Optimal input states for
discrimination of quantum channels

‘ 1. Multiple hypothesis testing for quantum channels |

Assume that a channel ® : B(H) — B(K) is known to be
one of ®q,...,d,,, with prior probabilities A\{,...,\,,. The
task is to determine which one, with the greatest probability
of success.

A most general scheme for this task is given by a triple
(Ho, p, M), where p € S(H ® Hg) is a (pure) input state and
M ={M,...,M,}isaPOVMon B(K ® H;). The value

TrM;(®; ®id)(p)

IS interpreted as the probability that &, is chosen when the
true channel is ¢;. The average success probability is then

P(M,p) = Z AT [M;(@; @ id)(p)]. (1)

The task is to maximize P(M, p) over all input states p and
POVMs M. It had been observed [6, 8] that entangled in-
put states give greater success probability in some cases,
however, there are situations when the maximally entan-
gled input state is not optimal. It is therefore important to
find out whether an optimal scheme with a given input state
exists. A related problem was studied in [7].

2. Process POVMs and SDP formulation of the
problem

Alternatively, channel measurements are described by pro-
cess POVMs [9] (or testers [1], see also [3]), which is a col-
lection F' = {F},..., F;,} of positive operators in B(K @ H),
such that > . F; = I ® o for some state ¢ € S(H). The
average success probabillity is then

P(F) = Z Ai T C(P4) Fi, (2)

where C(P) is the Choi operator of &, [2]. Using this form,
our task becomes a problem of semidefinite programming:

max Tr|C'F|
FeBC'"® K®H)
Tr[F] = dim(K)
Tr[(I®X;)F)=0, i=1,...,k
F>0

Here C' = ). |i) (i ® C(P;) and X1, ..., X} is any basis of
the (real) linear subspace

L:={X=X"€BKaH),TrcX =0}

‘ 3. Optimality conditions |

Using standard results of SDP, we obtain the following:

Theorem 1. Let F’ be a process POVM. Then F is optimal if
and only if there is some \y > 0 and some channel V, such
thatfori=1,...,m,

AiC(P;) < AC (V)
and

AN

(AoC (V) — A C(Py)) Fy = 0.
Moreover, in this case, the optimal success probability is

Tr[FC) = mqin min{t > 0, \;C(P;) < tC(P), Vi} = N,

the minimum is taken over all channels B(H) — B(K).

We can characterize optimal measurement schemes as fol-
lows:

Corollary 1. Let p € S(H ® H) be such that o .= Trip is
invertible. Then (H, p, M) is optimal if and only if

Z =Y ANM;(®;®id)(p) > N(; ®id)(p), i=1,...,m
j

and TrxZ «x o.

Similar results were obtained in [5], in a broader context
and by different methods. Apart from the last condition on
the partial trace of Z, these are optimality conditions for a
POVM in MHT for the ensemble {)\;, (P; ® id)(p)}, [4].
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4. Optimal discrimination with a maximally
entangled input state

_et m = 2. Using the known characterization of optimal
POVMs in this case, we obtain a simple condition for ex-
istence of an optimal scheme with a maximally entangled
iInput state:

Corollary 2. Let &1, Py : B(H) — B(K) be channels, \ €
(0,1). An optimal scheme (H, p, M) with a maximally en-
tangled input state p exists if and only if the Choi operators
satisfy

Tric|AC () — (1 = N)C(D9)| = al, (MEI)

here | X| = (X*X)Y2. Moreover, in this case, the optimal
success probability is Py = %L,
We apply this last condition to check the existence of op-

timal procedures with maximally entangled input states for
discrimination of some types of channels.

5. Examples |

—or two channels ¢, &, and A € (0, 1), we put

O\ = APy — (1 — \)Ps.
Foraunitary U e U(H), let &y - B(H) — B(H), A— U*AU.
5.1 Covariant channels

Let Gbeagroupandletg— U, e U(H), g — V, € U(K) be
unitary representations. Let &; and o, satisfy

Then
UgTric|C(o))|Ug = Tric|C(dp 0 Dy, )| = Tric| C(d))].

Assume that the representation g — U, is irreducible. Then
(MEI) holds for &, 5 and any A € (0, 1).

5.2 Unitary channels

Let U,V € U(H) and put W := V*U. Then (MEI) holds for
dr7, &y and some A € (0,1) if and only if

Tr[WW + Te[WW™* 1.

Equivalently, either TrIV = 0 or W has at most two distinct
eigenvalues, both of the same multiplicity.

5.3 Qubit channels

Let &1, dy : B(C?) — B(C?) be qubit channels. Then (MEI)
holds if and only if

Trie|Con) + (Oa(1) + (1 = 20)1) @ I] = Tric|C(p)].
In particular, if there is some ¢ > 0 such that
Do(I) = c®1(I) + (1 — o)1,

then (MEI) holds with A = 1/(1 + ¢). If both channels are
unital, it holds for any A\ € (0,1).

On the other hand, let ®; = id and let &, = V¥, 5 be the
channel

3 3

\Doz,ﬁ : Zwi()'i — wol + Z(t + TW)Z'OZ'
1=0 1=1

where og = 1,01, ..., 03 are the Pauli matrices and

w1 0 cosa () 0
w= | w | ,t= 0 T = 0 cosp 0
w3 sin o sin 3 0 0 cosacosf

The graph below shows values of the function

(e, B) = [T — v(Tr|C(e1 2))]]1,
v(A) = (2/Tr[A]) A, the axes correspond to a = I, § = k.
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This suggests that (MEI) holds only if either o = 7 or g =,
that is if &5 Is unital (joint work with Tomasz Tylec).

5.4 Measurements
Fora POVM M = M, ..., M, on B(H), we denote

Oyp: B(H) 2 A Y Tr[AM]]i)(i| € B(C").

This is a gqc-channel. It ;1 = &, and &9 = O, (MEI) reads

D IAM; — (1= A)Nj| o< 1.

[/

Let M and N be von Neumann measurements,

M; =16 )(&], Ny =1ni)(ml,

fortwo ONB’s |£1), ..., &) and |1 ), ..., |nn ). Let A = 1/2.
Then (MEI) becomes

Z c;iPe, =201, a= n1 Z C;
1

[/

where ¢; = /1 — |(&,n; )|? and P, ,,. is the projection onto
span(&;,n;). This implies ¢; # 0, for all <. An equivalent con-
dition is that the matrix

(2al — C)"YV2(W — diag(W))C~1/2

is unitary, where W = ((&;,n;)), C = diag(cy, ..., cp). Some
results are listed below.

e For n =2 (MEI) always holds (for any ), since ¢,, and
d »r are unital qubit channels.

e For n = 3, (MEI) holds if and only if there is a cyclic per-
mutation o of {1,2, 3}, such that n; = Eo (i)

e Let the bases be mutually unbiased (MUB), then

1
W=——H
NG

for a Hadamard matrix 4. We may assume that H;; = 1
for all .. Then (MEI) holds iff H + H* = 21.
e For MUB, n = 4, (MEI) holds iff H = D*HyD, where

(1111\

-1 1 -1 1
-1 1 1 -1

\-1-11 1)

and D is some diagonal unitary.
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