \ldots, A_n elementary types
- input indices: i_1, \ldots, i_k
- output indices: j_1, \ldots, j_l

Theorem (Combinatorial description of HOM types)

The set of all HOMs of type x can be described by a unique Boolean function = type function:

$$f: \{0,1\}^n \to \{0,1\}, \quad f(0...0) = 1.$$

Bisio and Perinotti, 2019

The type functions

Set of type functions:

$$\mathcal{T}_n \subseteq \mathcal{F}_n := \{ f : \{0,1\}^n \to \{0,1\} \mid f(0...0) = 1 \}$$

Questions

- Characterize \mathcal{T}_n ?
- Properties of type functions
 ≡ properties of HOMs?

The type functions

Set of type functions:

$$\mathcal{T}_n \subseteq \mathcal{F}_n := \{ f : \{0,1\}^n \to \{0,1\} \mid f(0...0) = 1 \}$$

Questions

- Characterize \mathcal{T}_n ? (no real answers)
- Properties of type functions
 ≡ properties of HOMs?

The type functions

Set of type functions:

$$\mathcal{T}_n \subseteq \mathcal{F}_n := \{ f : \{0,1\}^n \to \{0,1\} \mid f(0...0) = 1 \}$$

Questions

- Characterize \mathcal{T}_n ? (no real answers)
- Properties of type funcions
 ≡ properties of HOMs?
 (some examples)

Types \equiv terms over variables A_1, \ldots, A_n :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \ldots)})}$$

Types \equiv terms over variables A_1, \ldots, A_n :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \ldots)})}$$

We map these terms to elements of the Boolean algebra \mathcal{F}_n :

• terms are linear (variables are not repeating)

Types \equiv terms over variables A_1, \ldots, A_n :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \ldots)})}$$

We map these terms to elements of the Boolean algebra \mathcal{F}_n :

- terms are linear (variables are not repeating)
- ullet each A_i is mapped to a constant 1

Types \equiv terms over variables A_1, \ldots, A_n :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes \ldots)})}$$

We map these terms to elements of the Boolean algebra \mathcal{F}_n :

- terms are linear (variables are not repeating)
- ullet each A_i is mapped to a constant 1
- if $x \mapsto f$ and $y \mapsto g$, then

$$x \otimes y \mapsto f \otimes g:$$
 $f \otimes g(s^1s^2) = f(s^1)g(s^2)$

Types \equiv terms over variables A_1, \ldots, A_n :

$$x = \overline{(A_{i_1} \otimes \bar{A}_{i_2})} \otimes (A_{i_3} \otimes \overline{(A_{i_4} \otimes \overline{(A_{i_5} \otimes ...)})}$$

We map these terms to elements of the Boolean algebra \mathcal{F}_n :

- terms are linear (variables are not repeating)
- ullet each A_i is mapped to a constant 1
- if $x \mapsto f$ and $y \mapsto g$, then

$$x \otimes y \mapsto f \otimes g: \qquad f \otimes g(s^1 s^2) = f(s^1)g(s^2)$$

• if $x \mapsto f$ then

$$\bar{x} \mapsto f^*$$
 - complement of f in \mathcal{F}_n .

What we know:

• $\mathcal{T}_1 = \mathcal{F}_1$

What we know:

- $\mathcal{T}_1 = \mathcal{F}_1$
- for n>1, \mathcal{T}_n is not a lattice $\implies \mathcal{T}_n \subsetneq \mathcal{F}_n$

What we know:

- $\mathcal{T}_1 = \mathcal{F}_1$
- for n > 1, \mathcal{T}_n is not a lattice $\implies \mathcal{T}_n \subsetneq \mathcal{F}_n$
- Important example: for any $T \subseteq [n] := \{1, \dots, n\}$:

$$p_T(s_1 \dots s_n) := \prod_{i \in T} (1 - s_i), \quad p_T \in \mathcal{T}_n.$$

What we know:

- $\mathcal{T}_1 = \mathcal{F}_1$
- for n>1, \mathcal{T}_n is not a lattice $\implies \mathcal{T}_n \subsetneq \mathcal{F}_n$
- Important example: for any $T \subseteq [n] := \{1, \dots, n\}$:

$$p_T(s_1 \dots s_n) := \prod_{i \in T} (1 - s_i), \quad p_T \in \mathcal{T}_n.$$

Möbius transform: the unique function $\hat{f}:2^{[n]} \to \mathbb{R}$ such that

$$f(s) = \sum_{T \subseteq [n]} \hat{f}(T) p_T(s).$$

The poset related to a type function

We define the poset of subsets of [n]:

$$\mathcal{P}_f := \{T \in 2^{[n]}, \ \hat{f}(T) \neq 0\}$$
 (ordered by inclusion)

The poset related to a type function

We define the poset of subsets of [n]:

$$\mathcal{P}_f := \{T \in 2^{[n]}, \ \hat{f}(T) \neq 0\}$$
 (ordered by inclusion)

Theorem

Let $f \in \mathcal{T}_n$. Then $\mathcal{P}_f \subseteq 2^{[n]}$ is a graded poset with even rank and f is determined by \mathcal{P}_f :

$$f = \sum_{T \in \mathcal{P}_f} (-1)^{\rho(T)} p_T,$$

where ρ is the rank function of \mathcal{P}_f .

The poset related to a type function

We define the poset of subsets of [n]:

$$\mathcal{P}_f := \{T \in 2^{[n]}, \ \hat{f}(T) \neq 0\}$$
 (ordered by inclusion)

Theorem

Let $f \in \mathcal{T}_n$. Then $\mathcal{P}_f \subseteq 2^{[n]}$ is a graded poset with even rank and f is determined by \mathcal{P}_f :

$$f = \sum_{T \in \mathcal{P}_f} (-1)^{\rho(T)} p_T,$$

where ρ is the rank function of \mathcal{P}_f .

Not all functions of this form are in $\mathcal{T}_n!$

Singletons: for
$$T \subseteq [n]$$

$$\mathcal{P}_{p_T} = \{T\}$$

Singletons: for
$$T\subseteq [n]$$

$$\mathcal{P}_{p_T}=\{T\}$$
 Products: for $f\in\mathcal{T}_m,\ g\in\mathcal{T}_n,$
$$\mathcal{P}_{f\otimes g}=\mathcal{P}_f\times\mathcal{P}_g\subseteq 2^{[n+m]}$$

Singletons: for $T \subseteq [n]$

$$\mathcal{P}_{p_T} = \{T\}$$

Products: for $f \in \mathcal{T}_m$, $g \in \mathcal{T}_n$,

$$\mathcal{P}_{f\otimes g} = \mathcal{P}_f \times \mathcal{P}_g \subseteq 2^{[n+m]}$$

Complements: for $f \in \mathcal{T}_n$,

$$\mathcal{P}_{f^*} = \mathcal{P}_f \triangle \{\emptyset, [n]\}$$
 (symmetric difference)

Singletons: for
$$T \subseteq [n]$$

$$\mathcal{P}_{p_T} = \{T\}$$

Products: for $f \in \mathcal{T}_m$, $g \in \mathcal{T}_n$,

$$\mathcal{P}_{f\otimes g} = \mathcal{P}_f \times \mathcal{P}_g \subseteq 2^{[n+m]}$$

Complements: for $f \in \mathcal{T}_n$,

$$\mathcal{P}_{f^*} = \mathcal{P}_f \triangle \{\emptyset, [n]\}$$
 (symmetric difference)

Type postes are constructed from singletons using products and complements.

Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{i \in T : i \notin S \text{ for } S \subsetneq T\}$$

Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{i \in T : i \notin S \text{ for } S \subsetneq T\}$$

• labels can repeat

Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{i \in T : i \notin S \text{ for } S \subsetneq T\}$$

- labels can repeat
- if $\ell_S \cap \ell_T \neq \emptyset$, then

$$\rho(T) = \rho(S)$$

Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{i \in T : i \notin S \text{ for } S \subsetneq T\}$$

- labels can repeat
- if $\ell_S \cap \ell_T \neq \emptyset$, then $\rho(T) = \rho(S)$
- $\bullet \ i \in [n] \ \text{is and input} \\ \Longleftrightarrow \\$

 $i \in \ell_T$, $\rho(T)$ is even

Hasse diagram with labels:

$$T \in \mathcal{P}_f, \qquad \ell_T := \{ i \in T \colon i \notin S \text{ for } S \subsetneq T \}$$

- labels can repeat
- if $\ell_S \cap \ell_T \neq \emptyset$, then ho(T) =
 ho(S)
- $i \in [n]$ is and input

$$i \in \ell_T$$
, $\rho(T)$ is even

• $i \in [n]$ is not a label \equiv free output

Chains and combs

Theorem

 $f \in \mathcal{T}_n$ corresponds to combs if and only if \mathcal{P}_f is a chain (of even length).

Chains and combs

Theorem

 $f \in \mathcal{T}_n$ corresponds to combs if and only if \mathcal{P}_f is a chain (of even length).

Examples

With n=2 and n=4:

Further examples

Further examples

The restricted type poset

Let \mathcal{P}_f^0 be the subposet consisting of labeled elements and \emptyset (if present in \mathcal{P}_f):

Theorem

Let $f \in \mathcal{T}_n$, then f is fully determined by $\mathcal{P}_f^0 \subseteq 2^{[n]}$.

For a channel Φ , input index i, output index j:

For a channel Φ , input index i, output index j:

• No-signaling: $(i \not \sim_\Phi j)$ the input in A_i cannot influence the output in A_j

For a channel Φ , input index i, output index j:

- No-signaling: $(i \not \sim_{\Phi} j)$ the input in A_i cannot influence the output in A_j
- No-signaling for a type: $(i \not \sim_f j)$ $(i \not \sim_\Phi j)$ for all Φ of a type with type function f

For a channel Φ , input index i, output index j:

- No-signaling: $(i \not \sim_{\Phi} j)$ the input in A_i cannot influence the output in A_j
- No-signaling for a type: $(i \not \sim_f j)$ $(i \not \sim_\Phi j)$ for all Φ of a type with type function f
- Combs are characterized by no-signaling conditions:

Let $i \in \ell_S$ be an input label. Then $i \not \leadsto_f j$ for an output j iff one of the following holds:

• j is not a label,

Let $i \in \ell_S$ be an input label. Then $i \not \rightsquigarrow_f j$ for an output j iff one of the following holds:

- j is not a label,
- $j \in \ell_T$, $S \leq T$,

Let $i \in \ell_S$ be an input label. Then $i \not \leadsto_f j$ for an output j iff one of the following holds:

- j is not a label,
- $j \in \ell_T$, $S \leq T$,
- $j \in \ell_T$, $S \wedge T$ exists and has even height.

Let $i \in \ell_S$ be an input label. Then $i \not \leadsto_f j$ for an output j iff one of the following holds:

- j is not a label,
- $j \in \ell_T$, $S \leq T$,
- $j \in \ell_T$, $S \wedge T$ exists and has even height.

Let $i \in \ell_S$ be an input label. Then $i \not \leadsto_f j$ for an output j iff one of the following holds:

- j is not a label,
- $j \in \ell_T$, $S \leq T$,
- $j \in \ell_T$, $S \wedge T$ exists and has even height.

Repeated labels - similar conditions with some quantifiers

Theorem

For any $f \in \mathcal{T}_n$, there are chains (combs) $\beta_{ab} \in \mathcal{T}_n$, $a \in A$, $b \in B$, with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

Theorem

For any $f \in \mathcal{T}_n$, there are chains (combs) $\beta_{ab} \in \mathcal{T}_n$, $a \in A$, $b \in B$, with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

• infimum of chains - definite causal order

Theorem

For any $f \in \mathcal{T}_n$, there are chains (combs) $\beta_{ab} \in \mathcal{T}_n$, $a \in A$, $b \in B$, with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

- infimum of chains definite causal order
- supremum indicates indefinite causal order

Theorem

For any $f \in \mathcal{T}_n$, there are chains (combs) $\beta_{ab} \in \mathcal{T}_n$, $a \in A$, $b \in B$, with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

- infimum of chains definite causal order
- supremum indicates indefinite causal order
- this form can be obtained from \mathcal{P}_f^0 (by brute force)

Theorem

For any $f \in \mathcal{T}_n$, there are chains (combs) $\beta_{ab} \in \mathcal{T}_n$, $a \in A$, $b \in B$, with the same inputs and outputs as f, such that

$$f = \bigvee_{a \in A} \bigwedge_{b \in B} \beta_{ab}$$

- infimum of chains definite causal order
- supremum indicates indefinite causal order
- this form can be obtained from \mathcal{P}_f^0 (by brute force)

Question

Is there a better way to obtain this?

References

- [1] A. Jenčová, On the structure of higher order quantum maps, arXiv: 2411.09256
- [2] A. Bisio, P. Perinotti, Theoretical framework for Higher-Order Quantum Theory, Proc. R. Soc. A 475 20180706 (2019)
- [3] A. Kissinger, S. Uijlen, A categorical semantics for causal structure, Logical Methods in Computer Science 15, (2019)
- [4] T. Hoffreumon, O. Oreshkov, Projective characterization of higher-order quantum transformations, arxiv:2206.06206
- [5] S. Milz, M. Quintino, Characterising transformations between quantum objects, 'completeness' of quantum properties, and transformations without a fixed causal order, Quantum 8, 1415 (2024)
- [6] J. Hefford, M. Wilson, A Profunctorial Semantics for Quantum Supermaps, Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science. 2024.