Hilbert C$ ^* $-module Jordan Homomorphisms

Sayed Khalil Ekrami

Abstract


‎Let $ \mathcal{M} $ be a Hilbert C$ ^* $-module‎. ‎A linear mapping $ \psi‎ : ‎\mathcal{M} \rightarrow \mathcal{M} $ is said to be a‎

‎Hilbert C$ ^* $-module Jordan homomorphism on $ \mathcal{M} $‎, ‎if it satisfies the equation‎

‎$‎

‎\psi (\langle a,b \rangle a) =\langle \psi (a),\psi(b)\rangle \psi(a)‎

‎$‎

‎for all $ a,b \in \mathcal{M} $‎.

‎In this paper‎, ‎we show that‎, ‎if $ \mathcal{M} $ is prime‎, ‎then every Hilbert C$ ^* $-module Jordan homomorphism $ \psi $ from $ \mathcal{M} $ onto $ \mathcal{M} $‎, ‎is a Hilbert C$ ^* $-module homomorphism or a Hilbert C$ ^* $-module anti-homomorphism on $ \mathcal{M} $‎. ‎Also we prove a similar result about generalized Hilbert C$ ^* $-module Jordan homomorphism‎.


Full Text:

 Subscribers Only