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order quantum | ~ functions ~ subsets of
maps (type functions) system indices
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Quantum superchannels: transform channels to channels

A A B B’

Higher order maps

® recursively built hierarchy of "transformations between
transformations”

® most general quantum information protocols
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Causal order

Quantum combs: a subclass of HOMs

Ay By As B AN 5 N

® circuits with holes

® definite causal order of input and output " wires”
Indefinite causal order:
® quantum switch: superposition of definite orders

® advantages in information processing

Many different frameworks are being developed for HOM
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Types of higher order maps

Type theory of higher order maps:

® clementary types = quantum systems (states): Aj, Ao, ...

e for types z, y: z = (x — y) = transformations x to y

Equivalently, with the trivial system 1:
¢ dual: z=(x—1)
® tensor product: z®y = (x — 7)

Any HOM type is a term over elementary types A1,..., Ay:

T = x(Al, - ,An) = (A“ & 14_112) X (AZ3 X (Ai4 (=) (AZ{) & ))

Bisio and Perinotti, 2019
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All HOMs of type x7?

A map of type x: Ai ﬁ
e Ay,..., A, - elementary types Afz
® input indices: i1,..., 1 A;k f;_f,,
® output indices: j1,..., 7

Theorem (Combinatorial description of HOM types)

The set of all HOMs of type x can be described by a unique
Boolean function = type function:

f:{0,1}" - {0,1}, f(0...0)=1.

Bisio and Perinotti, 2019
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The type functions

Set of type functions:

Tn C Fni={f:{0,1}" = {0,1} | f(0...0) =1}

Questions

e Characterize 7,7 (no real answers)

® Properties of type funcions = properties of HOMs?
(some examples)
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Construction of type functions

Types = terms over variables A1,..., Ay:

T = (Ail ® Am) @ (Aia b2y (Ai4 & m)
We map these terms to elements of the Boolean algebra F,:

e terms are linear (variables are not repeating)
® cach A; is mapped to a constant 1
® if z— f and y — g, then

z@y— fRg:  fog(s's?) = f(s)a(s?)
o if x — f then

I+ f* - complement of f in F,.
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Type functions and Mobius transform

What we know:

e T =
e forn > 1, T, is not a lattice = 7, C F,
® |Important example: for any T' C [n] :={1,...,n}:

pr(s1...sn) = Iier(1 — s;), pr € Tn.

Mobius transform: the unique function f 2l 5 R such

that
=Y f(1)

TCn]
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The poset related to a type function

We define the poset of subsets of [n]:

Pp={T € 2[”], f(T) # 0} (ordered by inclusion)

Theorem

Let f € T,. Then Py C 2l" is a graded poset with even rank
and f is determined by Py:

F= 3 (~1Tpr,

TePy

where p is the rank function of Py.

Not all functions of this form are in 7T,,!
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Construction of the type posets

Singletons: for T' C [n]
PPT = {T}
Products: for f € T, g € Tn,

Prag = Py x Py C 20
Complements: for f € Ty,

P =Py A{0,[n]} (symmetric difference)

Type postes are constructed from singletons using products
and complements.
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A representation of Py
Hasse diagram with labels:

T ¢ Py, bp:={ic€T:i¢ Sfor SCT}

labels can repeat
if {5 N by # B, then

p(T) = p(S)

® i € [n]is and input

—

i € by, p(T) is even

i € [n] is not a label = free
output
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Chains and combs

Theorem

f € T, corresponds to combs if and only if Py is a chain (of
even length).

Examples

With n =2 and n = 4:

Aq As Az Ay

-
S
=

-—®

[ —
o— &
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The restricted type poset

Let 73]9 be the subposet consisting of labeled elements and ) (if
present in Py):

NV
T~

Theorem

Let f € 7y, then f is fully determined by P} C ol
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No-signaling relations

= |

For a channel ®,
input index 7, output index j:

|3>

® No-signaling: (i ¥4 J)

the input in A; cannot influence the output in A;
® No-signaling for a type: (i /~¢ j)

(i /> j) for all ® of a type with type function f

® Combs are characterized by no-signaling conditions:

i A i . AHA— A
i # s B
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No-signaling in 77})

Let ¢ € £g be an input label.
Then i 4~ j for an output j
iff one of the following holds:

® jis not a label,

o jelp, ST,

e jelp, SAT exists and
has even height.

signaling!

Repeated labels - similar conditions with some quantifiers
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The normal form of a type function

Theorem

For any f € T,, there are chains (combs) B, € Tn, a € A,
b € B, with the same inputs and outputs as f, such that

F=\ N Ba

acAbeB

® infimum of chains - definite causal order
® supremum indicates indefinite causal order

e this form can be obtained from 73}) (by brute force)

Question

Is there a better way to obtain this?
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