The Sturm--Liouville problem with singular potential and the extrema of the first eigenvalue

E. S. Karulina, A. A. Vladimirov

Abstract


We get the infima and suprema of the first eigenvalue of the problem
\begin{gather*}
-y''+qy=\lambda y,\\
\left\{\begin{aligned}
y'(0)-k_0^2y(0)=0,\\ y'(1)+k_1^2y(1)=0,
\end{aligned}\right.
\end{gather*}
where \(q\) belongs to the set of constant-sign summable functions on \([0,1]\)
such that
\[
\int_0^1 q\,dx=1 \text{ or }\int_0^1 q\,dx=-1.
\]

Full Text:

PDF


DOI: https://doi.org/10.2478/tatra.v54i0.212